
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01155-3

SPEC IAL SECT ION PAPER

Exchanging information in cooperative software validation

Jan Haltermann1 · Heike Wehrheim1

Received: 28 February 2023 / Revised: 20 October 2023 / Accepted: 17 January 2024
© The Author(s) 2024

Abstract
Cooperative software validation aims at having verification and/or testing tools cooperate on the task of correctness checking.
Cooperation involves the exchange of information about currently achieved results in the form of (verification) artifacts.
These artifacts are typically specialized to the type of analysis performed by the tool, e.g., bounded model checking, abstract
interpretation or symbolic execution, and hence require the definition of a new artifact for every new cooperation to be built.
In this article, we introduce a unified artifact (called Generalized Information Exchange Automaton, short GIA) supporting
the cooperation of over-approximating with under-approximating analyses. It provides information gathered by an analysis
to its partner in a cooperation, independent of the type of analysis and usage context within software validation. We provide a
formal definition of this artifact in the form of an automaton together with two operators on GIAs. The first operation reduces
a program by excluding these parts, where the information that they are already processed is encoded in the GIA. The second
operation combines partial results from two GIAs into a single on. We show that computed analysis results are never lost
when connecting tools via these operations. To experimentally demonstrate the feasibility, we have implemented two such
cooperation: one for verification and one for testing. The obtained results show the feasibility of our novel artifact in different
contexts of cooperative software validation, in particular how the new artifact is able to overcome some drawbacks of existing
artifacts.

Keywords Cooperative software verification · Verification artifact · Test case generation · Component-based CEGAR

1 Introduction

Over the past years, automatic software validation (i.e., verifi-
cation and testing) has become amature field, with numerous
tools providing various sorts of analyses (see, e.g., the annual
competitions on software verification and testing [8, 9]). Still,
the one-fits-all approach to software validation has not yet
been found. All tools have their specific strengths and weak-
nesses, and tools efficiently solving one sort of analysis tasks
might be slow at or even unable to solve other tasks.

To remedy this situation, cooperative software verifica-
tion aims at having different tools cooperate on the task

Communicated by Holger Schlingloff and Ming Chai.

B Jan Haltermann
jan.haltermann@uol.de

Heike Wehrheim
heike.wehrheim@uol.de

1 Department of Computing Science, Carl von Ossietzky
Universität Oldenburg, Ammerländer Heerstraße 114-118,
26129 Oldenburg, Germany

of software verification. This principle can not only be
applied to verification but also to testing, and several different
approaches combining various sorts of analyses exist today
(e.g., [2, 5, 15, 16, 24, 27, 33, 34, 38, 39, 42, 48, 53–55, 75]).
To achieve cooperation, tools need to exchange information
gathered about a program during its analysis. To leverage
the strengths of tools, we need to make sure that no results
computed about a program are lost during this information
exchange. To this end, existing cooperative approaches use
various sorts of so-called verification artifacts [26] for infor-
mation exchange, e.g., correctness witnesses [10], predicate
maps [24] or violation witnesses [12]. The artifacts are, how-
ever, often specialized to the type of analysis performed, with
the consequence of having to define a new form of artifact
with every new cooperation.

In this work, we introduce a novel uniform verifica-
tion artifact (called GIA) for the exchange of information,
specifically focusing on the cooperation of over- and under-
approximating software analyses (see Fig. 1), as many exist-
ing combinations successfully make use of these two types
of analyses (e.g., [1, 2, 5, 20, 21, 24, 30, 33–35, 41, 42, 49,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01155-3&domain=pdf
http://orcid.org/0000-0002-5098-0495


J. Haltermann, H. Wehrheim

Fig. 1 Cooperation of over- and under-approximating analyses

51, 59, 70, 77, 78]). Over-approximating (OA) analyses build
an over-approximation of the state space of a program, while
under-approximating (UA) analyses inspect specific program
paths. AnUA analysis typically aims at finding errors; an OA
analysis aims at proving program correctness.

Before defining the GIA—our new type of verification
artifact—we first of all studied existing combinations of
(cooperative and non-cooperative) analyses and the infor-
mation they assemble and possibly exchange during an
analysis. We also investigated what input formats existing
tools accept. The majority of tools just take a program as
input, however, there are also some tools already allow-
ing for verification artifacts as additional inputs. With these
insights at hand, we defined a new verification artifact in
the form of a generalized information exchange automaton
(GIA) which can express information generated by over- and
under-approximating analyses in the context of software vali-
dation.More specifically, our artifact can encode information
on (1) program paths which definitely or potentially lead to
an error, i.e., (potential) counterexamples, (2) program paths
which are already known to be safe, (3) program paths which
are already known to be infeasible plus (4) additional con-
straints on programpaths like state invariants. The unification
of all such information in one verification artifact should in
particular make the artifact independent of its usage, i.e., the
semantics of theGIA should be the same in all usage contexts
within software validation. Current artifacts, in particular the
protocol automata of Beyer and Wehrheim [26], have differ-
ing meanings depending on their usage: sometimes the paths
described by an automaton are the safe paths, and sometimes
the paths leading to a property violation. By introducing the
idea of target nodes and inspired by three-valued logic, we
can define the semantics of the verification artifact GIA in
such a way that it can encode these different information
exchanged in software validation while maintaining a uni-
form semantics.

Along with this new artifact, we also introduce two opera-
tions on it: reducers [18, 41] and combiners. A reducer allows
to (syntactically) reduce a program to the part which a (prior)
analysis has not yet completed (e.g., not yet proven safe).
Reducers are required for cooperation of analysis toolswhich
only take programs as inputs. A combiner allows combining
computed analysis results given in two GIAs into one. We

formally show that connecting tools via reducers and com-
biners guarantees computed analysis results to never be lost.

To demonstrate the feasibility of our approach and to
show that GIAs are in fact usable in different scenarios, we
have implemented two such cooperations employing GIAs
as an exchange format. We have experimentally evaluated
these cooperations on benchmarks of SV- Comp [9] and report
on the outcomes, in particular how existing drawbacks in
cooperation approaches caused by information loss can be
overcome with this new artifact. Moreover, we observe that
encoding information on reachable and unreachable program
paths within the same artifact allows cooperative approaches
to compute final results faster.

This article is an extended version of our conference paper
[56], extending it with (1) a thorough discussion of related
work, especially on existing artifacts and their shortcomings,
(2) proofs of theorems, (3) an implementation and evaluation
of an additional use case for GIAs which is cooperative test
case generation and (4) a more detailed explanation of the
application of GIAs in other use-cases.

2 Background

We generally aim at the validation of programs written in C.
To be able to discuss and define formats for the information
exchange, especially their semantics, we first provide some
basic definitions on the syntax and semantics of programs,
and then survey existing artifacts.

2.1 Program syntax and semantics

We represent a program as a control-flow automaton (CFA).
Intuitively, a CFA is a control-flow graph, where each edge is
labeled with a program statement. More formally, a CFA C
is a graph C = (Loc, �0,G) with a set of program locations
Loc, the initial location �0 ∈ Loc and a transition relation
G ⊆ Loc × Ops × Loc, where Ops contains all possible
operations on integer variables,1 namely assignments, condi-
tions (for both loops and branches), function calls and return
statements. We let C denote the set of all CFAs. Note that any
program can be transferred into a CFA and any deterministic
CFA into a program.

We assume the existence of two specific functions error
and random which programs can call; the former can be
used to represent violations of a specification (reachability
of an error), the latter returns a non-deterministic value and
is typically used to model inputs. We assume our programs
to be deterministic except for this function random.

1 We restrict the operations to integer variables for presentation only;
the implementation covers C programs.

123



Exchanging information in cooperative software validation

Fig. 2 An example program P for test case generation

For defining the semantics of CFAs, we let Var denote
the set of all integer variables present in the program, AExpr
the set of arithmetic and BExpr the set of Boolean expres-
sions over the variables in Var. A state c is a mapping of
the program variables to integers, i.e., c : Var → Z. We lift
this mapping to also contain evaluations of the arithmetic
and Boolean expressions, such that c maps AExpr to Z and
BExpr to B = {0, 1}. A finite syntactic program path is a
sequence τ = �0 −g1−→ . . . −gn−→ �n s.t. (�i , gi+1, �i+1) ∈ G
for each transition. We extend a syntactic path to a semantic
program path π = 〈c0, �0〉 −g1−→ . . . −gn−→ 〈cn, �n〉, by adding
states to each location, where c0 assigns the value 0 to all
variables, and state changes for 〈ci , �i 〉 −gi+1−−→ 〈ci+1, �i+1〉
are defined as follows: If gi+1 is an assignment of the form
x=a, x ∈Var, a∈AExpr, ci+1 = ci [x �→ ci (a)], for assign-
ments x =random() ci+1 = ci [x �→ z], z ∈ Z, otherwise
ci+1 = ci .

Note that we do not require that a semantic path meets all
its Boolean conditions, as we want to distinguish between
feasible and infeasible semantic paths: A semantic path is
called feasible, if for each condition gi+1 = b on the path
ci (b) = true holds, otherwise it is called infeasible. We
say that a path π reaches location � ∈ Loc if � = �n . If no
feasible semantic path reaches a location � ∈ Loc, it is called
unreachable. The set of all semantic paths (or in short, paths)
of a CFA C is denoted by P(C).

Figure2 contains a C-program and Fig. 3 its correspond-
ing CFA. Let us assume our validation task on this program is
test case generation, more specifically generating test inputs
(values returned by random) which cover all branches of
the program. A tool would then need to generate inputs
leading to paths such that each node of the CFA marked
in gray is reached by at least one path. A feasible path that
reaches the location �3 is: 〈{x �→0}, �1〉 −x=random();−−−−−−−→ 〈{x �→
3}, �2〉 −x<5−−→ 〈{x �→ 3}, �3〉 −return 0;−−−−→ 〈{x �→ 3}, �4〉. The
location �7 is unreachable, as x is always greater than 5 at
�6, and thus the branch cannot be covered.

Fig. 3 CFA for program in Fig. 2, where nodes after branching points
are marked gray

3 Related work

Combining different analyses is commonly applied to enha
nce the performance in verification or test case generation. In
verification, the goal is to check whether a program adheres
to certain specifications, in test case generation tools aim at
finding test cases covering a set of test goals. Following [26],
these combinations of analyses can be divided into four cate-
gories: Portfolios, selection-based approaches, cooperations,
and conceptual integrations. Portfolio-based approaches [7,
43, 50, 58, 61, 62, 83, 85] run multiple components sequen-
tially or in parallel and select the first computed result,
whereas selection-based approaches [6, 40, 44, 47, 68, 78,
84] select one verification component upfront based on the
task. Both concepts do not foresee an information exchange
between different components; hence, we do not consider
them further.

In this work, we aim for finding a unified artifact that
is applicable for many existing concepts of cooperative
software validation combining over-approximating(OA) and
under-approximating(UA) components.We present different
cooperation-based approaches and approaches using a con-
ceptual integration next. Many tools combine OA and UA
tools, but there are some ideas that either combine only OA
or only UA tools.

123



J. Haltermann, H. Wehrheim

3.1 Conceptual integration

A conceptual integration is a white-box combination of
multiple components, where the components exchange infor-
mation not via clearly defined artifacts but rather using
internal formats, method calls or accessing shared data struc-
tures.

SequentialCombinations. In sequential combinations, tools
are executed in a sequential manner, where the information
computed by the former tool is given to the next. Differ-
ent approaches combine an OA verification tool with an UA
testing approach (like dynamic symbolic execution [48] or
robustness testing [63]) to guide the testing tool or analyze
the non-verified program parts. FuSeBMC [3] combines dif-
ferent UA components for test case generation: In the first
phase, a fuzzing and a bounded model checking tool are run
in parallel trying to cover all test goals. Afterward, the cov-
ered goals and the inputs for covering them are given to a
selective fuzzer, that uses the given information to cover the
remaining test goals in the second phase.

Interleaved Combinations. Interleaved combinations [2, 4,
5, 46, 49, 51, 60, 64, 73, 76, 77, 81, 86] can be seen as
an extension of the sequential combinations, where each
component may be called multiple times. In Smash [49],
an OA predicate analysis is combined with dynamic test
generation (UA), wherein both tools compute information
in an alternating way. The Smash algorithm maintains two
sets of function summaries in the form of predicates and
implications, computed by the OA and UA analyses. One
set contains witnesses for concrete execution paths within
the function, whereas the other summaries express certain
properties (postconditions) that hold for all executions of
the function satisfying certain preconditions. Synergy [51]
(with its implementation in the tool Yogi [77]) and Dash [5]
share the idea of combining predicate analysis with a test-
ing approach. Both maintain two separate data structures, an
over-approximation of the state space and a tree of concrete
program executions. The core idea is to steer testing along
potential counterexamples and use information obtained by
testing to guide the refinement process. The Ufo algorithm
follows a similar idea but stores all information within a sin-
gle abstract reachability graph (ARG) [2].

The idea of concolic testing is to enrich a testing tool
with concrete test inputs that may lead to unexplored parts
of the program [28, 32, 71–74, 79, 80, 82]. The concrete
inputs are computed using an over-approximating symbolic
execution. Daca et al. [42] use a concolic execution engine
in combination with predicate abstraction. The predicate
abstraction guides the search of the concolic tester by identi-
fying unreachable program parts. Beneath this information,
the concolic tester communicates the test goals already cov-
ered. Information is exchanged using an ARG.

Summary. Approaches using conceptual integration may
exchange information on concrete program executions and
the resulting goals covered, or the unreachability or safety
of certain parts (under some Boolean conditions) of the
program. Several approaches use an ARG for information
exchange.

3.2 Cooperative approaches

In contrast to conceptual integration, cooperative approaches
use components as black boxes and information is exchanged
only using clearly defined verification artifacts.

Sequential Combinations.
One of the earliest ideas for cooperative software val-

idation in a cooperative manner is cooperative manner is
conditional model checking (CMC) [15]. Therein, so-called
conditional model checkers (OA tools) are executed sequen-
tially, where each generates a predicate specifying under
which condition the program adheres to the specification.
The conditions are exchanged via a condition automaton. In
[41], the second model checker is replaced using a testing
tool, yielding a combination of an OA and an UA tool. The
information from the condition automaton is transformed
into a reduced program to be able to use arbitrary testing
approaches. The general construction of conditional verifiers
using reduction is presented in [18] and different reduction
and folding strategies are proposed in [17]. In [33] and [34],
an OA verification tool analyzes the program, adding condi-
tions under which the program is safe directly into the code.
These conditions are then either further analyzed, in [33] or
tested dynamic symbolic by execution engine (UA) in [34].

In CoVEGI [55], a OA analysis tool is cooperating with an
invariant generation tool. The invariant generation tool com-
putes on-demand invariants for the analysis tool to enhance
its performance. The invariants are encoded within correct-
ness witnesses.

