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Abstract
The servitization of business is moving industry to business models driven by customer demand. Customer satisfaction is
connected with financial rewards, forcing companies to invest in their users’ experience. User journeys describe how users
maneuver through a service. Today, user journeys are typically modeled graphically, and lack formalization and analysis
support. This paper proposes a formalization of user journeys as weighted games between the user and the service provider
and a systematic data-driven method to derive these user journey games from system logs, using process mining techniques.
As the derived games may contain cycles, we define an algorithm to transform user journeys games with cycles into acyclic
weighted games, which can be model checked using Uppaal Stratego to uncover potential challenges in a company’s
interactions with its users and derive company strategies to guide users through their journeys. Finally, we propose a user
journey sliding-window analysis to detect changes in the user journey over time by model checking a sequence of generated
games. Our analysis pipeline has been evaluated on an industrial case study; it revealed design challenges within the studied
service and could be used to derive actionable recommendations for improvement.

Keywords User journeys · Data-driven model construction · Time-series analysis · Games · Model checking · UPPAAL.

1 Introduction

Consider a company, Amend ltd., that offers document
reviewing services: Users submit documents and meta-data
to receive a professional review. To ensure user satisfaction,
the company commissions a report on the users’ experience
with the offered service. A team of analysts conducts inter-
views with selected users to manually create user journey
maps that reveal unknown pain points in the service, which
could cost the company users. When expanding and improv-
ing its services, Amend wants to integrate continuous user
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feedback, and wonders if the team could use system logs to
avoid the cumbersome manual questionnaires and scale the
feedback to all users. However, their current performance
dashboards [1] only display recent server statistics with-
out incorporating user-centric analysis. Methods and tools to
analyze user experience based on such large-scale collected
logs are currently lacking [2]. In this paper, we present a
method to automatically analyze logs from the users’ per-
spective, based on weighted automata [3].

The scenario described above stems from the servitiza-
tion of business [4], a concept of creating added value to
products by offering services. Servitization of business is
a major practice embraced by most (if not all) successful
companies today. Companies are interested in the analysis
of their services, which traditionally focus on the manage-
rial perspective, where the service is analyzed with respect
to the companies’ view. Recent trends shift the focus from
the company’s to the end-users’ view, where a positive expe-
rience and impression that a user has while engaging in the
service, has shown to have a positive impact on the financial
reward of a company [5]. Thus, companies aim to analyze
and improve their services, based on their users’ satisfaction.

User journeys (also called customer journeys) analyze
services from theuser perspective [6]:Auser journey is inher-
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ently a goal-oriented process, because humans engage in a
service with a goal in mind. The user moves through the jour-
ney by engaging in so-called touchpoints, which are either
actions performed by the user or a communication event
between the user and a service provider. We here assume
that users only engage in one touchpoint of a service at a
time.

Tools to analyze user journeys are currently lacking [2],
which hinders their operational use. User journey diagrams
are usually generated by hand, and the user perspective is
derived from interviews with experts and users, e.g., [6, 7].
This process has been highly successful, discovering points
of failure in the studied services and, as a result, providing
advice to companies on how to improve their services. How-
ever, this manual process is best suited for relatively small
services and a restricted number of users, and a particular
point in time. For services with thousands of users, journey
diagrams need to be automatically generated and analyzed.
In particular, in business processes that change often, the
impact of these changes needs to be evaluated as quickly
as possible. Concept drift detection quantifies changes in an
underlying business process [8]. However, not all observed
changes are easy to detect, since they might originate from
events out of the company’s reach, but are still perceived
from the users’ point of view. Thus, systematic analysis tech-
niques are needed to evaluate user journeys, and detect and
stop unwanted trends.

This paper formalizes user journeys as weighted games
[3, 9] between users and a service provider, and proposed
a method to derive such games from system logs. Our aim
is to use these games to analyze services and suggest ser-
vice improvements such that service providers always have
a strategy to guide their users toward a desired goal. The aim
of our work is to reduce the gap toward fulfilling the analy-
sis needs of companies such as Amend, the company of the
motivating scenario above. In short, our contributions are:

1. a formalization of user journeys as weighted games;
2. an analysis pipeline to automatically discover and model

check weighted games from system logs;
3. a sliding-window analysis for user journeys that lifts the

analysis of one weighted game per system log to a series
of weighted games over windows of time in a system log.

4. an experimental investigation of the feasibility of our
approach on two data sets from an industrial case study.

User journey games systematically capture the user per-
spective of services by means of so-called gas. The term is
inspired by blockchain technology such as Ethereum, where
gas refers to the cost necessary to perform a transaction on
the network. In our work, the gas quantitatively reflects how
moves in the user journey contribute to the users reaching
their goal. Consequently, the moves in the derived games

are weighted and accumulated into the gas of the journeys,
which allows journeys to be analyzed and compared using
model checkers such as Uppaal Stratego [10] or PRISM-
games [11], and to give strategic recommendations to service
providers.

This is an extended version of a paper that appeared at
SEFM 2022 [12]. Compared to that paper, we have here
expanded the discussion of user journey games, introduced
a time-driven analysis method for user journeys (henceforth
called a sliding-window analysis) which extends the analy-
sis pipeline based on user journey games, and expanded our
experimental evaluation to a significantly bigger data set. A
sliding-window analysis uses a series of automatically gen-
erated user journey games, where each game is automatically
derived from a time window in the system log. We lift the
model checking analysis to the series of games to uncover
trends and changes over time.

Outline. Sect. 2 discusses related work. Section3 provides
background on weighted games and the model checking
suite Uppaal that we use for analysis. The formal model for
user journeys is introduced in Sects. 4–6, model checked in
Sect. 7, and extended to a sliding-window analysis in Sect. 8.
Section9 discusses the implementation, Sect. 10 evaluates
our approach experimentally in terms of an industrial case
study, Sect. 11 discusses our approach and Sect. 12 concludes
the paper.

2 Related work

We discuss related work on the modeling of user jour-
neys and on using data-driven techniques to discover user
journeys, Table 1 summarizes related work and positions our
contributions. We are not aware of prior work that uses auto-
matic verification methods to analyze user journeys.

Table 1 Contributions and related work

State of the art Contribution

User journey modeling [6,
13–18]: Mostly manual, very
limited tool support

Digital support through
automated model generation
and improvement
recommendations

Data-driven process discovery
[19–26]: Lack support for
user perspective

Used to generate formal,
user-centric model with
multiple actors

Timed-arc Petri net analysis
[27, 28]: Verification of
medical processes

Building games from logs to
model actual user behavior

Concept drift detection [8,
29–31]: Detect process
changes at the event level

Quantifying changes in user
journeys over time
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User journeys aim to improve service design by describing
how users interact with services [32, 33].Modeling notations
for user journeys aim to support the so-called blueprinting
[13], i.e., to create an anticipated model of a service. There
are various notations to create diagrams for user journeys
[6, 14–18]; these diagrams are mostly handmade and only
limited digital support exists; for example, a semantic lift-
ing into ontologies has been used to visualize fixed aspects
of a model [15]: the data sent, the communication channels
and devices used, etc. Berendes et al. propose in [16] the
high street journey modeling language (HSJML) tailored to
journeys in shopping streets. Razo-Zapata et al. propose the
VIVA modeling language with focus on interactions [17]. In
contrast, our work aims to use data-driven techniques [19]
to automatically discover user journey diagrams and formal
methods to automatically check properties of user journeys
and derive recommendations for improving the service under
analysis. The aim with our work is to automate the labor-
intensivemanual mapping that captures the user’s interaction
with a service, thereby enabling scalability of user-centric
analysis of complex services with many users.

