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Abstract
Black-box systems are inherently hard to verify. Many verification techniques, like model checking, require formal models
as a basis. However, such models often do not exist, or they might be outdated. Active automata learning helps to address this
issue by offering to automatically infer formal models from system interactions. Hence, automata learning has been receiving
much attention in the verification community in recent years. This led to various efficiency improvements, paving the way
toward industrial applications. Most research, however, has been focusing on deterministic systems. In this article, we present
an approach to efficiently learn models of stochastic reactive systems. Our approach adapts L∗-based learning for Markov
decision processes, which we improve and extend to stochastic Mealy machines. When compared with previous work, our
evaluation demonstrates that the proposed optimizations and adaptations to stochastic Mealy machines can reduce learning
costs by an order of magnitude while improving the accuracy of learned models.

Keywords Active automata learning · Model mining · Probabilistic verification · Stochastic mealy machines · Markov
decision processes

1 Introduction

Formal techniques are an attractive and important asset when
it comes to assessing functional properties of a system or
one of its components—prominent examples being tools like
model checkers or approaches like model-based testing and
diagnosis. They require us to provide a detailed systemmodel
though, which we often lack in practice. This might stem
from using third-party components and the arising IP issues,
or due to a lack of the resources needed to derive and main-
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tain such a model and where we potentially suffer also from
incomplete documentation. So, while wemost certainly have
a specification of a system’s I/O interface at our discretion,
we lack in many cases a detailed model which is a prerequi-
site for a variety of formal and model-based verification and
debugging techniques.

Active automata learning allows us to learn such a detailed
model in the form of an automaton from a black-box reactive
system and enables us to exploit formal as well as model-
based techniques and tools where this would be impossible
otherwise. Consequently, this has been a very active research
area since the inception of the field with Angluin’s L∗ algo-
rithm [1] for learning deterministic finite automata (DFAs).
Corresponding extensions that have paved the way to apply-
ing the concept in an industrial context range from general
algorithmic improvements [2, 3] over domain-specific opti-
mizations [4] to learning further automata variants like
Mealy machines [5, 6] or timed automata [7, 8]. While
in the deterministic setting executing an input from a state
always produces the same output, in non-deterministic and
stochastic learning a single input might produce multi-
ple outputs. Stochastic systems produce outputs that are
distributed probabilistically. Stochastic learning algorithms
accordingly learn models where output distributions are
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approximated based on the data observed during learning.
In the non-deterministic setting, outputs are not sampled
from probability distributions, but arise due to the inher-
ent non-deterministic behavior of the system. In practice,
non-determinism often arises from abstraction [9]. More
concretely, by abstraction we consider the partitioning of
concrete inputs or outputs into equivalence classes, and the
non-deterministic behavior often arises due to imprecisions
introduced by such abstraction. Non-deterministic behavior
can also indicate the presence of unintended behavior/bugs
in deterministic systems, as observed in [10].

While uncertainty is an issue we face in practice quite
often, learning automata in settingswith uncertainty has been
receiving less attention so far. In previous work [11, 12] we
presented the first L∗-based learning algorithm that allows
one to actively learn Markov decision processes (MDPs)
of stochastic systems. In the conference version of this
manuscript, we improved upon our previous work via the fol-
lowing contributions: We (1) presented L∗

SMM, an L∗-based
approach for learning stochastic Mealy machines (SMMs)
alongwith algorithmic improvements that also apply to learn-
ing MDPs and (2) reported on a thorough experimental
evaluation with implementations in our open-source library
AALpy [13].

Extension of the original paper. In this manuscript, we
make the following contributions in comparison to the origi-
nal L∗

SMM paper [14]:we (a) extend all sections of the original
paper, making the paper more self-contained, and (b) pro-
vide a more detailed description of the L∗

SMM algorithm.
Additionally, (c) we extend the algorithm with an additional
statistical compatibility check, which may be more suitable
when learning stochastic systemmodels under certain condi-
tions. We (d) revise and discuss counterexample processing
strategies. These algorithmic improvements demonstrate the
extensibility and adaptability of L∗

SMM to new environments,
potentially takingdomainknowledge into account. For exam-
ple, whenwe know that the systemdoes not produce very rare
outputs, we may choose to apply the newly introduced statis-
tical compatibility check. Finally, (e) the present manuscript
contains experiments with an additional benchmark based
on a Bluetooth low-energy model, and (f) it provides a more
detailed evaluation based on randomly generated stochastic
automata and statistical model checking. Thus, we provide a
more detailed evaluation, reinforcing our findings from the
original paper regarding the sampling efficiency and accu-
racy of learned models.

As we will show, learning SMMs optimizes the learn-
ing process (i.e., the required number of interactions with a
(SUL)) in comparison to existing work [12, 15]. An auto-
matic translation from SMMs to MDPs enables the use of
probabilistic model checkers like Prism [16] or Storm [17].
Thus, L∗

SMM can be used for learning-based verification of
black-box systems.

Structure. In Sect. 2,we recapitulate preliminaries like L∗-
based automata learning. We present our approach to active
learning of SMMs in detail in Sect. 3, followed by a cor-
responding evaluation and comparison to learning MDPs in
Sect. 4. After a discussion of related work in Sect. 5, we will
conclude with a summary of our findings and an outlook on
future work in Sect. 6.

2 Preliminaries

In this section, we will introduce our notation as well as
background knowledge.

2.1 Foundations

Adiscrete probability distributionμ over a countable set X is
a function μ : X → [0, 1] such that ∑x∈X μ(x) = 1, where
we referwithDist(X) to the set of all probability distributions
over X . To ease probability estimations from sampled data,
we focus on rational probabilities only, i.e., μ(x) takes only
rational values. Furthermore, we support partial functions μ

by assuming μ(x) = 0 if μ is undefined for some x . The set
supp(μ) = {x ∈ X | μ(x) > 0} is referred to as the support
of μ. We use A(e) ∈ N0 to denote the multiplicity of e in
some multiset A.

For a finite set X , let u, v, w ∈ X∗ be finite sequences
over X : u = v · w is the concatenation of v and w, where v

is a prefix of u, and w is a suffix. The length of u is denoted
|u|, ε denotes the empty sequence, and we lift x ∈ X to be a
sequence of length one. For A, B ⊆ X∗, A · B is the set of
all concatenations of sequence pairs in A and B. A ⊆ X∗ is
prefix/suffix-closed if A contains all prefixes/suffixes of all
s ∈ A.

We consider reactive systems M that produce exactly one
output o ∈ O at a time in response to an input i ∈ I for in-
and output alphabets I and O . Thus, an interaction with M ,
coined a trace, is a finite sequence t ∈ (I · O)∗, and a single
interaction step consists of an input–output pair in I · O .
For convenience, we adopt the notions of prefix, suffix, and
length for traces, referring to input–output pairs as atomic
elements. For example, the trace set T = {ε, a ·b, a ·b ·c ·d}
for a, c ∈ I and b, d ∈ O is prefix-closed, as T contains
every input–output pair prefix of a ·b·c·d. The trace length |t |
gives the number of input–output pairs, so that, for example,
|a · b · c · d| = 2.

In addition to traces t ∈ T R = (I · O)∗, we consider test
sequences from T S = (I · O)∗ · I , which test a system’s
response to an input i following a trace t . We also consider
continuation sequences CS = (I ·O)∗·I ,which extend traces
to test sequences T R ·CS = T S. Analogously to traces, we
extend the notions of prefixes and suffixes by considering
input–output pairs and trailing/leading inputs in these types
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of sequences. For example, C = {i2 · o2 · i1, i1} ⊆ CS is
suffix-closed.

2.2 Stochastic systemmodels

We learn SMMs and transform them into labeled MDPs.
This has the advantage that learning SMMs is more efficient
as we will show in our experiments, while the transforma-
tion enables model-based analyses with probabilistic model
checkers [16, 17] that use MDPs as input format. Analo-
gously to Mealy and Moore machines, SMMs and MDPs
differ in the way outputs are produced. An SMM produces
an output considering its current state and an input, whereas
the output of anMDP depends only on the current state. Like
in a non-stochastic setting, SMMs are potentially smaller as
illustrated in Fig. 1 for a simple example.

On the top of Fig. 1, we show an MDP modeling a faulty
coffee machine, and a corresponding SMM on the bottom
(see Definitions 2.1, 2.2). Both models are observationally
equivalent, except for the initial output producedby theMDP.
For both we have inputs and probabilities as edge labels, s.t.
the probabilities follow after a colon. In theMDP, the outputs
are defined by the labels on the states, whereas for the SMM
they are part of the edge label—separated from the input
via a slash. The described coffee machine works such that
it sounds a beep with probability one upon receiving a coin.
When a button is pressed, a coffee is issued with a probability
of 0.9, or we have init with the complementary probability
of 0.1.