Interleaved Combinations. CoVeriTest [16, 65, 66] gen-
eralizes the idea of [42] by combining arbitrary verifiers
(OA) for test case generation. Each verifier tries to reduce
the set of open test goals and generates a condition describ-
ing the explored state space, such that other tools can safely
ignore it. The condition is then used for cooperation. A
similar approach only employing testing tools is presented
in [7].

Counterexample-guided abstraction refinement (CEGAR)
[35] is a technique for iteratively refining the abstraction.
The idea is implemented in many tools [1, 20, 21, 30, 59,
70, 78], where potential counterexamples, spurious coun-
terexamples and precision increments (mostly in form of
new predicates) are exchanged between the components. A
decomposed and cooperative formalization is presented in
[24], where standardized formats, namely correctness and

123



Exchanging information in cooperative software validation

violation witnesses, are used for exchanging the informa-
tion. The concept of property-directed k-induction [52, 69]
is formalized in a cooperativeway in [27],where the informa-
tion exchanged of generated invariants and traces is realized
using no standardized format.

Summary. In cooperative software validation, components
exchange information on programs partially verified (or sim-
ply explored) under certain conditions, (helpful) invariants,
potential and spurious counterexamples, and newly dis-
covered predicates. The information is encoded using the
standardized formats of condition automaton, correctness,
and violation witnesses.

4 Existing artifacts

As seen in the related work section, there are different arti-
facts that are already used either for cooperative validation,
for witness validation or storage of correctness proofs [10,
12, 18, 26, 42, 55, 67]. An overview of existing verification
witnesses is given in [11]. In the following, we define the
artifacts (1) protocol automaton, (2) violation and (3) cor-
rectness witness, (4) condition automaton and (5) abstract
reachability graph formally. We discuss their suitability for
representing information exchanged between OA and UA
analysis and provide concrete examples.

All of the presented formats can encode information
about (non-)violation of some reachability properties, i.e., the
(non-)reachability of a set Prop ⊆ Loc of locations of the
CFA.

4.1 Requirements

Before we discuss whether the artifacts used are suitable in
the general setting, we summarize the requirements based
on existing use cases for such a general format for exchang-
ing information between OA- and UA analyses. Following
existing cooperations, an artifact needs to be able to encode
information on:

(R1) program paths which are already known to be feasi-
ble (and may reach certain test goals or an error state),

(R2) programpathswhich are either feasible and reach an error
state or are infeasible (potential counterexample),

(R3) program paths which are already known to be safe,
(R4) program paths which are already known to be infeasible,
(R5) additional constraints on program paths like state invari-

ants,
(R6) and additionally, an artifact needs to have a context-

independent semantics.

4.2 Protocol automaton

The protocol automaton, first introduced in [12] and extended
in [26], in general describes a set of semantic paths. It can
be used to define different existing verification artifacts in
a uniform way, as the semantics of the described paths is
context-dependent.

Definition 1 A protocol automaton Ap =(Q,�,δ, q0,F) for
a program represented as CFA C = (Loc, �0,G) is a non-
deterministic automaton that consists of:

• a finite set of states Q ⊆ � × BExpr, each being a pair
of a name out of some set � and a state-invariant,

• an alphabet � ⊆ 2G × BExpr,
• a transfer relation δ ⊆ Q × � × Q,
• an initial state q0 ∈ Q, and
• a set F ⊆ Q of final states.

Automaton states have (arbitrary) names and potentially
invariants associated with them which come in the form
of Boolean expressions over program variables. Transitions
are labeled over the alphabet � with elements being sets of
transitions of theCFAplus additional assumptions about pro-
gram variables describing conditions when executing these
transitions (see Def. 3 below). The connection between a
semantic path π in the CFA C and paths that are described
by Ap is established via matched paths. Ap matches a path
π = 〈c0, �0〉 −g1−→ . . . −gn−→ 〈cn, �n〉 if there is a sequence

ρ = (q0, ψ0) −(G1,ϕ1)−−−−→ . . . −(Gk ,ϕk )−−−−→ (qk, ψk), 0 ≤ k ≤ n,

with (qi−1, ψi−1)−(Gi ,ϕi )−−−−→ (qi , ψi )∈�, such that

1. ∀i, 1 ≤ i ≤ k : gi ∈ Gi ,
2. ∀i, 1 ≤ i ≤ k : ci |
 ϕi ,
3. ∀i, 0 ≤ i ≤ k : ci |
 ψi .

Ap covers π , if Ap matches π , k = n and qk ∈ F .
In Fig. 4 to 6, three protocol automata are shown (a

violation witness, a correctness witness and a condition
automaton, see below), each of them covers a set of paths
from the CFA of Fig. 3.

To be able to represent different artifacts as protocol
automata, a context-dependent semantics is used, meaning
that the semantics is fixed per artifact instance. Thus, each
tool working with protocol automata has to be aware of
the type of protocol automaton given to it and its seman-
tics. Depending on the encoded artifact, matched paths can,
amongothers, encode paths leading to a property violation (in
Fig. 4), or paths not reaching any nodes from Prop (in Fig. 5).
Consequently, it is impossible to mark within one protocol
automaton both, a path to a node from Prop as unreachable
and state that another path reaches a different node from

123



J. Haltermann, H. Wehrheim

Prop. Hence, (R6) and either (R1) or (R3) from Sec. 4.1 is
not fulfilled.

Next, we discuss three artifacts which are specializations
of protocol automata.

4.3 Violation witness

A violation witness [12] is used to encode a set of feasi-
ble semantic paths that lead to a property violation. It can be
represented as protocol automaton AVW = (Q, �, δ, q0, F),
where each state has only a trivial state invariant: ∀(q, ϕ) ∈
Q : ϕ = true. The assumptions in AVW can contain con-
straints on the variable values. Semantically, paths covered
by AVW contain a property violation. An example for a
violation witness represented as protocol automaton for the
CFA from Fig. 3 with Prop = {�4} is depicted in Fig. 4.
The only path covered by AVW is π =〈c0, �1〉−x=random();−−−−−−−→
〈c1, �2〉−x<5−−→〈c1, �3〉−return 0;−−−−→〈c1, �4〉, where c0 = {x �→0}
and c1 = {x �→ 1}. Hence, following π leads to a property
violation in the example program P.

By design, the violation witness does not allow the use
of state invariants. Thus, its semantics does neither allow to
encode that a path does not reach a node from Prop (i.e., is
safe) or is infeasible or some justification of this in the form
of state invariants. Hence, (R3), (R4), and (R5) from Sec. 4.1
are not fulfilled.

4.4 Correctness witness

Acorrectness witness [10] is used to encode that a program is
safe (no node from Prop is reachable). It can be represented
as protocol automaton ACW = (Q, �, δ, q0, Q), where all
states are final states and each edge is labeled with trivial
assumptions: ∀(q, (G, ψ), q ′) ∈ δ : ψ = true. States may
contain a state invariant that justifies why the program is cor-
rect. Semantically, paths covered by ACW do not contain a
property violation. An example for a correctness witness rep-
resented as condition automaton for the CFA fromFig. 3with
Prop = {�8} is depicted in Fig. 5, where ∗ denotes any oper-
ation from Ops As �8 is unreachable, a correctness witness
can be generated. In Fig. 5, the invariant x > 5 is associated
with the state q6. As the condition c |
 x > 5 holds for
all states 〈c, �〉 on a feasible path that is covered by ACW

and contains 〈c, �6〉, x > 5 is in fact a justification for the
unreachability of �8.

Correctness witnesses do not allow to specify the reach-
ability of nodes from Prop nor to encode partial results.
Therefore, encoding paths to nodes from Prop as well as
marking that only certain paths of the program (and not the
whole program) are safe is impossible. Hence, (R1) and (R2)
from Sec. 4.1 are not fulfilled.

4.5 Condition automaton

A condition automaton [18] states which semantic paths
of the program are already successfully verified and under
which condition. It can be represented as a protocol automa-
ton ACA = (Q, �, δ, q0, F), where each state has only
trivial state invariants (∀(q, ϕ) ∈ Q : ϕ = true) and accept-
ing states cannot be left (∀(q f , ·, q) ∈ δ : q f ∈ F ⇒ q ∈
F). Semantically, paths covered by ACA do not contain a
property violation. In contrast to a correctness witness ACW ,
a condition automaton can contain assumptions, allowing to
specify the unreachability under that assumption. In Fig. 6,
we depict a condition automaton ACA for program P with
Prop = {�4}, where ∗ again denotes any operation from
Ops. The partial result, e.g., generated by a simple reacha-
bility analysis, covers all paths containing �5 andmarks them
as safe (under the trivial assumption true). Note that ACA

correctly encodes the information that a part of the program
satisfies the property, even though the program contains a
property violation (c.f. Figure4).

Although condition automata can mark certain regions as
safe, paths (potentially) leading to a node from Prop cannot
be encoded. In addition, condition automata do not allow
adding state invariants. Hence, (R2) and (R5) from Sec. 4.1
are not fulfilled.

4.6 Abstract reachability graph

An abstract reachability graph [14] represents the abstract
state space containing the analysis results computed as a
graph. It is used within different tools, e.g., CPAchecker

[21]. As the ARG can be generated by any analysis, not
necessarily using predicates for the abstraction, it cannot
be formalized as a protocol automaton. We define an ARG
R = (N , succ, root, F, prec), with a set of abstract states
N , a successor relation succ ⊆ N ×G × N , the initial node
root ∈ N , a set of frontier nodes F ⊆ N that need to be
explored and a precision prec that describes the abstraction
level of each state.

An example of an (intermediate) ARG generated by an
interval analysis [37] and a location analysis [13] is depicted
in Fig. 7. Each abstract state comprises a unique name, an
interval for the variable x , and a location from the CFA.
Frontier states are marked in gray, thus the abstract state q6
is not fully explored. As the node q5 is explored and has only
a single successor q6, the ARG also contains the information
that �7 is unreachable, as no abstract state contains �7.

In general, the ARG can be used to represent all desired
information that should be exchanged. Due to the analysis-
dependent information, ARG states generated by different
analyses (e.g., by interval analysis, live variable analysis or
predicate abstraction) may however have different shapes,

123



Exchanging information in cooperative software validation

Fig. 4 Violation Witness AVW with Prop={�4} for P

Fig. 5 Correctness Witness ACW with Prop={�8} for program P

Fig. 6 Condition Automaton ACA with Prop={�4} for program P

which makes an exchange of ARGs between different anal-
yses in a general setting impossible.

Summary. In summary, none of the existing artifacts is able
to encode all desired information and is usable independent
of the employed toolswhilemaintainingone semantics.Next,
we introduce a new format that overcomes these limitations.

5 Validation artifact GIA

In this work, we focus on two different validation tasks on
programs, verification, and test case generation, performed
by over- and under-approximating analyses. For verification,
the goal is to show the non-reachability of certain error loca-

Fig. 7 ARG generated by an interval analysis with Prop = {�8} for
program P. Frontier states are marked in gray

tions. To this end, we fix a safety property S=(�, ω) as a pair
of location � ∈ Loc and condition ω ∈ BExpr which has to
hold at �. In practice, this is encoded in the CFA using two

edges (� −¬ω−→ �e −error();−−−−→ �e′). Note that there can be multi-
ple safety properties for a program. For test case generation,
the goal is to find paths from �0 reaching all locations from
a set Lcover , containing, e.g., each branch or statement in the
program (branch-, statement-coverage) or certain function
calls, especially error. To specify these paths, a sequence
of return values (called test suite) for the calls to random
suffices (as random models inputs to programs).

For cooperation, we prefer a uniform way of describing
these tasks which we get by introducing the notion of target
nodes, denoted by L , L ⊆ Loc. A target node is a node
that either has a single outgoing edge labeled error (for
verification) or is in Lcover (for test case generation). We can
now reformulate the two tasks: the goal of verification is to
show that no target node is reachable, the goal of test case
generation is to find a test suite such that all target nodes are
reached. In Fig. 3, the target nodes for test case generation
are L = {�3, �5, �7, �9}.
Our overall objective is next to define an artifact with
one semantics that is valid for most type of exchanged
information. In general, UA (under-approximating) and OA
(over-approximating) tools either aim at showing that target
nodes are reachable (for example a call to error or a branch
that needs to be covered) or that (a part of) the program does
not reach any target node (i.e., program is safe). The over-
all goal is achieved when for each target node either a path
reaching it is found or it is proven unreachable.

SummarizingSec. 4.1, the information exchangedbetween
UA and OA tools thus needs to be about (1) feasible paths
definitely leading to a target node (R1), (2) paths definitely
not leading to a target node (either as they do not reach one
or are infeasible, (R3) and (R4), and (3) candidate paths
potentially leading to target nodes and hence interesting to
consider for the analysis, but where the definite result about
it is unknown so far (R2). The latter information is used in

123



J. Haltermann, H. Wehrheim

two cases:When anUA tool has not yet covered a path, either
due to resource/time limitations or because it is infeasible,
and when an OA tool has discovered a path to a target node,
which might be feasible. In addition, we need the artifact to
be able to pass helpful information about invariants of pro-
gram locations or constraints about program transitions (R5).
All information needs to be encoded while maintaining one
fixed, context-independent semantics (R6).

So far, none of the existing artifacts discussed in Sec. 4
is able to encode all this information while maintaining one
semantics for the automaton. Inspired by the idea of three-
valued logics (e.g., for three-valuedmodel checking [29]),we
extend the condition automata of [18] by introducing three
different, disjoint sets of accepting states, one for each type
of exchanged information.

Definition 2 A generalized information exchange automa-
ton for over- and under-approximative analysis (GIA) A =
(Q, �, δ, q0, Fut, Frt, Fcand) consists of

• a finite set Q ⊆ � × BExpr of states (each being a pair
of a name of some set � and a Boolean condition) and
an initial state (q0, true) ∈ Q,

• an alphabet � ⊆ 2G × BExpr,
• a transition relation δ ⊆ Q × � × Q, and
• three pairwise disjoint sets of accepting states: Fut (for
unreachable targets), Frt (for reachable targets) and Fcand
(for candidates).

Intuitively, a GIA is an extension of a condition automaton
(and thus of a protocol automaton from Def. 1) that has three
different sets of accepting states and allows to specify state
invariants.

We let A denote the set of all GIAs. When drawing
automata, we use ∗ to denote an edge that matches any oper-
ation from Ops. We additionally require for each GIA, that
(1) each state in the sets of accepting states Fut and Frt has
no transitions to states not in Fut (resp. Frt) and (2) each
accepting state from Fcand has at least a transition to itself.2

More formally, we require that:

1. ∀qut ∈Fut : ¬∃q∈Q : (qut, op, q)∈δ ∧ q /∈Fut ,
2. ∀qrt ∈Frt : ¬∃q∈Q : (qrt, op, q)∈δ ∧ q /∈Frt ,
3. ∀qcand ∈Fcand : (qcand , ∗, qcand)∈δ.

