
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01156-2

SPEC IAL SECT ION PAPER

From enterprise models to low-code applications: mapping DEMO to
Mendix; illustrated in the social housing domain

Marien R. Krouwel1,2,3 ·Martin Op ’t Land4,5 · Henderik A. Proper6

Received: 26 March 2023 / Revised: 18 January 2024 / Accepted: 2 February 2024
© The Author(s) 2024

Abstract
Due to hyper-competition, technological advancements, regulatory changes, etc, the conditions under which enterprises need
to thrive become increasingly turbulent. Consequently, enterprise agility increasingly determines an enterprise’s chances for
success. As software development often is a limiting factor in achieving enterprise agility, enterprise agility and software
adaptability become increasingly intertwined. As a consequence, decisions that regard flexibility should not be left to software
developers alone. By taking a Model-driven Software Development (MDSD) approach, starting from DEMO ontological
enterprise models and explicit (enterprise) implementation design decisions, the aim of this research is to bridge the gap from
enterprise agility to software adaptability, in such a way that software development is no longer a limiting factor in achieving
enterprise agility. Low-code technology is a growing market trend that builds on MDSD concepts and claims to offer a high
degree of software adaptability. Therefore, as a first step to show the potential benefits to use DEMO ontological enterprise
models as a base for MDSD, this research shows the design of a mapping from DEMOmodels to Mendix for the (automated)
creation of a low-code application that also intrinsically accommodates run-time implementation design decisions.

Keywords Enterprise modeling · Enterprise ontology · DEMO · MDSD · Low-code · Mendix

1 Introduction

Due to factors such as extreme (hyper) competition [18,
58, 72], increasing expectations from customers, regula-
tory changes, as well as technological advancements, the

Communicated by Kurt Sandkuhl, Balbir Barn, Tony Clark, and Souvik
Barat.

B Henderik A. Proper
Henderik.Proper@tuwien.ac.at

Marien R. Krouwel
Marien.Krouwel@Make-IT-Right.nl

Martin Op ’t Land
Martin.OptLand@capgemini.com

1 Make IT Right, Utrecht, The Netherlands

2 Trives Solutions, Utrecht, The Netherlands

3 Maastricht University, Maastricht, The Netherlands

4 Capgemini, Utrecht, The Netherlands

5 Antwerp Management School, Antwerp, Belgium

6 TU Wien, Vienna, Austria

conditions in which enterprises1 need to thrive become
increasingly turbulent. As a result, the ability to change, often
referred to as ‘agility’ [85], becomes an important determi-
nant for the success of enterprises [91, 118]. Indeed, keeping
upwith competition by reducing the time-to-market of newor
changed products is still considered a dominant issue [125].

The notion of ‘agile enterprise’ is also referred to as the
‘run-time adaptive enterprise’ [89] or the ‘flexible enterprise’
[115]. One can, actually, identify different flavors of flexi-
bility that can be considered as cornerstones in creating an
agile enterprise, including strategic flexibility, organizational
flexibility, financial flexibility, marketing flexibility, manu-
facturing flexibility and information systems flexibility [115,
Fig. 1.4].

Since software makes up a large part of the informa-
tion systems that are used in modern day enterprises, the
enterprise and its supporting software are in fact intrinsi-
cally intertwined [27, p. 251]. As a consequence, enterprise
agility and software adaptability are also highly intertwined

1 Enterprise, in the context of this research, means any goal-oriented
cooperative or network of actors [27], including government agencies,
commercial businesses, and non-profit organizations as well as chains
of such enterprises.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01156-2&domain=pdf
http://orcid.org/0000-0003-4115-3858
http://orcid.org/0000-0003-0024-5908
http://orcid.org/0000-0002-7318-2496


M. R. Krouwel et al.

and can not be viewed separately. Enterprises are almost
continuously being redesigned [40], and as a consequence,
enterprise and information systems engineering, including
software development, is increasingly an ongoing activity
that requires continuous alignment between the enterprise
and its supporting software [51].

One of the issues in the alignment of an enterprise and
its supporting software, is that design decisions that con-
cern an enterprise’s implementation, including functionary
types, organizational units, and the choice to apply the four-
eyes principle, are often hard-coded into software [10, 47,
124]. The latter makes it harder to align changes on the
enterprise level with changes in the software—something the
authors recognize in their current practice quite frequently.2

Moreover, the authors recognize that the software often does
not support the required enterprise agility, but instead offers
more flexibility than required on some aspects and less than
required on (critical) other aspects. In order for software to
provide the flexibility as required by the enterprise, it is nec-
essary to make enterprise implementation design decisions
explicit and to make transparent how they are implemented
in software.

In order to prevent developers from introducing implicit
design decisions in the process of software development, and
to ensure that the software supports the level of flexibility as
required by the enterprise, MDSD is suggested [30]. MDSD
is a model-driven approach for the development of software
that promises to bridge the gap between requirements of an
enterprise and software implementation [12, 92, 113]. It uses
models and model transformations to generate code or for
real-time interpretation by running software [8, 12, 33, 48,
77, 106]. Metamodels play a crucial role in defining a model
transformation or mapping function [2, 6, 8, 57] (see Fig. 1)
and need to be precisely defined [12, 63, 77].

Oneof the earliest approaches towardMDSDisComputer-
aided Software Engineering (CASE) [35, 71, 73] from the
1980s. Amore recent approach isModel-driven Architecture
(MDA),3 that relies heavily on the use of Unified Modeling
Language (UML)models [105]. However, mda comes with a
lot of issues, including poor integration of different models,
lack of efficiency, limited applicability, vendor lock-in, and
its complexity [81, 110]. Other approaches include the auto-
matic transformation of UML or Business Process Modeling
and Notation (BPMN) models into BPEL [90, 126] spec-
ifications. While both modeling languages have a defined
metamodel, it has also been shown that these lack proper
semantics or [14, 29, 36, 64], even worse, completely seem
to miss proper concepts for enterprise modeling [128].

2 Two of the authors are practitioners, with an average of 25 years of
experience in the field of enterprise (architecture)modeling and (model-
based and model-driven) software development.
3 https://www.omg.org/mda/.

Fig. 1 Model transformation and the role of metamodels, adapted from
[7, 8, 12, 17]

In this research, the general hypothesis is that by tak-
ing an MDSD approach one can improve enterprise agility,
at least to the point that software development is not the
limiting factor for enterprise agility anymore. As a more
specific hypothesis, we posit that DEMO ontological enter-
prise models—capturing the enterprise’s essence—, sup-
plemented with explicit enterprise implementation design
decisions, captured in Organization Implementation Vari-
ables (OIVs), provide a semantically rich starting point for
MDSD.

In terms of Fig. 1, this means we will use DEMO as the
source for MDSD. As a first step to, indeed, show the poten-
tial benefits to use DEMO ontological enterprise models as a
base for MDSD, this research shows the design of a mapping
from DEMOmodels to Mendix for the (automated) creation
of a low-code application that also intrinsically accommo-
dates run-time implementation design decisions. So, in terms
of Fig. 1, we will use Mendix as the target for MDSD. In the
next section, we will provide a further motivation for this
source and target.

In line with this reasoning, the overall goal of the research
reported on in this article is to create an (automated) transfor-
mation, a mapping, from the model of the enterprise essence
and associated OIVs to a Mendix application in order to
be able to generate low-code applications from enterprise
models. As this mapping is a design(ed) artifact, the Design
Science Research methodology [50, 76, 109, 123] has been
applied. In terms of Design Science Research (DSR), the
main focus of this article is on the design cycle, i.e., the
construction and (initial) evaluation of the mapping. The
resultingmapping has been evaluated (and further improved)
multiple times, involving different input models, ranging
from academic cases such as EU-Rent [83, 88] to real-world
cases including Social Housing [66, 89]. While the mapping
has evolved and improved over time, the latest version of the
mapping is presented.

The remainder of this article is structured as follows. In
Sect. 2 related work such as MDA is elaborated on and the
rationale for the chosen source and target for the MDSD
approach are provided. Given these choices, Sect. 3 outlines
the theoretical background regarding Enterprise Ontology,

123

https://www.omg.org/mda/


From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Enterprise Implementation, and low-code technology. In
Sect. 4 the mapping is shown, while Sect. 5 provides a sum-
mary of the evaluations conducted so-far and shows how the
evaluation was done on the real-world Social Housing case.
Before concluding, Sect. 6 discusses the limitations of the
mapping. This article ends with conclusions and directions
for future research in Sect. 7.

2 Related work and chosen solution
direction

In this section, we discuss related work that is of direct rele-
vance to the ambition to create an (automated) transformation
from the DEMO model of the enterprise–its ‘essence’–and
associated implementation design decisions to a working
Mendix application in order to be able to generate low-code
applications from enterprise models.

2.1 Enterprise engineering

The field of Enterprise Engineering sees enterprises as com-
plex sociotechnical systems [40] and therefore connects the
fields of organizational science and software development.
DEMO(Design andEngineeringMethodology forOrganiza-
tions) is a leading method within the discipline of enterprise
engineering [26], with strong methodological and theoreti-
cal roots [3, 46, 104, 122] that sets communication as the
primal notion for the design of enterprises and its supporting
software systems [95]. At the same time, we observe there to
be an increasing uptake of DEMO in practice, as, e.g., illus-
trated by the active community and certification institute4 as
well as the reported cases concerning the use of DEMO [4,
10, 19, 20, 27, 32, 39, 54, 55, 60, 68, 79, 86, 87, 94, 107]
and integration with other mainstream enterprise modeling
approaches such as ArchiMate [31, 62] and BPMN [16, 42,
52, 78, 93, 120].

The theories behind DEMO distinguish between Enter-
prise Ontology and Enterprise Implementation [27]. Enter-
prise Ontology as defined by Dietz aims to capture the
‘essence’ of an enterprise in terms of products and ser-
vices delivered. The Enterprise Implementation pertains to
the organizational structure(s) and (sociotechnical) means,
including the division of work between human actors and
software solutions, as well as their assignment(s) to the orga-
nizational structures. Although changes to an enterprise’s
ontology do occur, most of the time changes pertain to
its implementation only [25, 27, 95]. As mentioned above,
the authors have observed in practice how such enterprise
implementation design decisions are often hard-coded into
software.

4 https://ee-institute.org.

2.2 Model-driven software development andMDA

Claimed advantages of MDSD over traditional software
development approaches include: (a) a common and better
understanding and reasoning about the required or created
system [6, 12, 48], (b) the possibility to simulate before build-
ing the system [48, 63], (c) an increased productivity of the
development team due to (partial) automation of the devel-
opment process [6, 12, 48, 63], (d) a reduction of the number
of bugs or defects, as they can be discovered early in the
development process when they are less costly to fix [12, 48,
63], and (e) traceability between model and code [1, 102]. It
is because of all of these advantages that in the research as
reported on in this article, an MDSD approach is applied.

A specific implementation of MDSD is MDA, that, orig-
inally,5 discerns three layers or kinds of models being used
[82]6:

1. The Computation Independent Model (CIM) describes
the business domain without any computational aspect;

2. The Platform Independent Model (PIM) focuses on the
software that supports the business but is technology
independent;

3. The Platform Specific Model (PSM) is very closely
related to the PIM but adds technological details so that
working software can be created.

In terms of MDA this research thus needs an enterprise mod-
eling language that can act as CIM and a target technology
that can act as PSM ultimately. Considering the PIM and
PSM are very closely related, in this research the distinction
between the two is considered not very relevant at this stage.

2.3 Sourcemodel: enterprise modeling language

In order to be able to transform a model in the process of
MDSD (see Fig. 1), the input model must a) be comprehen-
sive, b) describe all business requirements, c) be consistent,
and d) have its semantics fully specified. As the aim of
this research is to create enterprise software, the chosen
source models should at least comprise actor roles, products,
process, information (items) and business rules. There are
many enterprise modeling languages, including for example:
4EM [70, 101], ArchiMate [69, 117], ARIS [103], BPMN,7

5 In version 2.0 [84] the terms can still be found but they are not defined
as elaborate as in version 1.0.
6 A more elaborate introduction to these layers can be found in [59].
7 https://www.omg.org/spec/BPMN/.

123

https://ee-institute.org
https://www.omg.org/spec/BPMN/


M. R. Krouwel et al.

CogNIAM,8 MEMO [37], SBVR,9 SYSML10 and UML.11

However, for each of these modeling languages it holds that
either a) it describes only a part of the enterprise, e.g., it
focuses on process or data or business rules; or b) it lacks
formal semantics [65].

DEMO ontological enterprise models are posited as being
coherent, comprehensive, consistent and concise models of
the (essence of the) enterprise [27, p. 14]. Such a model
is coherent of sub models describing both products, actor
roles, processes, information and business rules. Moreover,
the metamodel and semantics of DEMO is fully described
[24]. As such, they seem to provide a good starting point for
an MDSD approach. This is backed up by experiences from
practice that indicate that DEMOontological models provide
a good basis to define requirements and design or generate
software [19, 27, 32, 39, 54, 55, 60, 79].

Alternatively, a combination of several modeling lan-
guages could be chosen for the purpose of this research.
However, given the lack of proper semantics for most exist-
ing modeling languages, combining languages is a tedious
task that goes beyond the timelines of this research. As
DEMO is readily available and seems to fit the goal of this
research,DEMOmodelswill be used as source for theMDSD
approach as applied in this research.

