Software and Systems Modeling (2023) 22:847-850
https://doi.org/10.1007/s10270-023-01101-9

EXPERT VOICE

®

Check for
updates

A personal retrospective on language workbenches

Mark van den Brand'’

Received: 6 January 2023 / Revised: 6 February 2023 / Accepted: 13 February 2023 / Published online: 20 March 2023

© The Author(s) 2023

Abstract

Model-driven software engineering and specifically domain-specific languages have contributed to improve the quality of
software and the efficiency in the development of software. However, the design and implementation of domain-specific
languages requires still an enormous investment. Language workbenches are the most important tools in the field of software
language engineering. The introduction of language workbenches has alleviated partly the development effort, but there are
still a few major challenges that need to be tackled. This paper presents a personal perspective on the development of tools
for language engineering and language workbenches in particular and future challenges to be tackled.

Keywords Language engineering - DSLs - Programming environment generators - Language workbenches

1 EAGs and pregmatic

In 1985, I followed the course “Vertalerbouw 2 (Compiler
Construction 2) at the Radboud University Nijmegen. In this
course, the Extended Affix Grammar (EAG) formalism was
introduced. EAGs were closely related to Attribute Gram-
mars; they allowed the syntactic and semantic definition of
programming languages. Next to this topic, we were free
to choose a compiler construction-related topic to write an
essay, and I choose the topic of Programming Environment
Generators. For this purpose, I read the PhD thesis of Thomas
Reps on Generating Language-Based Environments [1]. This
was my starting point of a long journey in software language
engineering and tool development. During my MSc grad-
uation project, I developed a prototype of a programming
environment generator based on EAGs. This work was the
basis for my PhD thesis “Pregmatic: A Generator For Incre-
mental Programming Environments” [2]. The use of EAGs
allowed me to experiment with semantics directed parsing
in relation to generated programming environments. EAGs
supported both the definition of the syntax of a language and

Communicated by Benoit Combemale, Juan de Lara, and Romina
Eramo.

B Mark van den Brand
m.g.j.v.d.brand @tue.nl

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Groene Loper, 5612
AZ Eindhoven, The Netherlands

the definition of semantic functions. The exchange values
between nodes in the syntax trees were facilitated via affixes.
The semantic functions in combination with the affixes pro-
vided a mechanism to specify simple semantic rules, mainly
related to type checking, but more complex semantic rules
turned out to be challenging.

2 ASF+SDF Meta-Environment

After my PhD, I moved to the University of Amsterdam
and started working in the group of Paul Klint. The group
was developing the ASF+SDF Meta-Environment [3], a pro-
gramming environment generator built on top of the Centaur
System [4]. The ASF+SDF Meta-Environment supported the
definition of (programming) languages where the syntax of
the language was defined via the Syntax Definition Formal-
ism (SDF) and the semantics via the Algebraic Specification
Formalism (ASF). The Meta-Environment was a fully inte-
grated environment that provided editors for the SDF and
ASF parts. It was a closed environment from a language def-
inition point of view because there were no back-doors to use
other languages to define aspects of a language.

The ASF+SDF Meta-Environment was used to do research
on, among others, legacy software and domain-specific lan-
guages (DSLs) [5]. My contributions were on pretty printing
[6] and later on the development of the ASF2C compiler [7].
In both cases, I used ASF+SDF and the Meta-Environment
as implementation vehicles.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01101-9&domain=pdf

848

M. van den Brand

After 5 years at the University of Amsterdam, my sci-
entific journey continued at CWI and contributed to a new
version of the ASF+SDF Meta-Environment which was no
longer based on Centaur. Also, I got more involved in the
research on domain-specific languages. The new version of
the ASF+SDF Meta-Environment was used in research, edu-
cation and industrial projects related to DSL design and
reverse engineering [5].

The learning curve for ASF+SDF was rather steep. The
SDF formalism was a great vehicle to define the syntax of
languages, because of its modularity and the underlying pow-
erful SGLR parsing technology [8]. However, definition of
the semantics of languages still proved to be the real chal-
lenge. Although ASF allowed for abstraction and modularity
in the definition of semantic aspects of a language, it was
often tedious to define the full semantics, including a code
generator.