Figure8 depicts an example of a GIA for the program of
Fig. 2 with target nodes L={�3,�5,�7,�9}, where Frt ={q3},
Fut ={q7} and Fcand ={q5, q9}.

To fulfill the requirement (R6) from Sec. 4.1, we need to
define a context independent semantics. Thus, the three sets

2 This property is useful to have a single path π covering several nodes
from Fcand (e.g., for branch coverage).

Fig. 8 AGIA generated during cooperative test case generation for the
example program of Fig. 2 with states of Fut marked green, of Frt blue
and of Fcand yellow. We elide state invariants (all true) and depict for
transitions only the operation and non-true conditions

of accepting states are employed to describe three different
languages of aGIA: the set of paths leading to (1) Fut , (2) Frt ,
and (3) Fcand . We first define what it means that an automa-
ton covers a path, which is similar to the covering relation
of condition automata and thus protocol automata. Covered
semantic paths are used to establish a connection between
information encoded within the GIA and the program repre-
sented as CFA.

Definition 3 A GIA A = (Q, �, δ, q0, Fut, Frt, Fcand) cov-
ers a path π = 〈c0, �0〉 −g1−→ . . . −gn−→ 〈cn, �n〉 if there is

a sequence ρ = (q0, ψ0) −(G1,ϕ1)−−−−→ . . . −(Gk ,ϕk )−−−−→ (qk, ψk),

0 ≤ k ≤ n, with (qi−1, ψi−1) −(Gi ,ϕi )−−−−→ (qi , ψi ) ∈ � (called
run), such that

1. qk ∈ Fut ∪ Frt ∪ Fcand ,
2. ∀i, 1 ≤ i ≤ k : gi ∈ Gi ,
3. ∀i, 1 ≤ i ≤ k : ci |
 ϕi ,
4. ∀i, 0 ≤ i ≤ k : ci |
 ψi .

We say that A X -covers π , X ∈ {ut, r t, cand}, when qk ∈
FX .

In contrast to protocol automata, we allow that the run ρ has
fewer states than the path π , as each state from Fut ∪ Frt ∪
Fcand has a transition to itself. Depending on the parameter
value for X -cover, we define three sets of paths (languages)
of a GIA A: Put(A),Prt(A) and Pcand(A). These three sets
are then used to establish the connection between a GIA A
and a CFA C : If, e.g., a path π ∈P(C) reaches a target node
� and π ∈ Prt(A), � is denoted reachable by A. The GIA
depicted in Fig. 8 thus contains the information that �3 is

123



Exchanging information in cooperative software validation

reachable when the condition x = 0 holds, �7 is unreachable
and that �5 and �9 are candidates for being reached when the
condition x = 5 holds.

With these definitions at hand, we can formally define the
correctness of the analysis information in a GIA. Thereby,
we are able to later on reason about the correctness of com-
binations of tools in a cooperative setting.

Definition 4 Let A be a GIA, C a CFA and L ⊆ Loc a
set of target nodes. A is said to be correct wrt. C and L if
Put(A) ⊆ {π ∈ P(C) | π is infeasible or π is feasible and
reaches no � ∈ L} and Prt(A) ⊆ {π ∈ P(C) | π is feasible
and reaches some � ∈ L}.
Correctness thus means the automaton correctly (accord-
ing to the program) marks paths as infeasible, as reaching
no target or reaching some target nodes. Similarly, we can
define the soundness of an OA or UA analysis, assuming that
the target nodes L are encoded within the program C . The
soundness is also needed to reason about the correctness of
combinations of tools in a cooperative setting.

Definition 5 Let tool be an OA or UA analysis producing a
GIA as output, i.e., we assume the tool to encode a mapping
tool : C × A → A.

If tool is an OA analysis, it is sound whenever for all
A, A′ ∈ A, C ∈ C with tool(A,C) = A′ we have

• Put(A′) ⊇ Put(A) and Prt(A′) = Prt(A), and
• ∀π ∈ Put(A′)\Put(A): π is an infeasible path of C or is

feasible but reaches no � ∈ L .

If tool is an UA analysis, it is sound whenever for all
A, A′ ∈ A, C ∈ C with tool(A,C) = A′ we have

• Prt(A′) ⊇ Prt(A) and Put(A′) = Put(A), and
• ∀π ∈ Prt(A′)\Prt(A): π is a feasible path of C reaching
some � ∈ L .

Consequently, a sound tool always generates correct GIAs
when started with a correct GIA.

Finally, we can define when verification or test case gen-
eration is completed, namely, when a correct GIA A is
generated for a CFAC = (Loc, l0,G) such that for all target
nodes t there exists some π ∈ Prt(A) ∪ Put(A) such that π

reaches t (all target nodes covered or unreachable).

6 Using GIAs in cooperative validation

The basic idea of cooperation is to store analysis results com-
puted by one tool in an artifact and let another tool start
its work using this additional information. We next briefly
summarize the existing approaches of cooperative validation

Fig. 9 Cooperative Test Case Generation using GIA as exchange for-
mats

presented in Sec. 3 and explain how they could make use of
GIAs. Note that not all forms of cooperation make use of OA
and UA components, some may combine only OA or only
UA tools. In these cases, we are still able to use GIAs as an
exchange format within the cooperation.

Cooperative Test Case Generation. The goal of test case
generation is the computation of a test suite leading to paths
covering all target nodes. This can be implemented as a coop-
eration of an UA analysis Tester (e.g., concolic execution)
with an OA analysis Verifier (e.g., bounded model checking)
as depicted in Fig. 9. Tester is responsible for generating
the test suite and Verifier for identifying unreachable target
nodes. Hence, Tester reports in a GIA within Prt the set of
already found paths to targets, where the concrete variable
values used for following this path are added as assump-
tions, and in Pcand the set of not yet covered target paths;
Verifier tries to show infeasibility of paths in Pcand and if it
succeeds, moves these into Put . Next, Tester continues on
the remaining targets, and this cycle continues until all target
nodes are covered by the test suite. In addition, Verifiermight
add assumptions on program transitions to guide Tester to
uncovered targets.

This formof analysis has been proposed byDaca et al. [42]
as a conceptual integration using an ARG for information
exchange and can be realized using GIA in a cooperative
setting. There exist other cooperative approaches for test case
generation, namely CoVeriTest [16, 65, 66] and conditional
testing [7]. In contrast to the approach depicted in Fig. 9,
conditional testing runs two different UA approaches either
cyclic or in a sequence. Although it is strictly speaking not a
combination of OA and UA approaches, we can also realize
the cooperation using GIA as an exchange format following
the same idea and encoding all found test cases within Prt .
In CoVeriTest, two OA analyses are combined for test case
generation, each of them reporting the candidate test cases
within Pcand and explored paths in Put . Each of them is
equipped with a UA tool that validates all candidates and
stores them within Prt .

123



J. Haltermann, H. Wehrheim

Fig. 10 Component-based CEGAR using GIA as exchange formats

Cooperative Verification Using CEGAR.
Thegoal of software verification is to show that none of the

target nodes are reachable. CEGAR is a scheme that is com-
monly used in software verification. In [24], the scheme has
been presented in a decomposed version applicable for coop-
erative verification, called CC- Wit. Therein, an abstract
model explorer uses a given precision in the form of predi-
cates to explore the state space searching for a feasible path
to a target node. If no such path is detected, the program is
safe. Otherwise, a potential counterexample is given to a fea-
sibility checker checking if the counterexample is spurious.
If a real counterexample is found, the verification stops with
the outcome "not safe", else a precision refiner is started to
refine the abstraction by generating new predicates. In [24],
violation and correctness witnesses are used for exchanging
the information. A unification of the information exchanged
within CEGAR using GIA is depicted in Fig. 10 and called
CC- Gia. The Abstract Model Explorer is an OA compo-
nent building an abstraction of the state space of the program
while it reports the candidates for counterexamples within
Pcand and may also mark explored safe paths within Put .
The Feasibility Checker is an UA component that inspects
the candidates for counterexamples and moves them to Prt

when it can show them to be real. Otherwise, the path is
marked as a candidate for being infeasible by the Feasibility
Checker and given to the Precision Refiner, the second OA
component within CC- Gia. Its task is to find a set of pred-
icates showing the infeasibility of the spurious path. When
Precision Refiner computed the new predicates, the path is
moved to Put , where the predicates are given as state invari-
ants for the path.
A similar combination of components appears in [5, 77] in
a non-cooperative form, where precision refiner and abstract
model explorer are a single component. Nevertheless, one
could realize these concepts in a cooperative setting as
described above.

Fig. 11 Component based CEGAR using GIA as exchange formats

Cooperative Verification via Conditional Model Check-
ing.

In contrast to the approaches discussed earlier, the concept
of conditional model checking [15, 18] foresees a sequential
combination of multiple conditional model checkers, where
each of them is an OA tool. Information is exchanged using
condition automata. Although the original combination con-
sists of OA tools only, we can realize CMC using GIA, as
depicted in Fig. 11. Each conditional verifier reports the par-
tial verification result within Put using conditions. The next
one continuesworking on the remaining target nodes. In [41],
the second conditional verifier is replaced by a testing tool,
yielding a cooperation between OA and UA tools.

Cooperation on Invariant Generation. In CoVEGI [55], an
OA analysis (the Main Verifier) is supported by a Helper
Invariant Generator, as depicted in Fig. 12. The task of the
helper invariant generator is to compute loop invariants
for specific locations. As a loop invariant is an over-
approximation of the concrete loop executions, the helper
invariant generator is also an OA component. The Main
Verifier generates a GIA, where it reports Pcand all paths
from the program entry via the loop, for which the invariant
is requested. Thereby, these paths are marked as a candidate
for leading to a target node. The helper invariant generator
is now asked to compute predicates, more precisely a loop
invariant, showing that the paths are in fact infeasible. These
invariants are encoded as state invariants for the head of the
loop. By encoding the task of invariant generation in this
way, we see that a Helper Invariant Generator solves the
same task as a Precision Refiner in CEGAR.

Using GIAs in other forms of cooperation. For using GIAs
to either decompose an existing conceptual integration or to
build a novel form of cooperation, a component-wise proce-
dure is advisable. First, each component needs to be classified
either being OA or UA. In general, each component within
the cooperation solves a certain task, e.g., proving that cer-
tain paths are infeasible, finding a concrete execution or a
concrete path to a specific location, or generating a new
abstraction in the form of predicates for a set of paths. For
using GIAs as an exchange format between the components,
(1) the tasks that should be solved need to be encodedwithin a
GIAwith respect to reachability and (2) the computed answer
has to be stored within the GIA. For the former, one should
use a set of paths within Pcand , either by using all target

123



Exchanging information in cooperative software validation

Fig. 12 Component based CEGAR using GIA as exchange formats

states or only a specific one, if the component should focus
on a specific path while completing the task. For the latter,
the component can either move (some paths) to Put , respec-
tively, Prt , depending on whether it is OA or UA, or it does
not change the paths and only adds additional information in
form of path constraints or state invariants to it.

7 GIA and off-the-shelf tools

The scenarios sketched in Sec. 6 assume that all tools
potentially employed understand GIAs. This is, however (or
rather, of course) not the case. To still enable cooperation
of tools, in particular, while still using the existing tools in
a black box manner, we need two more operators on GIAs:
(1) a way of encoding the information in the artifact into
the only form of input accepted by the majority of tools,
i.e., programs, and (2) a way of combining several partial
results about programs as given by GIAs into one GIA to not
lose any information.

We introduce the two components Reducer for the former
case and a Combiner for the latter case that perform these
operations. We depict in Fig. 13 a combination of an OA tool
and UA tool cooperation on the task of cooperative test case
generation. In the scenario, we assume that we want to use
an off-the-shelf tester that is UA and a Verifier, as depicted
in Fig. 9. When the Verifier generates a GIA containing the
information that certain paths of the program are unreach-
able, the Reducer,3 removes these paths from the program
and generates a reduced program. This program is given to
the Off-the-shelf Tester generating test cases for the reduced
program. To be able to feed this information back into a
GIA, we employ a Combiner to combine the information
computed by the off-the-shelf tool with the GIA generated
by the Verifier. The resulting GIA is then given to the Verifier
and the cycle starts anew.

7.1 Reducer

For the first operation on GIAs, we use the concept of reduc-
ers as introduced in [18, 41]. A reducer reduces a program to
a certain part by removing some paths, and thereby allowing
off-the-shelf tools to use the information computed by oth-

3 Here, we use an ut-Reducer which is explained later on.

Algorithm 1 X -Reducer
Input: CFA C = (Loc, �0,G)

GIA A = (Q, �, δ, (q0, ψ0), Fut, Frt, Fcand )
Output: CFA Cr = (Locr , �r0,Gr )

1: // Call existing reducer
2: (Locr , �r0,Gr )

:= Reducer(C, (Q, �, δ, (q0, ψ0), FX ))
3: if Fcand �= ∅ then:
4: keep := ∅
5: for each �=(li , (qi , ψi ))∈ Locr

s.t. (qi , ψi )∈Fcand do
6: add all predecessors and successors

of � in Locr to keep
7: end for
8: for each � ∈ Locr do
9: if � /∈ keep then
10: Remove � from Locr ;
11: Remove all (�, ·, ·), (·, ·, �) from Gr
12: end if
13: end for
14: end if
15: return (Locr , �r0,Gr )

ers. We define two different reducers, one removing paths
that are ut-covered by the GIA and one removing them that
are rt-covered.

Definition 6 An X -reducer for X ∈ {ut, r t} is a mapping
redX : C × A → C satisfying

∀C ∈ C, A ∈ A : P ⊆ P(redX (C, A)) ⊆ P(C)

where P =
{
P(C)\PX (A) if Fcand = ∅ in A

Pcand(A)\PX (A) otherwise.

A reducer for X = ut in the case that Fcand = ∅ is already
existing [18]. In Alg. 1 we provide a parameterized reducer
for both values of X , building on the existing one.4 It first calls
the existing reducer and obtains a program reduced wrt. X .
As Pcand contains the set of interesting paths whereon the
succeeding tool should focus, X -Reducer minimizes the
computed reduced CFA wrt. these paths (in lines 3 to 13).
We get the following result:

Theorem 1 Algorithm 1 is an X-reducer according to Defi-
nition 6.

Proof We first show that Algorithm 1 works correctly if
Fcand = ∅ holds: The algorithm Reducer called in line
2 takes an automaton with one set of final states F as input.
It has been shown that Reducer retains at least all paths
that are not covered by the given automaton w.r.t. F and that
the program generated does not contain any path that is not

4 Algorithm 1 assumes for representation purposes that the GIA does
not contain state invariants. A full construction, covering this aspect is
given in Appendix A.