2.4 DEMO-driven software development

While a literature study resulted in some partial mappings
from DEMO to working software [53, 56, 61, 111], a com-
plete mapping from the full DEMO metamodel to any
software implementationmodel was not found. Furthermore,
just as important, existing research seems to neglect enter-
prise implementation aspects. This results in a need for
software developers to deal with these aspects themselves,
thereby (possibly) causing a lack of transparency regarding
the transformation of implementation design decision to soft-
ware; and thus (possibly) hampering enterprise agility. For
instance, Van Kervel et al. [60, 61, 111] report on a software
engine that is able to generate working operational software,
taking the DEMO ontological enterprise model of a domain
as input.Adeeper investigation, however, revealed that, in the
process of creating this engine, several implicit implemen-
tation design decisions have been made that ended up being
hard-coded in the software engine. Moreover, this engine
only seems to support changes on the level of the DEMO
ontological model of the enterprise, i.e., a new or changed
product, service, or business rule, and not on the implemen-

8 https://en.wikipedia.org/wiki/Cognition_enhanced_Natural_language
_Information_Analysis_Method.
9 https://www.omg.org/spec/SBVR/.
10 https://sysml.org/.
11 http://www.uml.org/.

tation level, i.e., a new functionary type or organizational
unit.

A potential explanation for these issues is the fact that cre-
ating code to support a mapping of the complete metamodel
of a modeling method such as DEMO is a highly complex
and time consuming task. This is also why, in principle, the
researchers suggest using a model-driven code generation
strategy, since real-time interpreters can become even more
complex. At the same time, such an approachmakes it harder
to make (controlled) customizations and extensions that are
often needed in practice, and it is therefore the researchers
suggest to turn to low-code technology.

2.5 Target model: low code

The idea of low-code technology is to add an(other) abstrac-
tion layer on top of (high) code such as Java and.Net. In terms
of MDA [84], it is actually not clear if low code should be
regarded as a PIM or as a PSM.

Low-code technology applies techniques from MDSD,
while still allowing for (controlled) customizations and
extensions [15]. While low-code technology improves enter-
prise agility, compared to traditional code [108], practical
experience shows that these platforms mainly offer technical
adaptability. For instance, changing the database manage-
ment platform fromMySQL to Postgres, and some flexibility
on the (functional) requirements level, such as changing a
specific workflow or screen lay-out. At the same time, how-
ever, changes in the enterprise, such as the organizational
structures or its portfolio products and services, can still take
quite some time to implement.

For this research, the Mendix low-code platform12 is
chosen because it provides good documentation about its
metamodel13 and offers a Software Development Kit (SDK)
to create Mendix applications using TypeScript.14 Next to
that, the researchers are experienced in using the Mendix
platform in real-world situations.

3 Theoretical background

Before discussing the mapping from DEMO to Mendix, this
section will briefly introduce the most important aspects of
Enterprise Ontology and Enterprise Implementation, as well
as the concept of low-code technology for the software sup-
port of enterprises.

12 https://mendix.com/.
13 https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-
metamodel/.
14 TypeScript is the language to access the Mendix SDK also known
as model API, see https://docs.mendix.com/apidocs-mxsdk/mxsdk/.

123

https://en.wikipedia.org/wiki/Cognition_enhanced_Natural_language_Information_Analysis_Method
https://en.wikipedia.org/wiki/Cognition_enhanced_Natural_language_Information_Analysis_Method
https://www.omg.org/spec/SBVR/
https://sysml.org/
http://www.uml.org/
https://mendix.com/
https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-metamodel/
https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-metamodel/
https://docs.mendix.com/apidocs-mxsdk/mxsdk/


From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Fig. 2 The standard transaction pattern shows the basic flow and discussion states. The complete transaction pattern includes 4 revocation patterns
[27]

Table 1 Transactor Product
Table (TPT) for the Volley case

Transaction kind Product kind Executor role

TK01 Membership starting PK01 [membership] is started AR01 Membership starter

TK02 Membership payment PK02 [membership] is paid AR02 Membership payer

3.1 Enterprise ontology

In general, an ontology is defined as a formal and explicit con-
ceptual specification describing (shared) knowledge about
some domain [11, 43, 45, 114]. In contrast to, e.g., ‘regu-
lar’ (data) models, an ontology specifies a shared view of the
involved stakeholders [112] that can be expressed in a model
containing the relevant concepts including their definition or
semantics, and their relations [34, 44, 112].

Enterprise Ontology involves a specialization of the gen-
eral concept of ontology, in that the goal of Enterprise
Ontology is to share knowledge about an enterprise within
and between enterprises [119]. Building upon the Lan-
guage/Action Perspective [122], Fox [34] proposes actors,
their roles and communication links between them as key
concepts in Enterprise Ontology.

In his EE-theories for Enterprise Engineering and Enter-
prise Ontology, Dietz further builds upon these concepts
by seeing an enterprise as a network of actors that enter
into and comply with commitments [27]. Such commit-
ments are raised by actors in acts, the atomic units of action,
and follow a generic pattern called the Complete Transac-
tion Pattern (CTP). This CTP (see Fig. 2) consists of 19
general step kinds and deals with the basic flow—request,
promise, execute, declare and accept—as well as discussion
states—decline, reject—and cancellations (or revocations).
The general working principle is that actors constantly check

whether there are acts they have to deal with or respond to;
this is the so-called actor cycle. The total set of acts for an
actor to deal with is called the actor’s agenda.

By abstracting actors to actor roles and commitments
regarding a specific product kind to transaction kinds, the
(DEMO) model becomes independent of the actors that are
actually involved in the operation. Every elementary trans-
action kind has exactly one actor role as executor and one or
more actor role(s) as initiator. This abstraction results in an
enterprise model that only depends on an enterprise’s prod-
ucts and services, and that is fully independent of the way
in which an enterprise is realized and implemented [22]. As
a result, the DEMO ontological enterprise models are con-
sidered more stable than implementation dependent models
[25]. In the next sections, the DEMO aspect or sub models,
along with an example, and its metamodel, will be intro-
duced.

3.1.1 Ontological aspect models

The DEMO ontological model of an enterprise consists of an
integrated whole of four aspect models [27]. The Coopera-
tion Model (CM)models the cooperation of the enterprise; it
consists of transaction kinds, associated (initiating and exe-
cuting) actor roles, fact banks, access links between actor
roles and fact banks, andwait links between transaction kinds
and actor roles. The CM is expressed in one or more Coordi-

123



M. R. Krouwel et al.

nation Structure Diagrams (CSDs) and a TPT. The Process
Model (PM)models the processes that take place as the effect
of acts by actors, by detailing the coordination between actor
roles; it makes explicit the causal and wait links between acts
from the CTP. The PM is expressed in one or more Process
Structure Diagrams (PSDs) and one ormore Transaction Pat-
tern Diagrams (TPDs). The Fact Model (FM) is the semantic
model of products of the enterprise; it defines (declared or
derived) fact types (entity types with their related product
kinds, property types, attribute types and value types), exis-
tence laws and occurrence laws. The FM is expressed in an
Object Fact Diagram (OFD) and zero or more Derived Fact
Specifications (DFSs). The ActionModel (AM) is the model
of the operation of the enterprise, guiding actors in perform-
ing their acts. It specifies for every agendum kind with which
the enterprise has to deal one or more Action Rule Speci-
fications (ARSs). Each ARS fully supports the actor cycle
and consists of an event part detailing the agendum kind to
respond to, an assess part detailing the conditions to check
and a response part that states how the actor should respond.
Although these guidelines may look like rules, they offer
the actors the possibility to autonomously–but responsibly–
deviate from these guidelines.

3.1.2 Example: Volley

We use the Volley case [24, Ch. 12], which basically repre-
sents any (amateur) sports club, as an example to illustrate
some of the key elements of DEMO.

In this case one can become member (TK01 for the first
Transaction Kind) of the sports club by filling in a form
with some personal details. After the information has been
checked, the president of the club decides whether a mem-
bership is granted or not–the membership is, usually, granted
when the (aspirant) member is 18 years old or more. When
it is decided that the aspirant member can indeed become
a member, a request for the payment of the first period (or
part thereof) is done (TK02). As soon as the payment has
been made, the membership card is printed and sent to the
member so that he or she can start using the sports facilities.
Needless to say, after becoming a member, a periodic pro-
cess will make sure the periodic payments are being made.
Moreover, there are ways to end a membership. However, in
this example the focus is on becoming a member, and other
parts are left out for simplicity.

The TPT for the Volley case (Table 1) shows the (two)
identified (elementary) transaction kinds and for each trans-
action kind its related product kind and the (elementary) actor
role that is the executor of the transaction kind. For simplicity,
PK01 only allows for a one-time payment per membership;
in order to allow for periodic payments, it has to be changed
to ‘[membership] for [period] has been paid’ with conse-
quences for the FM. The CSD for the Volley case (Fig. 3)

Fig. 3 CSD for the Volley case

visualizes the TPT and shows the actor role(s) that can act
as the initiator of a transaction kind; CTAR01 is a compos-
ite actor role (gray background with large border) and AR02
is out of focus (gray background), implying that only for
TAR01 ARSs have to be created. It also shows there are two
external fact banks (multiple transaction kinds) that contain
facts about persons, e.g., their day of birth, and about the
club, e.g., the minimum age. As shown earlier, each trans-
action kind follows the CTP, consisting of 19 general step
kinds, resulting in 19 transaction kind step kinds for each
transaction kind.

The PSD for the Volley case (Fig. 4) shows the depen-
dencies between the two transaction kinds. It tells that after a
promise for TK01, (usually) a request for TK02 is performed
(causal link), and that an execute for TK01 has to wait until
the related TK02 has been accepted (wait link). The depen-
dencies will be formalized in the AM.

The OFD for the Volley case (Fig. 5) shows the primary
entity type ‘MEMBERSHIP’, its attribute type ‘starting day’
and its property types ‘member’ and ‘payer’. It also shows
the entity type ‘PERSON’ with attribute type ‘day of birth’
and entity type ‘YEAR’ with attribute types ‘minimum age’
and ‘membership fee’, implying these club facts can be
adjusted yearly. Both entity types PERSON and YEAR are
out of focus (gray background). The DFS for the Volley case
(Table 2) shows the derivation rule to calculate the age for a
given person on a given day.

ARS01 (Table 3) for TAR01 in the Volley case shows the
action rule to deal with a request of TK01:

– The event part shows the event that is being dealt with
(TK01 is requested), including the relevant information

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Table 2 Transactor Product
Table (TPT) for the Volley case the age of [person] on [day] ≡ [day] minus the day of birth of [person]

Table 3 ARS01 (executed by TAR01) for the Volley case

event when membership starting for [membership] is requested (TK01/rq)

with the starting day of [membership] is some day

the member of [membership] is some person

the payer of [membership] is some person

assess if rightness: the performer of the request is the member of [membership]

the addressee of the request is a membership starter

sincerity: * no specific condition *

truth: the age of member of [membership] on starting day of [membership]

is greater than or equal to the minimum age of the year of the starting day of [membership]

response if performing the action after then is considered justifiable

then promise membership starting for [membership] [TK01/pm]

to the performer of the request

else decline membership starting for [membership] [TK01/dc]

to the performer of the request

with * reason for declining *

Fig. 4 OFD for the Volley case

that must be part of the request in order to be able to deal
with it.

– The assess part shows the three clauses after Habermas
[46]:

– In the rightness division, it is ensured that both
involved actors have the proper authority. In this case,

the person performing the request should be themem-
ber of the (requested) membership.

– In the sincerity division, it is checked whether both
actors are trustworthy and sincere in their commit-
ment. In this case, no specific condition has to be
checked.

123



M. R. Krouwel et al.

Fig. 5 PSD for the Volley case

– In the truth division, possible violation of existence
and occurrence rules are checked. In this case, the
age of the (aspirant) member is checked against the
minimum age.

– The response part shows that the actor can choose
between promising and declining the request, based on
the assessment. The first sentence of the response part
allows the actor to responsibly (!) deviate from the rule.
For example, if a young boy named Federer wants to join
the club, but has not reached the minimum age yet, the
actor can decide to allow the boy to become member.
This underpins the idea that actors act autonomously and
responsibly.

In total, there are 4 ARSs defined for TAR01. Together they
constitute the AM for the Volley case.

3.1.3 DEMOmetamodel

The DEMO Specification Language (DEMO-SL) specifica-
tion [24] provides the formal specification of the DEMO
metamodel,which has been extended and improved further in
[80]. In Fig. 6, the DEMO metamodel derived from DEMO-
SL is depicted. The general step kinds are defined by the
CTP and thus are not defined in any of the aspect mod-
els. Product kinds are defined in both the CM and FM. A
derived fact type can be expressed as a calculation, which
can be an aggregation, specialization, or generalization. Both
(elementary) actor roles and fact types can be in or out
of focus—composite (trans)actor roles and multiple trans-
action kinds are by default out of focus, while the other
concepts are by default in focus. Out (of) focus means the
concept is shown in the higher-level models, such as the
CM, PM, and FM, but no (detailed) action rules are cre-
ated.