Definition 2.1 (Markov Decision Processes)A labeledMDP
is a tuple M = 〈Q, I , O, q0,�, L〉 where Q is a finite set
of states, q0 ∈ Q is the initial state, I and O are finite sets
of input and output symbols, � : Q × I → Dist(Q) is the

q0 q1 q2

button : 1

coin : 1

coin : 1

button : 0.1 button : 0.9

coin : 1

button : 1

init

beep coffee

q0 q1

button/

init : 1

coin/beep : 1

coin/

beep : 1

button/init : 0.1

button/

coffee : 0.9

Fig. 1 An MDP model (top) and an SMM model (bottom) of a faulty
coffee machine

probabilistic transition function, and L : Q → O is the
labeling function.

Definition 2.2 (Stochastic Mealy Machines) An SMM is a
tuple M = 〈Q, I , O, q0, δ〉 where Q, q0, I , and O are
defined as for MDPs and δ : Q × I → Dist(Q × O) is
the probabilistic transition function.

We use q
i ·o−→ q ′ to denote δ(q, i)(q ′, o) > 0 and extend

this notation to traces t in (I ·O)∗ by q ε−→ q and q
i ·o·t−−→ q ′ if

∃q ′′ : q i ·o−→ q ′′ ∧q ′′ t−→ q ′. As is common in automata learn-
ing and testing, we consider input-enabled systems, such that
δ and� are total and are thus defined for all q ∈ Q and i ∈ I .
Furthermore, we consider deterministic MDPs and SMMs,
such that for every trace t , there is exactly one path producing
t . More formally, we require for all q ∈ Q, i ∈ I that

• ∀q ′, q ′′ ∈ supp(�(q, i)) : if L(q ′) = L(q ′′) then q ′ =
q ′′ (MDPs) and

• ∀(q ′, o′), (q ′′, o′′) ∈ supp(δ(q, i)) : if o′ = o′′ then q ′ =
q ′′ (SMMs).

Consequently, while an input may cause different outputs,
an input–output pair cannot lead to different states. Non-
determinism results only from the environment’s choice of
inputs.Under these conditions,we can define anSMMoutput
function λ by λ(q, i) ∈ Dist(O) and
λ(q, i) = {o �→ p | (q ′, o) �→ p ∈ δ(q, i)}.

These requirements enable a transformation from SMMs
to MDPs similar to the one from deterministic Mealy to
Mooremachines. That is, we basically have to create anMDP
state for every pair of (1) an SMM state s and (2) an output
of one of s’s incoming transitions. After creating another
state with a new special label as initial state, we transfer the
transitions from the SMM.

We use input–output prefix trees (IOPTs) as compact rep-
resentations of a set of traces. An IOPT is a tree with edges
labeled by inputs and nodes labeled by outputs. Similar trees
are used in passive automata learning [18, 19].

Figure 2 shows an example of an input–output prefix
tree of a faulty coffee machine shown in Fig. 1. The fig-
ure shows that we actually use IOPTs with input frequencies

n0

n1 n2

n3 n4 n7n6n5

button : 18 coin : 19

coin : 7button : 6 button : 1 coin : 7 button : 6

init beep

coffeebeepinitbeepinit

Fig. 2 An IFOPT for the faulty coffee machine
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(IFOPTs) where each edge is labeled with an input sym-
bol and a frequency value in the natural numbers. For
example, the frequency of button in node n2 is 7 (com-
bined frequency from the edges labeled button), denoted by
freqLabel(n2, button) = 7.We use frequencies to define how
often an input should occur in relation to other inputs. Upon
receiving responses from the SUL, the algorithm updates
the concrete frequency values. These frequencies continu-
ously change during the learning process to reflect how often
individual inputs should be sampled during tree query. We
discuss this in more detail in Sect. 3.4.

2.3 Active automata learning

Angluin presented her L∗ algorithm and introduced the min-
imally adequate teacher (MAT) framework in her seminal
paper on active automata learning [1]. With L∗ we can learn
DFAs accepting regular languages and L∗ has been serv-
ing as the basis for several adaptations and variations to
learn further automata types, such as Mealy machines [6],
non-deterministic automata [20], timed automata [21], and
MDPs [12].

L∗-based algorithms in theMATframework learn automata
capturing some (regular) language L by querying a teacher
for information. Generally, learners use two types of queries:
(1) input queries for asking whether a word u ∈ X∗ is in L
and (2) equivalence queries to check whether a hypothesized
automaton accepts exactly L . Most L∗-based algorithms
share furthermore a similar structure and concept of how to
derive hypotheses from queried data. When learning finite-
state transducers, such asMealymachines orMDPs, an input
query is substituted with amembership query. Whereas input
queries answer the question of whether the word is in L ,
membership queries answer with an output obtained after
executing a sequence of inputs. Figure3 depicts the interac-
tion between the teacher and the learning algorithm in the
MAT framework.

In principle, L∗ operates in rounds, such that it issues
multiple membership queries in a round to gain informa-
tion about L . Once the learner has sufficient information
to create a hypothesis automaton (for the original L∗ this
is a DFA), it finishes the round by issuing an equivalence

Teacher
Learning
Algorithm

Equivalence Query (Hypothesis)

Yes / Counterexample

Membership Query

Yes / No

Fig. 3 The interaction between a learner and a teacher in the MAT
framework

query. The teacher may now respond with yes for signal-
ing that the automaton a.k.a. hypothesis accepts L , so that
the learning process concludes. However, the teacher may
respond alsowith a counterexample, i.e., a word c in the sym-
metric difference between L and the automaton’s language.
Thus, when receiving a counterexample c, the learner inte-
grates c into its knowledge and continues via starting the next
round. L∗ stores information in observation tables and cre-
ates hypotheses from these tables. A table’s rows are labeled
by a prefix-closed set of words S and columns are labeled
by a suffix-closed set of words E . The states in a hypothesis
are equivalence classes in S, s.t. s, s′ ∈ S are equivalent if
s ·e ∈ L ⇔ s′ ·e ∈ L for all e ∈ E . This equivalence relation
is the Nerode relation [22], but evaluated on a finite set E . In
the next section, we adapt this concept to stochastic Mealy
machines.

3 Method

In this section, we present L∗
SMM, an algorithm for learning

SMMs. For this purpose, we extend, adapt, and improve our
L∗-based algorithm for MDPs [11, 12]. First, we define the
setting and basics for learning SMMs, such as semantics.
Next, we introduce the queries that are used in the interaction
between learner and teacher. After that, we discuss learning
itself and present implementation details on selected aspects,
such as queries, counterexample processing, and stopping.
We conclude the section with a complexity analysis and a
discussion of convergence.

3.1 Basics

Let us assume that M = 〈Q, I , O, q0, δ〉 is an SMM
underlying the black-box SUL, representing the knowledge
we would like to learn. A learner initially only knows the
available inputs and outputs, but we use the SUL behav-
ior to formalize learning. Thus, let us define input–output
semantics �M� that maps traces followed by an input to
the output distribution produced by the input. Formally,
�M� : (I ·O)∗· I → Dist(O)∪{⊥}with �M�(t ·i) = λ(q, i)

if there is a q ∈ Q such that q0
t−→ q and �M�(t · i) = ⊥

otherwise. We will query a teacher that samples SUL traces
to gain information about �M�. For sampling, the teacher
performs inputs on the SUL and observes outputs produced
by the SUL, which are distributed according to �M�. In this
way, the teacher collects multisets of SUL traces. In the fol-
lowing, we define trace equivalence, as an adaptation of the
Nerode relation for regular languages [22], and equivalence
of SMMs.

Definition 3.1 (Trace Equivalence) Two traces t, t ′ ∈ (I ·
O)∗ are equivalent if for all continuation sequences cs ∈
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I · (O · I )∗:

�M�(t · cs) = �M�(t ′ · cs).

Definition 3.2 (SMM Equivalence) LetM1 andM2 be two
SMMs over the same input and output alphabets. M1 and
M2 are equivalent iff for all test sequences

ts ∈ (I · O)∗ · I : �M1�(ts) = �M2�(ts).

Two traces are equivalent if they produce the same output
distributions in response to the last input of every continu-
ation sequence. Likewise, two SMMs are equivalent if they
produce the same output distributions for all test sequences.

3.1.1 Statistical tests to determine trace equivalence

Since we sample traces with outputs distributed according
to SUL semantics �M�, we cannot determine exact equiv-
alence of output distributions as required by Definition 3.1.
We instead perform statistical tests for difference between
sampled output frequencies.

To formalize the problem of approximating equivalence
checking between sampled frequencies, let tc1 and tc2 be
two sequences in (I ·O)∗ · I and let T be a multiset of traces
collected from the SULM.We define the frequency function
as freqT (tc) = o �→ T (tc · o) for o ∈ O , extend the notion
of support supp() to frequencies, and introduce Freq(O) for
O → N0, the set of all output frequency functions. Our goal
is to approximate �M�(tc1) �= �M�(tc2) by testing whether
f1 = freqT (tc1) and f2 = freqT (tc2) have been sampled
from different distributions. We say that the frequencies f1
and f2 are compatible, denoted f1 ≈ f2, if they are not
different. Let ni = ∑

o∈O fi (o). In the special case that n1 =
0 or n2 = 0, we define f1 ≈ f2 to hold, since then we do not
have sufficient information to detect a difference.