The customer journey modeling language (CJML) [7, 34]
captures the end-users’ point of view. CJML distinguishes
planned and actual user journeys,which represent the journey
as planned as part of the service design and as perceived by
the user, respectively. Our work is part of a project [2] on
tool support for data-driven user journey modeling in CJML.
Whereas previous work on CJML manually quantifies user
experience collected through user feedback questionnaires,
our work aims to capture the journeys as perceived by the
user in a data-driven manner, based on system logs.

Data-driven techniques for process discovery allow us to
discover user journeys. Harbich et al. [20] use mixtures of
Markov models to derive user journey maps. Bernard et al.
[21, 22] study process mining [19] for user journeys, such as
hierarchical clustering to explore large numbers of journeys
[23] and process discovery techniques to generate user jour-
ney maps at different levels of granularity [24]. Terragni and
Hassani [25] apply process mining to user journey web logs
to build processmodels, and improve the results by clustering
journeys. This work has been integrated with a recommender
system to suggest service actions that maximize key per-
formance indicators [26], e.g., how often the product page
is visited. David et al. present TAPPAAL [27], a tool for
analyzing timed-arc Petri nets, realized through mappings to
UPPAAL. Bertolini et al. used TAPAAL for the verification
of medical processes [28]. They focus on the graphical nota-
tion language Little-JIL, leaving the human aspect for future
work. In contrast, our work focuses on the user-centric per-
spective, using games to model actual user behavior [12]. In
this paper, we propose and use a data-driven method to auto-
matically construct formal models of user-centric journeys
with multiple actors. Complementing the work presented

here, we have studied the scalability of the basicmining tech-
nique for user journey games [35] and the integration of the
strategies derived from user journey games in an actor-based
simulation framework for user journeys [36].

The above-mentioned work inherently assumes that the
analyzed collectionof journeys is generated fromanunchanged
process. Bose et al. define different types of process changes,
so-called concept drifts, and propose their detection based
on follows- and precedes-relations at the event level with
hypothesis testing [8], recent developments on concept drift
are surveyed by Sato et al. [29]. Banham et al. extend pro-
cess models with periodically recorded numerical values to
gain closer insights into exogenous influences on a process
[30, 31]. In contrast, our proposed sliding-window analysis
does not investigate changes at the event level, but quanti-
fies changes in the user journey over time, abstracting from
the business process, thereby enabling the service provider to
quantify the impact of intented aswell as unintended changes
on the user journey.

3 Preliminaries

We briefly summarize the formal notations and tools that we
build on for the proposed user journey pipeline to analyze a
service.

A transition system [37] is a tuple S = 〈�, A, E, s0, T 〉
with a set� of states, a set A of actions (or labels), a transition
relation E ⊆ � × A × �, an initial state s0 ∈ � and a set
T ⊆ � of final states. A weighted transition system [38]
S = 〈S, w〉 extends the transition system S with a weight
function w : E → R that assigns weights to transitions.

Weighted games [9] are obtained from weighted transi-
tion systems by partitioning the actions A into controllable
actions Ac, and uncontrollable actions Au , where only
actions in Ac can be controlled by the analyzer, while actions
in Au are nondeterministically decided by an adversarial
environment. When analyzing games, we look for a strategy
that guarantees a desired outcome, i.e., winning the game
by reaching a certain state. The strategy is given by a par-
tial function � → Actc ∪ {λ} that decides on the action
of the controller in a given state (here, λ denotes the “wait”
action, letting the adversarymove). UppaalTiga [39] can be
used to analyze reachability and safety properties for games
expressed using (timed) transition systems, extending the
model checker Uppaal [40]. Uppaal Tiga checks whether
there is a strategy under which the behavior satisfies a control
objective, denoted control:P for a property P . Property
P is expressed in computational tree logic [41], an exten-
sion of propositional logic that is used to express properties
along paths in a transition system. Recall that computational
tree logic state properties φ can be decided in a single state;
while reachability properties E <> φ express that the for-
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mula φ is satisfiable in some reachable state in a transition
system; safety properties E <> φ express that the formula φ

is always satisfied in all the states of some path in a transi-
tion system and A []φ expresses that φ is always satisfied
in all the states of all paths of a transition system. Similarly,
liveness properties A <>φ express that the formula φ will
eventually be satisfied in all the paths in a transition system
and the formula φ−− > ψ expresses that satisfying formula
φ leads to satisfying formula ψ . Uppaal Stratego[10]
can be used to analyze and refine a strategy generated by
Uppaal Tiga with respect to a quantitative attribute like
weights. Uppaal Stratego is a statistical model checker
[42]; it extends Uppaal for stochastic priced timed games
and combines simulations with hypothesis testing until sta-
tistical evidence can be deduced.

4 From system logs to games

To capture the user perspective in games that model user
journeys, user actions (representing communication initiated
by the user) can be seen as controllable, and the service
provider’s actions as uncontrollable. However, from an ana-
lytical perspective, it is more interesting to treat user actions
as uncontrollable and the service provider’s actions as con-
trollable. The service provider should have suitable reactions
to all possible user interactions. Ideally, the service provider
should not rely on the user to make the journey pleasant.
Treating user actions as uncontrollable exposes the worst
behavior of the service provider, and thereby strengthens
the user-centric perspective promoted by journey diagrams.
Games for user journeys are then defined as follows:

Definition 1 [User journey games] A user journey game is
a weighted game G = 〈�, Ac, Au, E, s0, T , Ts, w〉, where

• � are states,
• Ac and Au are disjoint sets of actions,
• E ⊆ � × Ac ∪ Au × � are the transitions,
• s0 ∈ � is an initial state,
• T ⊆ � are the final states,
• Ts ⊆ T are the successful final states, and
• w : E → R is the weight function.

In user journey games, the edges E model the touchpoints,
Ac the actions initiated by the service provider, Au the actions
initiated by the user, and Ts the successful goal states.

The process of deriving such user journey games from
system logs is illustrated in Fig. 1. In a first step, we go from
logs to a user journey model, expressed as a directly follows
graph (DFG), and in a second step, the DFG is extended
to a game. The derivation of weights for the transitions is
discussed in Sect. 5.

4.1 From system log to graph

We use a directly follows graph (DFG) as an underlying pro-
cess model to capture the order of events in a system log;
a DFG is well-suited as the process model provided that
users only engage in one touchpoint at a time. DFGs are
derived from system logs by means of process discovery
[19]. A system log L is a multi-set of journeys. A journey
J = 〈a0, . . . , an〉 is a finite and ordered sequence of events
ai from a universe A .

We construct the DFG of a system log L as a transition
system SL = 〈�, A, E, s0, T 〉 where the states � capture the
event universe, � ⊆ A ∪ {s0} ∪ T. Every sequence of events
is altered to start in the start state s0 and to end in a final
state t ∈ T . Without loss of generality, we can assume that
T only contains the states finPos and finNeg, marking the
successful and unsuccessful completion of a journey, respec-
tively (i.e., Ts = {finPos} and T \Ts = {finNeg}). The
set of actions A is the union of the event universe and the
final states, A = A ∪ T. The transition relation E includes
a triple (ai , ai+1, ai+1) if ai is directly followed by ai+1 in
some J ∈ L; we can traverse from state ai to state ai+1

by performing the action ai+1. Here reaching a state in SL
is interpreted as the corresponding event in L already hav-
ing been performed. Note that events in logs represent user
journey activities as states (e.g., as depicted in Fig. 1), while
the DFG and game represent activities as transitions, and
completed activities as states. By construction, the DFG SL
obtained from log L can replay every observed journey in L .
However, SL may capture more journeys than those present
in L; for example, SL may contain transitions with loops.

There is a trade-off in the mining process between the pre-
cision and the generalization of the transition system with

Fig. 1 Creation of the journey model
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respect to the log [19, 43]: The precision can be increased
by including a part of the event history in every state. A h-
sequence refinement considers the last h events as one state.
The size of the sequence refinement is captured in the super-
script of the transition system; i.e., ShL denotes the transition
system obtained from log L under an h-sequence refinement.
We omit the superscript for history 1, thus SL is a DFG.
Assume a log L0 = {J }with one user journey J = 〈a, b, a〉,
the 2-sequence states of J are {〈a〉, 〈a, b〉, 〈b, a〉}.