123



J. Haltermann, H. Wehrheim

Fig. 13 Cooperative test case
generation using ut-Reducer
and Combiner

present in the original program [18]. We call Reducerwith
the GIA A only using FX , thus it reduces the program such
that at most all paths that are X−covered by the GIA are
removed. Therefore, Reducer and thus Algorithm 1 work
correctly if Fcand = ∅. In case that Fcand �= ∅, the reducer
has to generate a program that contains at least all paths
cand-covered by A. In lines 3-13 we build a set containing
a superset of these paths, and remove the other paths, i.e.,
only these that are not cand-covered by A. Thus, Algorithm
1 also works in this case concluding the proof. ��

7.2 Combiner

When several tools compute analysis information, we have
to make sure that all this information is preserved. To this
end, we introduce a combiner for the combination of GIAs.
The combiner’s goal is to keep all information on Put and
Prt from both GIAs.

Definition 7 A combiner is a partial mapping comb : A ×
A → Awhich is defined on consistentGIAs A1 and A2 with
Put(A1) ∩ Prt(A2) = ∅ = Prt(A1) ∩ Put(A2) such that

∀A1, A2 ∈ A :
Put(comb(A1, A2)) = Put(A1) ∪ Put(A2)

∧ Prt(comb(A1, A2)) = Prt(A1) ∪ Prt(A2) .

An algorithm for a combiner is given in Alg. 2, for presen-
tation purposes assuming that each edge in δ1, δ2 contains
only a single transition. The intuitive idea of the Combiner
is to build the union of the two GIAs and consider newly
computed information: For example, if there is a path π ,
π ∈ Pcand(A1) and π ∈ Put(A2), Combiner ensures that
π ∈ Put(A3) holds for the combined GIA A3. To this end,
Combiner builds the new GIA A3 by searching for com-
mon sub-paths in the input-GIAs A1 and A2. A state in A3

is a tuple (a1, a2) of two states, a1 ∈ Q1 and a2 ∈ Q2, both
reachable on the same path. If the paths diverge, the state is
split, where the placeholders ’◦’ and ’•’ are used to replace
either a1 or a2. We use, e.g., ’◦’ if the transitions from a1 and
from a2 contain different CFA edges and ’•’ if the successor

Algorithm 2 Combiner

Input: GIA A1 = (Q1, �, δ1, q0, F1
ut, F

1
rt, F

1
cand )

GIA A2 = (Q2, �, δ2, s0, F2
ut, F

2
rt, F

2
cand )

Output: GIA A = (Q, �, δ, p0, Fut, Frt, Fcand )
1: Q := {((q0, s0), true)}, p0 := ((q0, s0), true), δ := ∅, wl :=

{((q0, s0), true)}
2: while wl �= ∅ do
3: select and remove ((qi , si ), ψi ) from wl
4: for each

t1= ((qi , ψi ) −gi ,ϕi−−→ (qi+1, ψi+1)) ∈ δ1 do
5: if �((si , ψi )−g j ,ϕ j−−−→ (si+1, ψ

′
i+1))∈δ2 :gi =g j

∨si ∈{◦, •} then
6: if si ∈{◦,•} then si+1=si else si+1=◦
7: Q := Q ∪ {(qi+1, si+1), ψi+1},
8: δ := δ ∪ {((qi , si ), ψi )

−gi ,ϕi−−→ ((qi+1, si+1), ψi+1)}
9: if qi+1 /∈ F1

rt ∪ F1
ut then

10: wl := wl ∪{((qi+1, si+1), ψi+1)}
11: end if
12: else
13: for each

t2=((si , ψi )−g jϕ j−−→ (si+1, ψ
′
i+1))∈δ2 :

gi =g j do
14: wl, Q, δ :=Merge(wl,Q, δ, t1, t2)
15: end for
16: end if
17: end for
18: for each ((si , ψi )−g j ,ϕ j−−−→ (si+1, ψi+1)∈δ2)do
19: analogously to line 4-12
20: end for
21: end while
22: Frt = {(qi , si ) ∈ Q | qi ∈ F1

rt ∨ si ∈ F2
rt}

23: Fut = {(qi , si ) ∈ Q | qi ∈ F1
ut ∨ si ∈ F2

ut}
24: Fcand = {(qi , si ) ∈ Q

|qi ∈ F1
cand ∪ {•} ∧ si ∈ F2

cand ∪ {•}}
25: if Frt ∩ Fut �= ∅ then return ERROR; end if
26: return A = (Q, �, δ, p0, Fut, Frt, Fcand )
where ◦,• are replacements for a state used during splitting and are not
processed.

states have different state invariants. For combination, Alg.
2 applies the method Merge, given in Appendix B.

An application of Alg. 2 for the program from Fig. 3 is
depicted in Fig. 14. We use the two GIAs A1 (in Fig. 14a)
and A2 (in Fig. 14b) as inputs, the resulting GIA A3 is shown
in Fig. 14c, where we elided paths that are contained twice to
increase readability. A1 is generated during test case genera-
tion by an UA tool, containing the information that the target

123



Exchanging information in cooperative software validation

Fig. 14 A GIA generated during cooperative test case generation, for example, the program of Fig. 2 with states of Fut marked green, of Frt blue
and of Fcand yellow. We elide state invariants (all true) and depict for transitions only the operation and non-true conditions. We define op:=’x =
random();’

node �3 is reachable when x = 0 holds. A2 is produced by
an OA tool, that marks the target node �7 as unreachable. As
both, A1 and A2, contain a path to �7, but q7 ∈ Fcand in A1

and s7 ∈ Fut in A2, the combiner generated a successor using
’•’ instead of q7 for A3 to maintain the information that �7
is unreachable. In contrast, the successor of the state (q ′

6,s6)
is (q ′

7, ◦), as q6 has a successor q7 but s6 does not. Using ’◦’
instead of ’•’ ensures that (q ′

7, ◦) is not in Fcand in A3 (cf.
line 24 in Alg. 2), because A2 contains the information that
this node is unreachable.

Additionally,Combinermaintains more precise informa-
tion on paths from Pcand : If a path π is present inPcand(A1)

and Pcand(A2), once with and once without condition, the
condition is also present on the path in the combined GIA.
In our example, both A1 and A2 contain a path covering �5.
A1 has a path (q1, q ′

2, . . .) with the condition true and A2 a
path (s1, s2, . . .) labeled with x = 5.

In the combined GIA A3, the condition x = 5, and thus
the more precise information, is maintained. The resulting
GIA is not guaranteed to be minimal, meaning that it may
contain some paths multiple times and contains paths that do
not lead to an accepting state. For example, A3 contains two
paths both reaching �5 with the same condition.

Theorem 2 Algorithm 2 is a combiner according to Defini-
tion 7.

Proof Intuitively, we have to show that for the combination
A of two GIAs A1 and A2 each path rt-covered by either A1

or A2 is also rt-covered by A and that the reverse holds (and
analogously, that both properties hold for ut-covered paths).
We therefore inductively construct an accepting run of A for
a path π that is rt-covered by either A1 or A2 and vice versa.
The full formal proof can be found in Appendix C. ��

7.3 Using reducer and combiner

Finally, we can state that connecting tools via reducers and
combiners do not lose any of the already computed analy-
sis results, as depicted in Fig. 13. This property guarantees
that any arbitrary combination of sound OA and UA tools
achieves the same progress, as the employed tools.

Theorem 3 Let A∈A be a correct GIA, C ∈C a CFA, tool a
sound UA or OA analysis and X ∈{ut, r t}. Then, for a GIA
A′ = comb(tool(redX (A,C)), A) we get

• Prt(A′) = Prt(A) ∧ Put(A′) ⊇ Put(A) if tool is an OA,
and

• Put(A′) = Put(A) ∧ Prt(A′) ⊇ Prt(A) if tool is an UA.

Proof As sound OA and UA tools increase the set of ut-
covered resp. rt-covered paths and the reducer retains all this
information, the correctness follows directly from Theorem
2 and Definition 5. ��

Let us revisit Fig. 13 used to exemplify the construction
of combiner and reducer in the setting of cooperative test
case generation on a more concrete level. We use an OA
tool called Verifier working on GIAs as well as ut-Reducer
and Combiner for an Off-the-shelf Tester, that does not
understand GIAs. When started on the program from Fig. 3,
ut-Reducer is called with the initial, empty GIA and gener-
ates the reduced program, which is the same as the original
one. Next, Off-the-shelf Tester finds a test suite covering �3
and generates the GIA A1 depicted in Fig. 14a, that is merged
with the empty GIA, not changing A1. The original program
and A1 are given to Verifier which (1) computes that �7 is
unreachable and (2) computes a path potentially leading to

123



J. Haltermann, H. Wehrheim

�5 and �9 under the condition x = 5. The Verifier computes
the GIA A3, depicted in Fig. 14c, which also contains all
information on A1. As not all target nodes are covered by
Frt and Fut in A3, a second iteration starts: At first, the ut-
Reducer computes the reduced program containing only the
else-branch starting in line 5. Off-the-shelf Tester confirms
that �5 and �9 are reachable. This information, encoded as
GIA, is finally combined with A3. Now, all target nodes are
either covered or identified as unreachable, and hence, the
computation stops.

8 Implementation

To demonstrate the feasibility of GIAs as an exchange for-
mat and to show that the developed theoretical concepts
work in practice, we exemplarily realized two conceptually
different forms of cooperation: Cooperative test case gen-
eration as described in Sec. 6 and depicted in Fig. 13 and
component-basedCEGAR (C- Cegar [24]) using onlyGIAs
as exchange format, as explained in Sec. 6 and depicted in
Fig. 10 and Fig. 13.

We implemented GIAs based on condition automata
and realized our instances of cooperative test case genera-
tion and component-based CEGAR using CoVeriTeam [19].
CoVeriTeam is a framework that provides an easy way to
build different forms of cooperative software verification. It
provides a language to describe the communication between
different components and their inputs and outputs. The lan-
guage allows for combining different actors in sequence,
in parallel, or in a cyclic manor. We integrate the GIA as
an exchange format in CoVeriTeam. In our setting, we use
CoVeriTeam for orchestration as well as for monitoring of
the progress of the composition, i.e., checking whether all
target nodes are already covered.

Additionally, we built modules within CPAchecker [21]
that allow processing a GIA as input as well as generating
a GIA as output. Thereby, we can reuse existing analyses
of CPAchecker for the evaluation. We built ut-reducer and
rt-reducer described in Alg. 3 as well as the combiner from
Alg. 2 within CPAchecker, forming a standalone-executable
component, also fully integrated in CoVeriTeam.

Component-based CEGAR. The original implementation
of component-based CEGAR(C- Cegar) (here called CC-

Wit) contains three components, a model explorer, a feasi-
bility checker, and a precision refiner, which are executed in a
loop and exchange correctness and violation witnesses. Our
re-implementation CC- Gia, also contains these three com-
ponents, as depicted in Fig. 10. Note that CEGAR assumes
that the feasibility checker is precise in the sense that it reports
a counterexample as being spurious, only if all paths cov-
ered by the counterexample have been checked. Otherwise,

the same, real counterexample may be discovered multiple
times, causing an infinite refinement loop. This situation is
prevented byusing a feasibility checker to exhaustively check
all paths in the potential counterexample.

For CC- Gia, we can use the existing realizations of
model explorer, feasibility checker and precision refiner in
CPAchecker, as we updated the CPAchecker such that it can
process GIAs as input and generate them as output. As the
precision refiner in C- Cegar focuses on refining the latest
infeasible counterexample generated by the model explorer,
we additionally use a combiner to ensure that the precision
increments computed in previous iterations are maintained.
Note that exchange formats like violation and correctness
witnesses can be translated into GIAs, allowing to use any
off-the-shelf tool that produces these artifacts as outputs.

Cooperative test case generation. To realize cooperative
test case generation using GIA as an exchange format, we
follow the tooling used by Daca et al. [42]: We employ
the concolic tester Crest [31] as UA tool and CPAchecker’s
predicate analysis using CEGAR as OA analysis. Crest is a
concolic tester, meaning that inputs are not only generated
randomly or using a heuristic, but paths are encoded as for-
mulae using symbolic inputs and solved by an SMT-solver,
in this case Yices [45]. Hence, Crestwill eventually generate
test inputs covering all reachable branches. As Crest is a test-
ing tool under-approximating the state space, it is not able
to identify paths of the program as unreachable. We there-
fore combine it with a predicate analysis from CPAchecker.
The predicate analysis over-approximates the reachable state
space and can thus mark target nodes as unreachable. Due
to the precisely defined and uniformly applicable semantics
of the GIA, we reuse the modules in CPAchecker that we
built for CC- Gia. We employed parts of TBF [22] to let
Crest generate test inputs in the TestComp test case format5

and generated a GIA for them. We additionally optimized
the resulting GIA by removing duplicate paths, i.e., paths
traversing the same nodes but are labeled with different
assumptions. Within each iteration, Crest is started and gen-
erates at most 100 test inputs, before the predicate analysis is
called to identify unreachable target nodes. The computation
is complete, if all target nodes are ut-covered or rt-covered
by the generated GIA. In the last step, we extract a test suite
from that GIA by traversing its path leading to Frt and col-
lecting all assumptions on the return values from random.
The resulting cooperative test case generation approach is
called CoTest.

We additionally used Crest standalone for comparison
with CoTest. In the first step, Crest is used in the default
configuration, generating at most 100000 test cases in its

5 https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp22/
doc/Format.md

123

https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp22/doc/Format.md
https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp22/doc/Format.md


Exchanging information in cooperative software validation

internal format. Afterward, TBF is used to remove duplicate
tests and transform the test cases into a test suite in the Test-

Comp format, that is needed to measure the coverage of the
generated test suite. To ensure that the test suite is generated,
we stopped Crest after 80% of the available time and start
the transformation.

9 Evaluation

The goal of the evaluation is twofold: First, we exemplarily
show that GIAs are feasible as an exchange format and can
be used in two different usage contexts, one for verification
and one for test case generation. Second, we demonstrate
the advantages of the clearly defined semantics of GIAs,
allowing to precisely encode information for the exchange
between analyses. As the goal for verification is to show the
(un)-reachability of a certain error location, each program
usually has a single target node. Hence, the verification task
is completed if the target node is either shown to be unreach-
able or a concrete path leading to the target node is found.
In contrast, for test case generation, most tasks contain mul-
tiple target nodes, some of them reachable and others not.
Therefore, we evaluate whether the conceptual advantages
of encoding information on reachable and unreachable target
nodes within a single artifact can be witnessed in cooperate
test case generation and lead to the computation of more pre-
cise results or a faster computation. The implementation and
evaluation of this use case is an extension compared to the
conference paper [56]. We therefore study the following two
research questions:

RQ1.AreGIAs feasible as exchange formats for component-
based CEGAR?

RQ 2. Can (cooperative) test case generation also benefit
from using GIAs for information exchange?