More concretely, we implemented two difference check-
ing strategies: (1) one based onHoeffding bounds [23],which
are also used in other stochastic automata learning algo-
rithms [12, 19], and one based on Pearson’s χ2 test [24]
for testing homogeneity of multinomial distributions.

Both strategies come with advantages and drawbacks.
Using Hoeffding bounds, we view the occurrence of each
output as Bernoulli-distributed random event. Thismeans we
must perform several individual tests for outputs produced
in response to a single state-input pair. Hence, errors may
compound. The application of Hoeffding bounds is actually
motivated by its application in IoAlergia [15] and its pre-
decessor Alergia [19]. In contrast toAlergiawhich learns
probabilistic finite automata, we learn MDPs, where out-
puts follow a categorical distribution rather than a Bernoulli
distribution. Hence, Pearson’s χ2 test may be a better fit.
However, this test places stricter requirements on the amount

of sampled data. Especially “almost deterministic” systems
and systems with rare outputs, in general, may be problem-
atic, as the χ2 distribution may not fit well in such cases.
Due to the relevance of such domain-dependent considera-
tions, we will empirically evaluate both strategies on various
systems.

Hoeffding check. For n1 > 0 and n2 > 0, α defining the
significance level.

Frequencies f1 and f2 are different if ∃o ∈ O :
∣
∣
∣
∣
f1(o)

n1
− f2(o)

n2

∣
∣
∣
∣ >

√
1

2
ln

2

α

(
1√
n1

+ 1√
n2

)

.

(correct with probability ≥ (1 − α)2 [19]) (1)

Chi-squared (χ2). Let O1 = supp( f1) and O2 =
supp( f2). The frequencies f1 and f2 are different if

2∑

i=1

∑

o∈O1∪O2

f1(o) − n1 · p̂o
n1 · p̂o ≥ χ2

1−α,|O1∪O2|−1 (2)

where p̂o = f1(o) + f2(o)

n1 + n2
. (3)

There are two special cases affecting the applicability of the
χ2 test, which may occur for long sequences tc with few
observations. If O1 ∩ O2 = ∅, we apply the Hoeffding test
defined above as a fallback. If |O1 ∪ O2| = 2 and there is an
o ∈ O1 ∪ O2 with fi (o) ≤ 5, we apply the χ2 test with the
Yates correction [25].

The two different tests lead to varying learning behavior
and performance. For example, if we expect mostly non-
stochastic behavior from the SUL, the requirements for the
standard χ2 test may often be violated. In such cases, we
apply the Yates correction, which may result in more pes-
simistic checks, thus requiring more samples to detect a
difference. On one hand, this leads to worse performance,
but on the other hand, it leads to very accurate learned mod-
els according to our experiments. The worse performance of
pessimistic checks with the Yates correction stems from the
fact that fewer difference verdictsmeans that the intermediate
hypotheses have a lower number of states asmore observation
table rows would be compatible; see hypothesis construction
below. As a result, learning might take more sampling to
converge. The final models, however, may be more accurate
than with the Hoeffding check simply because more data is
available to estimate output distributions. Hence, the choice
of difference check depends on the application domain and
the time budget for learning.

3.2 Queries

The learner and teacher interact with each other via two types
of queries: (1) tree queries and (2) equivalence queries. The
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teacher samples traces for both query types, butwith different
goals. Tree queries attempt to gain more accurate informa-
tion about the SUL, whereas equivalence queries attempt to
falsify a hypothesis SMM—as proving equivalence is not
possible in a black-box setting, we target falsification.

Tree query (tq): Let FT be an IFOPT, a tree query tq(FT)

returns amultiset of traces from (I ·O)∗, where inputs are
chosen according to FT and outputs are sampled accord-
ing to the SUL semantics �M�.

Equivalence query (eq): Let H be a hypothesis SMM, an
equivalence query eq(H) returns a pair (r , Tcex) where
r is the query result in {yes} ∪ (I · O)∗ · I and Tcex is a
multiset of traces sampled for the query.

For a tree query tq, the learner creates an IFOPT FT and asks
the teacher to sample paths from FT, while selecting inputs
i with a probability proportional to the frequency value of
i in FT. The result of a tq is a multiset of sampled SUL
traces. For an equivalence query, the learner forms a hypoth-
esis SMMH and asks ifH is equivalent to the SULM. The
teacher responds either with yes or with a counterexample to
equivalence in (I · O)∗ · I . Additionally, the teacher returns
a multiset of traces that have been sampled to perform the
query.

3.3 Learner

3.3.1 Data structures

The learner uses two main data structures, a multiset T of
sampled traces and an observation table, a triple 〈S, E, T 〉.
Based on freqT (tc), the output frequencies observed so far,
S, E , and T are defined by:

• S ⊆ (I · O)∗ is a prefix-closed set of traces,
• E ⊆ (I · O)∗ · I with I ⊆ E is a suffix-closed set of
continuations, and

• T : (S ∪ Lt(S)) · E → Freq(O) with Lt(S) = {s · i ·
o | s ∈ S, i ∈ I , o ∈ O : freqT (s · i)(o) > 0} and
T (s · e) = freqT (s · e) stores output frequencies.

An observation table can be represented as a two-
dimensional table with rows labeled by short traces in S
and by long traces in Lt(S), columns labeled by continuation
sequences in E , and with cell content given by T . Table 1
shows an observation table from a learning run of L∗

SMM on
the coffee machine shown in Fig. 1.

As is commonly done in L∗-based learning, we create
hypotheses as follows. We partition S based on the row
content given by functions row(s) : E → Freq(O) with
row(s)(e) = T (s · e) and create a state for every block

Algorithm 1 Creation of compatibility classes
1: for all s ∈ S do
2: rank(s) ← ∑

i∈I
∑

o∈O T̂ (s · i)(o)
3: end for
4: unpartitioned ← S
5: R ← ∅
6: while unpartitioned �= ∅ do
7: r ← m where m ∈ unpartitioned with largest rank(m)

8: R ← R ∪ {r}
9: cg(r) ← {s ∈ unpartitioned ∧ compatibleE (s, r)}
10: for all s ∈ cg(r) do
11: rep(s) ← r
12: end for
13: unpartitioned ← unpartitioned \ cg(r)
14: end while

in the partition. We further create transitions for input–
output pairs i · o between blocks b and b′ by determining
the block b containing an s ∈ S and the block b′ con-
taining its input–output extension s · i · o, if it exists. The
long traces Lt(S) ensure that traces can be created for all
observed input–output pairs. To partition S, we extend the
notion of frequency compatibility to rows and adapt a tech-
nique introduced in previous work [12], as compatibility is
not an equivalence relation. We say that two rows labeled
by traces s and s′ are compatible if all their cells are com-
patible, i.e., ∀e ∈ E : row(s)(e) ≈ row(s′)(e). We also say
that the traces s and s′ are compatible. In Table 1, the first,
third, fourth, and fifth rows contain different frequencies, but
by normalizing we can see that they model exactly the same
(empirical) probability distributions. Hence, they would be
pairwise compatible and thus be in the same block of a parti-
tion of S and correspond to the same state in the hypothesis
derived from Table 1. The situation for the second and last
row is a bit different. Their respective first cells contain the
same outputs, but the empirical probability distributions esti-
mated from them are different. However, the difference is
small enough thatwewould deem the cells, and thus the rows,
compatible according to both statistical tests. As an exam-
ple where the tests disagree, suppose that the cells contain
{coffee : 147, init : 7} and {coffee : 65, init : 16}, respectively,
i.e., frequencies values would be swapped. Using an α =
0.05 for both, the Hoeffding check would deem the cells
compatible, whereas the χ2-squared tests would deem them
incompatible. The reason is that the former looks at outputs
individually, whereas the latter looks at the whole cell at
once, thus noticing a difference. Hence, the Hoeffding check
would be more aggressive, differentiating fewer rows and
thus creating a model with fewer states.

We face the difficulty that compatibility is not an equiv-
alence relation, as transitivity does not hold in general. A
row may be compatible with multiple other rows that are not
necessarily pairwise compatible. To tackle this challenge, we
create compatibility classes cg(r) that partition S, like in our
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Table 1 Observation table for
the faulty coffee machine shown
in Fig. 1

button coin

S ε {init : 247} {beep : 414}
coin · beep {coffee : 147, init : 16} {beep : 134}

Lt(S) button · init {init : 69} {beep : 82}
coin · beep · button · coffee {init : 64} {beep : 53}
coin · beep · button · init {init : 9} {beep : 6}
coin · beep · coin · beep {coffee : 65, init : 7} {beep : 61}

Algorithm 2 Ensuring closedness and consistency of an
observation table
1: function MakeClosedAndConsistent(〈S, E, T 〉)
2: if 〈S, E, T 〉 is not closed then
3: l ← l ′ ∈ Lt(()S) such that ∀s ∈ S : row(s) �= row(l ′)
4: S ← S ∪ {l}
5: else if 〈S, E, T 〉 is not consistent then
6: for all s1, s2 ∈ S such that eqRowE (s1, s2) do
7: for all i ∈ I , o ∈ O do
8: ifT (s1 · i)(o)>0 and ¬eqRowE (s1 · i · o, s2 · i · o) then
9: e ← e′ ∈ E such that T (s1 · i ·o ·e′) �= T (s2 · i ·o ·e′)
10: E ← E ∪ {i · o · e}
11: end if
12: end for
13: end for
14: end if
15: return 〈S, E, T 〉 � Closed and consistent obs. table
16: end function

previous work [12]. Each compatibility class cg(r) ⊆ S has
a unique representative r in the set of representatives R ⊆ S
and every trace t in cg(r) is compatible to r . The function
rep(t) = r returns the unique representative r for short and
long traces t . We create compatibility classes by iteratively
selecting a new representative r from the unpartitioned part
of S and greedily adding other unpartitioned traces to cg(r).
The selection of a new representative r is based on how often
r was observed during sampling, which ensures that ε ∈ R
can be used as the initial hypothesis state. Algorithm 1 shows
the compatibility classes computation process.