The construction of the h-sequence refinement transition
system ShL from refined states is similar to the construction
of SL above (which uses the original states). The activity of
a transition is the last event in the targeted state’s history
(so transitions keep their unique action). Observe how S2L0
resolves the loop in SL0 by including the histories. However,
not all loops can be removed using the h-sequence refine-
ment.

4.2 From graph to game

The transition system ShL is now transformed into a user jour-
ney gameGh

L . Observe that the transition system captures the
temporal ordering of events but it does not directly differenti-
ate the messages sent by the user to the service provider from
those sent by the service provider to the user. For simplicity,
let us assume that this information is either part of the events
in the logs or known in advance from domain knowledge
concerning the event universe. The mined transition system
can then be extended into a game by annotating the actions
that are (un)controllable.

5 Capturing user feedback in user journey
games

We extend the games derived from system logs into weighted
games by defining a gas function reflecting user feedback.
The gas functionwill be automatically calculated and applied
to the transitions of the game, depending on the traversal and
entropypresent in the system log. Informally, the gas function
captures howmuch “steam” the consumer has left to continue
the journey. With less steam, the user is more likely to abort
the journey and with more steam, the user is more likely
to complete the journey successfully. If the service provider
attempts to provide the best possible service, its goal is to
maximize gas in a journey. The adversarial user aims for
the weaknesses in the journey and therefore minimizes the
gas. Formally, the weight function w : E → R maps the
transitions E of a game toweights, represented as reals.Given
a log L and its corresponding game, we compute the weight
for every transition e ∈ E .

Since user journeys are inherently goal-oriented, we dis-
tinguish successful and unsuccessful journeys; the journeys

that reach the goal are successful and the remaining journeys
are unsuccessful. This is captured by a function majority :
E × L → {−1, 1} that maps every transition e ∈ E to
{−1, 1}, depending on whether the action in the transition
appears in the majority of journeys in L that are unsuccess-
ful or successful, respectively. Ties arbitrarily return −1 or
1.

Many actions might be part of both successful and unsuc-
cessful journeys. For this reason, we use Shannon’s notion
of entropy [44]. Intuitively, if an action is always present in
unsuccessful journeys and never in successful ones, there is
certainty in this transition.The entropy is low, sinceweunder-
stand the context in which this transition occurs. In contrast,
actions involved in both successful and unsuccessful jour-
neys have high entropy. The entropy is calculated using

1. the number of occurrences of an event in the transitions
of successful journeys within the system log L , denoted
#pos
L e, and the number of transitions in unsuccessful ones,

denoted #negL e; and
2. the total number of occurrences of the event in L , denoted

#Le.

The entropy H of transition e given the system log L is
now defined as

H(e, L) =
− #posL e

#Le
· log2( #

pos
L e
#Le

) − #negL e
#Le

· log2( #
neg
L e
#Le

) .

The weight function w that computes the weights of the
transitions can now be defined in terms of the entropy func-
tion, inspired by decision tree learning [45]. Given a system
log L , the weight of a transition e is given by

w(e) = ((1 − H(e, L)) · majority(e, L) − C) · M .

The constant C represents an aversion bias and is learned
from the training set. It is used to model a basic aver-
sion against continuous interactions. The sign of a transition
depends on its majority. If the transition is mostly traversed
on successful journeys, it is positive. Otherwise, it is neg-
ative. The inverse entropy factor quantifies the uncertainty
of transitions. The constant M scales the energy weight to
integer sizes (our implementation currently requires integer
values, see Sect. 9).

The gas quantitatively reflects the history of a journey,
allowing us to not only compare the weights of transitions
but also to compare (partial) journeys. The gas G of a journey
J = 〈a0, . . . , an〉 with transitions e0, . . . en−1 is defined as
the sum of the weights along the traversed transitions:

G(J ) :=
n−1∑

i=0

w(ei ) .
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6 Finite unrolling of games

The generated weighted games may contain loops, which
capture unrealistic journeys (since no user endures indefi-
nitely in a service) and hinder model checking. Therefore,
the weighted games with loops are transformed into acyclic
weighted games using a breadth-first search loop unrolling
strategy bounded in the number of iterations per loop. The
transformation is implemented in an algorithm that preserves
the original decision structure and adds no additional final
states.

The algorithm for k-bounded loop unrolling (shown in
Algorithm 1) returns an acyclic weighted game, where each
loop is traversed at most k times. The unrolling algorithm
utilizes a breadth-first search from the initial state s0 in com-
bination with loop counting to build an acyclic weighted
game. In the algorithm, the state s denotes the current state
that is being traversed. To traverse the paths in the weighted
game, we use a queue Q to store the states that need to be tra-
versed, a set C containing all the cycles in the graph (where
each cycle is a sequence of states), and the function allSim-
plePaths(G,s,T) that returns all paths in the weighted game
G from s to anyfinal state t ∈ T . The extended graph is stored
in the acyclic game G ′. A state in a cycle can be traversed
if it has been visited less than k times (see Lines 9–10). The
function repetitions checks the number of traversals. If the
counter for one cycle is k, the algorithm checks whether the
cycle can be partially traversed (see Lines 11–16).

Partial traversals guarantee that we reach a final state
without closing another loop. The partial traversal does not
increase the count of another cycle to k + 1 (Lines 14–16).
Every state stores its history (a sequence of visited states),
which can be retrieved using the function history. Line 14
increases the current history by including a (partial) path
through the loop. This check iterates through all paths from
the current state to any final state. If state t can be traversed,
it is added to the acyclic game (Lines 17–20). A copy t ′ of t
is added to the queue Q, the transition (s, t ′), its weight and
actor are added to G ′ using the function addTransition. If
a final state is copied, the new set of final states is updated
(i.e., T ′ ← T ′ ∪ {t ′}). The resulting weighted game can be
reduced. All copies of states outside a cycle can be merged
into the same state. This can either be done after unrolling
the whole game or on the fly while unrolling.

6.1 Example

Figure2 illustrates the unrolling algorithm (for simplicity, we
ignore transition weights and do not distinguish controllable
and uncontrollable actions in the example). Starting from the
cyclic weighted game in Fig. 2a, the algorithm with k = 1

Fig. 2 Unrolling example

generates the acyclic weighted game in Fig. 2b. The input
contains two loops: C = {〈2, 3〉, 〈2, 4, 3〉}.

Starting at state 1, we can traverse two neighbor states
which both are part of the cycles. Thus, both transitions are
inserted in G ′, and Q is updated to 〈2, 3〉. Continuing with
state 2, all reachable transitions are again inserted as the cor-
responding cycles have not been fully traversed. Names of
copies of the states that are already present once in the graph
are incremented (the first occurrence of state 3 is called 3, the
second 3.1, the third 3.2, etc.) The algorithm continues until
the first loop 2, 3, 2 is closed. In this case, it is not possible
to traverse again to state 3 without closing the loop 〈2, 3〉.
Only state 4 and its corresponding loop can be traversed (see
Fig. 2b, left branch). As result of the state reduction, all final
states are merged into one (removing the copies originally
introduced by the algorithm).
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Algorithm 1 k-bounded loop unrolling
Input: Weighted Game G = 〈�, Ac, Au, E, s0, T , Ts , w〉, constant k ∈ N

+
Output: Acyclic Weighted Game G ′ = 〈�′, Ac, Au , E ′, s0, T ′, Ts , w′〉
1: Initialize G ′ = 〈∅, Ac, Au ,∅, s0,∅, Ts , w〉 and queue Q = [s0]
2: C ← {c | c is simple cycle in G}
3: while not empty(Q) do
4: state s ← first(Q)

