
Software and Systems Modeling (2023) 22:1733–1735
https://doi.org/10.1007/s10270-023-01140-2

EDITORIAL

Adopting the concept of a function as an underlying semantic
paradigm for modeling languages

Benoit Combemale1 · Jeff Gray2 · Bernhard Rumpe3

Published online: 30 November 2023
© The Author(s) 2023

There are researchers and practitioners in the areas of mod-
eling and modeling language design who focus mainly on
a syntactic point of view. For example, they may look at
language design for language agglomerates like UML or
SysML, as well as more customized DSLs, to consider the
optimal syntactic constructs that are needed to cover all of
the different kinds of phenomena occurring in a real-world
problem context. Other researchers may focus on the seman-
tic point of view to understand the meaning of a specific
model as expressed in a language. A general challenge is
when the same syntactic construct can be interpreted differ-
ently in various contexts of usage.

A well known but often confusing example is the class
diagram. A class “Person” in such a diagram may have dif-
ferent meanings based on the phase of development in which
it is used. If the diagram has been defined during business
requirements elicitation, the class actually represents human
beings. In this case, “Persons” are real objects in the world of
physical things.When the same class diagram is then used for
design, the very same class “Person” suddenly describes the
data structure that is capable of collecting data about human
beings and thus a purely virtual concept emerges. Somewhere
between requirements elicitation and design, the interpreta-
tion adds a step of indirection that is not reflected in the syntax
itself. Other prominent examples use different interpretations
of various modeling elements, which frequently lead to con-
fusion. The situation is evenmore challenging when physical
systems are accompanied with digital twins, where software
components intelligently control a physical representation.

B Bernhard Rumpe
bernhard.rumpe@sosym.org

Benoit Combemale
benoit.combemale@sosym.org

Jeff Gray
jeff.gray@sosym.org

1 University of Rennes, Rennes, France

2 University of Alabama, Tuscaloosa, AL, USA

3 RWTH Aachen University, Aachen, Germany

It would be helpful to have an underlying paradigm that
connects all of the different interpretations and views (e.g.,
structure, data structure, interaction, behavior, state, agents,
or activities) that are represented through various modeling
techniques.

In the context of the upcoming SysML 2.0 definition, it
is evident that a semantically sound and useful integration
could play a major role toward addressing this challenge of
differing interpretations. One possibility is to consider the
often used paradigm of “function”.

Both systems engineers and software engineers have cre-
ated the idea of using functions as a development paradigm.
In mechanical engineering and other engineering contexts,
Pahl and colleagues have explored the functional paradigmas
a mechanism to describe the functionality of a complex sys-
tem by decomposing it into its elementary functions, which
are realized by principal solutions [1]. As software engineers,
we were very surprised to discover that our mechanical engi-
neering colleagues have a fixed number of approximately 350
principal solutions that represent elementary components for
all kinds of systems that describe all possible forms of atomic
functions.

For conceptually or physically distributed computer sys-
tems, the same functional paradigm can be used to describe
the collaboration among active computational units. Many
interesting software systems are contextually and often
physically distributed, which makes a functional paradigm
appealing. Broy and Stølen have defined an explicit approach
for such a functional paradigm [2], and others have similar
approaches [3].

Whatwefindmost appealing is the degree of compatibility
and similarity between the mechanical engineering and soft-
ware engineering variants of the functional paradigm. They
can be integrated and formalized on the mathematical con-
cept of a function, given that there is a precise definition
of “streams” of energy, material or data that enters the sys-
tem and exits the system through some kind of appropriate
“channel” or “interaction surface”.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01140-2&domain=pdf


1734 B. Combemale et al.

Lightweight versions of a functional paradigm are usu-
ally visible in various formal methods approaches, where
logic-based description mechanisms are mapped into sim-
pler semantic domains. For example, various forms of agents
have their idea of functions as the underlying paradigm. Fur-
thermore, structural decomposition in architecture languages
can be explained using functional composition (i.e., connect-
ing functions through their channels) and interaction can be
described through the flowof elements on the channels. State,
including data state and Statechart state, describes the inter-
nal state of the component, which becomes visible when a
component may rely on the internal state when producing
output. Activities and behavior represent the relationships
between the input and the output of a component. The only
other highly relevant and omnipresent modeling viewpoint
that is not very well connected to the functional paradigm is
themodeling of complex data structures (e.g., using class dia-
grams). Even though classes can in principle be regarded as
components with input and output, in practice many classes
are only used as data structures.

But the integration and harmonization of these viewpoints
is not easy. Researchers may also find solutions for a help-
ful, generally usable integration of the functional paradigm
and data structures. The integration of software and systems
modeling paradigms based on functions seems feasible and
may be the best approach to unify the relevant theories.

There is still one major challenge that we have to deal
with, namely, the integration of continuously changing flows
(e.g., electrical energy, analogous signals, or water) with dis-
crete and even event-based flows such as physical objects
like screws or cars or data messages. This is not so much a
problem between software and mechanics, but a pure math-
ematical problem, where the mathematical theories exist in
principle, but we have not yet sorted out what is practically
the best solution path. Discretization of continuous flows is
of course possible [4] but tedious to deal with when spec-
ifying systems. For many processes, computation is quick
compared to the physical process. This is why Edward Lee’s
Ptolemy uses a super-dense time approach, where computa-
tion is so quick that little time progress occurs, but still the
order of events is retained. Computation is very slow com-
pared to the process and needs a different form of functional
integration.

We can ask the mathematicians to improve the theories
and let us modelers use the functional paradigm at a level of
abstraction that is helpful for us to model our systems and
software as efficiently as possible.

1 Content of this Issue

1. Expert voice

• “Amanifesto for applicable formalmethods” byMario
Gleirscher, Jaco van de Pol, and Jim Woodcock

2. BPMDS 2021 special section
Guest editors: SelminNurcan, Rainer Schmidt, andAdri-
ano Augusto

123



Adopting the concept of a function as an underlying semantic… 1735

3. EMMSAD 2022 special section
Guest editors: Iris Reinhartz-Berger and Dominik Bork

4. Theme Section on “Model and data engineering”
Guest editors: Christian Attiogbé, Sadok Ben Yahia, and
Ladjel Bellatreche

5. Regular paper

• “Correlating contexts and NFR conflicts from event
logs” by Mandira Roy, Souvick Das, Novarun Deb,
Agostino Cortesi, Rituparna Chaki, and Nabendu
Chaki

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Design, E.: A Sys-
tematic Approach. Springer, Berlin (2007)

2. Broy, M., Stølen, K.: Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer
Science, New York (2001)

3. Edward, A.L., Seshia, S.A.: Introduction to Embedded Systems - A
Cyber-Physical Systems Approach. MIT Press, Cambridge (2017)

4. Shannon, C.: Communication in the presence of noise. Proc. Instit.
Radio Eng. 37(1), 10–21 (1949)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Adopting the concept of a function as an underlying semantic paradigm for modeling languages
	1 Content of this Issue
	References