While there is an XML-based exchange model for DEMO
available [80], in this research it was decided to create a
more compact JSON (JavaScript Object Notation) format
to represent the DEMO models as input for the automated
model transformation, leaving out parts that are for represen-
tation only. The DEMO model for the Volley case expressed
in JavaScript Object Notation (JSON) is shown in Fig. 7.

The (metamodel) concepts of transactor role, elementary
actor role, elementary transaction kind and product are com-
pressed into one JSON object called transactor role, where
an ID and names are added for readability. The composite
actor roles and multiple transaction kinds can be found as
such in the JSON representation, along with the initiates
and has access links between an (elementary or compos-
ite) actor role and a (multiple) transaction kind. The concept
of transaction kind step kind can be fully derived from the
transaction kinds and the CTP, and thus do not need to
be specified in the JSON input, just as causal links and
wait links, which are (redundantly) specified in the ARSs
as well. The different specializations of fact kind are rep-
resented with a type attribute (entity type, property type,
value type, attribute type, derived), with a name and, if
applicable, a range and domain. The ARSs are represented
by an identifier, the actor role responsible for the rule, the
event part (consisting of a when and while clause) and
the assess part (consisting of a then and, optionally, else
clause).

3.2 Enterprise implementation

In order for an enterprise to become and stay operational, it
has to be implemented with appropriate technologies [27],
including the assignment of work to human actors and/or IT-
based actors. While the DEMO ontological enterprise model
shows the (decided) products and services (as transaction
kinds) aswell as the collaboration network (of actor roles) for
the production and delivery, many degrees of freedom exist
on how to operationalize this network toward a ‘running’
implemented enterprise [27, p. 46].

Implementation design starts from an enterprise’s onto-
logical model and ends with a fully detailed specification of
the implementation of the enterprise—possibly within the
design space constrained by an Enterprise Architecture [23].
The lowest level and most detailed model of an enterprise
describes all implementation design decisions, including
organizational structure(s), the decision to automate tasks,
as well as the assignment of people and means to the organi-
zational structures [67].

The notion of OIV expresses a category of design deci-
sion(s) for enterprise implementation [67]. It is a variable in
the sense that its value can be different for different imple-
mentation alternatives. Some examples of the ∼30 of such
OIVs [67] include:

– Deciding on work locations and organizational units –
e.g., which branches and departments exist;

– Deciding upon functionary types and the authorization
that describes which functionary type fulfills which actor
role(s) or deals with which agendum kind(s), since it is
common practice to authorize persons to fulfill func-

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Fig. 6 DEMO metamodel,
adapted from [24, 80]. Legend is
same as for FM, see Fig. 4

tionary types and not actor roles directly—e.g., the
functionary type ‘cook’ that fulfills both the actor roles
‘order baker’ and ‘stock controller’; or the functionary
type ‘deliverer’ who is authorized for the acts ‘promise’
and ‘declare’ of the transaction kind ‘order delivery’ and
also for the act of ‘accept’ for the ‘order payment’ trans-
action kind; and

– Deciding on the order of working and logical units of
work–e.g., should delivery only be done after receiving
payment (as common in retail) or is it (also) possible
to pay afterward (more common in B2B), and should
receiving of payment and delivery be seen as a single
unit of work that should be carried out by the same person
without interruptions.

The implementation of an enterprise, and therefore the
specific value chosen for the OIVs, will change far more
often than the products and services it delivers. For example,
the actor roles ‘order completer’ and ‘order baker’ are stable
notions in a pizzeria, just as the act ‘accept order payment’;
what might change often is the authority of a functionary
type—answering questions such as ‘should we combine the
actor roles of order completer and order baker into one func-
tionary type in the first months of opening our new pizzeria
branch, while later we might distribute these responsibilities
over the functionary types ‘sales’ and ‘baker’?’ or ‘should
we take the responsibility for accepting order payments away
from our functionary type deliverer and move it to an auto-
mated web agent under the (outsourced) responsibility of a
payment service provider?’.

123



M. R. Krouwel et al.

Fig. 7 JSON file representing the DEMO model for the Volley case

For an agile enterprise it is priority that frequently occur-
ring changes, typically implementation design decisions, are
not on its critical path. Ideally it should be possible to make
such changes with no or only little impact in the supporting
software. This may show the need for an implementation
to be easily adaptable in some variables, while for other
variables it is not necessary to change its value easily. For
instance, departments may be rearranged yearly, while work
locations may be more stable. OIVs offer the possibility to
make explicit the enterprise’s implementation design deci-
sions that need to get a place in software and/or to make an
explicit requirement that (some) values should be (easily)
changeable in the software.

At the same time, the variability can be quite high, mak-
ing it difficult to gain overview and impossible to support all
implementation possibilities. With the simplistic assumption
that each of the 14 (out of the 30) OIVs that can be changed
independently can have three different values each, the total
number of possible implementation alternatives is already
314 ≈ 4.8 ∗ 106 for each transaction kind—a problem for
both human understanding and automation. It is thus neces-
sary to make conscious choices on what changes should be

supported by the supporting software systems and to what
extent.

3.3 Low-code technology

The term ‘low code’ was first coined by Forrester in 2014
[96]. Although some say it is neither clear what low code
exactly is, nor that its features are very new [9, 15], low-code
development platforms claim to enable creation of soft-
ware with less effort compared to traditional15 programming
[121]. It builds upon existing concepts including MDSD,
code generation and visual programming [21]. Claimed ben-
efits of low-code technology include [49, 74, 98, 100, 108]
a) less hand-coding, faster development, and, as a result, cost
reduction in both development and maintenance, as well as a
shorter time-to-market; b) complexity reductionbyusingpre-
built components; c) the ability for non-technical people to
create applications, thus opening up the possible population
for application development as well as improving business
and IT collaboration while increasing IT productivity, and d)
enabling digital transformation and increasing IT and busi-
ness agility.

15 Also known as ‘high code’, such as Java and.Net.

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Fig. 8 Low-code metamodel

While low-code platforms support technical flexibility
such as changing from one database to another, they do not
prevent developers from hard coding (implicit) implementa-
tion design decisions [10]. Othermentioned disadvantages of
low-code technology include poor scalability, performance,
vendor lock-in and limited creativity and customizability
[108]. There is however also research that argues against
these disadvantages or that shows that the practical impli-
cations of these disadvantages is non-existent [38, 49, 97,
127].

Low-code platforms, including Mendix, rely on three
central concepts (see Fig. 8): a) data, b) logic (also called
action or (micro)service), and c) and interface (Application
Programming Interface (API) and screen) as well as their
interrelations and permission (or access control) rules for
user roles to allow users with certain roles to use these parts
of the application.

Compared to traditional programming languages like Java
and.Net, thatmainly rely on the concepts of class andmethod,
the set of low-code concepts is richer and closer to the busi-
ness, making it easier to, e.g., connect the information need
of a user to an interface to retrieve and show the correspond-
ing data. The Mendix metamodel is a specialization of the
generic low-code concepts (see Table 4).

4 Mapping

Themapping is based on the DEMOmetamodel as provided,
extended with the concept of Organization Implementation
Variable, and can be found in Table 5. The result of applying
the mapping function to a DEMO model is a full-functional
Mendix app containing a data model (and database), (basic)
CRUD (Create, Read, Update, andDelete) screens, a security
model so that users can only access the parts they are autho-
rized for, several workflows to support the DEMO CTP, and
(business) rules for the evaluation of DFSs and truth parts
of the ARSs. It is fairly easy to add APIs on top of the data
model and/or logic to expose data or function to other appli-

cations. In the process of creating themapping, several design
decisions have been made that are reported below.

D1 Transaction Kinds are not mapped. Instead, their associ-
ated Product Kinds are mapped to an Entity in order to
be able to capture the state of a transaction, see D4.

D2 For Multiple Transaction Kinds (MTKs) it is usually
not needed to capture the coordination acts around these
facts, so no mapping is needed. The production facts in
the MTK are present in the FM and mapped accordingly
to a Mendix unit, see D5.

D3 As the page for showing the agenda for an actor is a very
generic functionality, it was decided not to generate it but
to built it in Mendix as a reusable component (module).
The logic to support the state machine representing the
Complete Transaction Pattern is also built as a generic
module. The details of this module are not part of this
article as they merely build upon earlier research [41, 60,
61, 111].
The development of this module has started before
Mendix launched its native workflow capabilities, that
has the potential to reduce complexity of this module.

D4 Transaction.Proposi tion is an Entity that is part of
the generic module handling the CTP. By extending it,
the generic state machine can be used, but it can also be
related to the specific entity or entities the Product Kind
is about, i.e., the variables in the Product Kind.

D5 For out of focus Entity Types in the FM, the decision has
to be made whether the data is stored within the gener-
ated application, or used from another source, typically
through an API. For the latter, in Mendix an external
entity can be created, but it requires the API to be avail-
able in ‘Mendix Connect’.16 As this functionality does
not seem available (yet) through the Mendix SDK, it was
decided to not use that it. Instead, some basic CRUD
pages were created in order to view and modify the data.
It is fairly easy in the generated application to change this
later.

D6 There were not enough example DEMO models to pro-
vide a mapping for the generalization and specialization
Entity Types.

D7 DEMOAttribute Types can have different kinds of Value
Types. If the scale sort of a Value Type is categorical,
the Value Type can either be mapped to a Mendix Enu-
meration or Entity. The DEMO Attribute Type using the
Value Type will then either be aMendix EnumerationTy-
peAttribute or Association. If the scale sort of the Value
Type is of some other type, e.g., day, money, etc., the
DEMO Attribute Type will be mapped to some specific

16 Mendix Connect is a collection of functionalities that enables devel-
opers to discover and useAPIs from other applications and publishAPIs
for other applications to use, see https://www.mendix.com/data-hub/.

123

https://www.mendix.com/data-hub/


M. R. Krouwel et al.

Table 4 Mendix (metamodel)
units as specialization of the
generic low-code concepts

Low-code concept Mendix unit

Data Entity with attributes and associations, enumeration

Logic Microflow

Screen Page, typically containing a data grid or view and (Action) Buttons

API Published (web or REST) service

User role User role

Permission rule Access rule

Table 5 Mapping from DEMO metamodel (concept) to Mendix metamodel (unit)

DEMO Concept (Aspect Model) Example Mendix Unit

Elementary Transaction Kind (CM) TK01 n/a, see D1

Multiple Transaction Kind (CM) MTK01 n/a, see D2

Actor Role (both elementary and composite) (CM) AR01 User Role, see D3

Executor Link (CM) AR01-TK01 Action Button and (Microflow) Access Rule

Initiator Link (CM) CAR01-TK01 Action Button and (Microflow) Access Rule

Access Link (CM) CA01-MTK01 Entity Access Rule

Product Kind (CM) [registration] is started Entity having Transaction.Proposi tion as
generalization, with Association(s) to its
variable(s), see D4

Transaction Kind Step Kind (PM) TK01/rq Page

Declared Entity Type (FM) Registration Entity and Pages, see D5

Aggregation Entity Type (FM) {Registration X Year} Entity with Associations to its aggregates

Specialization Entity Type (FM) Started Registration n/a, see D6

Generalization Entity Type (FM) n/a n/a, see D6

Property Type (FM) member Association

Declared Attribute Type (FM) starting day Attribute or Association, see D7

Calculated Attribute Type (FM) age Microflow, see D8

Value Type (FM) day, money Enumeration or Entity, see D7

Action Rule-Event Part (AM) Action Button and (Microflow) Access Rule, see D9

Action Rule-Assess Part (AM) Microflow and Page, see D9

Action Rule-Response Part (AM) Action Button, Microflow and (Microflow) Access
Rule, see D9

Organization Implementation Variable Functionary Type Entity, see D10

Mendix (primitive) AttributeType, e.g., DateTime, Deci-
mal, etc. As this mapping is purely a matter of (software)
implementation, it is put into a separate descriptor file.

D8 Calculated Attribute Types need to be calculated, for
which currently a so-called Microflow is created. The
(mathematical) definition of the calculation (as defined
in a Derived Fact Specification) needs to be implemented
in that Microflow, of which the mapping is too extensive
and detailed for the scope of this article. A decision that
goes along with this choice is that from a performance
perspective one would like to be able to decide whether
this calculation is performed on read or on save. The low-
code approach applied in this research makes it easy to
make such a decision in the platform, as it currently seems
too difficult to include this aspect into the mapping.

D9 For the handling of Action Rules, a Mendix Action But-
ton for the User Role that has to deal with the agendum
(kind), a Mendix Page to see all the relevant information
to decide on a response, as well as one or more Mendix
Action Buttons for the different choices are generated.
In this way, the autonomy of the actor(s) involved is
respected, and only the parts for retrieving, and possi-
bly calculating, all the information are automated. The
mapping of the assess part is similar to that of a Calcu-
lated Attribute Type and thus a similar reasoning holds
as described in D8.