3.3.2 Hypothesis generation

To create a hypothesis from an observation table 〈S, E, T 〉,
the tablemust be closed and consistent.Adapting the standard
notion of closedness and consistency [1, 12], we say that an
observation table is closed if for all l ∈ Lt(S) there is an
r ∈ R such that r and l are compatible. Closedness ensures
that we can create transitions for all inputs in all states.

An observation table is consistent if for all pairs of com-
patible short traces s, s′ ∈ S and all input–output pairs
i ·o ∈ I ·O: either (1) s · i ·o and s′ · i ·o are compatible or (2)
T (s · i)(o) = 0 or T (s′ · i)(o) = 0. Consistency requires that
the extensions of compatible traces are also compatible. Put
differently, if s leads to the same hypothesis state as s′, then

its extension s · i · o should lead to the same state as s′ · i · o.
This corresponds to the determinism requirement of SMMs.

When an observation table is not closed, there is an
l ∈ Lt(S) such that there is no compatible r ∈ R. We can
make an observation table closed by adding such an l violat-
ing closedness to the set of short traces S and recalculating
the set R. When an observation table is not consistent, there
exists a pair of compatible traces s, s′, an input–output pair
i ·o, and a column sequence e such that s · i ·o ·e �≈ s′ · i ·o ·e.
In such a case, we add i · o · e to E . The iterated applica-
tion of these updates—adding traces to S and sequences to
E—eventually establishes closedness and consistency.Algo-
rithm 2 depicts the process of making the table closed and
consistent. In contrast to deterministic learning, this does not
require resampling as compatibility is defined for any amount
of samples.

Given a closed and consistent observation table 〈S, E, T 〉
with representatives R, we derive a hypothesis SMM
hyp(S, E, T ) = 〈Qh, I , O ∪ {undef}, q0h, δh〉 via:
• Qh = R ∪ {qundef} and q0h = ε

• For q ∈ R and i ∈ I , if
∑

o∈O T (q · i)(o) = 0:

δh(q, i)((qundef, undef)) = 1

Otherwise:

δh(q, i) = μ where for o ∈ O if T (q · i)(o) > 0:
q ′ = rep(q · i · o) and μ((q ′, o)) = T (q·i)(o)∑

o′∈O T (q·i)(o′)

• If qundef is reachable, then for i ∈ I :

δh(qundef, i)((qundef, undef)) = 1

We create a state for every representative with ε ∈ R being
the initial state. Transitions from q ∈ R lead to the rep-
resentatives of the input–output extensions q · i · o, where
transition probabilities are estimated from T . If we have no
observations for an input, we create transitions to a sink state
qundef.

3.3.3 Learning algorithm

Algorithm 3 implements the stochastic L∗ algorithm for
SMMs, adapting L∗ for MDPs [12]. In Line 1, we initial-
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Algorithm 3 The main algorithm implementing L∗
SMM

Input: input alphabet I , teacher capable of answering tq and eq
Output: final learned model H
1: S ← {ε}, E ← I , T ← {}, T ← {ε} � initialize observation table

and samples T
2: round ← 0
3: repeat
4: round ← round + 1
5: FTree ← createIFOPT(〈S, E, T 〉)
6: T ← T � tq(FTree)
7: for all s ∈ S ∪ Lt(S), e ∈ E do
8: T (s · e) ← freqT (s · e) � update observation table
9: end for
10: while 〈S, E, T 〉 not closed or not consistent do
11: 〈S, E, T 〉 ← MakeClosedAndConsistent(〈S, E, T 〉)
12: end while
13: H ← hyp(S, E, T ) � create hypothesis
14: 〈S, E, T 〉 ← trim(〈S, E, T 〉,H) � remove cells not needed
15: (r , Tcex) ← eq(H) � Check hypothesis H against SUL M
16: T ← T � Tcex
17: if r �= yes then � we found a counterexample
18: 〈S, E, T 〉 ← processCex(r , 〈S, E, T 〉)
19: end if
20: until stop(〈S, E, T 〉, H, round)
21: return H � output final hypothesis

ize the learning data structures. The main loop starts with a
tree query in lines 5 and 6. After updating the learner’s data
structures, we make the observation table closed and consis-
tent (Line 11) and form a hypothesisH (Line 13). GivenH,
we remove table rows and columns that are not needed for
hypothesis generation. Line 14 basically removes rows that
carry the same information as other rows and cells that do not
distinguish rows. For more details, we refer to our previous
work [12].

In Line 15, we perform an equivalence query. If it returns a
counterexample r , we process it by updating the observation
table with information derived from r . L∗-based learning [1,
6] commonly stops once an equivalence query returns yes, but
we continue learning until the stopping criterion in Line 20
is fulfilled. The reason is that in stochastic learning, we may
not be able to find a counterexample given an inaccurate
hypothesis that could be improved by additional tree queries.
Therefore, we employ a stopping criterion that takes hypoth-
esis generation into account. Once we stop, we return the
final hypothesis.

3.4 Implementation

We implemented Algorithm 3 in AALpy, an open-source
automata learning library.1 AALpy supports learning of both
MDPs and SMMs, which we compare empirically in Sect. 4.
In the following, we discuss selected aspects of the imple-

1 An interactive example illustrating the learning process is avail-
able at https://github.com/DES-Lab/AALpy/blob/master/notebooks/
MDP_and_SMM_Example.ipynb.

mentation with a focus on improvements over the original
algorithm for MDPs [12], for example, stopping and resam-
pling by the tree query.

3.4.1 SUL interface

The teacher assumes an application-specific SUL interface
comprising two operations step and reset. They facilitate
sampling, where at each point, the SUL is in a current state
qc. The reset operation resets qc to q0. The step operation
takes an input i as parameter, executes it on the SUL, and
returns the SUL output. More concretely, it samples a state-
output pair (q, o) according to the distribution δ(q, i) of the
SUL, sets qc = q, and returns o.

3.4.2 Equivalence queries and counterexample processing

The teacher performs two steps in equivalence queries. The
first step is checking compatibility between already sampled
traces (multiset T in Algorithm 3) and the hypothesis. The
second, optional step samples new traces to reveal a coun-
terexample to equivalence between hypothesis and SUL.
Sampling happens only when the compatibility check does
not reveal a counterexample. This ensures that we use exist-
ing samples as efficiently as possible and when there is no
counterexample in T we try to find new counterexamples via
sampling. The implementation of these steps follows our pre-
vious work [12]. We check compatibility between T and the
hypothesis using Eq. 1, andwe apply random testing for sam-
pling. To ensure that every counterexample can be detected,
every input and every trace length has a nonzero probability
of being selected during testing.

A counterexample c returned from an equivalence query
indicates that the observation table shall be extended in away
to ensure that upcoming hypotheses are correct w.r.t. c. Since
hypotheses in active automata learning [1, 12] are generally
the smallest models consistent with the queried information,
the goal of counterexample processing is to reveal new states.

Due to the uncertainties found in the learning process,
the counterexample processing might not reveal the addi-
tional states in the current learning round. Therefore, before
each equivalence query we check whether the last returned
counterexample has been successfully processed. If yes, the
equivalence query continues, and if not it is reused until it
fails to serve as a counterexample.

There are various ways to process counterexamples in
L∗-based learning. Our implementation provides three coun-
terexample processing strategies that are commonly applied
in deterministic learning.

• Angluin-style: Angluin adds all prefixes of a counterex-
ample to S [1].
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• Longest-prefix: The longest prefix strategy by Shahbaz
and Groz [6] splits c into a prefix p and a suffix e, where
p is the longest prefix that is already in S. It then adds e
to E .

• Rivest and Shapire: The processing strategy proposed
by Rivest and Shapire [2] processes a counterexample
and finds the shortest suffix e that reveals the difference
between the SUL and the current hypothesis. The suffixes
of e are added to the E set.

While Rivest and Shapire and alternative strategies based
on the extraction of so-called distinguishing suffixes are very
efficient in deterministic learning [3, 26], we found them to
be (generally) less efficient in stochastic learning. This is due
to the usually low amount of statistical information on coun-
terexample suffixes. Such strategies would require repeated
sampling of representative traces from R concatenated with
counterexample suffixes until a distinguishing suffix can be
found via Eq. 1. In contrast, the other two techniques rely
solely on sampling performed in subsequent learning rounds.