RQ 1 focuses on the usage of GIAs on a fine-grained
scale, as CEGAR is usually employed within a single tool. In
contrast, in RQ 2 we build a cooperation between two stan-
dalone, off-the-shelf tools. Note that we could also employ
the component-based CEGAR using GIA in RQ 2, but as
the performance of the tightly coupled version of C- Cegar
is currently better (cf. [24]), we decided to use the tightly
coupled one.

9.1 RQ 1: Component-based CEGAR

The goal of verification in this setting is to either find a con-
crete path leading to the target node (an alarm) or to compute
a proof that the target node is not reachable. To evaluate
the feasibility of GIAs as an exchange format, we compare
the existing implementation of C-CEGAR (CC- Wit), using
violation and correctness witnesses as exchange formats

Table 1 Comparison of the existing CC- Wit with the cooperation
using only GIA for information exchange (CC- Gia)

Result CC- Gia CC- Wit

Correct overall 2641 2819

Correct proof 2068 2100

Correct alarm 573 719

Add. solved 114 –

Incorrect 5 7

between the three components, with our re-implementation
(CC- Gia) which only makes use of GIAs for the informa-
tion exchange. For the comparison, we are interested in the
question whether the same tasks that are solved by CC- Wit

can also be solved by CC- Gia and want to know if there are
tasks that can only be solved using GIA as exchange format.
Thus, we compare the effectiveness (number of solved tasks)
of CC- Wit and CC- Gia. In addition, we want to study if
there is an effect on the execution time when encoding the
same information in a different format, i.e., now using GIA
instead of correctness and violation witnesses. Therefore, we
compare the efficiency (consumed CPU time to compute the
solution) of CC- Gia and CC- Wit.

Evaluation Setup. All experiments were run on machines
with an Intel Xeon E3-1230 v5, 3.40 GHz (8 cores), 33 GB
of memory, and Ubuntu 22.04 LTS. Each tool is limited to
use 15 GB of memory, 4 CPU cores, and 15min of CPU time
per verification run. All experiments were executed using
BenchExec [25], ensuring the resource limitations. We eval-
uated both approaches on the SV- Benchmarks, the largest
publicly available benchmark for C-programs, in the version
used for the SV- Comp’226 containing in total 8347 tasks. We
used CPAchecker in version 2.1.2,CoVeriTeam in version 0.9,
and BenchExec in version 3.11.

Evaluation Results (Effectiveness). Table 1 contains the
experimental results of CC- Gia andCC- Wit. It contains the
number of overall correct answers, the correct proofs (where
an approach correctly detects that no target node is reachable)
and correct alarms (where a feasible path to a target node is
computed). In addition, the incorrect answers are reported,
as well as the number of tasks where CC- Gia computes the
correct result, but CC- Wit does not (row add. solved).

For the total number of correctly solved tasks, we observe
that CC- Gia can solve 94% of all tasks solved by CC- Wit.
Within the 94%, the number of iterations and the computed
refinements are almost always equal. The decrease originates
mostly in the fact that CC- Gia is not able to compute a

6 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/s
vcomp22

123

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22


J. Haltermann, H. Wehrheim

Fig. 15 Program from SV- Comp, where x = 0 is not a valid invariant
at the loop head

solution in the given time limit for 259 tasks, for which CC-
Wit computes a solution within 900s.

When looking at the additionally solved tasks, we can
see the advantages of using GIAs: In 114 cases, CC- Gia
computes the correct result, whereas CC- Wit either runs in
a timeout or aborts the computation as it eventually makes
no progress and gets stuck. Both situations are caused by
the fact that not all information computed by the precision
refiner is added in the correctness witness, a situation not
happening when using GIAs. In [24], the authors argue that
this situation is caused by the fact that correctness witnesses
are not primarily designed for the exchange of a precision
increment. The semantics of the GIA allows the precision
refiner to encode the information, i.e., encode that a newly
discovered predicate holds at a certain point of the infeasible
counterexample path. Therefore, the refiner builds a GIA that
only contains the infeasible counterexample, ofwhich the last
state is in Fut , whereas the precision increment is encoded as
an assumption on that path.

To exemplify the advantages, Fig. 15 presents a program
taken from the SV- Benchmarks collection. The target node
is the call to error in line 11. Within the first iteration of
C- Cegar, the model explorer computes a potential coun-
terexample that does not enter the loop starting in line 5. The
GIA containing the potential counterexample is given to the
feasibility checker, identifying it as infeasible. Next, the pre-
cision refiner computes the interpolant y = 0. This formula
is encoded within the GIA generated by the precision refiner
(depicted in Fig. 16a) and is given to the model explorer.
Now, the second iteration starts and the model explorer com-
putes a counterexample that traverses the loop once, depicted
in simplified form in Fig. 16b. Again, the feasibility checker
rejects the counterexample as invalid and it is given to the
precision refiner. The precision refiner now computes a new

interpolant, namely x = 0, that is valid after the first loop iter-
ation, but invalid before the first loop iteration. As stated in
[24], the precision refiner inCC- Wit fails to encode this new
predicate within the correctness witness. In contrast, using
GIAd as an exchange format allows the precision refiner to
build the GIA depicted in Fig. 16c, precisely encoding the
spurious counterexample as a path leading to s5 ∈ Fut , where
the new predicate is present as an assumption at the edge to
s3 (after the first loop iteration). To not lose the informa-
tion on the interpolant computed in the first iteration, the two
GIAs from Fig. 16a and from Fig. 16c are combined into the
GIA depicted in Fig. 16d. It contains two paths: one with the
precision increment x = 0, and one with the precision incre-
ment y = 0. In the third iteration, these two predicates (and
their negation) are sufficiently precise, such that the model
explorer proves all paths leading to the target node unreach-
able.

Evaluation Results (Efficiency). Figure17 compares the
efficiency of CC- Gia and CC- Wit per task in a logarith-
mic scale. A point (x, y) contains the CPU time taken by
CC- Gia (as x) and by CC- Wit (as y) for all tasks where
both compute the correct solution or one run into a timeout
(TO). We observe that CC- Gia needs in general more time
to find a solution, as most points are below the diagonal. The
increase is in the vast majority of all cases smaller than factor
two (lower dashed line). The CPU time increases on average
by 1.4 (standard deviation is 0.4), and the median increase
is 1.3. In CC- Wit, information from correctness witnesses
are joined using a syntactic approach, which is fast and, as
it is only applied within this setting, expresses the precision
increment in a way optimized for C- Cegar. In contrast,
CC- Gia employs the Combiner, which takes the semantics
of the two GIAs that are combined into account to guarantee
that no information is lost. The resulting GIA is significantly
larger (contains more states and edges) and not optimized
for C- Cegar, which is the reason most likely causing the
increasing runtime and the number of timeouts.
The evaluation shows that GIAs are a flexible, precise,
and practically suitable exchange format, applicable for C-
Cegar. In particular, we see that the drawbacks of CC- Wit,
namely losing information on computed precision incre-
ments, canbeovercome.As adownside, the overall efficiency
slightly decreases when using GIAs, due to their size and the
fact that they are non-optimized for specific applications.

9.2 RQ 2: Cooperative test case generation

Test case generation aims at finding program inputs, such that
either a certain statement (statement coverage) or all branch-
ing points (branch coverage) are visited at least once when
executing the program with the given inputs. As we want to
evaluate the cooperation of a tester and an OA analysis tech-

123



Exchanging information in cooperative software validation

Fig. 16 Example showing the advantages of using GIA compared to correctness witness as exchange formats

1 10 100 900

CPU time for cc-Gia (s)

1

10

100

900

C
P
U
tim

e
fo
r
cc

-W
it

(s
)

TO

-

TO -

Fig. 17 Comparison of CPU time for CC- Wit and CC- Gia

nique, we focus on branch coverage, as this yields in general
several target nodes for a program. We compare the branch
coverage of the test cases generated for our cooperative test
case generation approach (called CoTest) with Crest as a
standalone tool.

Evaluation Setup. We used the same evaluation machines
as in RQ 1, but limited the time for test case generation to
5minutes.We evaluated both approaches on a small subset of
the SV- Benchmarks, in the version used for the TestComp’227

As we are interested in exemplarily showing the usefulness
of GIAs in the cooperative test case generation setting, we

7 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/t
estcomp22.

selected a subset of the tasks from the ControlFlow category
of TestComp (tasks l5-l15.2) and used the running example
of Fig. 2 (task a1) and an extended version given inAppendix
D in Fig. 18 (task a2). The selected tasks work with simple
integer variables and do not make use of arrays or pointers.
The tasks selected from the SV- Benchmarks contain an infi-
nite loop, where all variables have the same value at the start
of each iteration. Thus, the loop does not affect the reachabil-
ity of the target nodes. As our reducer implementation works
best for loop-free programs and to avoid infinite computation
for the coverage measurement, we removed the loop.

To compute the coverage of the generated test suites, we
used TestCov [23], the tool also used in the TestComp. We
use TestCov with a 30 minutes timeout, in contrast to Test-

Comp, where only a five-minute timeout is used. We used
CPAchecker in version 2.1.2, CoVeriTeam in version 0.9,
TestCov in version 3.6, and BenchExec in version 3.11.

Evaluation Results. Table 2 contains the experimental
results for Crest and our cooperative test case generation
approach CoTest. It contains the size of the test suite gen-
erated in the column #tests, the coverage achieved with each
test suite and the CPU time taken to compute the test suite
for each task.

We generally observe that both tools generate test suites
with nearly the same code coverage, especially the size of the
test suite generated by CoTest is significantly smaller than
for Crest. On average, the test suite generated byCoTest has
only 0.024% of the size of the test suite generated by Crest,
the largest difference is 0.006% and the smallest difference
is 0.038%. In other words, the test suite that is generated
by Crest within the given time limits contains on average

123

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp22
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp22


J. Haltermann, H. Wehrheim

Table 2 Results of test case
generation for CoTest and
Crest

CoTest Crest

Task #Tests Coverage (%) Time (s) #Tests Coverage (%) Time (s)

a1 2 75.0 32 33 335 75.0 237

a2 5 87.5 63 18 183 37.5 225

l5 7 84.9 50 50 447 84.9 251

l6 8 84.6 50 50 266 84.6 253

l7 19 84.4 120 50 180 84.4 256

l8 10 84.3 56 50 072 84.3 251

l9 11 84.2 55 50 036 84.2 266

l10 12 84.1 57 50 035 81.0 266

l11 13 84.1 67 50 022 84.1 265

l12 14 84.0 72 50 020 84.0 254

l13 15 84.0 76 50 019 84.0 254

l14.1 16 83.9 78 50 015 83.9 268

l14.2 – – T.O 50 015 70.1 259

l15.1 – – T.O 50 019 69.9 268

l15.2 17 83.9 81 50 019 83.9 271

Note that TestCov was not able to analyze the full test suite generated by Crest in the given time limit

4100 times more test cases than the test suite generated by
CoTest.
Another significant difference between the test suites gen-
erated by Crest and those generated by CoTest is their
size, i.e., the number of generated test cases in the suite. Each
GIA contains the information which target nodes are reached
for each test input. Hence, detecting test cases following the
same path within the CFA and thus leading to the same tar-
get nodes is easy. This allows us to reduce the number of
paths within the GIA and thereby the test suite extracted in
the end. Although Crest used within CoTest generates up
to 100 test cases per iteration, the evaluation indicates that
using GIA allows for a reduction of the test suite by at most
80% on the benchmark set used, as for test cases following
the same path within the CFA and hence covering exactly
the same target nodes only one per path is exported. We also
observe the advantage of the significantly smaller test suite,
as TestCov is not able to process the full test suite generated
by Crest within the time limit of five minutes.
For two tasks (a2, l10) CoTest can cover more branching
points than Crest. Due to the size of the test suites generated
by Crest, TestCov can only analyze around 10% of it before
reaching the given time limit, which is most likely the reason
for the lower coverage measured. For two tasks (l14.2 and
l15.1),CoTestwas not able to cover all target nodes within
the given time restrictions. As we transform the GIA into a
test suite only if all target nodes are covered, no test suite is
generated in these two cases.

When comparing the CPU time consumed to generate the
test suite, we observe that CoTest can complete the test case

generation task faster than Crest. In the median,CoTest can
finish the computation in only 28% of the time that is taken
by Crest. As GIAs allow to precisely encode information on
reachable and non reachable target nodes in a single artifact,
predicate analysis can mark all unreachable target nodes as
such and Crest can report all paths to target nodes within the
same GIA. Thereby, the computation can be stopped in case
all target nodes are either ut-covered or rt-covered. In con-
trast, Crest running standalone cannot detect that all target
nodes are covered, in case some of them are unreachable.
Thus, it continues the test case generation, until it reaches its
internal timeout of 240s.

In summary, GIAs are also suited as an exchange format
for cooperative test case generation, allowing encoding infor-
mation of reachable and unreachable target nodes within a
single artifact. Due to the precisely defined semantics, it can
be easily detected whether the task is already completed.
Thereby, cooperative test case generation also benefits from
using GIAs as an exchange format.

9.3 Threads to validity

There exist multiple concepts for cooperative software vali-
dation. We have implemented two of them and have experi-
mentally shown that GIAs are suited as an exchange format
that guarantees that no information is lost. For the other
concepts of cooperative combinations using standardized
exchange formats, namely CMC and CoVEGI, we explained
howGIAs could replace the used artifacts. Thus, the findings
from our evaluation will most likely carry over to these other

123



Exchanging information in cooperative software validation

forms of cooperation, meaning that GIAs can be applied in
different scenarios as well.

Nevertheless, there are two underlying assumptions when
using GIAs for exchanging information: First, we assume
that each tool that either takes a GIA as input or produces
a GIA works with the original C program or the reduced
program generated by the reducer. In case a tool is working
on a different representation (e.g., LLVM or Boogie), it has
to be ensured that the information generated by the tool is
mapped back to the original C-program. In such cases, one
can apply the concept ofmapper and adapter proposed in [55]
to map the information back to the level of the C program.
Second, we assume that the task solved by the cooperation
of tools can be expressed in terms of reachability and thus
the information communicated can be expressed in terms of
reachability, e.g., the (non)-reachability of certain locations
or conditions and state invariants that hold on some or all
paths to a certain location or a function. Although test case
generation andverificationof the correctness of a system8 can
be expressed in terms of reachability, there might be other
correctness criteria or properties that cannot be expressed,
meaning that GIAs might not be applicable as an exchange
format. In addition, GIAs allow to express additional infor-
mation in terms of predicates. Hence, concrete (input) values
needed for executing a specific path or information on vari-
able values gathered during analysis, e.g., interval values as
depicted in Fig. 7, need to be transformed into predicates.
For example, concrete variable values can be expressed using
assignments, and the information x ∈ [1, 4] is translated to
the formula 1 ≤ x ≤ 4. In case a combination of analyses
is exchanging analysis information that is not representable
using predicates, it is likely that the information cannot be
encoded within a GIA (or any other instance of a protocol
automaton).
Although there are two assumptions, that might limit the use
of GIAs in certain, special cases, all in all, we think that
GIAs can encode the information that is typically exchanged
between OA and UA tools.