D10 In this research the principle is adopted that OIVs should
be adaptable at run-time, and therefore this concept is
mapped to aMendix Entity, including basic CRUDpages
to edit the value, i.e., design decision, of a certain OIV in

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Fig. 9 CSD for social housing

Table 6 TPT for Social Housing

Transaction kind Product kind Executor role

TK01 Registration starting PK01 [registration] is started AR01 Registration starter

TK02 Registration paying PK02 the fee for [registration] in [year] is paid AR02 Registration payer

TK03 Registration ending PK03 [registration] is ended AR03 Registration ender

TK04 Registration management PK04 registration management for [year] is done AR04 Registration manager

the running application. The different values of such an
OIV can have impact on authorization, redirecting and
handling of a (C-act), and much more. This is considered
to be part of the logic and state machine and supports
the choice for low-code technology as target platform
because it easier to build this into the state machine than
into the mapping. At the same time, in Sect. 3.2 it has
been shown that the possible number of configurations
grows exponentially with the number of OIVs and, as a
result, incorporating OIVs into the state machine might
turn out to be a NP-hard problem.

5 Implementation and evaluation

As part of the design cycle of DSR, the mapping has
been evaluated on three cases: a) the academic cases EU-
Rent [83, 88] and Volley [27], and b) the real-world case
Social Housing [66, 89]. At first, this mapping was executed
manually, while later a TypeScript reference implementa-

tion (automated converter) of the mapping17 was created
to allow for easy validation with several DEMO models.
Every transformation that was performed with the mapping
provided feedback on the correctness and completeness of
the mapping. This resulted in several iterations that evolved,
improved and enhanced themapping and its reference imple-
mentation so in order to able to deal with all the required
concepts as outlined in Sect. 4. The reference implementa-
tion eased the process of code generation and evaluation of
themapping; amajor redesign of themapping or its reference
implementation was never needed.

Currently the mapping and its reference implementation
are being evaluated with two other real-world cases from two
other organizations. Up until this moment, no changes had
to be made to the mapping nor its reference implementation.
As an illustration, in the next sections the input and output
for the Social Housing case that was part of the evaluation is
shown.

17 Source code is available at https://github.com/mkrouwel/
demo2mendix.

123

https://github.com/mkrouwel/demo2mendix
https://github.com/mkrouwel/demo2mendix


M. R. Krouwel et al.

Fig. 10 OFD for Social Housing

Table 7 DFSs for Social Housing

the age of [person] on[day] ≡ [day] minus the day of birthof [person]

[person] has active registration on [day] ≡ there exists a [registration] for which the member of [registration] equals

[person] and [registration] is started and starting day of [registration]

is smaller than or equal to [day] and (NOT [registration] is ended or

ending day of [registration] is greater than [day])

Table 8 ARS01 (executed by TAR01) for Social Housing

event when registration starting for [registration] is requested (TK01/rq)

with the starting day of [registration] is some day

the member of [registration] is some person

the payer of [registration] is some person

assess if rightness: the performer of the request is the member of [registration];

the addressee of the request is a registration starter

sincerity: * no specific condition *

truth: the age of member of [registration] on starting day of [registration] is greater than or equal to 18;

nationality of member of [registration] is Dutch

NOT member of [registration] has active registration on the starting day of [registration];

the year of the starting day of [registration] is greater than or equal to the year of Now

response if performing the action after then is considered justifiable

then promise registration starting for [registration] [TK01/pm]

to the performer of the request

else decline registration starting for [registration] [TK01/dc]

to the performer of the request

with * reason for declining *

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

5.1 Social housing

SocialHousing is the domainwhere houseswith low(er) rents
are provided to people with little or no income. It is of partic-
ular interest of ICTU18, as it’s being reorganized every few
years and many parties are involved. It is desirable to have an
application, for the support of relevant processes within this
domain, that can easily be changed to accommodate changes
in the responsibilities of the parties involved. In the Social
Housing domain twomain areas can be discerned: a) the reg-
istration of a home-seeker as a member, and b) assigning a
house to the member. The focus for the evaluation was on
the first.

5.1.1 DEMOmodels

The CSD (Fig. 9) and TPT (Table 6) reveal the starting,
periodic renewal and ending of a registration. Starting the
registration is initiated by the (aspirant) member and exe-
cuted after the registration fee has been paid. Every year
the registration is renewed against payment of a renewal
fee. Ending a registration can be initiated by the member–
e.g., when moving to another area–or by the Social Housing
organization–e.g., in case of (repeated) non-payment of the
renewal fee. Themodel shows that actors in this domain need
access to facts about costs and terms, and about persons and
(their) living, abstracted from how access to these facts is
arranged.

The OFD (Fig. 10) shows the registration as core entity
type, and the starting and ending of a registration as product
kinds. Additionally, the entity type person is shown –gray-
colored and thus out of focus, as persons are not created
within this domain–including the property type that a per-
son is the member and/or payer of a registration. The value
type {year} is included to express a) the product kind of
annual registration payment, b) the definition of the (aggre-
gated) entity type registration × {year} for the product
kind ‘annual registration payment’, and c) several decisions
taken yearly – modeled as attribute type of {year}—such as
the standard registration fee. In deciding upon starting a reg-
istration, (derived) facts about the existence of one or more
active registration(s) for and the age of a person are needed;
Table 7 shows the DFSs to calculate those.

Action rules guide actors in their decisions. Table 8 shows
the ARS for the registration starter (AR01) to settle the agen-
dum kind registration starting is requested (TK01/rq). This
action rule says to assess that the participants are authorized
to play their (performer and addressee) role in this request,

18 Stichting ICTUitvoeringsorganisatie (ICTU) is aDutch organization
that supports Dutch government by exploringmethods, IT solutions and
platforms that are built around the principle of continuous change in
organization and technology. See https://www.ictu.nl/.

Fig. 11 Chosen OIVs for social housing

that the (aspirant) member is at least 18 years old and Dutch,
that the (aspirant) member doesn’t have an active registration
at the starting day of the new registration, and that the start-
ing day is in the current year or later—the latter implies one
can start a registration retrospectively, but limited to the cur-
rent year. If the assessment yields a positive result, normally
the registration starter can proceed to request the (aspirant)
member to promise that the registration will be started; oth-
erwise the registration starter normally should decline to do
so. As an action rule is not fully deterministic, the registra-
tion starter remains free to—responsibly!—deviate from this
rule. For the chosen focus within the Social Housing domain,
11 ARSs have been defined.

5.1.2 Organization implementation

Having explored the (stable and implementation indepen-
dent) DEMO model for the registration part of the Social
Housing domain, the enterprise implementation and its
desired flexibility has been elaborated. As mentioned ear-
lier, within the domain of Social Housing, it is important to
be able to easily shift responsibilities between organizational
units and functionary types. In terms of organization units,
actor roles can shift from one social housing association to an
umbrella of social housing associations, or to a municipality,
or may be in the future as a collaboration of municipali-
ties. The authorization of a functionary type to fulfill one or
more actor role(s) shifts regularly, due to changes in required
education and competence level, compliance requirements
and labor market opportunities or constraints. Finally, as it
is common practice to install persons to fulfill functionary
types (and not actor roles directly), it was decided to choose
the following OIVs from the collection of OIVs [67] as the
OIVs that should be easily changeable in the supporting soft-
ware.

– Organizational Unit, e.g., ‘City of Amsterdam’ and
‘Woningnet’;

123

https://www.ictu.nl/


M. R. Krouwel et al.

Fig. 12 Project outline of the generated Mendix application for Social
Housing

– Functionary type, e.g., ‘Civil Servant Social Housing’
and ‘Customer Contact Manager’;

– Authorization, e.g., functionary type ‘Civil Servant Social
Housing’ in organizational unit ‘City of Amsterdam’ is
authorized to settle agendum kind ‘TK01/rq (registration
starting is requested)’ and ‘Customer Contact Man-
ager’ in organizational unit ‘Woningnet’ is authorized
to settle agendum kind ‘TK01/rq (registration starting is
requested)’; and

– Installation, e.g., person ‘George’ is installed as func-
tionary type ‘Civil Servant Social Housing’ in organi-
zational unit ‘City of Amsterdam’ and person ‘George’
is installed as functionary type ‘Customer Contact Man-
ager’ in organizational unit ‘Woningnet’.

This is summarized in Fig. 11 that shows the FMof the imple-
mentation. This model can be extended with product kinds
(and related transactor roles) to show the process of creating
an implementation (design), as suggested in [28].

5.1.3 Generated low-code application

Figures 13 and 14 show the input JSON files for the auto-
mated converter that uses these files to generate a Mendix
application. Figure12 shows the project folder of the gen-
erated Mendix application, containing pages with buttons,
microflows and enumerations. Figure15 shows the gener-
ated domain (data)model consisting of entities, attributes and
associations. It also shows the generic (computed but not per-
sisted, therefore orange-colored) entity AssessmentResult
that will be used in the microflows (see below). Addition-
ally, the needed user roles are created and all Mendix units
have the proper access rules so that only authorized users can
see and/or mutate the data and/or use the functionality pro-
vided through screens. Figure16 shows how the truth part of
ARS01 (Table 8) was implemented in a Mendix microflow
and Fig. 17 shows a screenshot of the running application
where an actor with the right authorization can deal with a
C-act of kind TK01/rq.

5.1.4 Achieved flexibility

As the software is easily regenerated from a changed DEMO
model, the approach as suggested in this article supports
changes in the enterprise’s ontology. One could, e.g., eas-
ily add the transaction kinds for the assignment of a house,
or change the (business) rules of ARS01.

Moreover, by generating a run-time configurable item for
each chosen OIV, the resulting application is intrinsically
adaptable with regard to implementation design decisions for
a given enterprise’s ontological model. Specifically for the
Social Housing case, it made it possible for the enterprise
designer or HR-employee to ‘configure’ their (implementa-

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Fig. 13 DEMO model for social housing in JSON format

123



M. R. Krouwel et al.

Table 9 Limitations of the DEMO to Mendix mapping, structured according to [5] (part 1)

Category Type of limitation Discussion

Input knowledge and
technology

L1. Data sources/ Foundations As reported in Sect. 3, existing knowledge bases on DEMO and
low-code platforms are used as a foundation. General limitations
follow from the use of DEMO and Mendix, but there are no specific
limitations other than the ones reported below

L2. Insufficient number of previous
studies

In Sect. 2 alternative MDSD approaches are discussed. At the same
time, not much studies have been done on mapping DEMO to
low-code platforms such as Mendix

L3. Sample size The artifact has been evaluated on three cases; additionally, two more
cases are subject of ongoing evaluations. More cases will be needed
to thoroughly evaluate the artifact

L4. Novelty/ Shortcomings of the
technology

Both DEMO as source of the mapping, and Mendix as target of the
mapping are well established and future-proof“technologies”. No
limitations

Resulting process L5. Setting The primary goal of the research effort was aimed at prototyping and
exploring the (im)possibilities of using semantically rich enterprise
models (such as DEMO models) as a base to generate (low-code)
applications. See L3

L6. Participants Next to the researchers and two developers, domain experts from the
real-world case Social Housing were involved

L7. Method Given the primary goal of the research (see L5), the evaluations
performed are considered (more than) enough. Of course, in moving
beyond a prototype stage, further evaluations are needed. Also see
Sect. 7.2

L8. Difficulties—out of the authors’
control

As the current evaluations of the mapping, and the Social Housing
case in particular, are performed in essentially a “laboratory setting”,
i.e., away from, e.g., budgetary and political pressures, there were no
limitations in this regard. Needless to say, that in moving beyond the
prototype stage, such constraints may influence future evaluations in
real-world settings

tion) design decisions about “which actor roles are fulfilled
by this functionary type” and “which person is fulfilling
which functionary type (and at what moment)” directly in
the (running) application, without needing to specify it for a
developer or translate it to more technical terms such as ‘user
role’ or ‘permission rule’, and without the need to rebuild or
redeploy the application. The approach as suggested in this
research thus supports both changes in the enterprise’s ontol-
ogy and its implementation.

6 Limitations

In this section we briefly reflect on the limitations of the
research as reported on in this article. As we have followed
a DSR approach, we use the typology of DSR limitations
as suggested in [5] as a way to structure these reflections.
The authors of [5] have based this typology on a structured
literature review into “self-reported” limitations on design
science artifacts. The resulting typology identifies 19 types
of limitations which the authors of [5] have grouped into four
categories based on [13].

It is also important to note that (self-reported) limitations
do not necessarily have an immediate relation to the quality
of the designed artifact.Described limitations also clarify and
document the limitations one should be aware of when using
the artifact in practice, or as a base for further development of
a similar artifact; just like the Medication Guides that come
with medicines. Using this typology as a base, Tables 9, 10
and 11 summarize the limitations of the created mapping
from DEMO to Mendix.

7 Conclusion and further research

In this paper, we investigated the potential benefits of using
DEMO ontological enterprise models, supplemented with
explicit enterprise implementation design decisions, cap-
tured in OIVs, as a semantically rich base for MDSD. As
a first step to show this benefit, we focused on the design of a
mapping fromDEMOmodels toMendix for the (automated)
creation of a low-code application that also intrinsically
accommodates run-time implementation design decisions.

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Fig. 14 The app descriptor file for the DEMO model for Social Housing in JSON format, containing the name of the application to be generated,
the mapping from value types to software primitives, and the OIVs to be taken into consideration

Fig. 15 Domain (data) model of the generated Mendix application for Social Housing

By introducing the concept of Organization Implemen-
tation Variable into the MDSD (code generation) process,
the mapping from enterprise implementation design deci-
sion to software implementation is made transparent, thereby
not leaving it up to developers to make the (right) choice.
Moreover, by generating a run-time configurable item for
each chosen OIV, the resulting application is intrinsically
adaptable at run-time with regard to implementation design
decisions for a given enterprise’s ontological model. This
run-time configurability of implementation decisions has
shown to support, or even improve, enterprise agility [89].
Moreover, for new products and services, the resulting
(Mendix) application can easily be (re)generated from its
changed DEMO model. The approach as suggested in this
research thus supports both changes in the enterprise’s ontol-

ogy and in its implementation. In this section the conclusions
and future research are further detailed.