We want to illustrate the potential sampling cost of a
technique, such as Rivest and Shapire’s counterexample pro-
cessing using a hypothetical example. Suppose we have a
counterexample of length 16, which we would split into a
prefix, a single action a, and a suffix. By replacing the pre-
fix with one of the representative traces and concatenating it
again with a and the suffix, we might end up with a trace t
of length 8. In the case that there are only two outputs with
equal probability, it would take on average 256 tries to sample
t once. Without going into more details, it should be noted
that at the same splitting point, a second trace needs to be
sampled and both traces need to be sampled repeatedly for
statistical significance. Additionally, a binary search on the
counterexample is necessary to determine the correct split-
ting point. It can be seen that sampling costs would grow
fast when individual traces need to be sampled. For the same
reason, L∗

SMM applies tree queries, where one of the multiple
traces gets resampled. If the system under learning is mostly
deterministic, sampling a desired trace may be significantly
less costly, thus increasing the efficiency of counterexample
analysis. In such cases, L∗

SMM might further benefit from the
technique presented by Howar and Steffen [27], where data
structures are extended in a more efficient way in response
to counterexamples.

Counterexample length is generally an important factor in
the active learning of stochastic systems. Long input–output
sequences are hard to sufficiently sample especially when
the system under learning is stochastic. This is exacerbated
by the fact that counterexample processing techniques from
deterministic learning are hardly applicable, as we outlined
above. To mitigate this, we sort all the test cases executed
during equivalence queries according to their length before

Algorithm 4 Tree query
Input: IFOPT FTree, SUL with reset and step
Output: a sampled trace t
1: node ← root(FTree), t ← ε � initialize
2: reset() � reset SUL
3: loop
4: freqSum ← ∑

i∈I freqLabel(node, i) � sum frequencies in
IFOPT

5: inputDist ←
{
i �→ p | i ∈ I , p = freqLabel(node,i)

freqSum

}

6: in ← choose(I , inputDist) � choose input
7: out ← step(in) � execute SUL and observe output
8: t ← t · in · out � extend traces

9: if �n ∈ nodes(FTree) : node in/out−−−→ n then � did we leave the
tree?

10: return trace
11: end if
12: node ← n with node

in/out−−−→ n � walk down one tree level
13: end loop

counterexample processing. This heuristic helps to identify
shorter, easier-to-sample, counterexamples.

3.4.3 Tree queries

Membership queries in L∗ provide information about newly
added sequences in the observation table. Tree queries have
an analogous purpose. They gather more information on
sequences that are in the observation table. While deter-
ministic learning requires a single query (sample) for every
sequence, uncertainties affect stochastic learning.Weaddress
this issue by sampling traces with the goal of reducing uncer-
tainties.

Uncertainties in stochastic L∗ mainly arise from the
difference tests and the derived compatibility relation.As dis-
cussed in the context of hypothesis generation, this relation
is not necessarily an equivalence relation for finite sample
sizes. The resulting uncertainties directly affect hypothesis
generation, as a trace in S∪Lt(S)may be compatible to mul-
tiple other traces that are not pairwise compatible. Hence, the
target state of a transition may be ambiguous. In particular, a
trace may be compatible to multiple compatibility class rep-
resentatives. We devise a sampling strategy with the goal of
reducing this form of ambiguity, in order to learn the correct
model structure. We start from the viewpoint of the learner
and then present the teacher’s tree query implementation.

Given an observation table 〈S, E, T 〉 and se ∈ (S∪Lt(S))·
E , we assign an uncertainty value uncert(se) to se as follows.
Let s be the longest prefix trace of se s.t. s ∈ S ∪ Lt(S) and
let the number of compatible representatives be

cr(s) = |{r ∈ R | r ≈ s}| in
uncert(se) = max(2 · (cr(s) − 1), 1).
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The rationale behind uncert(se) is that every trace should
be compatible with at most one representative. Since we are
only interested in the compatibility of rows, we consider the
longest trace that labels a row and is a prefix of se. The uncer-
tainty grows with the number of compatible representatives
cr , where the multiplication by two puts more weight on this
number.We further subtract one, as every trace is compatible
with at least one representative in a closed observation table.
Finally, we ensure uncert(se) is larger than or equal to one
for two reasons. We may spuriously conclude that cr = 1,
i.e., that we are certain that is a unique compatible repre-
sentative. Due to limited data, this representative may not be
the right one corresponding to se. Hence, further sampling
should validate if the representative for se is the correct one,
which we ensure by having uncert(se) ≥ 1. Furthermore,
we account for the estimation of transition probabilities as
another source of uncertainty affecting hypothesis generation
in general. Hence, even if we are certain about the repre-
sentatives, i.e., the MDP structure, every trace should have
a nonzero probability of being sampled. With that, we fur-
ther improve the accuracy of transition probabilities through
extended sampling.

Now,we can define the functioncreateIFOPT in Line 5
of Algorithm 3.

1. Trace creation. Extend the sequences in (S∪Lt(S)) ·E to
traces by adding a special output leaf /∈ O at the end of
every sequence, let Tr = {s · e · leaf | s ∈ S ∪Lt(S), e ∈
E}.

2. IOPT creation. Create an IOPT Tree from the traces in
Tr .

3. IFOPT initialization. Create an IFOPT FTree from Tree
by initializing every input frequency with zero.

4. Adding frequencies. For each se ∈ (S ∪ Lt(S)) · E : add
uncert(se) to the frequency of every input on the path
from the root node to the last edge reached by se.

The frequency label for a given edge ed inFTree is the sum
of uncertainty values uncert(se), for sequences se traversing
ed when starting from the root. Aside from the IFOPTFTree,
the implementation of tree queries takes another parameter
ntree that defines the number of traces to be sampled by the
teacher. We determine ntree proportional to the uncertainty
and observation table size via

ntree =
⌊∑

se∈(S∪Lt(S))·E uncert(se)

2

⌋

. (4)

Roughly speaking, we take one sample for every unambigu-
ous cell in the table and additional samples for ambiguity.

The teacher performs tree queries by sampling ntree traces
corresponding to directed randomwalks on the IFOPTFTree
created by the learner. Algorithm 4 implements this form of

sampling. It starts with an initialization in lines 1 and 2. The
sample loop starts with the selection of an input in in lines 4
to 6, where the selection probability of in is proportional to
the frequency assigned to in. Here, we use choose(I , d) to
sample an input in I according to a probability distribution
d. Next, we execute in on the SUL and extend the sampled
trace t with in and the SUL output. When there is no path in
the IFOPT corresponding to t , we return t . This is guaranteed
to happen when reaching a leaf, as leaves are labeled with a
symbol not in the output alphabet.

3.4.4 Stopping

Similarly to tree queries, stopping takes ambiguity into
account. We stop, when ambiguity decreases. For stopping,
we quantify ambiguity or rather the absence thereof as the
number of row traces that have a single compatible represen-
tative. This number unambiguity is given by:

unambiguity = |{s ∈ S ∪ Lt(S) | cr(s) = 1}|
|S ∪ Lt(S)|

We also used this value to decide when to stop learning
in our previous work [12]. Previously, we stopped learning
once unambiguity was greater than a fixed threshold. How-
ever, we concluded from experiments that a fixed threshold is
not an ideal choice for SMM learning concerning efficiency.
In these experiments, we measured hypothesis accuracy in
relation to the value of unambiguity during the course of
learning. For this purpose, we quantified accuracy as the
average errormade inmodel checking computations, as com-
pared to model checking performed on the true model of the
SUL. We observed a general trend that the hypothesis accu-
racy converges at the same timewhen unambiguity converges
to a plateau.

Figure 4 shows plots of the unambiguity value, the max-
imum error in various model checking computations, and
the corresponding average error on two examples that we
discuss in more detail in Sect. 4. The x-axis displays the
number of learning rounds. We can see that upon reaching
an unambiguity value of approximately 0.8, the maximum
and average errors are close to zero and stay close to zero.
At this point, further learning and sampling costs resources,
but does not contribute to the accuracy of the model. For this
reason, we stop learning when we detect that unambiguity
reaches a plateau, i.e., the difference between several con-
secutive unambiguity values is below a small positive ε.

In common with previous work [12], we do not stop when
qundef is reachable in the hypothesis. This state is reach-
able, when there is a state-action pair for which there is no
information at all. Additionally, it is possible to specify a
minimum number of rounds and a maximum of rounds. The
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Fig. 4 Relation between
number of unambiguous rows
and hypothesis accuracy

0 50 100 150 200 250

0

20

40

60

80

100

Learning Round
P
er

ce
nt

ag
e

72 State Gridworld

max. error
avg. error
unambiguity

0 50 100 150 200 250

0

20

40

60

80

100

Learning Round

MQTT

max. error
avg. error
unambiguity

early stopping criterion can also be disabled in favor of a
fixed threshold.