5: for t ∈ {t | (s, t) ∈ E} do
6: hist ← push(history(s), t)
7: allSmaller ← True
8: canTraverse ← False
9: if repetitions(c, hist) ≥ k for all cycle c ∈ C then
10: allSmaller ← False
11: end if
12: if !allSmaller then
13: P ← allSimplePaths(G, t, T )

14: for path p ∈ P do � check whether cycle might be partially traversed
15: hist ′ ← merge(hist, p)
16: if repetitions(c, hist ′) ≤ k for all cycle c ∈ C then
17: canTraverse ← True � cycle can be partially traversed
18: end if
19: end for
20: end if
21: if allSmaller ∨ canTraverse then
22: state t ′ copy of t with history hist
23: push(Q, t ′)
24: addTransition((s, t ′),G ′) � Copies weight to w′ and actor to A′

c, A
′
u

25: end if
26: end for
27: end while
28: return G ′

6.2 Properties

Algorithm 1 constructs an acyclic user journey game that
preserves the decision structure of the initial weighted game.
By construction, unrolled weighted games do not traverse
cycles in the initial game more than k times. Loops can be
traversedpartially to ensure that everyfinal state in the acyclic
weighted game is also a final state in the initial weighted
game. Only unreachable states are excluded in the acyclic
game. No further final states or “dead ends” are introduced.

The following lemma expresses that Algorithm 1 con-
structs an acyclic user journey game that preserves the
properties described above.

Lemma 1 Let G = 〈�, Ac, Au, E, s0, T , Ts, w〉 be a user
journey game, k ∈ N

+ the loop unrolling constant, and G ′
the unrolled game returned by Algorithm 1 for inputs G and
k. Then

1. G ′ as acyclic.
2. No path in G ′ traverses a loop via original nodes in G

more than k times.
3. Final states in G ′ are copies from states in T .

Proof (sketch).
Point 1 is ensured in the algorithm by only inserting edges

to fresh copies of states and never to existing ones (Line 24).
Points 2 and 3 follow from the algorithm’s criterion for

inserting new states (Line 21): to add a state to the unrolled
game, either no loop is traversed more than k times or there
exists a path leading to a final state in T that does not close
any loop for the k + 1-th time. ��

The algorithm also preserves the local decisions between
controllable and uncontrollable actions, so the strategies
found in the unrolledweighted game carry over to the original
weighted game. Observe that a game and its corresponding
unrolled game share final states only if the unrolled game is
reduced by merging states that do not occur in loops. Other-
wise, the unrolled game might contain various copies of the
final states T .

7 Model checking user journeys

In this section we describe how to model check proper-
ties for user journeys and generate strategies to improve
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user journeys, using acyclic weighted games. The analysis
of a weighted game gives formal insights into the perfor-
mance of a service. We introduce generic properties that
capture the user’s point of view on a user journey. The anal-
ysis in this paper uses the Stratego extension for Uppaal
[10], which supports non-deterministic priced games and
stochasticmodel checking.Stratego allows tomodel check
reachability properties within a finite number of steps, when
following a strategy (therefore the need for acyclic games).
Stratego constructs a strategy that satisfies a property
P , so that the controller cannot be defeated by the non-
deterministic environment. We detail some strategies and
properties of interest for games derived from user journeys.

7.1 Guiding users to a target state

A company needs a suitable plan of (controllable) actions for
all possible (uncontrollable) user actions when guiding users
through a service. We define the following Uppaal Strat-
ego strategy:

strategy goPos

= control:A <>Journey.finPos .

Model checking this property returns true if and only if
there exists a company-strategy goPos such that the positive
target state finPos, indicating that the journey is success-
ful, is eventually reached in all paths. The corresponding
strategy (given as a pseudocode) can be produced with the
Uppaal Tiga command-line tool verifytga. If the verifi-
cation fails, the company should be advised to simplify their
service and offer more support to avoid unsuccessful user
journeys.

7.2 Analyzing user feedback

Wecan use the gas function and a liveness property to analyze
the desired accumulated feedback at the end of successful
user journeys:

Journey.finPos −−> gas > 0 under goPos .

This property checks that in general users have balancing
experienceswithin their journeys,when the company follows
the goPos strategy.

We can also check the feedback levels along the journey.
The following property checks that a user never falls below
a defined constant feedback C:

control:A []gas > C under goPos .

Fluctuations in the feedback level of users can be revealed
using simulations. Uppaal uses an implicit model for the

passage of time to guarantee termination of statistical queries
and simulations, using an upper time-bound T, as specified
in [10]. The following query simulates X runs through the
system using the goPos strategy, where each run has T as a
time-bound:

simulate[t<=T; X]{Journey.finPos, gas}

under goPos .

The time-bound is set to a value that guarantees all runs to
reach a final state.

7.3 Analyzing user journey trajectories

Reaching a final state in a journey with a positive feedback
does not ensure a satisfying journey. The user might still
visit every pitfall along the way. To provide a satisfying jour-
ney, a company is among others interested in minimizing the
expected number of steps. A strategyminimizing the number
of steps can be defined as follows:

strategy goPosFast = minE(steps) [t<=T]:
<> Journey.finPos under goPos .

This strategy can additionally be used to examine the
expected lower bound of gas within a journey and the
expected maximum value of accumulated gas at the end of a
journey (denoted by finalGas):

E[t<=T; X] (min: gas) under goPosFast

E[t<=T; X] (max: finalGas) under goPosFast .

These values are computed with a time-bound of T and over
X runs. We denote the results of the previous queries for a
specified model by minGas and maxFinalGas.

User journey games, generated from logs, can be very
detailed and complex. Therefore, we consider how we can
reduce complexity and simplify the understanding of results,
for example, during a validation process, the resultsmay need
to be put into context by domain experts. We can reduce
complexity by grouping various states into phases; e.g., a
sign-up phasemay consist of the states in a user journey game
that captures sign-up events in a service. We lift the analysis
described above to phases, e.g., to find out in which phase we
encounter minGas or maxFinalGas. This lifting from states
to phases can be encoded in the model such that every state
lies in exactly one phase. Under a h-history refinement, the
encoding should capture that a state belongs to a phase if the
last state refined in the h-sequence belongs to that phase. The
encoding of phases in states allows us to check if, e.g., the
minimum gas Min occurs in a specific phase P by means of
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the following query:

control:A <>gas <= Min && phase == P

under goPos .

The valueMin used in this query can be calculated in advance,
e.g., by means of the minGas query.

8 Sliding-window analysis for journeys

The analyses discussed in the previous sections inherently
assume that the system logs are generated from an unchanged
process; i.e., the data is recorded under equivalent sys-
tem settings. In a fast-paced business setting, changes and
updates are constantly developed, integrated, and evaluated.
Recorded data may no longer be representative of the current
state of the system. Nevertheless, practitioners are interested
in the effectiveness and impact of their changes, motivating
the need for time-driven user journey analysis. The recorded
data cannot be interpreted as one, coherent data set but must
be analyzed in correspondence with their temporal informa-
tion. Journey records before and after system-level changes
are not recorded from the same process: issues observed in
earlier journeys might be resolved at later stages and other
issues only appear in later journeys. When analyzing mas-
sive system logs collected over a long time, the impact of
architectural changes might be buried. Mixing journeys from
different data-generation processes skews the evaluation of
changes and newly introduced features in a system.