7.1 Conclusions

Given the choice for Mendix as low-code target platform,
a mapping from the complete DEMO metamodel, includ-
ing enterprise implementation, to theMendixmetamodel has
been designed. This mapping is implemented in TypeScript,
using theMendix SDK, in order to generate a readily deploy-
able low-code application from theDEMOontologicalmodel
of an enterprise, including the support for run-time config-
urable OIVs. In doing so, a reusable component in Mendix
is created to support the CTP as well as for showing relevant
agenda to the actors that have to deal with them.

123



M. R. Krouwel et al.

Fig. 16 Mendix implementation of the ‘truth part’ of ARS01

Fig. 17 Screen for AR01 to deal with TK01/rq

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Table 10 Limitations of the DEMO to Mendix mapping, structured according to [5] (part 2)

Category Type of limitation Discussion

Resulting artifact L9. Simplifications The mapping from a DEMO model to a Mendix application as currently reported on was
aimed at prototyping and exploring the (im)possibilities of such an approach. This
allowed to conduct the evaluation of the mapping in a laboratory setting. See L5 and L8

L10. Evaluator’s
bias/Measurement bias

While Social Housing is a real-world case, the generated application is not validated
with real end users as the setting was aimed at prototyping and exploring the
(im)possibilities of such an approach (see L5). The DEMO model was validated with
subject matter experts from the Social Housing case, but not with end users (of the
Mendix applications). The resulting application was checked by the creators of the
DEMO models to confirm that the application indeed provides a complete and correct
implementation that supports the processes, information (items) and business rules as
defined in the DEMO model

L11. Not real users/
Controlled experiment

As discussed in L10, the evaluation was done in an experimental or laboratory setting.
This experiment involved two academic cases (EU-Rent and Volley), and one
real-world case (Social Housing). Additional real-world case evaluations are ongoing

L12. Real situation/
Prototype

As discussed in L10, the goals of the research effort as reported on in this article,
allowed to conduct the evaluation as a laboratory experiment

L13. Limited performance (a) In creating the mapping, the researchers noticed, as reported in [80], that the DEMO
metamodel as defined in DEMO-SL [24] is not specified from an operational or
software development point of view but rather from a diagramming or modeling
perspective. Therefore, in the (manual) conversion to JSON, the parts that are for
visualization only are left out. (b) At the same time, there was a need to include other
aspects that are relevant for generating software, such as the application name and
mapping to software primitives. These aspects, including the choice of OIVs have are
separated from the actual DEMO file and put into a descriptor file. (c) The mapping
does not include mapping rules for generalization and specialization Entity Types from
the DEMO Fact Model. (d) The mapping from Derived Fact Specifications and Action
Rule Specifications to a Mendix microflow turned out to not be straightforward. (e)
Furthermore, the implementation of OIVs in Mendix, or maybe even software in
general, turned out not to be straightforward. The impact of certain choices on the state
machine and logic is not completely detailed yet. This detailing is a labor-intensive
task that should be done for each OIV independently, but also in different
combinations. It can even be that when combining several OIVs, the problem becomes
too complex to solve. It is presently not clear whether all OIVs can be implemented
completely independent of others, as suggested by Normalized Systems theory [75].
(f) Currently, one Mendix application is created for a given DEMO model. For bigger
enterprise models, i.e., larger cases, it might be desired that a portfolio of several
separate, but connected, applications is generated

L14. Requirements to use
the artifact

DEMO skills are needed to create the (case specific) DEMO models. Currently, as
reported in L13, the DEMO model has to be encoded in JSON manually. Feeding the
input file(s) into the automated converter requires a NodeJS environment but no other
technical skills. In case one wants to inspect or edit the generated application, Mendix
skills are required. Mendix makes the process of deployment relatively easy. In a next
iteration, the first two steps should be covered by a proper DEMO modeling tool,
while the latter three steps should be available as easy-to-use SaaS

One advantage of the proposed approach follows from the
use of the DEMOontological enterprisemodel as the starting
point. Since these models are claimed to be of high qual-
ity, i.e., coherent, comprehensive, consistent and concise, the
generated software is of high quality and only contains the
necessary constructs to support the enterprise end users.

As (parts of) the software are simply (re)generated when
new transaction kinds arise, the proposed approach supports
some level of enterprise agility.By addingOIVs to theMDSD
approach, it becomes possible to change a predefined set
of implementation design decisions at run-time, therefore

allowing for even more agility for the enterprise as software
development is not a limiting factor anymore in changing the
enterprise.

Another advantage of this approach is that the generated
application model can be adapted easily through the low-
code visual paradigm. This allows for changes in the user
interface„ tomake use ofAPIs, or to implement the execution
of the action rules or calculations in a more efficient way. A
warning should be given that changes in the generated output
model can become a source of hidden design decisions.

123



M. R. Krouwel et al.

Table 11 Limitations of the DEMO to Mendix mapping, structured according to [5] (part 3)

Category Type of limitation Discussion

Design knowledge L15. Uncertainty in future events/
Time- related constraints/ Risks

The current focus of the mapping toward Mendix, is of course tied to
the future evolution of the Mendix platform. At the same time,
however, the generic insights of mapping from a semantically rich
enterprise model in terms of, e.g., DEMO models, to a (low-)code
platform such as Mendix remains design knowledge that is
transferable to mappings toward other technologies

L16. DSR outcome not compared
to alternatives

It turns out to be quite hard to compare the MDSD approach as applied
in this research to ones that use a different kind of input, such as
BPMN or UML. There does not seem to be a generic framework to
do these kind of comparisons, especially when both input and output
are different

L17. Scope of DSR application The assumption behind the artifact is that adaptable software is
required. In situations that do not need adaptable software—it is hard
to imagine in the world we currently live in—this approach might
not be valuable. The evaluations suggest the mapping is generically
applicable to different kinds of enterprises, see L3

L18. Other theoretical limitations Some of the limitations discussed under L13 actually have a
theoretical cause. For example, L13.a can be said to be caused by a
lack in the formalization of the theory behind DEMO. Also, L13.e
suggests missing theoretical insights in general (i.e., not only
specific to DEMO) on how different OIVs are related

L19. Generalizability and
transferability

The current mapping is, clearly, specific toward the combination of
DEMO as source and the Mendix platform as target. For the goal of
the initial mapping (see L9) this is considered defensible.
Nevertheless, the obvious first candidate for generalization would be
to be able to deal with different target platforms

Reflecting on the MDSD approach as applied in this
research, by making explicit the required enterprise imple-
mentation flexibility and giving it a specific place in the
generated application model, the notions of software adapt-
ability and enterprise agility have been connected, thereby at
least improving the latter. As the application can be regener-
ated easily, changing the software is not the limiting factor
anymore in changing the enterprises service andproduct port-
folio or its implementation.

7.2 Future research

As already hinted at in the discussion of the limitations
(Sect. 6), further work is called for. With regards to the limi-
tations of type L13 (Limited performance), we, respectively,
foresee:

a) There is a need to better detail the generic DEMO meta-
model, containing only the true DEMO concepts and
separating the core of DEMO from the purpose-specific
information such as visualization or code generation.

b) To arrive at (low-)code that remains readable and under-
standable by humans, it is important to generate mean-
ingful application names and other mappings to relevant
software primitives. More work is needed to understand

what exactly is needed on top of the DEMO model to
generate a working and meaningful application.

c) Themapping does not includemapping rules for general-
ization and specialization Entity Types from the DEMO
Fact Model. More cases are needed to be able to define
such a mapping.

d) The mapping from Derived Fact Specifications and
Action Rule Specifications to a Mendix microflow is not
straightforward. It is suggested to further detail that map-
ping for all possible DEMO constructs. Possibly, it turns
out to be easier tomanually perform such amapping case-
by-case than to generalize it to an automatable mapping.

e) More work is needed regarding the implementation of
OIVs in Mendix, and software in general. It is not clear
whether all OIVs can be implemented completely inde-
pendent of others, as suggested by Normalized Systems
theory [75].More case studies are needed, involvingmore
OIVs, to fully understand the complexity of this problem.

f) Currently, one Mendix application is created for a given
DEMO model. For bigger enterprise models, i.e., larger
cases, it might be desired that a portfolio of several
separate, but connected, applications is generated. One
solution is of course to split up the DEMO models and
generate an application for each separate model (part).
Another solution is to create a sort of microservice land-
scape with small applications, perhaps on the level of a

123



From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

single transaction kind, as suggested by several authors
[66, 86, 116]. It is worthwhile to find out what level of
granularity would be optimal and how to introduce the
splitting of an enterprise model into different applica-
tions.

As stated for limitation type L16, it is hard to compare
the MDSD approach as applied in this research to ones that
use a different kind of input, such as BPMN or UML. There
does not seem to be a generic framework to do these kind
of comparisons, especially when both input and output is
different. It could, therefore, be interesting to research ways
to compare different approaches toward MDSD.

The currentmapping is clearly specifically targeted toward
the Mendix platform (see L19). Although other low-code
platforms rely on similar concepts, the question arises
whether themapping can be abstracted to facilitate other low-
code platforms, or even high code. This conforms to the need
to (better) distinguish between the PIM and PSM as defined
by MDA. Further research is needed to get a perspective on
the feasibility and usability of such an abstraction.

Next to that, new features of the Mendix platform also
provide opportunities for future improvements of the map-
ping:

a) Mendix has recently launched nativeworkflow capability
in the platform. As the majority of the current mapping
and its implementationwas set up before that time, it does
not use this feature. It could be interesting to look into
these possibilities and see how it can support the CTP.
As this component is created as a generic component, it
is easy to rebuild without impacting the model converter.

b) Mendix has recently also introduced ‘Mendix Connect’,
that eases integration with (existing) external (data)
sources through APIs. As it does not seem to be available
in the SDK, it is not incorporated in the TypeScript imple-
mentation of the mapping. It could be interesting to see
how this feature can be used to accommodate integration
of external data.

Finally, the use of Large Language Models (LLMs) and
(generative) Artificial Intelligence (AI) in software develop-
ment is growing fast [99]. And while there are several poten-
tial advantages of such an approach, including increased
efficiency and accuracy,19 it is unlikely that it will fully
replace software developers in the near future, thus still
allowing for implicit hard-coded implementation decisions.
Moreover, these techniques are black-box, i.e., it is unknown
how exactly input is transformed into software. This is a
great issue in situations where traceability is needed, e.g.,

19 https://www.linkedin.com/pulse/chatgpt-how-revolutionize-
software-engineering-industry-lopez/.

when executing laws, something that is easily achieved with
MDSD in general, and theMDSD-based approach as applied
in this research. Use cases where LLMs and AI could be able
to add value to the outlined approach:

a) Enhance modeling tools so that similar advantages as for
software development can be achieved, but on the level
of enterprise modeling;

b) Transform text (prompts) into an enterprise model to
allow users to create an enterprise model without hav-
ing to learn the specific modeling language;

c) Support themakingof implementationoptimizationdeci-
sions.

These use cases are on the level of creating the input model
(CIM; in our case: DEMO) and it would be interesting to see
how such approaches can be integrated into the approach as
outlined in this research to create a wider-scoped approach
for enterprise (model-driven) software development.

Acknowledgements We would like to thank the anonymous reviewers
from both the Software and Systems Modeling journal and the Practice
of Enterprise Modeling (PoEM 2022) conference. Their feedback has
resulted in many improvements to the original article. We would like to
thank the participants of PoEM 2022 for their participation in the dis-
cussions regarding the original version of this article. These discussions
have also provided us with additional inspirations for improvements to
this article.