3.5 Analysis of L∗
SMM

3.5.1 Complexity

In the following,wewill analyze the complexity of individual
operations performed by L∗

SMM, such as queries. For this
purpose, let m be the length of the longest sampled trace, let
n be the number of sampled steps, and let k be the number of
different sampled traces. In the worst case, k grows linearly
in n. For simplicity, we consider the set of sampled traces to
be prefix-closed, because whenever we observe a trace, we
observe all its prefixes as well.

Since we add only traces to S that have been sampled at
least once, we can bound the length of sequences in S by
m and the cardinality of S by k. We can analogously bound
the length of sequences in E and the cardinality of E , as
E contains suffixes of sampled traces. Making an observa-
tion table closed and consistent requires time in O(k3 · |O|).
Checking consistency requires iterating over all pairs of rows
and checking compatibility for each cell. There are at most
k2 row pairs and at most k columns (cells in each rows)
and each compatibility check requires |O| computations (see
Eq. 1). Additionally checking the extensions of compatible
rows only adds a constant factor. Hence, the runtime is in
O(k3 · |O|). Fixing a consistency violation simply amounts
to adding a new element to the E set. Checking closedness
requires compatibility checks between every pair consisting
of a long and a short row. Thus, closedness checks are in
O(k3 · |O|) as well. Creating a hypothesis from an observa-
tion table is in O(k · |I | · |O|). We need to potentially create a
transition for every input–output pair from every state. There
are |I | · |O| such pairs and there are at most k states.

The IFOPT creation for tree queries takes time in O(k ·m),
as every unique trace of length at most m is added at most
once. The value ntree of traces sampled during a tree query
(see Eq. 4) is at most k2, but generally much lower. Hence, a
tree query performs at most k2 · m sampling steps.

Equivalence queries consist of two steps, checking com-
patibility and sampling traces to actively check for equiva-
lence between hypothesis and SUL. The amount of sampling
can be adjusted freely according to the sampling budget
and accuracy requirement. The compatibility check between
sampled information and hypothesis requires runtime in
O(k · m · |O|). For every sampled trace t we determine a
hypothesis state and its representative trace r , which has a
length of at most m. For t and r , we perform a compatibility
check, which takes time linear in the number of outputs. This
analysis matches our experience in that making observation
tables closed and consistent takes the most time. While the
analysis of sampling steps performedby tree queries provides
a conservative upper bound, we observe that tree queries per-
form thorough sampling leading to accurate models.

We use a heuristic to decide stopping, which prevents stat-
ing a complexity bound on entire runs of L∗

SMM.

3.5.2 Convergence

Under mild, common assumptions on equivalence queries
(every trace must have a nonzero probability to be sampled),
the learned model converges in the limit, i.e., with stopping
disabled, to a minimal SMM equivalent to the SUL. A proof
of convergence can be adapted from [12]. In the next section,
we empirically analyze the accuracy of models learned from
finitely many traces.

4 Evaluation

In order to evaluate our method, we conducted a study con-
sidering six different stochastic systems that have been used
also in previous work [12, 28]. More concretely, we simu-
lated known models of stochastic reactive systems through a
reset and a step operation, thus treating them as black boxes.
After learningmodels from the simulations, wemeasured the
accuracy of the learnedmodels. As ameasure of accuracy,we
used the absolute difference between the probabilities com-
puted by model checking properties on a learned model and
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the corresponding known true model. In the following, we
report this form of error averaged over several properties for
each system.

Systems used as a basis for learning are: a 35-state and a
72-stateGridworld [12], the slot-machine previously used in
[15, 29], parts of the MQTT protocol encoded as a 61-state
MDP, parts of theTCP protocol encoded as a 151-stateMDP,
and a Bluetooth Low-Energy device encoded as a 156-state
MDP. For the first three systems, we used model checking
properties also used in previous work [12] to enable a direct
comparison.We derived theMQTT, TCP, andBluetooth low-
energy models from learned deterministic models [10, 30,
31] by injecting stochastic faults into the model, denoted as
a “crash” state (see also [28]). More concretely, we added
probabilistic behavior at selected places in the deterministic
models, such that previously deterministic transitions now
have a chance of leading to a “crash” state. For this purpose,
we randomly selected a subset of the transitions in the deter-
ministic models and split each of them into two transitions.
One transition of each such pair produces the original, cor-
rect output and occurs with a probability 1 − pc, whereas
the other one produces a newly introduced crash output and
occurs with probability pc, leading to a “crash” state. This
allows us to efficiently simulate network protocols and allow
us to reason about the applicability of L∗

SMM in real-world
scenarios. Throughout the remainder of this section, we will
reason about the benchmark model’s underlying structure
and how it affects learning performance.

To verify the accuracy of the learned models, we derived
a set of reachability properties for each model. More pre-
cisely, those properties check for the bounded reachability
of reaching a fault or a goal state in the models with varying
bounds. Correct property values were computed on the orig-
inal model and on the learned models, with the error being
the absolute difference between the results. To compute the
values, we used probabilistic model checking with PRISM
and statistical model checking [32]. The former computes
the maximum probability of satisfying the property, quanti-
fied over all policies for choosing actions. For this reason, we
denote the results with PMAX . For statistical model checking,
we sample actions according to the uniform distribution and
estimate the probability of satisfying properties under such a
random policy. Therefore, we denote the results with PRAND.
Concretely, we apply a Monte Carlo simulation for the esti-
mation with a Chernoff bound [33] with an error bound of
0.01 and a confidence of 0.995. We use statistical model
checking as a means of getting an insight into the accuracy
of learned models for longer traces, as maximum probabili-
ties computed via probabilistic model checking often equal
or are close to 1 for long traces.

All experiments have been performedwith our implemen-
tation in the open-source library AALpy v1.2.7 running on a
Dell Latitude 5410 with an Intel Core i7-10610U processor,

8 GB of RAM running Windows 10 and using Python 3.9.
We configure the Hoeffding-bound-based difference check
with a constant α = 0.05 and we limit the number of traces
sampled during equivalence queries by ncextraces = 150. In
comparison to previous work [12], we reduced the number
of configurable parameters, while achieving robust learning
performance. In addition, all benchmarkmodels can be found
on AALpy official repository.2 Due to the stochastic nature
of the experiments, we repeated every experiment, consist-
ing of learning and model checking, 20 times and reported
average results.

4.1 ComparingMDP and SMM learning

The contributions made in this manuscript are twofold.
Firstly, a formalizationofSMMsandadaptationof L∗

MDP that
is able to learn them, and an overall algorithmic improve-
ment of the original algorithm. In Sects. 4.1 to 4.5 we
focus on the comparison of MDP and SMM learning with
new and improved algorithm, while in Sect. 4.6 we com-
pare L∗

SMM with its predecessors.
To compare the performance of MDP and SMM learning,

wemeasured the learning time and the number of traces sam-
pled by the teacher. While total learning time can be used to
evaluate the feasibility of our approach in simulated environ-
ments, it is important to note that in real-world non-simulated
environments, sampling of traces, i.e., the interactionwith the
SUL, is the most time-consuming aspect of active automata
learning. Table 2 summarizes the results of our benchmarking
study. We see that for all examples but slot machine SMMs
are the preferred formalism.

Table 3 shows detailed results of learning MDPs and
SMMs of the 72-state Gridworld. In this example, learning
SMMs reduces the state space by about 75%, as the SUL
can be modeled by a 42-state SMM. This size difference
accounts for the better and faster learning of SMMscompared
to MDPs. Note that on average both learned the underlying
model accurately, with the maximum average error for MDP
learning being 7.1% and 0.9% for SMM learning.

Figures 5 and 6 depict the effect of the property bound in
the reachability analysis, both with a property-based model
checking (Fig. 5) and with statistical model checking [32]
(Fig. 6). These experiments show that learnedmodels remain
accurate with the increasing property bound, meaning that
the learned model remains true to the system under learning
even for longer, harder-to-sample, test sequences.

More concretely, Fig. 5 depicts the value of reaching
the “crash” state in the Bluetooth Low-Energy model. We
observe that the accuracy of learned models remains con-
sistent with the increasing bound, with learned SMM being
slightly more precise (interestingly, differences in absolute

2 https://github.com/DES-Lab/AALpy.

123

https://github.com/DES-Lab/AALpy


Active model learning of stochastic reactive systems (extended version)

Table 2 Comparison of MDP
and SMM learning

Learning time (s) # Traces

MDP SMM Improvement (%) MDP SMM Improvement (%)

35-State Grid 8.61 5.67 51.85 68,736 44,954 52.9

72-State Grid 40.92 29.85 37.09 199,789 113,690 75.73

MQTT 8.59 6.97 23.24 68,964 39,904 72.82

TCP 21.94 13.4 63.73 98,333 54,514 80.38

Bluetooth 17.26 6.98 60.91 94,525 35,605 165.48

Slot Machine 60.65 306.4 −80.21 456,243 622,285 −26.86

Table 3 Results for learning models of the 72-state Gridworld

true MDP SMM Error MDP Error SMM Improvement

# Traces – 199,789 113,690 – – 75.73%

# Steps – 1,363,233 762,338 – – 78.82%

Pmax(F≤14(goal)) 0.9348 0.931 0.94 0.0038 0.0052 −26.92%

Pmax(F≤12(goal)) 0.6712 0.6943 0.681 0.0231 0.0098 135.71%

Pmax(¬M U≤18(goal)) 0.9743 0.9721 0.973 0.0022 0.0013 69.23%

Pmax(¬S U≤20(goal)) 0.1424 0.2138 0.1482 0.0714 0.0058 1131.03%

Fig. 5 Maximum probabilities
of reaching a “crash” state on an
original and learned models
within a bounded number of
steps
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errors between learned MDP and SMM models are, while
small, statistically significant, according to the p-value of
Student’s t-test [34]) than the learned MDP while requiring
significantly fewer learning queries (as shown in Table 2).
Figure 6 depicts the probability of reaching a “goal” state on
the 72-state Gridworld with an increasing step bound. These
results are consistent with those shown in Fig. 5, in that the

accuracy of learned models remains high with the increas-
ing property bound. However, in this case learned MDP is
statistically significantly more accurate (with respect to the
absolute error) than learnedSMM, albeitwith higher learning
costs.