We now introduce steps to leverage the previous analysis
method into a time-driven analysis and consider points in
time over the time domainR+. Hence, we define time points
for every user journey, e.g., the start of the journey, and split
the log into sub-logs containing only journeys in the same
interval, e.g., all journeys starting within 10 days. For every
sub-log, an individual user journey game is generated and
stored in a sequence of games. Model checking the sequence
of games individually returns a time series over the single
model checking results, revealing the impact of changes in
the user journey over time. Given a log L , let I ⊂ R

+ be
a finite sequence of time-points I = 〈tp1, . . . , tpn〉 with
tpi ∈ R

+; e.g., Idays contains time-points for every 24 hours
between the first and last day of the timestamps present in L
(mapped into the domain of R+). Given a constant window
sizeμ ∈ R

+, we letWi = [tpi , tpi +μ] denote awindow that
represents a time interval spanning from time-point tpi ∈ I
to tpi +μ.

Given an event a in a journey J , the time function δ(J , a)

denotes the timestamp of a in J (mapped into the domain
of R+); e.g., the timestamp of the first or last event in a
journey. The sliding-windowanalysis can be adapted to focus
on different events by selecting other events as the second

Fig. 3 First window in sliding-window log

argument to δ; e.g., users finishing their journeys in the same
window or users experiencing a particular event in the same
window. We ignore the second argument to the function δ if
we use the first event in a journey a0 to select the timestamp
of the initial event in a journey J = 〈a0, . . . , an〉. In the
sequel, we focus on sliding-window analysis based on the
initial event of the journeys, and therefore, we write δ(J )

when the second argument is a0.
The sub-log Li ⊂ L , defined over the window Wi ,

includes all journeys in L that are contained in Wi , formally
Li = {J ∈ L | δ(J ) ∈ Wi }. Thus, a journey J ∈ L is in Li

if δ(J ) is in the windowWi . We define a sliding-window log
L
I
μ = 〈L1, . . . , L |I|〉 to be a sequence of sub-logs over L ,

where journeys are grouped based on the windows Wi rang-
ing over time stamps I and window size μ.1 Observe that
sliding-window logs contain complete journeys; i.e., jour-
neys are not split by thewindow size if they are not completed
within a window. Figure3 shows (in red) the first sub-log L1

of the sliding-window log W1 grouped by journey start time
(the timestamp of the first event), the top-most journey (in
white) is not in L1 as it starts outside the window size μ.

We analyze sliding-window logs to uncover changes over
time from the user’s perspective. For every log Li in a
sliding-window log LI

μ, we construct the corresponding user
journey game; the resulting sequence of user journey games
is denotedGh,where h denotes the chosen h-sequence refine-
ment. Each user journey game might contain loops and
require unrolling to ensure that the analysis of queries ter-
minates. Given an unrolling parameter k, we construct Gh

k,
which contains the sequence of k-bounded loop-unrolled user
journey games from G

h.
The games of the sequence G

h
k are individually model

checked, resulting in a time-series of strategies and statis-
tics describing the user journeys. Queries might depend on
each other; e.g., properties using the goPos strategy depend
on its prior successful establishment. In case goPos can-
not be established, all depending queries are mapped by
default to a predefined constant. As multiple queries from
a sequence of queries Q can be used on every user jour-
ney game Gh

Li
∈ G

h
k, the result is a series of vectors Q

G
h
k

describing the analysis of the user journey games over time.

1 In the sequel, we assume that the time function selects the time of
the first event of a journey and omit the time function δ in the sliding-
window log notation L

I
μ .
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Every query qi ∈ Q has a well-defined solution space Si ;
e.g., control queries return strategies that map states to
actions, expectation queries minE(steps) [t<=T] return
values in R+ (expectation values with confidence intervals).
Thus, each result vector ν ∈ Q

G
h
k
has |Q| entries, one result

for each query qi . The space of ν is defined by the solution
spaces Si of the corresponding queries qi , therefore

ν : S1 × · · · × S|Q|. By comparing the analysis results in
Q

G
h
k
, we can gain insights into the temporal changes occur-

ring in the user journeys of a system.

9 Implementing the pipeline to analyze user
journeys

This section describes the implementation of the analysis
pipeline detailed in Sects. 4–8. We focus on the implemen-
tation decisions made along the pipeline to facilitate the
analysis. A source repository for our work on user journey
games is available online [46].

The pipeline is implemented in Python. The input to the
pipeline is a system log of a service provided by a company,
and optionally a window size and time-points. The output is
either a singleUppaalmodel or a sequence ofUppaalmod-
els (if the window size and time-points are given). Sequences
of models are generated by repeatedly calling the single win-
dowconstruction for all sub-logs. The returnedmodels can be
model checked by either the proposed properties in Sect. 7 or
by other custom-made properties using Uppaal Stratego.

9.1 Pipeline implementation for single window logs

Here,we describe the implementation of the analysis pipeline
for a single log. We mine the transition system from logs and
then remove transitions that were rarely traversed, to sim-
plify the graph and make it robust. Leemans et al. describe
two ways to build a robust transition system [47]: One can
(1) remove either transitions from the graph or (2) remove
journeys from the log and rebuild the graph. For single win-
dow analysis, we use the approach (1) above, since removing
journeys requires larger datasets. This modification ensures
that the model only contains relevant journeys. Our imple-
mentation supports h-sequence refinements with transition
removals.

We enrich the graph with knowledge indicating which
actions are controllable and uncontrollable. Since companies
want to understand why on-boarded users reach their goal or
quit in the middle of a journey, we add to the model two
final states representing a positive endpoint, finPos, and a
negative one, finNeg, respectively.

We generate a weighted transition system by computing a
weight for each transition, as discussed in Sect. 5. The factor
M scales the weights to integer sizes, required by Uppaal’s

model checker. However, given that we can simplify the tran-
sition system, the logs might contain journeys that are not
re-playable in the graph. Computing the gas of such journeys
corresponds to the alignment problem [47, 48]. The align-
ment procedure consists of either allowing additional steps
in the log without counterparts in themodel or allowing steps
in the model without steps in the log. Since the simplifica-
tion omits steps in the model, it was here sufficient to use the
information given in the log, without inferring further model
steps. Optimal alignments can also be used to compute the
gas.

As a final step, we unroll the weighted game with cycles,
as described in Sect. 6, to obtain an acyclic weighted game,
which is the output of the transformation and the input to
Uppaal for further analysis. Bounded constraints in the
properties are introduced to the unrolled model to ensure
termination.

9.2 Pipeline implementation for sliding-window
logs

For the sliding-window analysis, we use time function δ(J ),
mapping journeys J to their start times, days between the first
and the last journey as time-points Idays, and a fixed window
size μ, resulting in a sliding-window log L

Idays
μ , see Sect. 8.

The number of users may vary highly between sub-logs Li ,
andmany journeys contain rarely traversed transitions. Thus,
we use h-sequence refinements without removing transitions
to guarantee connected models.

For every sub-log Li inL
Idays
μ we generate a new user jour-

ney game with h-sequence refinement. Each of the resulting
games is then k-times unrolled. The unrolled game G

h
k is

then model checked with a sequence of Uppaal Stratego

queries Q.

10 Experiments

In this section we evaluate the pipeline for user journey
analysis from Sect. 9 experimentally. We aim to answer the
following research questions:

RQ1:Does the user journey game analysis reveal action-
able insights for stakeholders?
RQ2: Can user journey games be used over a time series
of system logs to discover changes in the user journey?
RQ3:Howmuch does the experience of using the service
differ from customer to customer?

The evaluation was done on an industrial case study from
the company GrepS. We describe the context for the system
logs provided byGrepS in Sect. 10.1, the experimental design
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Fig. 4 Extract of GrepS’ system logs

and setup for our experiments in Sect. 10.2 and the results
we obtained in Sect. 10.3. The results are discussed from the
industrial perspective of GrepS in Sect. 10.4 and threats to
validity are considered in Sect. 10.5.

10.1 Context

GrepS is a company that offers a research-based service
[49] to analyze and measure programming skills for the Java
programming language. Typical customers are organizations
hiring or training software developers. The users of the ser-
vice are developers who receive a request from a customer
organization to complete a skill analysis within a given time
frame, typically 1–2 weeks.