Funding Open access funding provided by TU Wien (TUW).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.:
Model traceability. IBM Syst. J. 45(3), 515–526 (2006). https://
doi.org/10.1147/sj.453.0515

2. Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, Meta-models,
and the Model-Driven Paradigm. In: Calero, C., Ruiz, F., Piat-
tini, M. (eds.) Ontologies for Software Engineering and Software
Technology, pp. 249–273. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2006). https://doi.org/10.1007/3-540-34518-3_9

3. Austin, J.L.: How to do things with words. Oxford University
Press, William James Lectures (1962)

4. Aveiro, D., Pinto, D.: A case study based new DEMO way of
working and collaborative tooling. In: 2013 IEEE 15th Confer-

123

https://www.linkedin.com/pulse/chatgpt-how-revolutionize-software-engineering-industry-lopez/
https://www.linkedin.com/pulse/chatgpt-how-revolutionize-software-engineering-industry-lopez/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1007/3-540-34518-3_9


M. R. Krouwel et al.

ence on Business Informatics, pp. 21–26 (2013). https://doi.org/
10.1109/CBI.2013.12

5. Barata, J., daCunha, P.R., de Figueiredo,A.D.: Self-reporting lim-
itations in information systems design science research. Bus. Inf.
Syst. Eng. 65, 143–160 (2023). https://doi.org/10.1007/s12599-
022-00782-8

6. Basha, N.M.J., Moiz, S.A., Rizwanullah, M.: Model based soft-
ware development: issues challenges. Int. J. Comput. Sci. Inform.
(2013). https://doi.org/10.47893/IJCSI.2013.1123

7. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lin-
dow, A.: Model Transformations? Transformation Models! In:
O. Nierstrasz, J. Whittle, D. Harel, G. Reggio (eds.) Model
Driven Engineering Languages and Systems, 9th International
Conference, MoDELS 2006, Genova, Italy, October 1–6, 2006,
Proceedings, Lecture Notes in Computer Science, vol. 4199, pp.
440–453. Springer (2006). https://doi.org/10.1007/11880240_31

8. Biehl, M.: Literature Study onModel Transformations. Tech. rep,
Royal Institute of Technology Stockholm, Sweden (2010)

9. Bock, A.C., Frank, U.: In Search of the Essence of Low-Code:
An Exploratory Study of Seven Development Platforms. In: 2021
ACM/IEEE International Conference onModel Driven Engineer-
ingLanguages andSystemsCompanion (MODELS-C), pp. 57–66
(2021). https://doi.org/10.1109/MODELS-C53483.2021.00016

10. van Bockhooven, S., Op ’t Land, M.: Organization Implemen-
tation Fundamentals: a Case Study Validation in the Youthcare
Sector. In: Complementary Proceedings of the Workshops TEE,
CoBI, andXOC-BPMat IEEE-COBI2015,CEURWorkshopPro-
ceedings, vol. 1408. Lisbon, Portugal (2015). http://ceur-ws.org/
Vol-1408/paper3-tee.pdf

11. Borst, W.: Construction of engineering ontologies. Ph.D. thesis,
Institute forTelematica and Information Technology, University
of Twente (1997)

12. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software
engineering in practice, second edn. Synthesis Lectures on Soft-
ware Engineering.Morgan&Claypool Publishers (2017). https://
doi.org/10.2200/S00441ED1V01Y201208SWE001

13. Brocke, J.V., Winter, R., Hevner, A., Maedche, A.: Accumulation
and Evolution of Design Knowledge in Design Science Research:
A Journey Through Time and Space. Journal of the Association
for Information Systems 21(3), 520–544 (2020). https://doi.org/
10.17705/1jais.00611

14. Broy, M., Cengarle, M.V.: UML formal semantics: lessons
learned. Softw. Syst. Model. 10, 441–116 (2011). https://doi.org/
10.1007/s10270-011-0207-y

15. Cabot, J.: Positioning of the low-code movement within the
field of model-driven engineering. In: Proceedings of the 23rd
ACM/IEEE International Conference onModel Driven Engineer-
ing Languages and Systems: Companion Proceedings. Associ-
ation for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3417990.3420210

16. Caetano, A., Assis, A., Tribolet, J.: Using DEMO to analyse the
consistency of business process models. In: Advances in Enter-
prise Information Systems II, pp. 133–146. CRC Press, Boca
Raton, FL (2012). https://doi.org/10.1201/b12295-17

17. Czarnecki,K.,Helsen, S.: Feature-based survey ofmodel transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006). https://
doi.org/10.1147/sj.453.0621

18. D’aveni, R.A.: Hypercompetition. Simon & Schuster (2010)
19. De Vries, M.: DEMO and the Story-Card Method: Require-

ments Elicitation for Agile Software Development at Scale. In:
R. Buchmann, D. Karagiannis, M. Kirikova (eds.) PoEM 2018:
The Practice of Enterprise Modeling, Lecture Notes in Business
Information Processing, vol. 335, pp. 138–153. Springer (2018).
https://doi.org/10.1007/978-3-030-02302-7_9

20. Décosse, C., Molnar, W.A., Proper, H.A.: What Does DEMO
Do? A Qualitative Analysis about DEMO in Practice: Founders,

Modellers and Beneficiaries. In: Proceedings of the 4th Enter-
prise Engineering Working Conference (EEWC 2014), Funchal,
Madeira, Lecture Notes in Business Information Processing,
vol. 174, pp. 16–30 (2014). https://doi.org/10.1007/978-3-319-
06505-2_2

21. Di Ruscio, D., Kolovos, D., Lara, J., Pierantonio, A., Tisi, M.,
Wimmer,M.: Low-code development andmodel-driven engineer-
ing: Two sides of the same coin? Softw. Syst. Model. 21, 437–446
(2022). https://doi.org/10.1007/s10270-021-00970-2

22. Dietz, J.L.G.: Enterprise Ontology-Theory and methodology.
Springer, Berlin (2006) https://doi.org/10.1007/3-540-33149-2

23. Dietz, J.L.G.:Architecture -Building strategy into design.Nether-
lands Architecture Forum, Academic Service - SDU, The Hague,
The Netherlands (2008)

24. Dietz, J.L.G.: The DEMO Specification Language v4.7. Tech.
rep., Enterprise Engineering Institute (2022). https://ee-institute.
org/download/demo-specification-language-4-7-1/

25. Dietz, J.L.G., Hoogervorst, J.A.P.: Enterprise ontology and enter-
prise architecture-how to let them evolve into effective comple-
mentary notions. GEAO J. Enterp. Architect. 2007, 1 (2007)

26. Dietz, J.L.G., Hoogervorst, J.A.P., Albani, A., Aveiro, D., Babkin,
E., Barjis, J., Caetano, A., Huysmans, P., Iijima, J., van Kervel,
S., Mulder, H., Op ’t Land, M., Proper, H.A., Sanz, J., Terlouw,
L., Tribolet, J., Verelst, J., Winter, R.: The discipline of enterprise
engineering. Int. J. Organ. Des. Eng. 3(1), 86–114 (2013). https://
doi.org/10.1504/IJODE.2013.053669

27. Dietz, J.L.G., Mulder, J.B.F.: Enterprise ontology—a human-
centric approach to understanding the essence of organisation.The
Enterprise Engineering Series. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-38854-6

28. Dietz, J.L.G., Op ’t Land, M., Krouwel, M.R., Mulder, J.B.F.:
Enterprise Design. Springer (2024). Forthcoming

29. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis
of business processmodels in BPMN. Inf. Softw. Technol. 50(12),
1281–1294 (2008). https://doi.org/10.1016/j.infsof.2008.02.006

30. Durdik, Z.: Architectural Design Decision Documentation
through Reuse of Design Patterns. Ph.D. thesis, Institut für Pro-
grammstrukturen und Datenorganisation (IPD) (2014)

31. Ettema, R., Dietz, J.L.G.: ArchiMate andDEMO -Mates to Date?
In: A. Albani, J. Barjis, J.L.G. Dietz (eds.) Advances in Enter-
prise Engineering III. CIAO! EOMAS 2009, Lecture Notes in
Business Information Processing, vol. 34. Springer, Berlin, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01915-9_13

32. Falbo, R.A., Guizzardi, G., Duarte, K., Natali, A.: Developing
software for and with reuse: an ontological approach. In: ACIS
International Conference on Computer Science, Software Engi-
neering, Information Technology, e-Business, and Applications,
pp. 311–316. International Association for Computer and Infor-
mation Science (ACIS) (2002)

33. Fill, H.G., Karagiannis, D.: On the conceptualisation ofmodelling
methods using the ADOxx meta modelling platform. Enterp.
Modell. Inf. Syst. Archit. 8(1), 4–24 (2013)

34. Fox, M.S., Barbuceanu, M., Gruninger, M., Lin, J.: An organiza-
tion ontology for enterprise modelling. In: Prietula, M., Carley,
K., Gasser, L. (eds.) Simulating Organizations: Computational
Models of Institutions andGroups, pp. 131–152.MITPress, Cam-
bridge, MA (1997)

35. France, R., Rumpe, B.: Model-driven development of complex
software: a research roadmap. In: Future of Software Engineer-
ing (FOSE ’07), pp. 37–54 (2007). https://doi.org/10.1109/FOSE.
2007.14

36. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-
driven development using UML 2.0: promises and pitfalls. Com-
puter 39(2), 59–66 (2006). https://doi.org/10.1109/MC.2006.65

37. Frank, U.: The MEMO Meta-Metamodel. Universität Koblenz-
Landau - Institut für Wirtschaftsinformatik, Tech. rep. (1998)

123

https://doi.org/10.1109/CBI.2013.12
https://doi.org/10.1109/CBI.2013.12
https://doi.org/10.1007/s12599-022-00782-8
https://doi.org/10.1007/s12599-022-00782-8
https://doi.org/10.47893/IJCSI.2013.1123
https://doi.org/10.1007/11880240_31
https://doi.org/10.1109/MODELS-C53483.2021.00016
http://ceur-ws.org/Vol-1408/paper3-tee.pdf
http://ceur-ws.org/Vol-1408/paper3-tee.pdf
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.17705/1jais.00611
https://doi.org/10.17705/1jais.00611
https://doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1201/b12295-17
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1007/978-3-030-02302-7_9
https://doi.org/10.1007/978-3-319-06505-2_2
https://doi.org/10.1007/978-3-319-06505-2_2
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/3-540-33149-2
https://ee-institute.org/download/demo-specification-language-4-7-1/
https://ee-institute.org/download/demo-specification-language-4-7-1/
https://doi.org/10.1504/IJODE.2013.053669
https://doi.org/10.1504/IJODE.2013.053669
https://doi.org/10.1007/978-3-030-38854-6
https://doi.org/10.1007/978-3-030-38854-6
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/978-3-642-01915-9_13
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/MC.2006.65


From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

38. Frank, U., Maier, P., Bock, A.: Low code platforms: promises,
concepts andprospects. a comparative study of ten systems.
Tech. Rep. 70, ICB-Research (2021). https://doi.org/10.17185/
duepublico/75244

39. Geskus, J., Dietz, J.L.G.: developing quality management sys-
tems with DEMO. In: A. Albani, J. Barjis, J.L.G. Dietz (eds.)
Advances in Enterprise Engineering III. CIAO! EOMAS 2009,
Lecture Notes in Business Information Processing, vol. 34, pp.
130–142. Springer, Berlin, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01915-9_10

40. Giachetti, R.E.:Design of enterprise systems: theory, architecture,
and methods, 1st edn. CRC Press, Boca Raton, FL (2010)

41. Gouveia, D., Aveiro, D.: Two protocols for DEMO engines: PSI
or Tell&Agree. In: 15th CIAO! Doctoral Consortium Workshop
(2015)

42. Gray, T., Bork, D., De Vries, M.: A new DEMO mod-
elling tool that facilitates model transformations. In: Enterprise,
Business-Process and Information Systems Modeling, pp. 359–
374. Springer, Heidelberg, Germany (2020). https://doi.org/10.
1007/978-3-030-49418-6_25

43. Gruber, T.R.: A translation approach to portable ontology speci-
fications. Knowl. Acquis. 5(2), 199–220 (1993). https://doi.org/
10.1006/knac.1993.1008

44. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In:
Staab, S., Studer, R. (eds.) Handbook on Ontologies, Interna-
tional Handbooks on Information Systems, pp. 1–17. Springer,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
92673-3_0

45. Guizzardi, G.: Ontological foundations for structural conceptual
models. Ph.D. thesis, University of Twente (2005)

46. Habermas, J.: The theory of communicative action. Polity Press,
Cambridge (1986)

47. Happel, H.J., Seedorf, S.: Applications of ontologies in soft-
ware engineering. In: Proceedings of Workshop on Sematic Web
Enabled Software Engineering (SWESE), pp. 5–9 (2006)

48. Heitmeyer, C., Shukla, S., Archer, M., Leonard, E.: On model-
based software development. In: Münch, J., Schmid, K. (eds.)
Perspectives on the Future of Software Engineering, pp. 49–
60. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-
37395-4_4

49. Hendriks, D.: The selection process of model based platforms.
Master’s thesis, Radboud Universiteit Nijmegen (2017)

50. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in
information systems research. MIS Q. 28(1), 75–105 (2004)

51. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van
der Merwe, A., Woitsch, R.: A new paradigm for the continuous
alignment of business and IT: combining enterprise architec-
ture modelling and enterprise ontology. Comput. Ind. 79, 77–86
(2016). https://doi.org/10.1016/j.compind.2015.07.009

52. van derHorst, P.: Frombusiness transactions to business processes
workflows: Using DEMO and BPMN.Master’s thesis, Delft Uni-
versity of Technology (2010)

53. Huysmans, P.: On the feasibility of normalized enterprises:
applying normalized systems theory to the high-level design of
enterprises. Ph.D. thesis, University of Antwerp (2011)

54. Huysmans, P., Ven, K., Verelst, J.: Using the DEMOmethodology
for modeling open source software development processes. Inf.
Softw. Technol. 52(6), 656–671 (2010). https://doi.org/10.1016/
j.infsof.2010.02.002

55. de Jong, J.: A method for enterprise ontology based design of for
enterprise information systems. Ph.D. thesis, TU Delft (2013)

56. de Jong, J., Dietz, J.L.G.: Understanding the realization of orga-
nizations. In: Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw,
M.J., Szyperski, C., Albani, A., Dietz, J.L.G. (eds.) Advances
in Enterprise Engineering IV. Lecture Notes in Business Informa-

tion Processing, vol. 49, pp. 31–49. Springer, Berlin Heidelberg
(2010)

57. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró,
D.: Survey and classification of model transformation tools.
Softw. Syst. Model. 18, 2361–2397 (2019). https://doi.org/10.
1007/s10270-018-0665-6

58. Kamkankaew, P., Phattarowas, V., Khumwongpin, S.,
Limpiaongkhanan, P., Sribenjachot, S.: Increasing competi-
tive environment dynamics and the need of hyper-competition
for businesses. Int. J. Sociol. Anthropol. Sci. Rev. 2(5), 9–20
(2022). https://doi.org/10.14456/jsasr.2022.36

59. Kardos, M., Drozdova, M.: Analytical method of CIM to PIM
transformation in Model Driven Architecture (MDA). J. Inf.
Organ. Sci. 34(1), 89–99 (2010)

60. van Kervel, S.J.H.: Ontology driven Enterprise Information Sys-
tems Engineering. Ph.D. thesis, TU Delft (2012)

61. van Kervel, S.J.H., Dietz, J.L.G., Hintzen, J., van Meeuwen, T.,
Zijlstra, B.: Enterprise ontology driven software engineering. In:
Proceedings of the 7th International Conference on Software
Paradigm Trends (ICSOFT-2012), pp. 205–210 (2012). https://
doi.org/10.5220/0004080902050210

62. de Kinderen, S., Gaaloul, K., Proper, H.A.: On transforming
DEMO models to archimate. In: I. Bider, T. Halpin, J. Krogstie,
S.Nurcan,E. Proper,R. Schmidt, P. Soffer, S.Wrycza (eds.) Enter-
prise, Business-Process and Information Systems Modeling, pp.
270–284. Springer Berlin Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31072-0_19

63. Kleidermacher, D., Kleidermacher, M.: Embedded systems secu-
rity - practical methods for safe and secure software and systems
development. Newnes (2012)

64. Kossak, F., Illibauer, C., Geist, V., Kubovy, J., Natschläger, C.,
Ziebermayr, T., Kopetzky, T., Freudenthaler, B., Schewe, K.D.:
A rigorous semantics for BPMN 2.0 process diagrams, chap. A
Rigorous Semantics for BPMN 2.0 Process Diagrams, pp. 29–
152. Springer International Publishing, Cham (2014). https://doi.
org/10.1007/978-3-319-09931-6_4

65. Krouwel, M.R.: On the design of enterprise ontology-driven soft-
ware development. Ph.D. thesis, Maastricht University (2023).
Approved for publication

66. Krouwel, M.R., Op ’t Land, M.: Business driven micro service
design - an enterprise ontology based approach to API specifi-
cations. In: D. Aveiro, H.A. Proper, S. Guerreiro, M. De Vries
(eds.) Advances in Enterprise Engineering XV, Lecture Notes in
Business Information Processing, vol. 441, pp. 95–113. Springer
(2021). https://doi.org/10.1007/978-3-031-11520-2_7

67. Krouwel,M.R.,Op ’t Land,M.,Offerman, T.: Formalizing organi-
zation implementation. In: D. Aveiro, R. Pergl, D. Gouveia (eds.)
EEWC 2016: Advances in Enterprise Engineering X, Lecture
Notes in Business Information Processing, vol. 252, pp. 3–18.
Springer, Funchal, Madeira Island, Portugal (2016). https://doi.
org/10.1007/978-3-319-39567-8_1

68. de Laat, L., Op ’t Land, M., Krouwel, M.R.: Supporting goal-
oriented organizational implementation - combining DEMO and
process simulation in a practice-tested method. In: D. Aveiro,
R. Pergl, D. Gouveia (eds.) EEWC 2016: Advances in Enterprise
Engineering X, Lecture Notes in Business Information Process-
ing, vol. 252, pp. 19–33. Springer (2016). https://doi.org/10.1007/
978-3-319-39567-8_2

69. Lankhorst, M., et al.: Enterprise architecture at work modelling
communication and analysis. In: The Enterprise Engineering
Series, 4th edn. Springer, Berlin (2017). https://doi.org/10.1007/
978-3-662-53933-0

70. Lantow, B., Sandkuhl, K., Stirna, J.: Enterprise modeling with
4EM: perspectives and method. In: Karagiannis, D., Lee, M.,
Hinkelmann, K., Utz, W. (eds.) Domain-Specific Conceptual

123

https://doi.org/10.17185/duepublico/75244
https://doi.org/10.17185/duepublico/75244
https://doi.org/10.1007/978-3-642-01915-9_10
https://doi.org/10.1007/978-3-642-01915-9_10
https://doi.org/10.1007/978-3-030-49418-6_25
https://doi.org/10.1007/978-3-030-49418-6_25
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-642-37395-4_4
https://doi.org/10.1007/978-3-642-37395-4_4
https://doi.org/10.1016/j.compind.2015.07.009
https://doi.org/10.1016/j.infsof.2010.02.002
https://doi.org/10.1016/j.infsof.2010.02.002
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.14456/jsasr.2022.36
https://doi.org/10.5220/0004080902050210
https://doi.org/10.5220/0004080902050210
https://doi.org/10.1007/978-3-642-31072-0_19
https://doi.org/10.1007/978-3-642-31072-0_19
https://doi.org/10.1007/978-3-319-09931-6_4
https://doi.org/10.1007/978-3-319-09931-6_4
https://doi.org/10.1007/978-3-031-11520-2_7
https://doi.org/10.1007/978-3-319-39567-8_1
https://doi.org/10.1007/978-3-319-39567-8_1
https://doi.org/10.1007/978-3-319-39567-8_2
https://doi.org/10.1007/978-3-319-39567-8_2
https://doi.org/10.1007/978-3-662-53933-0
https://doi.org/10.1007/978-3-662-53933-0


M. R. Krouwel et al.

Modeling, pp. 95–120. Springer, Berlin (2022). https://doi.org/
10.1007/978-3-030-93547-4_5

71. Liddle, S.W.:Model-driven software development. In:D.W.Emb-
ley, B. Thalheim (eds.) Handbook of Conceptual Modeling:
Theory, Practice, and Research Challenges, chap. Model-Driven
Software Development, pp. 17–54. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
15865-0_2

72. Lindskov, A.: Hypercompetition: a review and agenda for future
research. Compet. Rev. 32(3), 391–427 (2022). https://doi.org/
10.1108/CR-06-2021-0097

73. Luitwieler, R.: a selection method for model-driven development
tools. Master’s thesis, TU Delft (2010)

74. Luo, Y., Liang, P., Wang, C., Shahin, M., Zhan, J.: Characteris-
tics and challenges of low-code development: the practitioners’
perspective. CoRR (2021). https://doi.org/10.48550/arXiv.2107.
07482

75. Mannaert, H., Verelst, J., De Bruyn, P.: Normalized Systems
Theory: FromFoundations for Evolvable Software Toward aGen-
eral Theory for Evolvable Design. Normalized Systems Institute,
Koppa (2016)

76. March, S.T., Smith, G.F.: Design and natural science research
on information technology. Decis. Support Syst. 15(4), 251–266
(1995). https://doi.org/10.1016/0167-9236(94)00041-2

77. Mens, T., Van Gorp, P.: A taxonomy of model transformation.
Electron. Notes Theor. Comput. Sci. (2006). https://doi.org/10.
1016/j.entcs.2005.10.021

78. Mráz, O., Náplava, P., Pergl, R., Skotnica, M.: Converting DEMO
PSI Transaction Pattern into BPMN: A Complete Method. In:
D. Aveiro, R. Pergl, G. Guizzardi, J. Almeida, R. Magalhães,
H. Lekkerkerk (eds.) Advances in Enterprise Engineering XI:
EEWC 2017, Lecture Notes in Business Information Processing,
vol. 284, pp. 85–98. Springer Cham (2017). https://doi.org/10.
1007/978-3-319-57955-9_7

79. Mulder, J.B.F.: Rapid enterprise design. Ph.D. thesis, Delft Uni-
versity of Technology (2006)

80. Mulder, M.A.T.: Enabling the automatic verification and
exchange of DEMO models. Ph.D. thesis, Radboud Univer-
sity Nijmegen (2022). https://repository.ubn.ru.nl/handle/2066/
247698

81. Noureen, A., Amjad, A., Azam, F.: Model driven architecture-
issues, challenges and future directions. J. Softw. 11(9), 924–933
(2016)

82. Object Management Group: Model Driven Architecture (MDA)
Guide. Tech. rep., Object Management Group (2003). https://
www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf.
Version 1.0

83. Object Management Group: Business Motivation Model. Tech.
rep., Object Management Group (2008). http://www.omg.org/
spec/BMM/1.0/PDF/. Version 1.0

84. Object Management Group: Model Driven Architecture (MDA)
Guide. Tech. rep., Object Management Group (2014). https://
www.omg.org/cgi-bin/doc?ormsc/14-06-01. Rev. 2.0

85. van Oosterhout, M.P.A.: Business agility and information tech-
nology in service organizations. Ph.D. thesis, Erasmus University
Rotterdam (2010)

86. Op ’t Land, M.: Applying architecture and ontology to the split-
ting and allying of enterprises. Ph.D. thesis, Delft University
of Technology (2008). http://resolver.tudelft.nl/uuid:0edd0472-
39df-4296-b692-e9916e79fb1e

87. Op ’t Land, M., Dietz, J.L.G.: Benefits of enterprise ontology
in governing complex enterprise transformations. In: A. Albani,
D. Aveiro, J. Barjis (eds.) Proceedings of the 2nd Enterprise
Engineering Working Conference (EEWC-2012), LNBIP 110,
pp. 77–92. Springer, Heidelberg (2012). http://resolver.tudelft.nl/
uuid:18d90cf6-fddc-48ae-8101-e9eda186a72c

88. Op ’t Land, M., Krouwel, M.R.: Exploring organizational imple-
mentation fundamentals. In: H.A. Proper, D. Aveiro, K. Gaaloul
(eds.) EEWC 2013: Advances in Enterprise Engineering VII,
Lecture Notes in Business Information Processing, vol. 146, pp.
28–42. Springer-Verlag Berlin Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38117-1_3

89. Op ’t Land, M., Krouwel, M.R., Gort, S.: Testing the concept
of the RUN-time adaptive enterprise-combining organization and
IT agnostic enterprise models with organization implementation
variables and low code technology. In: D. Aveiro, G. Guizzardi,
R. Pergl, H.A. Proper (eds.) EEWC 2020: Advances in Enter-
prise Engineering XIV, Lecture Notes in Business Information
Processing, vol. 411, pp. 228–242. Springer (2021). https://doi.
org/10.1007/978-3-030-74196-9_13

90. Ouyang,C.,DumasMenjivar,M.,VanDerAalst,W., terHofstede,
A., Mendling, J.: From business process models to process-
oriented software systems. ACM Trans. Softw. Eng. Methodol.
19(1), 21–37 (2009)

91. Overby, E., Bharadwaj, A., Sambamurthy, V.: Enterprise agility
and the enabling role of information technology. Eur. J. Inf.
Syst. 15(2), 120–131 (2006). https://doi.org/10.1057/palgrave.
ejis.3000600

92. Parviainen, P., Takalo, J., Teppola, S., Tihinen, M.: Model-driven
development: processes and practices. No. 114 in VTT Working
Papers. VTT Technical Research Centre of Finland (2009)

93. Páscoa, C., Sousa, P., Tribolet, J.: Ontology construction: rep-
resenting dietz “Process” and “State” models using BPMN dia-
grams. In: M.M. Cruz-Cunha, J. Varajao (eds.) Enterprise Infor-
mation SystemsDesign, Implementation andManagement: Orga-
nizational Applications. Information Science Reference (2010).
https://doi.org/10.4018/978-1-61692-020-3.ch004

94. Proper, H.A., Op ’t Land, M.: Lines in the water–the line of rea-
soning in an enterprise engineering case study from the public
sector. In: Working Conference on Practice-Driven Research on
Enterprise Transformation, pp. 193–216. Springer (2010)

95. van Reijswoud, V.E., Mulder, J.B.F., Dietz, J.L.G.: Communica-
tive action based business process and informationmodellingwith
DEMO. Inf. Syst. J. 9(2), 117–138 (1999)

96. Richardson, C., Rymer, J.: New development platforms emerge
for customer-facing applications. Tech. rep, Forrester (2014)

97. Richardson, C., Rymer, J.R.: Vendor landscape: the fractured.
Fertile Terrain Of Low-Code Application Platforms. Tech. rep,
Forrester (2016)

98. Rokis, K., Kirikova, M.: Challenges of low-code/no-code soft-
ware development: a literature review. In: E. Nazaruka, K. Sand-
kuhl, U. Seigerroth (eds.) Perspectives in Business Informatics
Research, Lecture Notes in Business Information Processing, vol.
462, pp. 3–17. Springer International Publishing (2022). https://
doi.org/10.1007/978-3-031-16947-2_1

99. Ross, S.I., Martinez, F., Houde, S., Muller, M., Weisz, J.D.: The
programmer’s assistant: conversational interaction with a large
language model for software development. In: Proceedings of
the 28th International Conference on Intelligent User Interfaces,
IUI ’23, pp. 491–514. Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3581641.
3584037

100. Sanchis, R., García-Perales, Ó., Fraile, F., Poler, P.: Low-code as
enabler of digital transformation in manufacturing industry. Appl.
Sci. 10, 12 (2019). https://doi.org/10.3390/app10010012

101. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise
modeling: tackling business challenges with the 4EM method.
Springer (2014). https://doi.org/10.1007/978-3-662-43725-4

102. Santiago, I., Jiménez, Á., Vara, J.M., de Castro, V., Bollati,
V.A., Marcos, E.: Model-driven engineering as a new landscape
for traceability management: a systematic literature review. Inf.