Fig. 6 Probability of reaching a
“goal” state in the 72 state
Gridworld within k steps.
Probabilities are computed
using Monte Carlo simulation
with a random scheduler
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Fig. 7 Accuracy and learning
costs comparison between
Hoeffding and χ2 statistical
compatibility checks
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4.2 Comparison of statistical compatibility checks

In Sect. 3.1.1 we outlined two statistical compatibility tests
to determine whether the two traces are equivalent. We com-
pare the effect of the different statistical compatibility checks
on the overall L∗

SMM learning process. In both compatibility
checks, α was set to 0.001, increasing the confidence in the
verdicts of the compatibility checks. With all other settings
being constant, we repeated the learning process multiple
times for each statistical compatibility test and compared the
number of traces executed during learning and the average
error over all properties.

Figure 7 depicts the results of this comparison. Experi-
ments were repeated for MQTT and Bluetooth Low-Energy
models. Firstly, we observed that both statistical compatibil-
ity checks lead to accurate models, with a maximum average
error being 1.5% and 9%. From the results, we make the
following observations: (1) more queries do not necessarily
lead to more accurate models and (2) that there is more vari-
ability in the learning results when using χ2 compatibility
checks. Hoeffding compatibility checks appear to be slightly
more preferable, given that it tends to lead to a lower learning
error while keeping the learning costs low.

In addition, these findings show that the learning algo-
rithm is not dependent on the Hoeffding compatibility check,
but can be used with other statistical compatibility checks as
well. In futurework, it would be interesting to implement and
further study the effects of χ2 and other statistical compati-
bility tests on other stochastic automata learning algorithms,
such as IoAlergia.

4.3 Comparison of counterexample processing
strategy

In Sect. 3.4.2 we outlined three counterexample processing
strategies. To evaluate their effect on the learning process,
we compared them on the previously described benchmark
models. As stated in Sect. 3.4.2, we sort test cases executed
by an equivalence query by length, so that we increase the
probability of finding short counterexamples.

Results from the counterexample processing evaluation
show that the selection of a counterexample processing strat-
egy in a stochastic setting influences the sampling efficiency
of the learning process. However, the selection of an appro-
priate counterexample processing strategy is influenced by
the topology and transition probabilities of the SUL, which
are unknown in a black-box setting. Therefore, we propose
the usage of the Angluin-style counterexample processing,
as it consistently performed well without major perfor-
mance outliers. The other two methods, especially Rivest
and Schapire could be more appropriate in settings where
we know apriori that the majority of SUL transitions are
deterministic. This is an important consideration as Longest-
prefix and Rivest and Shapire add suffixes to the E set of the
observation table, therefore requiring fewer, but significantly
longer queries compared to Angluin-style, which adds pre-
fixes of the counterexamples to the S set. Such long queries
are in turn hard to sample, which usually prolongs the learn-
ing process.

More concretely, Table 4 shows the influence of the coun-
terexample processing on the total number of traces sampled
during the learning and equivalence checking process. From
the experimental results, which are averaged over multiple
execution runs, we observe that the Angluin-style counterex-
ample processing is consistently relatively sample efficient
without major outliers, while the Longest-prefix counterex-
ample processing performed better on network protocol
benchmarks (MQTT, TCP, Bluetooth). Although the per-
formance of Rivest and Shapire is acceptable for network
protocols, we observed that it might lead to an increase in
total number of traces sampled for other benchmarks, mostly
due to additional sampling required by Rivest and Schapire.
Note that the accuracy of learned models was high, regard-
less of the counterexample processing method, implying that
the selection of the counterexample processing method does
not impede convergence to the true model.
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Table 4 Comparison of the impact of different counterexample processing strategies on a total number of sampled traces during learning

Counterexample Processing 35-State Gridworld 72-State Gridworld MQTT TCP Bluetooth Slot Machine

Angluin-style 39,718 139,358 30,761 54,514 41,237 564,368

Longest Prefix 77,974 254,087 26,493 33,436 24,499 629,069

RS 51,802 147,297 45,091 47,519 24,188 1,083,828

Table 5 Comparison between SMM and MDP learning costs on randomly generated MDPs and SMMs.

Random stochastic mealy machine

Number of states

Input alphabet size Output alphabet size 5 10 15 20 30 50

3 7 69.51% 83.28% 52.91 58.12% 79.63% 70.97%

4 10 86.97% 83.93% 86.78% 78.31% 76.34% 82.55%

7 15 93.38% 95.18% 94.35% 94.85% 96.18% 87.32%

Random Markov decision process

Number of States

Input alphabet size Output alphabet size 5 10 15 20 30 50

3 7 −11.76% −19.58% −22.6% −59.59% −−43.86% −73.25%

4 10 18.06% 19.78% 37.88% −29.27% −17.11% −20.54%

7 15 −37.27% −44.41% −65.86% −45.11% −19.78% −0.09%

Cell values show the difference between total learning costs, expressed as a difference between the number of queries posed by SMM and MDP
learning. Positive cell values indicate that SMM learning was more cost-efficient than MDP learning for a specific experiment, and vice versa

4.4 Comparison on randomly generated automata

To further examine the difference between the learning pro-
cesses of MDP and SMM learning, we performed a set
of experiments on randomly generated automata. Namely,
we randomly generated both MDPs and SMMs and evalu-
ated whether the type of the system under learning affects
the learning process. Randomly generated automata were
scaled along three dimensions: the number of states of the
automata, input alphabet size, and output alphabet size. For
each parameter configuration, we generated a random MDP
and a random SMM.

Table 5 summarizes the comparison of MDP and SMM
learning on randomly generated automata. The first result
block compares the SMM and MDP learning of randomly
generated SMMs. We observe that SMM learning consis-
tently outperformsMDP learning if the systemunder learning
has an SMM-like structure. For example, a cell value of
95.18% (for randomly generated 10-state SMM with the
input alphabet size of 7 and output alphabet size of 15) indi-
cates that the SMM learning required 95.18% fewer queries
than theMDP learning of the same random SMM.More con-
cretely, SMMlearning required only 19k input–output traces,
whileMDP learning required 398k input–output traces,mak-
ing SMM learning 20 times more efficient for this particular
example. On the other hand, as seen in the lower half of

Table 5, if the randomly generated automaton is an MDP,
SMM learning required up to 73% more traces.

These findings indicate that the structure of the system
under learning can significantly affect the learning process
and required costs. Given that the L∗

SMM has no insight into
the system-under-learning structure, a designer has to make
a qualitative decision about whether to chooseMDP or SMM
learning. Based on our experience, we postulate that SMM
learningmight be preferable for most real-world systems due
to SMM’s more compact formalism.

4.5 Convergence

Toevaluate learning speed,wedisabled stopping and checked
how long it takes for the learned hypothesis to reach a cer-
tain accuracy. For this purpose, we learned until creating a
hypothesis with a model checking error of at most 2% for all
properties defined for the respective example. Figure8 sum-
marizes the results of these experiments. Notice in Fig. 4 that
the error stays close to zero after a certain number of rounds.
Hence, these experiments serve to estimate how long it takes
to converge to an accurate model.

All examples but slot-machine show noticeable improve-
ments in both learning time and more importantly required
traces when comparing MDP and SMM learning. The
largest improvements between MDP and SMM learning are
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Fig. 8 Learning time in seconds
(left) and number of traces
(right) needed to reach at most
2% error for all properties
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noticeable for MQTT, TCP and Bluetooth models. In those
examples, models can be more compactly encoded as SMMs
than as MDPs, which leads to a significant decrease of learn-
ing costs when compared to MDP learning. On the other
hand, the structure of the slot-machine favors MDP learning.
Learning a slot-machine MDP, required 25% fewer traces
than learning an SMM. We argue that the good performance
of MDP learning results from the fact that the minimal slot-
machine MDP is only slightly larger than the minimal SMM
and that many MDP states can be distinguished solely based
on their output label without statistical tests. In general, when
the output alphabet size is large, then MDP learning may
be more efficient. In the extreme case, where every state is
labeled with a unique output, the model structure is already
given and learning amounts to estimating transition proba-
bilities.