The service consists of a sign-up phase followed by a
phase inwhich users solve programming tasks in an authentic
programming environment, including an instructional task
and a practice task. The service then analyzes the users’ skills
and asks them to share the skill report with the customer. In
a successful use of the service, a user successfully completes
three phases: (1) sign up, (2) solve all programming tasks, and
(3) review and share the skill report. In an unsuccessful use
of the service, the user permanently stops using the service
or does not share the report with the customer.

GrepS provided two anonymized system logs for our
experiments:

• GL1 is a small system log recording users’ interactions
with the system during 49 days (released in spring 2022,
initially reported in [12]),
and

• GL2 is a large system log spanning over more than two
years of users’ interactions with the system (released in
December 2022).

GL1 is not contained in GL2, since they span different time
frames. The logs were provided in the form of tabular data;
only the fields Timestamp, which gives the order of events,
and Metadata, containing meta-information on the kind of
event, were used to generate the weighted games.

Ties between concurrently recorded events can be broken
either arbitrarily, capturing different order of execution for
these concurrent events in the model, or by inferring (imply-
ing) an order, e.g., the order events are stored in the event log

file, thereby reducing the number of transitions in the model.
In our experiments,wedecided to break ties arbitrarily to cap-
ture different orders of execution and not assume additional
expert knowledge for the model generation that could give
insights about certain orders of events that are expected in
the journey. An extract of the system log is shown in Fig. 4.
The full details of the data sets in the log are given in the
accompanying artifact.2

10.2 Experimental Design and Setup

To answer our research questions,
GL1 was used for the single-window analysis and GL2

for the sliding-window analysis, respectively.
RQ1. We analyzed the user journey game generated from
GL1. The outcomes of the analysis are then discussed from
the comapny’s perspective in Sect. 10.4. The analyses of the
user journey game include:

RQ1-A: Observations of the weighted game,
RQ1-B: Observations of the model checking of the prop-
erties, and
RQ1-C: Further recommendations for GrepS to improve
their service, based on the analysis results.

The recommendations in RQ1-C form the basis for the
discussion in Sect. 10.4.

RQ2. We analyzed the user journey games generated from

GL2. We generated a sliding-window log L
Idays
49 in which

the window size for the sliding-window analysis was set to
49 days, the length of the log GL1, and considered each
day between the first and last journey as the time-points
(Idays). Comparing different window sizes reveals that the
2-sequence refinement is sufficient to reduce the number of
loopswhile generating gameswith the least number of states,
longer sequence refinements increase the number of states
and did not contribute enough to the reduction of cycles.
We unrolled the resulting games, returning the sequence of
acyclic gamesG2

1, i.e. we construct games with a 2-sequence
history and an unrolling parameter of 1.

We use all queries besides (2) and (3) from Fig. 5 as query
sequence Q. The vector-sequence Q

G
2
1
contains the results

from querying the game sequence G2
1, and contains |LIdays

49 |
vectors ν of size 8, whereby the first and fifth element in each
ν contains the established strategies goPos and goPosFast.
As the models are automatically generated, they do not nec-
essarily allow for a guaranteeing strategy goPos; for this

2 An artifact for the implementation and evaluation of the single-
window analysis pipeline, the sliding-window analysis pipeline, and
the second system log is available: https://doi.org/10.5281/zenodo.106.
66884
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Fig. 5 Analysis of the weighed game generated from GL1

reason, we choose default values not in the query’s solution
space: −1 for non-negative results, e.g., maxFinalGas, and
1 for non-positive results, e.g. minGas. The analysis consists
of two parts:

RQ2-A: Identify sub-logs for which no guaranteeing strategy
goPos could be established, and
RQ2-B: Identify general insights gained from model check-
ing the game sequence G2

1.

RQ3. We analyzed the user journey games generated from
GL2 by filtering per customer company the journeys con-

tained in each sub-log in L
Idays
49 ; i.e., we grouped users

applying to the same company and built sliding-window logs
for the three largest customers which commissioned 78% of
the users in GL2. To compare the experiences of different
customerswith the overall experience,we repeat experiments
conducted for RQ2 on the filtered event logs. We extend the
analysis and investigate the service phases in which users
experience their minimum of gas to uncover the customer-
specific behavior of their users.

10.3 Results

RQ1. The observations in the generated user journey game
(RQ1-A) for GL1 and results from simulations and model
checking (RQ1-B) lead to actionable insights concluded in
improvement recommendations for the service (RQ1-C).

RQ1-A.The generated cyclic user journey game forGL1,
which still contains loops, is shown with events (or touch-
points) T andweighted transitions in Fig. 6.We opt to remove
transitions with less than four traversals to ignore rare transi-
tions yet keep the graph connected. In thefigure, the transition
thickness indicates how often a transition was traversed and
dashed lines represent uncontrollable transitions. Positive
(negative) transitions are green (respectively, red).

The derived weights already allow us to make some
interesting observations. The weighted game shows negative

weights (about −1 to −2) through Phase 1 (T0–T5), up until
the practice task has been completed (T12) in Phase 2 (T6–
T20). After that, the weights are positive (about +1 to +5)
and increase steadily for each new task. Phase 3 (T21–T26)
also has positive weights through the user journey; here, a
developer logs back into the web system after having com-
pleted all tasks (T19), waits for the report to be ready (T21),
and finally approves the sharing of the report with GrepS’
customer (T26).

Phase 1 shows two negative weights for some users that
involve more touchpoints than what the planned journey
entails: (1) T4 captures an error where a virtual computer
does not spin up correctly thereby requiring the user to con-
tact support; (2) there are cyclical negative weights between
T6–T8 where a user starts receiving instructions for Phase 2,
but stops and then returns to the system again at a later time.
Phase 3 also has negative weights due to deviations from the
planned journey, for example when the user does not login
after the report is available (T24).

The figure also shows a strong negative weight (of −22)
when a user does not submit the practice task inT11, resulting
in a negative outcome, a transition to finNeg. Seen from a
user perspective, Fig. 7 shows the four touchpoints where
most users stop using the service: 18% of all users quit after
finishing the practice task (T10), which is twice that of users
who stop after the first (T12, 9%) and second task (T14, 9%);
12% of the users do not want to share their report (T25). The
blue line shows how many users remain using the service in
percent after each of the four touchpoints.

RQ1-B. The accumulated feedback along the paths of
the journey supports the observations on unsuccessful jour-
neys (RQ1-A). Figure8 shows 10 simulationswith the goPos
and goPosFast strategies; the lines show the amount of gas
(accumulated feedback) along the journey. We here used
k = 1 for the unrolling. For all simulations, the gas has an ini-
tial dip with a steep increase afterward. The results in Fig. 5
summarize the model checking and support the observations
for RQ1-A. Observe that the goPos strategy cannot prevent
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Fig. 6 The weighted game built from GL1

Fig. 7 Events in unsuccessful journeys of GL1

Fig. 8 Uppaal simulations

the gas from falling below 0; in fact, it can fall as low as
−42 along the journey with an expected minimum of−26.3.

Depending on the application context,multiple factors can
contribute to an optimized journey. The strategy goPosFast

was introduced in Sect. 7 as a refinement ofgoPos. It searches
for an optimal strategy toward a successful final state, while
minimizing the expected number of steps. The lower part of
Fig. 5 evaluates the queries under goPosFast. The simula-
tions of the refined strategy, in Fig. 8, show a smaller dip than
with the goPos strategy. It improves the expected minimum
feedback by 7.4 units and reduces the expected length of the
journey by 6.6 steps. The expected maximum final feedback
is also reduced from 65 to 36.