10 Conclusion

In this article,wehaveproposedgeneral information exchange
automata as an exchange format for the cooperation of over-
and under-approximative analyses. It has a fixedwell-defined
semantics allowing its application in different scenarios. We
have furthermore defined and implemented twooperations on
GIAs, reducing a program to the (remaining) task and com-
bining results with previously computed information. These
operations allow a re-use of off-the-shelf tools. We have for-
mally shown that applying reducer and combiner maintains

8 according to the handbook of model checking [36]

all relevant computed information. The feasibility of GIAs
as exchange format has been demonstrated by applying it in
an existing cooperative verification setting (C- Cegar) and
in a test case generation setting.

For future work, we plan to implement other existing
forms of combinations of OA and UA off-the-shelf tools in a
cooperative setting usingGIAs for the information exchange,
such as for conditional model checking or k-induction. GIAs
are also well suited for being applied in a parallelized coop-
erative setting, wheremultiple tools work side-by-side on the
same task to increase the overall performance, as the com-
biner of arbitraryGIAs guarantees that no information is lost.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data Availability Our implementation is open-source and available as
part of CPAchecker and CoVeriTeam. We archived the implemen-
tation and all experimental data for reproduction at Zenodo [57].

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

A Full algorithm for the X-reducer

The full construction of X -Reducer is given inAlg. 3, extend-
ing the construction given in [18]: First, X -Reducer stops the
exploration for all paths leading to a state in Frt . Second, as
states of aGIA consists of pairs of state name and state invari-
ant, we need to ensure that a path is only removed, in case
that its state invariant is fulfilled. This is achieved by lines 8-
13, where we split the path into two sub-paths for non-trivial
state invariants, one that can be taken if the state invariant is
met and that may lead to a state in Frt , the other in case that
the state invariant does not hold, leading to the temporary
node (qt , true), for which it is guaranteed that it will never
be removed. Taking this line of argument into account, we
can conclude that X -Reducer is in fact a reducer, following
the proof structure from [18]. Again, the resulting CFA is
deterministic.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J. Haltermann, H. Wehrheim

Algorithm 3 X -Reducer (extended)
Input: CFA C = (Loc, �0,G) � original program

GIA A = (Q, �, δ, (q0, ψ0), Fut, Frt, Fcand ) � GIA
qt /∈ Q � additional state

Output: CFA Cr = (Locr , �r0,Gr ) � reduced program
1: Locr := {(�0, (q0, ψ0))}, �r0 := (�0, (q0, ψ0)),Gr := ∅
2: waitlist := Locr
3: if (q0, ψ0) ∈ Fcand then US := US ∪(q0, ψ0)

4: end if
5: while waitlist �= ∅ do
6: choose and remove (�i , (qi , ψi )) from waitlist
7: for each g = (li , op, li+1) ∈ G do
8: if (qi , ψi ) ∈ Q ∧ ∃((qi , ψi ), (Gi , true), (qi+1, ψi+1)) ∈

δ s.t . g ∈ Gi then
9: for each ((qi , ψi ), (Gi , true), (qi+1, ψi+1)) ∈ δ s.t . g ∈

Gi do
10: if ψi+1 �= true then
11: if (qi+1, ψi+1) /∈ FX ∧ (li+1, (q ′

i , ψi )) /∈ Loc then
12: waitlist := waitlist ∪(li+1, (q ′

i , ψi ))

13: end if
14: if (li+1, (qt , true)) /∈ Loc then waitlist := waitlist

∪(li+1, (qt , true)) end if
15: Locr := Locr ∪

{(li+1, (q ′
i , ψi )), (li+1, (qi+1, ψi+1), (li+1, (qt , true))}

16: Gr := Gr ∪ {((li , (qi , ψi )), op , (li+1, (q ′
i , ψi ))

)
,(

((li+1, (q ′
i , ψi )), ψi+1 , (li+1, (qi+1, ψi+1))

)
,(

((li+1, (q ′
i , ψi )), ¬ψi+1 , (li+1, (qt , true))

)}
17: else
18: if (qi+1, ψi+1) /∈ FX ) ∧ (li+1, (qi+1, ψi+1)) /∈ Loc

then
19: waitlist := waitlist ∪{(li+1, (qi+1, ψi+1))}
20: end if
21: Locr := Locr ∪ {(li+1, (qi+1, ψi+1))}
22: Gr := Gr∪{(((li , (qi , ψi )), op , ((li+1, (qi+1, ψi+1))

)}
23: end if
24: end for
25: else
26: if (li+1, (qt , true)) /∈ Loc then waitlist := waitlist

∪{(li+1, (qt , true))} end if
27: Locr := Locr ∪ {(li+1, (qt , true))}
28: Gr := Gr ∪ {(((li , (qi , ψi )), op, (li+1, (qt , true))

)}
29: end if
30: end for
31: end while
32: if Fcand �= ∅ then:
33: toKeep := ∅ � Locations on a path containing a node in Fcand
34: for each � = (li , (qi , ψi )) ∈ Locr s.t. (qi , ψi ) ∈ Fcand do
35: add all predecessors and successors of � in Locr to toKeep
36: end for
37: for each � ∈ Locr do
38: if � /∈ toKeep then Remove � from Locr ; Remove all

(�, ·, ·), (·, ·, �) from Gr end if
39: end for
40: end if
41: return (Locr , �r0,Gr )

B Algorithm for merge

Algorithm 4 consists of five different cases to ensure that
paths from Put and Prt are preserved and additional condi-
tions for paths in Fcand are also preserved by splitting paths.
We briefly summarize the five cases:

• Case line 1: State invariants and conditions of t1 and t2
are equal ⇒ Path is not split.

• Case line 5: Both paths lead only to states from Fcand ,
one contains conditions, the other one does not ⇒ Keep
the non-true assumption

• Case line 9: At least one path starting in pi+1 eventually
leads to F1

ut∪F1
rt and none starting in s j+1 reach F2

ut∪F2
rt

⇒ Ignore s j+1.
• Case line 13: At least one path starting in s j+1 eventually

leads to F2
ut∪F2

rt and none starting in pi+1 reach F1
ut∪F1

rt
⇒ Ignore pi+1.

• Case line 17: Otherwise split the path into two paths.

C Proof of Theorem 2

Recall Theorem 2: Algorithm 2 is a combiner according to
Definition 7.

Proof We assume wlog. that Put(A1) ∪ Prt(A2) = ∅ =
Prt(A1) ∪ Put(A2). As Alg. 2 and Alg. 4 works in the same
way for states from Fut and Frt and a GIA requires that nei-
ther states in Fut nor Frt can be left, it suffices to show that for
two arbitrary GIA A1, A2 and A = comb(A1, A2) it holds
that:

Put(A1) ∪ Put(A2) ⊆ Put(A) (1)

and Put(A1) ∪ Put(A2) ⊇ Put(A) (2)

Let π i denote the prefix of length i of π for a path or

run. We say that a run ρ = (q0, ψ0) −(G1,ϕ1)−−−−→ . . . −(Gk ,ϕk )−−−−→
(qk, ψk), of a GIA A = (Q, �, δ, q0, Fut, Frt, Fcand) fol-
lows a path π = 〈c0, �0〉 −g1−→ . . . −gn−→ 〈cn, �n〉 if

1. ∀i, 1 ≤ i ≤ k : gi ∈ Gi ,
2. ∀i, 1 ≤ i ≤ k : ci |
 ψi ,
3. ∀i, 0 ≤ i ≤ k : ci |
 ϕi .

For (1), given a path π = 〈c0, �0〉 −g1−→ . . . −gn−→ 〈cn, �n〉
assume wlog. π ∈ Put(A1). Hence, there is a run ρ =
(q0, ψ0) −g1,ϕ1−−−→ . . . −gk ,ϕk−−−→ (qk, ψk) of A1. Note that the
transitions of ρ could contain more than one edge, which we
can ignore in the following and thus directly write gi . We
inductively construct a run τ = (p0, ψ0) −g1,ϕ1−−−→ . . . −gk ,ϕk−−−→
(pk, ψk) of A accepting π , where pi = (qi , si ).
Induction start:
(q0, true)∈ρ, ((q0, s0), true)∈τ 0, hence τ 0 follows π0.
Induction step:
Given i ∈ N, s.t. 0≤ i≤k. We know by induction hypothesis
that τ i follows π i . The next transition of ρ is −gi+1,ϕi+1−−−−−→

123



Exchanging information in cooperative software validation

Algorithm 4 Merge
Input: waitlist, Q, δ

t1 = ((qi , ψi ) −gi ,ϕi−−→ (qi+1, ψi+1))

t2 = ((s j , ψ j ) −g j ,ϕ j−−−→ (s j+1, ψ j+1) � requirement: gi = g j
Output: waitlist, Q, δ

1: if ϕi = ϕ j ∧ ψi = ψ j ∧ ((qi+1 ∈ F1
ut ∪ F1

rt ∪ F1
cand ) ⇔ (si+1 ∈

F2
ut ∪ F2

rt ∪ F2
cand )) then

2: Q := Q ∪ {((qi+1, s j+1), ψi+1)}
3: δ := δ ∪ {((qi , s j ), ψi ) −gi ,ϕi−−→ ((qi+1, s j+1), ψi+1)}
4: if qi+1 /∈ F1

rt ∪ F1
ut ∧ s j+1 /∈ F2

rt ∪ F2
ut then waitlist := wailist

∪{((qi+1, s j+1), ψi+1)} end if
5: else if (ψi = ψ j ) ∧ (reachcand (qi+1) ∧ reachcand (s j+1)) ∧

(trueCond(qi ) ∨ trueCond(s j )) then
6: Q := Q ∪ {((qi+1, s j+1), ψi+1)}
7: δ := δ ∪ {((qi , s j ), ψi ) −gi ,ϕ−−→ ((qi+1, s j+1), ψi+1)} �

ϕ ∈ {ϕi , ϕ j }, ϕ �= true
8: if qi+1 /∈ F1

rt ∪ F1
ut ∧ s j+1 /∈ F2

rt ∪ F2
ut then waitlist := wailist

∪{((qi+1, s j+1), ψi+1)} end if
9: else if (ψi = ψ j ) ∧ (reachut,rt(qi+1) ∧ reachcand (s j+1) then
10: Q := Q ∪ {((qi+1, ◦), ψi+1)}
11: δ := δ ∪ {((qi , s j ), ψi ) −gi ,ϕi−−→ (qi+1, ◦), ψi+1)} � Using ϕi
12: if qi+1 /∈ F1

rt ∪ F1
ut then waitlist := wailist ∪{((qi+1, ◦), ψi+1)}

end if
13: else if (ψi = ψ j ) ∧ (reachcand (qi+1) ∧ reachut,rt(s j+1) then
14: Q := Q ∪ {((◦, s j+1), ψi+1)}
15: δ := δ ∪ {((qi , s j ), ψi ) −gi ,ϕ j−−−→ (◦, s j+1), ψi+1)} � Using ϕ j
16: if s j+1 /∈ F2

rt ∪ F2
ut then waitlist := wailist∪{((◦, s j+1), ψi+1)}

end if
17: else
18: Q := Q ∪ {((qi+1, •), ψi+1), ((•, s j+1), ψi+1)}
19: newS := newS ∪{((qi+1, •), ψi+1), ((•, s j+1), ψi+1)}
20: δ := δ ∪ {((qi , s j ), ψi ) −gi ,ϕi−−→

((qi+1, •), ψi+1), ((qi , s j ), ψ j ) −g j ,ϕ j−−−→ ((•, s j+1), ψi+1)}
21: end if
22: for each ((qk , sl ), ψm) ∈ newS do
23: if qk /∈ F2

rt∪F2
ut∧sl /∈ F2

rt∪F2
ut thenwaitlist :=wailist∪{(qk, sl )}

end if
24: end for
25: return waitlist, Q, δ

where ◦, • are placeholder that are not processed,
trueAsmp(qi )= true if all paths starting in qi only contain true
conditions,
reachcand (qi )= true if no path starting in qi leads to Fut∪Frt and at
least one to Fcand ,
reachut,rt(qi )= true if at least one path starting in qi leads to Fut∪Frt

(qi+1, ψi+1). We distinguish, if δ2 also contains a transition

((si , ψi ) −gi+1,ϕ
′
i+1−−−−−→ (si+1, ψ

′
i+1)):

If there is no ((si , ψi ) −gi+1,ϕ
′
i+1−−−−−→ (si+1, ψ

′
i+1)) ∈ δ2 or Si ∈

{◦, •} then τ i is extended by−gi+1ϕi+1−−−−−→ ((qi+1, ◦), ψi+1) (by
line 5-9 of Alg. 2) and accepts π i+1.

Otherwise, if there is ((si , ψi ) −gi+1,ϕ
′
i+1−−−−−→ (si+1, ψ

′
i+1)) ∈ δ2,

then τ is extended either
by −gi+1,ϕi+1−−−−−→ ((qi+1, si+1), ψi+1) in line 1-4 of Alg. 4,
by −gi+1,ϕi+1−−−−−→ ((qi+1, ◦), ψi+1) in line 9-12 of Alg. 4
or

by −gi+1,ϕi+1−−−−−→ ((qi+1, •), ψi+1) and by −gi+1,ϕ
′
i+1−−−−−→ ((•,

si+1), ψ
′
i+1) in line 18-20 of Alg. 4.

In all cases, τ i+1 covers π i+1.
As (qk, ψk) ∈ F1

ut and ((qk, sk), ψk) ∈ Fut , we know that
τ ∈ A and A covers π . Thus, we can conclude thatPut(A1)∪
Put(A2) ⊆ Put(A) holds.
For (2), given a path π = 〈c0, �0〉 −g1−→ . . . −gn−→ 〈cn, �n〉
from Put(A), accepted by a run τ = ((q0, s0), ψ0) −g1,ϕ1−−−→
. . . −gk ,ϕk−−−→ ((qk, sk), ψk). We inductively construct a run
ρ = (p0, ψ0) −g1,ϕ1−−−→ . . . −gk ,ϕk−−−→ (pk, ψk) ∈ A1 or A2

accepting π .
As both A1 and A2 may contain such a run, we start with

constructing two runs ρ1 ∈ A1 and ρ2 ∈ A2 and show that
at least one of them accepts π .
Induction start:
((q0, s0), true) ∈ τ 0, (q0, true) ∈ ρ0

1 and (s0, true) ∈ ρ0
2 .