4.6 Comparison with related work

To put the improvements presented in this paper in con-
text, we will compare the results found in this paper with
two stochastic automata learning algorithms: L∗

MDP [12]
and IoAlergia [15, 29]. The algorithm presented in [12]
serves as a basis for L∗

SMM , and we can directly compare
results from overlapping benchmarkmodels (First Grid, Sec-
ond Grid, Slot Machine). For other benchmark models, we
have obtained new results with AALpy, which implements
both the original version of the L∗

MDP and IoAlergia. It
is important to note that by “original” L∗

MDP we consider
the version of the algorithm presented in [12], without any
of the optimizations presented in this paper, and when we
were comparing SMM and MDP learning in the previous
sections, we used the version of the algorithm presented in
this manuscript.

Table 6 shows the results for the three learning algorithms
on all benchmark models. Following the comparison method
performed in [12], IoAlergia was given the same number
of random traces as L∗

MDP required throughout the learn-
ing. From the results shown in Table 6, we conclude that
L∗
SMM requires significantly fewer queries than the original

L∗
MDP , while maintaining high accuracy. Interestingly, in a

few examples, it even has marginally better accuracy than
L∗
MDP , but with almost an order of magnitude fewer traces.

However, it is important to note that the accuracy differences
between both algorithms are quite small, in some cases neg-
ligible. Compared to both algorithms, IoAlergia has worse
accuracy, even with a high number of provided traces.

The difference in the number of traces required by
L∗
SMM and original L∗

MDP to learn accurate models can be
attributed to several optimizations presented in this paper.
Firstly, we introduced an additional stopping criterion in
Sect. 3.4.4, which stops learning when we observe that
additional sampling does not improve the ambiguity of the
observation table. Secondly, we have replaced the com-
pleteness query and the frequency query with the tree
query (Sect. 3.4.3), whichmakes the algorithm automatically
select the number of queries it asks during each learning
round. Finally, counterexample processing techniques and
our strategy to invest testing resources in finding the short-
est counterexamples make the algorithm more efficient, as
outlined in Sect. 3.4.2.

5 Related work

In the following, we discuss passive and active approaches
to learn stochastic and non-deterministic models.

5.1 Passive learning of stochastic systems

Active learning samples data by actively querying the system
under learning, whereas passive learning assumes a preexist-
ing sample of system traces. Two early, notable approaches
for identifying stochastic regular languages from traces are
Alergia [19] and rlips [35].

Originally,Alergiawas used to constructMarkov chains
that approximate the patterns found in the provided data-set.
Alergia has been extended to MDPs by Mao et al.[15, 29]
and dubbed IoAlergia. Like IoAlergia, we compute tran-
sition probabilities based on observed output frequencies.
Another similarity of L∗

SMM and IoAlergia is the usage of
IOFPT and the usage of statistical tests to help differentiate

123



Active model learning of stochastic reactive systems (extended version)

Table 6 Comparison of L∗
SMM

with original L∗
MDP and

IoAlergia

Algorithm L∗
SMM Classic L∗

MDP IoAlergia

# Traces Mean Error # Traces Mean Error # Traces Mean Error

35-State Grid 44,954 0.017 391, 530 0.0113 391, 530 0.667

72-State Grid 113,690 0.04 515,950 0.069 515,950 0.163

MQTT 39,904 0.015 300,500 0.015 300,500 0.018

TCP 54,514 0.005 279,423 0.004 279,423 0.19

Bluetooth 35,605 0.011 317,446 0.016 317,446 0.10

Slot Machine 622,285 0.011 1,567,487 0.015 1,567,487 0.35

states. Active extensions of IoAlergia can be found in [36]
and [28], where the latter targets learning-based verification
w.r.t reachability objectives.

Casacuberta and Vidal proposed the GIATI algorithm
[37]. GIATI is given a training corpus of source-target pairs
of sentences algorithm from which, using statistical align-
ment methods, it produces a set of conventional strings from
which a stochastic rational grammar (e.g., an n-gram) is
inferred. Such a grammar is then translated to a finite-state
transducer.

5.2 Active learning of stochastic systems

Our work builds upon [12], an active approach to learning
of MDPs. As discussed in the previous sections, we sub-
stantially improve the approach for learningMDPs itself and
adapt it to learning SMMs. Our approach shares similarities
with active learning of observable non-deterministic finite-
statemachines (ONFSMs) [38]. The observation table in [38]
is similar to the one used in L∗

SMM, in a way that cells of
the observation table contain all outputs that are observed
once an input–output sequence is executed. However, while
[38] requires all possible outputs to be observed after execut-
ing a query (“all-weather assumption”) to build observation
tables, we do not make this assumption by relying on statis-
tical tests. In the test-based ONFSM learning, implemented
in [13], all-weather assumption is relaxed and all cells in the
observation table are populated by executing desired input–
output sequences. Test-based learning of ONSFM requires
significantly more queries, as longer traces might have a
small probability of being reached. L∗

SMM circumvents this
limitation by differentiating states not only on their future
behavior, found in the E-set of the observation table, but
also by performing statistical tests.

Another L∗-based learning approach for ONFSMs has
been proposed by Pferscher and Aichernig [39], which is
specifically well-suited to learning non-deterministic behav-
ior resulting from abstraction. Their approach has success-
fully been applied to efficiently learn abstract model cap-
turing the interaction between several deterministic MQTT
clients and a broker, while greatly reducing total system

interaction time during learning compared to the standard
deterministic learning.

Volpato and Tretmans presented L∗-based approach for
learning of non-deterministic input–output transition sys-
tems [40]. Their approach inspired the addition of the qundef
state, that indicates the need for further sampling in the pres-
ence of low/incomplete information.

Bacci et al. [41] presented another interesting approach
that combines passive and active learning of MDPs. Unlike
previous active approaches, it is not L∗-based. It adapts the
Baum-Welch algorithm so that is able to learn MDPs from
a set of observation. Such passive approach learns more
accurate models than IoAlergia, albeit with higher run-
time complexity. Authors also examined the active variation,
which introduces model-based sampling strategies based on
an intermediate hypothesis. An activated version of their
algorithm learns less accurate MDPs than L∗

SMM, but with
fewer traces. In the future work, we will consider a combina-
tion of both approaches, that is a combination of L∗

SMM and
adapted Baum-Welch algorithm, with the aim of achieving
high accuracy of the learned model with even fewer samples.

6 Conclusion

We presented L∗
SMM, an L∗-based algorithm for active learn-

ing of models of stochastic reactive systems. By improving
previous work [12] and adapting it from learning MDPs to
SMMs, we learn models more efficiently while achieving
accurate results. The experimental evaluation of our imple-
mentation available inAALpy [13] shows a significant reduc-
tion in the number of required system interactions. Since
interactionswith the systemare typically the time-consuming
aspect of applications of automata learning, this number is the
most important efficiency metric. In particular, we reduced
the required number of system traces, i.e., sequences of inter-
actions, by up to 8.7 times, as compared to MDP learning.
Through these improvements, we hope to enable industrial
applications of stochastic active automata learning.

In future work, we plan to combine the stochastic L∗
algorithm with learning-based verification techniques, such
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as [28], and apply it in case studies with stochastic reactive
systems, such as communication protocols over a lossy chan-
nel. Another promising direction for future research is the
adaptation and application of stochastic learning algorithms
to non-deterministic/partially observable MDPs. Based on
our current research efforts, we postulate that L∗

SMM can
learn a deterministic approximation of such automata with
high accuracy, but at high costs. We continue the study of
the necessary adaptations and heuristics that enable efficient
learning of non-deterministic MDPs.
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Appendix: Learnedmodels

In this appendix, we show two learned models for the
first grid example, one MDP model and one SMM model to
illustrate their differences. Even though theyhaveonly 19 and
35 states, respectively, they are hard to visualize. Therefore,
we show only the initial part of both models in Fig. 9. It
can be seen that there are several self-loop transitions in the
initial SMMstate. They produce theWall output, for instance,
signaling that the agent navigating in the Gridworld cannot
moveWest, but bumps into a wall when trying to move west.
Modeling the same functionality in the MDP requires two
states, where one is labeled Wall. These two states are the
topmost states in the left part of Fig. 9. As another example,
we can take a look at the transition labeledwith the inputEast
and the output concrete from the initial SMM state to the

Fig. 9 Initial part of the learned MDP model of the first Gridworld example (left) and the corresponding initial part of the learned SMM model
(right)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Active model learning of stochastic reactive systems (extended version)

Fig. 10 Learned MDP model of the first Gridworld example

state s1. The transition model that by moving East, the agent
moves onto concrete. The same transition appears twice in
theMDPmodel; once from the initial state and once from the
state that is below and left of the initial state. This explains
that more samples are required to learn MDP transitions and
their probabilities. In this particular case, the probabilities
are actually simple to learn, as they equal to one, but in the
lower parts of the figure, there are other probability values.

The complete models are shown in Figs. 10 and 11,
respectively. It is apparent that the SMM model is consid-
erably smaller and because of that also easier to analyze
manually.
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Fig. 11 Learned SMM model of the first Gridworld example
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