123

https://doi.org/10.1007/978-3-030-93547-4_5
https://doi.org/10.1007/978-3-030-93547-4_5
https://doi.org/10.1007/978-3-642-15865-0_2
https://doi.org/10.1007/978-3-642-15865-0_2
https://doi.org/10.1108/CR-06-2021-0097
https://doi.org/10.1108/CR-06-2021-0097
https://doi.org/10.48550/arXiv.2107.07482
https://doi.org/10.48550/arXiv.2107.07482
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1007/978-3-319-57955-9_7
https://doi.org/10.1007/978-3-319-57955-9_7
https://repository.ubn.ru.nl/handle/2066/247698
https://repository.ubn.ru.nl/handle/2066/247698
https://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
https://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/spec/BMM/1.0/PDF/
http://www.omg.org/spec/BMM/1.0/PDF/
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://resolver.tudelft.nl/uuid:0edd0472-39df-4296-b692-e9916e79fb1e
http://resolver.tudelft.nl/uuid:0edd0472-39df-4296-b692-e9916e79fb1e
http://resolver.tudelft.nl/uuid:18d90cf6-fddc-48ae-8101-e9eda186a72c
http://resolver.tudelft.nl/uuid:18d90cf6-fddc-48ae-8101-e9eda186a72c
https://doi.org/10.1007/978-3-642-38117-1_3
https://doi.org/10.1007/978-3-642-38117-1_3
https://doi.org/10.1007/978-3-030-74196-9_13
https://doi.org/10.1007/978-3-030-74196-9_13
https://doi.org/10.1057/palgrave.ejis.3000600
https://doi.org/10.1057/palgrave.ejis.3000600
https://doi.org/10.4018/978-1-61692-020-3.ch004
https://doi.org/10.1007/978-3-031-16947-2_1
https://doi.org/10.1007/978-3-031-16947-2_1
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.3390/app10010012
https://doi.org/10.1007/978-3-662-43725-4


From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated...

Softw. Technol. 54(12), 1340–1356 (2012). https://doi.org/10.
1016/j.infsof.2012.07.008

103. Scheer, A.W., Nüttgens, M.: ARIS architecture and reference
models for business process management. In: W.M.P. van der
Aalst, J.Desel,A.Oberweis (eds.)Business ProcessManagement,
Models, Techniques, and Empirical Studies (BPM2000), Lecture
Notes in Computer Science, vol. 1806, pp. 376–389. Springer
(2000). https://doi.org/10.1007/3-540-45594-9_24

104. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Lan-
guage. Cambridge University Press, Cambridge, London (1969)

105. Sebastián, G., Gallud, J.A., Tesoriero, R.: Code generation using
model driven architecture: a systematicmapping study. J. Comput.
Lang. (2020). https://doi.org/10.1016/j.cola.2019.100935

106. Sendall, S., Kozaczynski,W.:Model transformation: the heart and
soul of model-driven software development. IEEE Softw. 20(5),
42–45 (2003). https://doi.org/10.1109/MS.2003.1231150

107. Shutov, A., Laryushina, Y., Ponomarev, N., Radzinskaia, O.:
Extending DEMO with an opportunity for simulation. In:
S. Wrycza (ed.) Information Systems Development and Appli-
cations. University of Gdańsk (2015)

108. Sijtstra, J.: Quantifying low-code development platforms effec-
tiveness in the Dutch public sector. mathesis, Leiden University
(2022). https://theses.liacs.nl/2221

109. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press,
Cambridge, MA, USA (1996)

110. Singh, Y., Sood, M.: Model driven architecture: a perspec-
tive. In: 2009 IEEE International Advance Computing Con-
ference, pp. 1644–1652 (2009). https://doi.org/10.1109/IADCC.
2009.4809264

111. Skotnica, M., van Kervel, S.J.H., Pergl, R.: Towards the ontologi-
cal foundations for the software executable DEMOaction and fact
models. In: D. Aveiro, R. Pergl, D. Gouveia (eds.) Advances in
Enterprise Engineering X (EEWC 2016), Lecture Notes in Busi-
ness Information Processing, vol. 252, pp. 151–165. Springer
(2016). https://doi.org/10.1007/978-3-319-39567-810

112. Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontol-
ogy engineering. SIGMODRec. 31(4), 12–17 (2002). https://doi.
org/10.1145/637411.637413

113. Stahl, T., Völter, M.:Model-Driven Software Development: Tech-
nology, Engineering. Management. John Wiley & Sons Inc,
Hoboken, NJ, United States (2006)

114. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering:
principles andmethods.DataKnowl. Eng. 25(1), 161–197 (1998).
https://doi.org/10.1016/S0169-023X(97)00056-6

115. Sushil, Stohr, E.A. (eds.): The flexible enterprise. Flexible Sys-
tems Management. Springer India (2014). https://doi.org/10.
1007/978-81-322-1560-8

116. Terlouw, L.I., Albani, A.: An enterprise ontology-based approach
to service specification. IEEE Trans. Serv. Comput. 6(1), 89–101
(2013). https://doi.org/10.1109/TSC.2011.38

117. The Open Group: ArchiMate 3.2 Specification. Van Haren (2023)
118. Thomke, S.H.: The role of flexibility in the development of new

products: an empirical study. Res. Policy 26(1), 105–119 (1997).
https://doi.org/10.1016/S0048-7333(96)00918-3

119. Uschold, M., King, M.: Towards a methodology for building
ontologies. In: Proceedings of the Workshop on Basic Ontologi-
cal Issues in Knowledge Sharing, International Joint Conference
on Artificial Intelligence, Montreal, 1995 (1995)

120. Van Nuffel, D., Mulder, H., van Kervel, S.: Enhancing the for-
mal foundations of BPMN by enterprise ontology. In: A. Albani,
J. Barjis, J.L.G. Dietz (eds.) CIAO! 2009, EOMAS 2009:
Advances in Enterprise Engineering III, Business Information
Processing, vol. 34, pp. 115–129. Springer (2009). https://doi.
org/10.1007/978-3-642-01915-9_9

121. Waszkowski, R.: Low-code platform for automating business pro-
cesses in manufacturing. IFAC-PapersOnLine 52(10), 376–381

(2019). https://doi.org/10.1016/j.ifacol.2019.10.060. 13th IFAC
Workshop on Intelligent Manufacturing Systems IMS 2019

122. Weigand, H.: Two decades of language/action perspective. Nat.
Lang. Eng. 49, 45–46 (2006)

123. Wieringa, R.J.: Design Science Methodology for Information
Systems and Software Engineering. Springer, Berlin, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43839-8

124. Wu, F., Priscilla, L., Gao, M., Caron, F., De Roover, W., Van-
thienen, J.: Modeling decision structures and dependencies. In:
On the Move to Meaningful Internet Systems: OTM 2012 Work-
shops., Lecture Notes in Computer Science, vol. 7567 (2012).
https://doi.org/10.1007/978-3-642-33618-8_69

125. Yourdon, E.: Just enough structured analysis. Yourdon (2006)
126. Yu, X., Zhang, Y., Zhang, T.,Wang, L., Zhao, J., Zheng, G., Li, X.:

Towards a model driven approach to automatic BPEL generation.
In: D.H. Akehurst, R. Vogel, R.F. Paige (eds.) ECMDA-FA 2007:
Model Driven Architecture - Foundations and Applications, Lec-
ture Notes in Computer Science, vol. 4530, pp. 204–218 (2007).
https://doi.org/10.1007/978-3-540-72901-3_16

127. Zhu,K.X., Zhou, Z.Z.: Research note - lock-in strategy in software
competition: open-source software vs. proprietary software. Inf.
Syst. Res. 23(2), 536–545 (2011). https://doi.org/10.1287/isre.
1110.0358

128. Zrnec, A.Z., Bajec, M., Krisper, M.: Enterprise modelling with
UML. Electrotech. Rev. 68, 109–114 (2001)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Marien R. Krouwel is an Enterprise
Architect and Software Engineer
with over 10 years of experience
in the low code domain. He is spe-
cialized in creating future-proof
and flexible software that truly
supports the business and its
dynamics. Marien applies princi-
ples from Enterprise Design and
Engineering to capture business
ideas in enterprise models, to sub-
sequently convert these models
into smart software solutions. He
has experience in both enterprise
modelling and software develop-

ment, and with DEMO and Mendix in particular. After having worked
at Capgemini for 12 years, Marien started his own company and co-
founded Trives Solutions, aimed at supporting business opportunities
by bridging the gap from idea to software solution in short time and in
a transparent way. Currently, he acts as independent consultant, enter-
prise solution architect and trainer. In 2023, Marien received his PhD
on the topic of Enterprise Model-Driven Software Development. He
frequently supervises MSc research and regularly provides lectures at
the Antwerp Management School and TU Wien.

123

https://doi.org/10.1016/j.infsof.2012.07.008
https://doi.org/10.1016/j.infsof.2012.07.008
https://doi.org/10.1007/3-540-45594-9_24
https://doi.org/10.1016/j.cola.2019.100935
https://doi.org/10.1109/MS.2003.1231150
https://theses.liacs.nl/2221
https://doi.org/10.1109/IADCC.2009.4809264
https://doi.org/10.1109/IADCC.2009.4809264
https://doi.org/10.1007/978-3-319-39567-810
https://doi.org/10.1145/637411.637413
https://doi.org/10.1145/637411.637413
https://doi.org/10.1016/S0169-023X(97)00056-6
https://doi.org/10.1007/978-81-322-1560-8
https://doi.org/10.1007/978-81-322-1560-8
https://doi.org/10.1109/TSC.2011.38
https://doi.org/10.1016/S0048-7333(96)00918-3
https://doi.org/10.1007/978-3-642-01915-9_9
https://doi.org/10.1007/978-3-642-01915-9_9
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-642-33618-8_69
https://doi.org/10.1007/978-3-540-72901-3_16
https://doi.org/10.1287/isre.1110.0358
https://doi.org/10.1287/isre.1110.0358


M. R. Krouwel et al.

Martin Op ’t Land works at
Capgemini as a certified Global
Architect with over 35 years of
experience. He has specialized in
chain collaboration and informa-
tion management, focusing on
coherence and evolvability of
enterprises. From 2018, he partic-
ipates in the Architecture Council
of the Dutch Criminal Justice Sys-
tem with as his personal mission
to contribute to Law Execution
as intended. As a lead architect,
he prefers to work in complex
projects and issues that have not

been solved before. People who know him describe him as: curious,
asking clarifying questions and working thoroughly. Driven to build
meaningful relations, he enjoys working with young and experienced
talent bringing coherence and movement. He loves lecturing and doing
and supervising research as Professor of Enterprise Engineering at
Antwerp Management School and University of Antwerp. As Editor
of the Springer Enterprise Engineering Series and Faculty of the EE-
network, he contributes to the academic development of Enterprise
Engineering, and as active member of the Enterprise Engineering Net-
work, he devotes himself to its practical applicability.

Henderik A. Proper, Erik for fri-
ends, is Full Professor in Enter-
prise and Process Engineering in
the Business Informatics Group at
the TU Wien. Erik has a mixed
background, covering a variety of
roles in both academia and indus-
try. His core research drive is the
development of theories that work.
In other words, Erik focuses on
research that leads to results that
have both theoretical rigour and
practical relevance. His general
research interest concerns the
foundations and applications of

domain modelling, in particular in the context of enterprises. Over the
past 20 years, he has applied this research drive and general research
interest towards the further development of the field of enterprise engi-
neering, and enterprise modelling in particular. Presently, Erik is vice-
chair of the IFIP 8.1 working group, while also being the represen-
tative for the Netherlands in IFIP’s TC8 technical committee. He is
also the Stellvertretender Sprecher of the EMISA working group of
the German Computer Science Society (Gesellschaft für Informatik),
as well as a member of the management team of the Enterprise Engi-
neering Network.

123


	From enterprise models to low-code applications: mapping DEMO to Mendix; illustrated in the social housing domain
	Abstract
	1 Introduction
	2 Related work and chosen solution direction
	2.1 Enterprise engineering
	2.2 Model-driven software development and MDA
	2.3 Source model: enterprise modeling language
	2.4 DEMO-driven software development
	2.5 Target model: low code

	3 Theoretical background
	3.1 Enterprise ontology
	3.1.1 Ontological aspect models
	3.1.2 Example: Volley
	3.1.3 DEMO metamodel

	3.2 Enterprise implementation
	3.3 Low-code technology

	4 Mapping
	5 Implementation and evaluation
	5.1 Social housing
	5.1.1 DEMO models
	5.1.2 Organization implementation
	5.1.3 Generated low-code application
	5.1.4 Achieved flexibility


	6 Limitations
	7 Conclusion and further research
	7.1 Conclusions
	7.2 Future research

	Acknowledgements
	References