Hence, both ρ0
1 and ρ0

2 follow π0.
Induction step:
Let 0 ≤ i ≤ k be arbitrary but fixed. τ has the transition
((qi , si ), ψi ) −gi+1,ϕi+1−−−−−→ ((qi+1, si+1), ψi+1). We now dis-
tinguish, if both runs are still under construction (2.1) or
not (2.2).
Case 2.1: By induction hypothesis, we know that there are
two runs ρi

1 ∈ A1 and ρi
2 ∈ A2 following π i . The next

transition of τ , t =−gi+1,ϕi+1−−−−−→ ((qi+1, si+1), ψi+1) is either
added by line 5 to 8 (2.1.1) of Alg. 2, by line 14 (2.1.2) of
Alg. 2 or by Alg. 4 (2.1.3).
Case 2.1.1: There is a transition ((qi , ψi ) −gi+1,ϕi+1−−−−−→ (qi+1,

ψi+1)) ∈ δ1, but no transition ((si , ψi ) −gi+1,ϕ
′
i+1−−−−−→ (si+1,

ψ ′
i+1)) ∈ δ2 (or si ∈ {◦, •}). Hence, the construction of

ρ2 stops and si+1 ∈ {◦, •}. ρi
1 can be extended by −gi ,ϕi−−→

(qi+1, ψi+1)), and follows π i+1.
Case 2.1.2: works analogously to Case 2.1.1.
Case 2.1.3: If t is added by line 1-4,ρi

1 andρi
2 can be extended

using t , andboth followπ i+1.Weknow that t cannot be added
using line 5-8, as either reachcand(qi+1) or reachcand(si+1)

is false. If t is added by line 9-12, then ρi
1 can be extended

using t , and follows π i+1, whereas ρ2 cannot be extended,
as si+1 = ◦. If t is added by line 13-16, then ρi

2 can be
extended using t , and follows π i+1, whereas ρ1 cannot be
extended, as qi+1 = ◦. Otherwise, τ i is extended in line

18-30. There are t1 = ((qi , ψi ) −gi+1,ϕ
′
i+1−−−−−→ (qi+1, ψ

′
i+1)) ∈

δ1 and t2 = ((si , ψi ) −gi+1,ϕ
′′
i+1−−−−−→ (si+1, ψ

′′
i+1)) ∈ δ2. As

τ is constructed using t1 or t2, ρi
1 or ρi

2 can be extended,
depending whether ψi+1 = ψ ′

i+1 ∧ϕi+1 = ϕ′
i+1 (τ is in A1)

or ψi+1 = ψ ′′
i+1 ∧ ϕi+1 = ϕ′′

i+1 (τ is in A2). Note that paths
accepted by a run with true condition are also accepted with
condition Thus, the extended run accepts π i+1.

Case 2.2:Wlog. assume that ρ1 is still under construction.
As the construction of ρ2 has stopped, si ∈ {◦, •} (fol-
lows from Case 2.1.1). Thus, the next transition −gi+1,ϕi+1−−−−−→

123



J. Haltermann, H. Wehrheim

((qi+1, si ), ψi+1) ∈ τ must be added by line 5 to 9 of Alg.
2. This works analogously to Case 2.1.1 �

As ((qk, sk), ψk) ∈ Fut , (qk, ψk) ∈ F1
ut for ρ1 or

(sk, ψk) ∈ F2
ut for ρ2, at least one of them accepts π , con-

cluding the proof. ��

D Additional example

Fig. 18 An extended version of the example program from Fig. 2

References

1. Ádám, Z., Sallai, G., Hajdu, Á.: Gazer-theta: Llvm-based veri-
fier portfolio with BMC/CEGAR (competition contribution). In:
Groote, J.F., Larsen, K.G. (eds.) Proceedings TACAS. LNCS, vol.
12652, pp. 433–437. Springer (2021). https://doi.org/10.1007/978-
3-030-72013-1_27

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-
approximations to over-approximations and back. In: Flanagan,
C., König, B. (eds.) Proceedings of the TACAS. LNCS, vol. 7214,
pp. 157–172. Springer (2012). https://doi.org/10.1007/978-3-642-
28756-5_12

3. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.:
Fusebmc: an energy-efficient test generator for finding security
vulnerabilities in C programs. In: Proceedings of the TAP. LNCS,
vol. 12740, pp. 85–105. Springer (2021). https://doi.org/10.1007/
978-3-030-79379-1_6

4. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing sym-
bolic execution with veritesting. In: Proceedings of the ICSE,
pp. 1083–1094. ACM (2014). https://doi.org/10.1145/2568225.
2568293

5. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs
from tests. In: Ryder, B.G., Zeller, A. (eds.) Proceedings of the
ISSTA, pp. 3–14. ACM (2008). https://doi.org/10.1145/1390630.
1390634

6. Beyer, D., Dangl, M.: Strategy selection for software verification
based onBoolean features: a simple but effective approach. In: Pro-
ceedings of the ISoLA. LNCS, vol. 11245, pp. 144–159. Springer
(2018). https://doi.org/10.1007/978-3-030-03421-4_11

7. Beyer, D., Lemberger, T.: Conditional testing: off-the-shelf combi-
nation of test-case generators. In: Proceedings of theATVA. LNCS,
vol. 11781, pp. 189–208. Springer (2019). https://doi.org/10.1007/
978-3-030-31784-3_11

8. Beyer,D.:Advances in automatic software testing: test-comp2022.
In: Johnsen, E.B., Wimmer, M. (eds.) Proceedings of the FASE.
LNCS, vol. 13241, pp. 321–335. Springer (2022). https://doi.org/
10.1007/978-3-030-99429-7_18

9. Beyer, D.: Progress on software verification: SV-COMP 2022. In:
Fisman, D., Rosu, G. (eds.) Proceedings of the TACAS. LNCS, vol.
13244, pp. 375–402. Springer (2022). https://doi.org/10.1007/978-
3-030-99527-0_20

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness
witnesses: exchanging verification results between verifiers. In:
Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings
of the FSE, pp. 326–337. ACM (2016). https://doi.org/10.1145/
2950290.2950351

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger,
T., Tautschnig, M.: Verification witnesses. ACM Trans. Softw.
Eng. Methodol. 31(4), 57:1-57:69 (2022). https://doi.org/10.1145/
3477579

12. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.:
Witness validation and stepwise testification across software veri-
fiers. In: Nitto, E.D., Harman, M., Heymans, P. (eds.) Proceedings
of the ESEC/FSE, pp. 721–733. ACM (2015). https://doi.org/10.
1145/2786805.2786867

13. Beyer, D., Gulwani, S., Schmidt, D.A.: Combiningmodel checking
and data-flow analysis. In: Clarke, E.M., Henzinger, T.A., Veith,
H., Bloem, R. (eds.) Handbook of Model Checking, pp. 493–540.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_16

14. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software
model checker Blast. Int. J. Softw. Tools Technol. Transf. 9(5–6),
505–525 (2007). https://doi.org/10.1007/s10009-007-0044-z

15. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Condi-
tional model checking: a technique to pass information between
verifiers. In: Tracz, W., Robillard, M.P., Bultan, T. (eds.) Pro-
ceedings of the FSE, p. 57. ACM (2012). https://doi.org/10.1145/
2393596.2393664

16. Beyer, D., Jakobs, M.: CoVeriTest: cooperative verifier-based test-
ing. In: Hähnle, R., van der Aalst, W.M.P. (eds.) Proceedings of the
FASE. LNCS, vol. 11424, pp. 389–408. Springer (2019). https://
doi.org/10.1007/978-3-030-16722-6_23

17. Beyer,D., Jakobs,M.: Fred:Conditionalmodel checking via reduc-
ers and folders. In: de Boer, F.S., Cerone, A. (eds.) Proceedings
of the SEFM. LNCS, vol. 12310, pp. 113–132. Springer (2020).
https://doi.org/10.1007/978-3-030-58768-0_7

18. Beyer, D., Jakobs, M., Lemberger, T., Wehrheim, H.: Reducer-
based construction of conditional verifiers. In: Chaudron, M.,
Crnkovic, I., Chechik, M., Harman, M. (eds.) Proceedings of
the ICSE, pp. 1182–1193. ACM (2018). https://doi.org/10.1145/
3180155.3180259

19. Beyer, D., Kanav, S.: CoVeriTeam: on-demand composition of
cooperative verification systems. In: Fisman, D., Rosu, G. (eds.)

123

https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259


Exchanging information in cooperative software validation

Proceedings of the TACAS. LNCS, vol. 13243, pp. 561–579.
Springer (2022). https://doi.org/10.1007/978-3-030-99524-9_31

20. Beyer, D., Kanav, S., Richter, C.: Construction of verifier combina-
tions based on off-the-shelf verifiers. In: Johnsen, E.B., Wimmer,
M. (eds.) Proceedings of the FASE. LNCS, vol. 13241, pp. 49–70.
Springer (2022). https://doi.org/10.1007/978-3-030-99429-7_3

21. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable
software verification. In: Gopalakrishnan,G., Qadeer, S. (eds.) Pro-
ceedings of the CAV. LNCS, vol. 6806, pp. 184–190. Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_16

22. Beyer, D., Lemberger, T.: Software verification: testing vs. model
checking—a comparative evaluation of the state of the art. In:
Strichman, O., Tzoref-Brill, R. (eds.) Proceedings of the HVC.
LNCS, vol. 10629, pp. 99–114. Springer (2017). https://doi.org/
10.1007/978-3-319-70389-3_7

23. Beyer, D., Lemberger, T.: Testcov: robust test-suite execution and
coverage measurement. In: Proceedings of the ASE, pp. 1074–
1077. IEEE (2019). https://doi.org/10.1109/ASE.2019.00105

24. Beyer, D., Lemberger, T., Haltermann, J., Wehrheim, H.: Decom-
posing software verification into off-the-shelf components: an
application to CEGAR. In: Proceedings of the ICSE, pp. 536–548.
ACM (2022). https://doi.org/10.1145/3510003.3510064

25. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: require-
ments and solutions. Int. J. Softw. Tools Technol. Transf. 21(1),
1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y

26. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative veri-
fication: survey and unifying component framework. In: Margaria,
T., Steffen, B. (eds.) Proceedings of the ISoLA. LNCS, vol. 12476,
pp. 143–167. Springer (2020). https://doi.org/10.1007/978-3-030-
61362-4_8

27. Blicha, M., Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.:
A cooperative parallelization approach for property-directed k-
induction. In: Beyer, D., Zufferey, D. (eds.) Proceedings of the
VMCAI. LNCS, vol. 11990, pp. 270–292. Springer (2020). https://
doi.org/10.1007/978-3-030-39322-9_13

28. Braione, P., Denaro, G., Mattavelli, A., Pezzè, M.: Combining
symbolic execution and search-based testing for programs with
complex heap inputs. In: Bultan, T., Sen, K. (eds.) Proceedings
of the ISSTA, pp. 90–101. ACM (2017). https://doi.org/10.1145/
3092703.3092715

29. Bruns, G., Godefroid, P.: Model checking partial state spaces with
3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.)
Proceedings of the CAV. LNCS, vol. 1633, pp. 274–287. Springer
(1999). https://doi.org/10.1007/3-540-48683-6_25

30. Bu, L., Xie, Z., Lyu, L., Li, Y., Guo, X., Zhao, J., Li, X.: BRICK:
path enumeration based bounded reachability checking of C pro-
gram (competition contribution). In: Fisman, D., Rosu, G. (eds.)
Proceedings of the TACAS. LNCS, vol. 13244, pp. 408–412.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_22

31. Burnim, J., Sen,K.:Heuristics for scalable dynamic test generation.
In: Proceedings of the ASE, pp. 443–446. IEEE Computer Society
(2008). https://doi.org/10.1109/ASE.2008.69

32. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems
programs. In: Draves, R., van Renesse, R. (eds.) Proceedings of
the OSDI, pp. 209–224. USENIX Association (2008)

33. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verifica-
tion and testing with explicit assumptions. In: Giannakopoulou, D.,
Méry, D. (eds.) Proceedings of the FM. LNCS, vol. 7436, pp. 132–
146. Springer (2012). https://doi.org/10.1007/978-3-642-32759-
9_13

34. Christakis,M.,Müller, P.,Wüstholz,V.:Guidingdynamic symbolic
execution toward unverified program executions. In: Dillon, L.K.,
Visser, W., Williams, L. (eds.) Proceedings of the ICSE, pp. 144–
155. ACM (2016). https://doi.org/10.1145/2884781.2884843

35. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement. In: Proceedings of
the CAV, pp. 154–169. LNCS 1855, Springer (2000). https://doi.
org/10.1007/10722167_15

36. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Hand-
book of Model Checking. Springer, Berlin (2018)

37. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints. In: Graham, R.M., Harrison, M.A., Sethi, R.
(eds.) Proceedings of the POPL, pp. 238–252.ACM(1977). https://
doi.org/10.1145/512950.512973

38. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: combining static
checking and testing. In: Roman, G., Griswold,W.G., Nuseibeh, B.
(eds.) Proceedings of the ICSE, pp. 422–431. ACM (2005). https://
doi.org/10.1145/1062455.1062533

39. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: a hybrid anal-
ysis tool for bug finding. TOSEM 17(2), 8:1-8:37 (2008). https://
doi.org/10.1145/1348250.1348254

40. Czech, M., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Predict-
ing rankings of software verification tools. In: Proceedings of the
SWAN, pp. 23–26.ACM(2017). https://doi.org/10.1145/3121257.
3121262

41. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot
verify! In: Egyed, A., Schaefer, I. (eds.) Proceedings of the FASE.
LNCS, vol. 9033, pp. 100–114. Springer (2015). https://doi.org/
10.1007/978-3-662-46675-9_7

42. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic
testing. In: Jobstmann, B., Leino, K.R.M. (eds.) Proceedings of the
VMCAI. LNCS, vol. 9583, pp. 328–347. Springer (2016). https://
doi.org/10.1007/978-3-662-49122-5_16

43. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support
for recursive programs and floating-point arithmetic-(competition
contribution). In: Proceedings of the TACS. LNCS, vol. 9035,
pp. 423–425. Springer (2015). https://doi.org/10.1007/978-3-662-
46681-0_34

44. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software
metrics for benchmarking of verification tools. In: Proceedings of
the CAV. LNCS, vol. 9206, pp. 561–579. Springer (2015). https://
doi.org/10.1007/978-3-319-21690-4_39

45. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) VSL. LNCS,
vol. 8559, pp. 737–744. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_49

46. Gao, M., He, L., Majumdar, R., Wang, Z.: LLSPLAT: improving
concolic testing by bounded model checking. In: Proceedings of
the SCAM, pp. 127–136. IEEE (2016). https://doi.org/10.1109/
SCAM.2016.26