RQ1-C. From the company’s perspective, several key
takeaways have been identified from the weighted game, the
simulations, and the model checking of properties:
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Fig. 9 Development of users and goPos in sliding-window log L
Idays
49

• The instructional task and practice tasks during Phase 2
should be integrated into a single task that is more moti-
vating for the user to complete.

• Users that disconnect from the service for several days
after having progressed to the instructional, practice, or
first task should be prompted to continue by, e.g., auto-
matically sending a motivational email.

• The sign-up process should be simplified if possible.

RQ2.We generated a sliding-window analysis for GL2. We
answer the second research question in two steps: RQ2-
A analyzes the automatic construction of the time series
which requires guaranteeing strategies, and RQ2-B groups
the resulting time series into regions of interest.

RQ2-A.For apositive user experience, the companyought
to guide the users to a positive endpoint, supporting them
in achieving their journey’s goal. We test if a guaranteeing
strategy exists in every sub-log, with a focus on the sub-logs
in which GrepS cannot guide users to a positive outcome, i.e.
goPos does not exist.

Figure9 shows the number of users in each sub-log Li for

the sliding-window log L
Idays
49 . Here, sub-log Li starts i days

after the first journey in GL2. The sub-logs in which goPos

cannot be established aremarkedwith red crosses. GrepS can
establish a guaranteeing strategy for all sub-logs except for
sub-logs 140–189, which coincides with the observed global
peak of users. Further analysis of the game sequence reveals
that the previously discussed technical error re-occurs after
the completion of the first task (see RQ1-B). This behavior
is also observable at a later time in which it does not hinder
the construction of goPos.

Requiring a guaranteeing strategy reveals flaws in the user
journey: encountering technical errors prevents users from
progressing and favors unsuccessful journeys.

RQ2-B. Sub-logs that allow for a guaranteeing strat-
egy goPos are analyzed on their expected number of steps
throughout the journey, the minimum gas within the execu-
tion, minGas, and their maximum final gas, maxFinalGas;
each under goPos and the refined strategy goPosFast (min-
imizing the number of required steps). The model checking
results for Q

G
2
1
are presented in Fig. 10 (results from strate-

gies are not captured). Sub-logs without a guaranteeing
strategy aremarkedwith red crosses. Results undergoPos are
depicted in the first row (see Figs. 10a–c), and results under
goPosFast are depicted in the second row (see Figs. 10d–f).

The average number of steps under goPos simulations
is around 25, and under goPosFast it is reduced by
around 5 steps. These results align with what we previously
observed while analyzing GL1, see Fig. 5. Low gas in the
sliding-window log is captured by minGas and high gas by
maxFinalGas. With minGas ≥ 0, the gas never drops below
0, thus all negative transitions are timely balanced by positive
ones. Significant intervals in minGas are revealed through
manual analysis and marked in Fig. 10, improvements are
highlighted with a green background span and declines with
a red background span:

1. Sub-logs after the first 120 days show improvements
under both strategies minGas and maxFinalGas, respec-
tively.

2. Sub-logs 270–320, 390–450, and 550–610 display that
minGas suddenly drops under goPos and goPosFast.

3. The expected number of steps steadily increases in thefirst
half of the recorded logs, and then cycles around 25 steps,
with an exception in the later drops. The drops in minGas

align with changes in the expected number of steps in the
journey.

In between these drops, maxFinalGas peaks at different
heights ranging from 200 to 400. Besides these drops, GrepS
is able to sustain the user journeys on a constant level:minGas
is often bounded by 0 and maxFinalGas fluctuates around
200.

RQ3. From the 517 users in GL2, 78% are commissioned
by three different customers: customers c1, c2 and c3 com-
missioned 260, 96, and 46 users, respectively, corresponding
to 50%, 19% and 9% of the total users. Figure11 shows the
distribution of users belonging to customers c1, c2, and c3 in
relation to all users per sub-log. Observe the drift in users: c2
commissions the largest share of users initially, but stops after
200 days. From there on, c1 commissions constantly 80% of
the users. We constructed three filtered sliding-window logs
by only considering users for the same customer: Lci filters

sub-logs from L
Idays
49 to users from customer ci ∈ {c1, c2, c3}

only.
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Fig. 10 Model checking results Q
G
2
1
, improvements are highlighted with a green background span and declines with a red background span

Fig. 11 Distribution of users by customer per sub-log in L
Idays
49

Figure 12 compares the distribution of successful users per
sub-log for the three customers with respect to the general
performance of all users, showing that the users of customer
c1 consistently outperform those of customer c2.

The extended technical error (see RQ2-A) only occurs
for customer c1. Although customer c3 strongly varies in
the number of commissioned users, their average number of
steps and minGas are very stable, maxFinalGas, however,
has a very high variance. Customer c3 shows two drops in
minGas: one occurs slightly before the drop around sub-log

Fig. 12 Distribution of successful users by customer in L
Idays
49

300 and the other does not align with previous observations.
These two drops in performance should be used to improve
the service offered to customer c3 and its users.

In RQ1 we observed that the phase in which low gas is
experienced coincides with the most demanding part of the
user journey. We now shift the analysis to the three phases of
the user journey: (1) sign-up, (2) task-solving, and (3) review.
We lift the query from states to phases by encoding phases in
the Uppaal model, such that minimum gas is mapped to a
phase, and differentiate the severity of lowgas; e.g., a minGas
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of 0 can be expected in the beginning of the journey, whereas
a −30 low in the review phase depicts a serious problem at
a late stage of the journey.

The low gas for customer c1 appears mainly in the sign-
up phase, customer-specific drops however move low gas
into the task-solving or review phase. The customer anal-
ysis reveals that the maxFinalGas peak for customer c2
appears after an improvement in minGas and maxFinalGas

in sub-logs 0–120, which is also accompanied by stability
in minGas afterward, after which customer c2 stops to com-
mission users. The low gas occurs in the task-solving phase,
favoring these sub-logs for further analysis.

10.4 Evaluation

From the perspective of a company considering automated
analyses of user journeys, as proposed in this paper, it
is essential to assess whether the proposed method yields
actionable insights. The results reported forRQ1 in Sect. 10.3
demonstrated that user journey games derived from system
logs can discover weaknesses in designed user journeys, and
be used to improve and optimize these journeys. The com-
pany needs to implement additional actions in their service,
whichwill improveuser satisfaction and reduce costs in terms
of resources. Further, the sliding-window analyses for RQ2
andRQ3detectedmajor technical challengeswith the service
at certain points in time and showed that the user experience
differs considerably for the users from threemajor customers.
These results are evaluated by the third author, a long-term
GrepS employee with experience in user and customer rela-
tions.

RQ1. The weighted game detects challenges early in Phase
2; in fact, this is reassuring for our analysis, as prior work at
GrepS has reported that the users struggle more during the
first three tasks [49]. However, a question that arises from
our analysis of the derived user journey game is whether
good user support during deviations from the planned jour-
neymay result in better overall satisfaction than if the planned
journey had no deviations. It seems plausible that unplanned
journeys that involve technical problems result in less moti-
vated users who are less likely to successfully complete the
journey. However, interactions with support may also result
in additional service to the user that yield positive weights in
the overall game.

RQ2. We identified four separate periods to be of primary
interest, highlighted spans in Figs. 10a–f: one green (favor-
able) period, and three red (negative) periods. The periods
were detected purely based on logs, no supplementary infor-
mation was available. We paraphrase the feedback we got
from the company on these four periods next. The initial
favorable period occurred when three full-time equivalent
developers were in an intensive development phase. The

company was running out of funding at the time and focused
all its effort on testing out a business-to-customer (B2C)
version to secure new funding by building an extension to
its existing business-to-business (B2B) solution. The favor-
able period lasted until about one month after the money ran
out and all employees were laid off. The three subsequent
negative periods all occurred during company-critical events
where new funding was attempted but failed. The first and
second periods coincide with a point in time when the two
founders found a new (main) employer; the third period coin-
cides when the point in time when the company’s IP was sold
to the present owner. Overall, our method thus seems to be
able to identify both gradual technical system improvements
as well as hardships that a company might face, e.g., as a
result of losing key personnel.