47. Gargantini, A., Vavassori, P.: Using decision trees to aid algorithm
selection in combinatorial interaction tests generation. In: Proceed-
ings of the ICST, pp. 1–10. IEEE (2015). https://doi.org/10.1109/
ICSTW.2015.7107442

48. Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: dynamic symbolic
execution guided with static verification results. In: Taylor, R.N.,
Gall, H.C., Medvidovic, N. (eds.) Proceedings of the ICSE, pp.
992–994. ACM (2011). https://doi.org/10.1145/1985793.1985971

49. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional
may-must program analysis: unleashing the power of alternation.
In: Hermenegildo, M.V., Palsberg, J. (eds.) Proceedings of the
POPL, pp. 43–56. ACM (2010). https://doi.org/10.1145/1706299.
1706307

50. Groce, A., Zhang, C., Eide, E., Chen, Y., Regehr, J.: Swarm testing.
In: Proceedings of the ISSTA, pp. 78–88. ACM (2012). https://doi.
org/10.1145/2338965.2336763

51. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Raja-
mani, S.K.: SYNERGY: a new algorithm for property checking.
In: Young, M., Devanbu, P.T. (eds.) Proceedings of the FSE, pp.
117–127. ACM (2006). https://doi.org/10.1145/1181775.1181790

123

https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1145/3510003.3510064
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-39322-9_13
https://doi.org/10.1007/978-3-030-39322-9_13
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/978-3-030-99527-0_22
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1348250.1348254
https://doi.org/10.1145/1348250.1348254
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-319-21690-4_39
https://doi.org/10.1007/978-3-319-21690-4_39
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1109/SCAM.2016.26
https://doi.org/10.1109/SCAM.2016.26
https://doi.org/10.1109/ICSTW.2015.7107442
https://doi.org/10.1109/ICSTW.2015.7107442
https://doi.org/10.1145/1985793.1985971
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/2338965.2336763
https://doi.org/10.1145/2338965.2336763
https://doi.org/10.1145/1181775.1181790


J. Haltermann, H. Wehrheim

52. Gurfinkel, A., Ivrii, A.: K-induction without unrolling. In: Stew-
art, D., Weissenbacher, G. (eds.) Proceedings of the FMCAD, pp.
148–155. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.
8102253

53. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Parallel
program analysis via range splitting. In: Lambers, L., Uchitel, S.
(eds.) Proceedings of the FASE. LNCS, vol. 13991, pp. 195–219.
Springer (2023). https://doi.org/10.1007/978-3-031-30826-0_11

54. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Ranged
program analysis via instrumentation. In: Ferreira, C., Willemse,
T.A.C. (eds.) Proceedings of the SEFM. LNCS, vol. 14323,
pp. 145–164. Springer (2023). https://doi.org/10.1007/978-3-031-
47115-5_9

55. Haltermann, J., Wehrheim, H.: CoVEGI: cooperative verification
via externally generated invariants. In: Guerra, E., Stoelinga, M.
(eds.) Proceedings of the FASE. LNCS, vol. 12649, pp. 108–129.
Springer (2021). https://doi.org/10.1007/978-3-030-71500-7_6

56. Haltermann, J., Wehrheim, H.: Information exchange between
over- and underapproximating software analyses. In: Schlingloff,
B., Chai, M. (eds.) Proceedings of the SEFM. LNCS, vol. 13550,
pp. 37–54. Springer (2022). https://doi.org/10.1007/978-3-031-
17108-6_3

57. Haltermann, J., Wehrheim, H.: Artifact for ’information exchange
between over- and underapproximating software analyses (2023).
https://doi.org/10.5281/zenodo.6749669

58. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke,
J., Li, Y., Nutz, A., Musa, B., Schilling, C., Schindler, T., Podelski,
A.: Ultimate automizer and the search for perfect interpolants-
(competition contribution). In: Proceedings of the TACAS. LNCS,
vol. 10806, pp. 447–451. Springer (2018). https://doi.org/10.1007/
978-3-319-89963-3_30

59. Heizmann, M., Hoenicke, J., Podelski, A.: Software model check-
ing for peoplewho love automata. In: Sharygina,N.,Veith,H. (eds.)
Proceedings of the CAV. LNCS, vol. 8044, pp. 36–52. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_2

60. Helm, D., Kübler, F., Reif, M., Eichberg, M., Mezini, M.: Modular
collaborative program analysis in OPAL. In: Proceedings of the
FSE, pp. 184–196. ACM (2020). https://doi.org/10.1145/3368089.
3409765

61. Holík, L., Kotoun, M., Peringer, P., Soková, V., Trtík, M., Vojnar,
T.: Predator shape analysis tool suite. In: Proceedings of the HVC.
LNCS, vol. 10028, pp. 202–209 (2016). https://doi.org/10.1007/
978-3-319-49052-6_13

62. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification. In: Pro-
ceedings of the ASE, pp. 1–6. IEEE (2008). https://doi.org/10.
1109/ASE.2008.9

63. Huster, S., Ströbele, J., Ruf, J., Kropf, T., Rosenstiel, W.: Using
robustness testing to handle incomplete verification results when
combining verification and testing techniques. In: Yevtushenko,
N., Cavalli, A.R., Yenigün, H. (eds.) Proceedings of the ICTSS.
LNCS, vol. 10533, pp. 54–70. Springer (2017). https://doi.org/10.
1007/978-3-319-67549-7_4

64. Inkumsah, K., Xie, T.: Improving structural testing of object-
oriented programs via integrating evolutionary testing and sym-
bolic execution. In: Proceedings of the ASE, pp. 297–306. IEEE
(2008). https://doi.org/10.1109/ASE.2008.40

65. Jakobs, M.: Coveritest with dynamic partitioning of the iteration
time limit (competition contribution). In: Wehrheim, H., Cabot, J.
(eds.) Proceedings of the FASE. LNCS, vol. 12076, pp. 540–544.
Springer (2020). https://doi.org/10.1007/978-3-030-45234-6_30

66. Jakobs, M., Richter, C.: Coveritest with adaptive time scheduling
(competition contribution). In: Guerra, E., Stoelinga,M. (eds.) Pro-
ceedings of the FASE. LNCS, vol. 12649, pp. 358–362. Springer
(2021). https://doi.org/10.1007/978-3-030-71500-7_18

67. Jakobs, M., Wehrheim, H.: Compact Proof Witnesses. In: Barrett,
C.W.,Davies,M.,Kahsai, T. (eds.) Proceedings of theNFM.LNCS,

vol. 10227, pp. 389–403 (2017). https://doi.org/10.1007/978-3-
319-57288-8_28

68. Jia,Y.,Cohen,M.B.,Harman,M., Petke, J.: Learning combinatorial
interaction test generation strategies using hyperheuristic search.
In: Proceedings of the ICSE, pp. 540–550. IEEE (2015). https://
doi.org/10.1109/ICSE.2015.71

69. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In:
Piskac, R., Talupur, M. (eds.) FMCAD, pp. 85–92. IEEE (2016).
https://doi.org/10.1109/FMCAD.2016.7886665

70. Kroening, D., Groce, A., Clarke, E.M.: Counterexample guided
abstraction refinement via program execution. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) Proceedings of the ICFEM. LNCS,
vol. 3308, pp. 224–238. Springer (2004). https://doi.org/10.1007/
978-3-540-30482-1_23

71. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: LEGION: best-
first concolic testing. In: Proceedings of the ASE, pp. 54–65. IEEE
(2020). https://doi.org/10.1145/3324884.3416629

72. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Legion: Best-
first concolic testing (competition contribution). In: Wehrheim, H.,
Cabot, J. (eds.) Proceedings of the TACAS. LNCS, vol. 12076,
pp. 545–549. Springer (2020). https://doi.org/10.1007/978-3-030-
45234-6_31

73. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proceedings
of the ICSE, pp. 416–426. IEEE (2007). https://doi.org/10.1109/
ICSE.2007.41

74. Marques, F., Santos, J.F., Santos, N., Adão, P.: Concolic execu-
tion for webassembly. In: Ali, K., Vitek, J. (eds.) Proceedings of
the ECOOP. LIPIcs, vol. 222, pp. 11:1–11:29. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/
LIPIcs.ECOOP.2022.11

75. Mukherjee, R., Schrammel, P., Haller, L., Kroening, D., Melham,
T.: Lifting CDCL to template-based abstract domains for program
verification. In:D’Souza,D.,Kumar,K.N. (eds.) Proceedings of the
ATVA. LNCS, vol. 10482, pp. 307–326. Springer (2017). https://
doi.org/10.1007/978-3-319-68167-2_21

76. Noller, Y., Kersten, R., Pasareanu, C.S.: Badger: complexity anal-
ysis with fuzzing and symbolic execution. In: Proceedings of
the ISSTA, pp. 322–332. ACM (2018). https://doi.org/10.1145/
3213846.3213868

77. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The YogiPro-
ject: software property checking via static analysis and testing. In:
Kowalewski, S., Philippou, A. (eds.) Proceedings of the TACAS.
LNCS, vol. 5505, pp. 178–181. Springer (2009). https://doi.org/
10.1007/978-3-642-00768-2_17

78. Richter, C., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Algo-
rithm selection for software validation based on graph kernels.
JASE 27(1), 153–186 (2020). https://doi.org/10.1007/s10515-
020-00270-x

79. Sen, K., Agha, G.: CUTE and jcute: concolic unit testing and
explicit path model-checking tools. In: Ball, T., Jones, R.B. (eds.)
Proceedings of the CAV. LNCS, vol. 4144, pp. 419–423. Springer
(2006). https://doi.org/10.1007/11817963_38

80. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing
engine for C. In: Wermelinger, M., Gall, H.C. (eds.) Proceedings
of the ESES/FSE, pp. 263–272. ACM (2005). https://doi.org/10.
1145/1081706.1081750

81. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R.,
Corbetta, J., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller:
augmenting fuzzing through selective symbolic execution. In:
Proceedings of the NDSS. The Internet Society (2016). https://
www.ndss-symposium.org/wp-content/uploads/2017/09/driller-
augmenting-fuzzing-through-selective-symbolic-execution.pdf

82. Tillmann, N., de Halleux, J.: Pex-white box test generation for .net.
In: Beckert, B., Hähnle, R. (eds.) Proceedings of the TAP. LNCS,
vol. 4966, pp. 134–153. Springer (2008). https://doi.org/10.1007/
978-3-540-79124-9_10

123

https://doi.org/10.23919/FMCAD.2017.8102253
https://doi.org/10.23919/FMCAD.2017.8102253
https://doi.org/10.1007/978-3-031-30826-0_11
https://doi.org/10.1007/978-3-031-47115-5_9
https://doi.org/10.1007/978-3-031-47115-5_9
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.1007/978-3-031-17108-6_3
https://doi.org/10.1007/978-3-031-17108-6_3
https://doi.org/10.5281/zenodo.6749669
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1109/ASE.2008.9
https://doi.org/10.1109/ASE.2008.9
https://doi.org/10.1007/978-3-319-67549-7_4
https://doi.org/10.1007/978-3-319-67549-7_4
https://doi.org/10.1109/ASE.2008.40
https://doi.org/10.1007/978-3-030-45234-6_30
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1109/ICSE.2015.71
https://doi.org/10.1109/ICSE.2015.71
https://doi.org/10.1109/FMCAD.2016.7886665
https://doi.org/10.1007/978-3-540-30482-1_23
https://doi.org/10.1007/978-3-540-30482-1_23
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://doi.org/10.1007/978-3-319-68167-2_21
https://doi.org/10.1007/978-3-319-68167-2_21
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1007/978-3-642-00768-2_17
https://doi.org/10.1007/978-3-642-00768-2_17
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/11817963_38
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10


Exchanging information in cooperative software validation

83. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Usable verifica-
tion of object-oriented programs by combining static and dynamic
techniques. In: Proceedings of the SEFM. LNCS, vol. 7041,
pp. 382–398. Springer (2011). https://doi.org/10.1007/978-3-642-
24690-6_26

84. Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX:
Algorithm selection for software model checkers. In: Proceedings
of the MSR, pp. 132—141. ACM (2014). https://doi.org/10.1145/
2597073.2597080

85. Yin, L., Dong, W., Liu, W., Wang, J.: Parallel refinement for multi-
threaded program verification. In: Proceedings of the ICSE, pp.
643–653. IEEE (2019). https://doi.org/10.1109/ICSE.2019.00074

86. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem prov-
ing: Better together! In: Proceedings of the ISSTA, pp. 145–156.
ACM (2006). https://doi.org/10.1145/1146238.1146255

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

JanHaltermann received the B.Sc.
and M.Sc. degrees in computer
science from Paderborn Univer-
sity, in 2019, where he started
working as a Research Assistant.
In 2021, he moved to the Carl von
Ossietzky Universität Oldenburg,
where he is currently pursuing the
Ph.D. degree. His research inter-
ests include formal methods, with
a focus on cooperative software
verification.

Heike Wehrheim received the
Diploma degree in computer sci-
ence from the University of Bonn,
Germany, in 1992, the Ph.D. degr
ee in computer science from the
University of Hildesheim, in 1996,
and the Habilitation degree fr
om the Carl von Ossietzky Uni-
versität Oldenburg, Germany, in
2002. From 2004 to 2021, she was
first an Associate and then a Full
Professor at Paderborn University,
Germany. Since April 2021, she
has been a Full Professor at the
Carl von Ossietzky Universität Old-

enburg. She has published over 100 articles in journals and confer-
ences. Her research interests include formal methods and software
analysis, in particular the verification of concurrent programs. Prof.
Wehrheim is a member of the Gesellschaft für Informatik (GI) and
the IFIP working group 6.1. She is on the editorial board of the jour-
nals Formal Aspects of Computing and Software Tools for Technology
Transfer.

123

https://doi.org/10.1007/978-3-642-24690-6_26
https://doi.org/10.1007/978-3-642-24690-6_26
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1109/ICSE.2019.00074
https://doi.org/10.1145/1146238.1146255

	Exchanging information in cooperative software validation
	Abstract
	1 Introduction
	2 Background
	2.1 Program syntax and semantics

	3 Related work
	3.1 Conceptual integration
	3.2 Cooperative approaches

	4 Existing artifacts
	4.1 Requirements
	4.2 Protocol automaton
	4.3 Violation witness
	4.4 Correctness witness
	4.5 Condition automaton
	4.6 Abstract reachability graph 

	5 Validation artifact GIA
	6 Using GIAs in cooperative validation
	7 GIA and off-the-shelf tools
	7.1 Reducer
	7.2 Combiner
	7.3 Using reducer and combiner

	8 Implementation
	9 Evaluation
	9.1 RQ 1: Component-based CEGAR
	9.2 RQ 2: Cooperative test case generation
	9.3 Threads to validity

	10 Conclusion
	Appendix
	A Full algorithm for the X-reducer
	B Algorithm for merge
	C Proof of Theorem 2 
	D Additional example
	References