RQ3. It has become clear during this evaluation is that
the possibility of segmenting user journeys into sub-groups
is needed for companies to make meaningful and timely
changes to the software and the overall service. It seems
reasonably clear that the three companies’ data-generating
mechanism (via users) is different, probably due to differ-
ences in the customer hiring process. By combining gas
analysis (RQ2) with customer-specific analysis (RQ3), the
recommendation for customer c1 would be to investigate
potential problems with the (first) sign-up phase closer. In
contrast, customer c2 has more issues during the (second)
solve task phase. Differences between customer companies
in the developer’s capabilities and motivation to complete
each skill analysis may also explain these differences in rec-
ommended actions.

10.5 Threats to validity

We first consider threats to validity for each research ques-
tion.

RQ1. In the construction of the user journey game, ties
between concurrently recorded events are broken arbitrar-
ily, leading to the automated discovery of different process
models. In our experiments, the results and insights obtained
under various generated models are comparable, including
the ones where we fixed the order of the observed concurrent
events.

RQ2. In the construction of the sliding-window sub-logs,
the choice of window size μ is a trade-off between accu-
racy and generalization. The results are more accurate with a
smaller window size, reflecting immediate temporal changes
in the underlying windows. We observe that the start and

end of the technical error are more detailed in L
Idays
25 than

in L
Idays
200 . However, structural changes could be hidden away

with small window sizes. We could not observe structural
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changes with L
Idays
25 , as the results show too many spurious

changes. With larger window sizes, e.g. L
Idays
100 and L

Idays
200 are

the 700 sub-logs divided into three notable ranges, 200–250,
250–450, and 450–700, eachwith steady results. The varying

results observed in L
Idays
25 are ”smoothed”. Detailed results

for mentioned window sizes are found in the repository [46].
Similarly, the window size also affects the sliding-window
analysis performed for RQ3.

RQ3. After filtering the sliding-window sub-logs by com-
pany c1, c2, and c3, the resulting sub-logs are significantly
smaller than the original log. The behavior of a few users thus
has a large impact on the general analysis of the respective
company.

We now consider threats to the validity of our experiment
design. WhileGL1 and GL2 capture two distinct time spans
of different lengths, i.e. 49 days and two years, the system
logs are collected from the same company. Thus, our evalua-
tion needs to be seen in the context of user journeys in digital
services. Furthermore, our insights were evaluated from the
third author’s perspective, and not empirically. Therefore, our
evaluation depends on his own experience within the com-
pany GrepS.

11 Discussion

In this section, we discuss two perspectives on the work
reported in this paper. First, its possible implications on
industrial practice and how practitioners work with user
journeys. Second, its possible implications on theory devel-
opment and how researchers work with formal methods. In
summary, we believe that automated analyses techniques
open for novel and less labor-intensive ways of working with
user journeys.We further believe that data-drivenmodel con-
struction combined with automated analysis techniques, as
investigated in our work, open up novel ways of working
with formal methods and novel application domains for the
techniques of our community.

11.1 Implications for industrial practice

User journeys are an established method to gain insights into
the actual experiences of users. Until now, user journeys have
largely been built by hand, collecting user feedback bymeans
of, e.g., questionnaires to capture the user experience with
the journeys. Existing tools (e.g., [6, 15]) offer limited sup-
port for automation that makes their application in larger
settings very challenging and hinders the establishment of
user journey analysis as part of service development prac-
tice, as illustrated in our motivating scenario (see Sect. 1).

Methods that can automate both the construction and anal-
ysis of user journeys, such as the method proposed in this
paper, open for a continuous assessment of the users’ expe-
rience with a user journey as a service evolves. Our method
uses interactions recorded in logs to construct the user jour-
ney game, which is then model checked for user-centric
properties (see Sect. 7), automating major parts of the user
journey analysis, thereby accelerating the user journey con-
struction and analysis. For example, one could see this form
of user journey analysis integrated in visual dashboards that
display the runtime performance of a service.

11.2 Implications for formal methods

Formal methods offer many advanced techniques for sys-
tematic model exploration and analysis. Usually, models are
created by hand and checked against a desired property. In
our work, we propose a procedure to automatically construct
models from data sets. This is especially interesting for data
sets that evolve over time, such as system logs, because
it enables reuse of an analysis technique over a stream of
models. Specifically, we have introduced a method for con-
structing automata from system logs by means of process
mining techniques, enablingmodel checking to be performed
without manual model generation. By considering the anal-
ysis of the stream of generated models, this approach opens
for analyzing changes over time.

Data-drivenmodel checking opensmany interesting prob-
lems, which are not well understood in formal methods. The
detection of changes in processes, which has been central
in our analyses of different windows, is called concept drift
detection in process mining. The presented method detects
changes from the user’s perspective, abstracting from sys-
tem changes that do not impact the user journey. Bose et al.
discuss four different types of concept drift [8]:

• sudden: a process is substituted by another process,
• gradual: a new process supersedes the old one and for a
period of time both processes are observable,

• recurring: processes reappear periodically,
• incremental: the process change is not instantaneous but
gradual over time.

It would be interesting to understand how such notions of
concept drift in the underlying models generally affect the
results of formal analysis techniques. In the use case consid-
ered in this paper, we observed a gradual drift, witnessed
by three low gas periods in the sliding-window analysis.
With a larger system log, one could possibly detect recur-
ring changes, e.g., the re-establishment of previous journey
properties. Observe that to detect incremental concept drifts,
one would need analysis techniques that relate multiple mod-
els.
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12 Conclusions and future work

This paper introduces a novel analysis pipeline for user
journeys, based on the data-driven generation of formalmod-
els. Our generated models are weighted games, where the
weights reflect user experience. The model construction is
not subject to human inference but is built from system logs.
Both single games, derived from a log, and sequences of
games, derived from a sliding-window view of a log, are
considered. The paper proposes a method to automatically
analyze derived models to gain insights into the user jour-
neys of a service, by means of Uppaal Stratego queries
using the Uppaal model checker. To the best of our knowl-
edge, this is the first automatic analysis pipeline using formal
methods in the context of service science and user journeys.

The proposed analysis pipelinewas evaluated on an indus-
trial case study and revealed challenges to the planned user
journey of the service provider. The analysis of the derived
game demonstrated that users’ experiences fall in their accu-
mulated feedback during the initial phases of the service. Our
recommendations were reviewed and approved by an expert
on user feedback in the company. We further performed a
sliding-window analysis on a system log spanning two years,
which suggested that a number of changes had occurred in
the user journey. The company expert reviewed the detected
changes and found that they aligned with key moments in
the company’s history. We finally showed that our analysis
method can analyze user journeys for groups of users, filter-
ing the log that generates the weighted games, to improve
interaction with specific customer groups.

The work presented here opens many interesting possibil-
ities for further work, both in formal methods and in service
science. Our work so far has assumed that users and service
providers have perfect knowledge of each other’s possible
actions. On the formal methods side, we therefore plan to
study imperfect information games for user journeys with
incomplete knowledge about user actions in the setting of,
e.g., PRISM-games [11]. Furthermore, our current work is
restricted by a fixed bound on loop unrolling; it would be
interesting to directly analyze cyclic models. On the service
science side, we plan to integrate our work with existing
modeling languages for user journeys, such as CJML [7,
34], to automate the analysis of user journey models that are
manually reviewed today, and to provide feedback from our
analysis in the visual language of these models. Finally, the
analysis of sequences of formal models for concept drift [29]
seems highly interesting to us; a starting point here could be
methods for change point detection in a time-series bymeans
of cost functions [50].
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