3 LDTA, SLE, and language workbenches

At the beginning of 2000, the scientific community on
software language engineering started to take shape and
to become independent of the regular Compiler Construc-
tion community. In 2001, the workshop series on Language
Descriptions, Tools, and Applications (LDTA)! started. In
2008, this workshop was merged with the International
Workshop on Language Engineering (ATEM) and contin-
ued as the International Conference on Software Language
Engineering (SLE).”> LDTA and SLE were stepping stones
to create a community of researchers and practitioners work-
ing on software language engineering together. In these
workshops and conferences, software language engineer-
ing researchers and tool builders gathered to present their
latest research results and showcased their tools developed
for improving and easing the adoption of software language
engineering, such as Spoofax [9], JastAdd [10], MontiCore
[11], Silver [12], MPS [13], GEMOC [14], Rascal [15], and
ANTLRWorks/Xtext> [16].

The software language engineering tools became lan-
guage workbenches (LWBs), a term coined by Martin Fowler
[17] around 2005. The term was immediately picked up by
the software language engineering community because it
brought together the developments in domain-specific lan-
guages and integrated development environments (IDEs).
The SLE community organized a few language workbench
challenges [18,19], with the goal to show the strengths (and
weaknesses) of the various tools. The aforementioned list of
language engineering tools, or LWBs, is a mix of academic

1 http://Idta.info/.
2 http://www.sleconf.org/.

3 https://www.eclipse.org/Xtext/.

@ Springer

tools and some tools used in industry, such as MPS and Xtext.
The transfer of features explored in the academic tools to the
industrialized tools could have been stronger.

4 DSLs in the high-tech industry

In 2006, I moved from CWI to the Eindhoven University
of Technology. This move was not only geographically, but
I moved from being a developer of language engineering
tools to become a user of language engineering tools as
well. First, I started teaching a course on Generic Language
Technology, initially based on ASF+SDF and the ASF+SDF
Meta-Environment; later, I started using Eclipse and Xtext
and finally Rascal. For each of these language workbenches,
students experienced a steep learning curve. However, once
students grasped the basic principles, they were able to cre-
ate interesting and challenging (small) DSLs. The Eindhoven
area is characterized by a large number of companies work-
ing on high-tech equipment. This turned out to be a perfect
environment for promoting software language engineering.
Several companies were interested in adopting DSLs. These
companies developed and used DSLs because there was a
need to increase the level of abstraction, moving from, for
instance, C code to models in the DSL [20]. This involves the
development of non-trivial code generators, and the develop-
ment of these generators is costly and time-consuming. The
code generators need to be tested and validated. The lack of
properly defined semantics of the DSL hinders developing
and testing of the code generators.

Collaborations between the local industry and our univer-
sity started and led to interesting research projects. There are
two examples that I want to highlight. The first is the work
by Ulyana Tikhonova. She worked on the development of
semantic building blocks for DSLs within ASML [21]. In
this project, she applied these semantic building blocks to
define the dynamic semantics of a DSL used for describing
the scheduling of tasks related to the processing of wafers.
The semantic building blocks were mapped to Event-B which
allowed for verification of the dynamic semantics of the DSL
using the Event-B tools [22].

The other example is the use of MPS at Canon Produc-
tion Printing (The Netherlands) and their way of working.
They have a group of engineers with a broad knowledge
on MPS and software language engineering. When a new
DSL is required for a specific domain/application area within
Canon Production Printing, engineers are teamed up with the
domain experts [23].

5 My final reflections

A lot of research has been performed in the area of seman-
tics (e.g., denotational semantics, operational semantics, and
action semantics) of programming languages with very inter-


http://ldta.info/
http://www.sleconf.org/
https://www.eclipse.org/Xtext/

A personal retrospective on language workbenches

849

esting and useful results. The transfer of these results to DSL
design and language workbenches has been hampered by
the fact that the descriptions and implementations are too
large. Ulyana Tikhonova’s work was a small step in the cre-
ation of re-usable semantic building blocks to formalize the
semantics of DSLs in a very specific application area. Eelco
Visser followed a different approach in Spoofax, by defin-
ing small DSLs to describe different semantic aspects such
as name resolution, scoping rules, type checking, and the
dynamic semantic rules [24,25]. The current generation of
language workbenches still have a strong focus on syntax, but
the mechanisms to define the (static and dynamic) semantics
of DSLs are still experimental, although GEMOC [14] offers
facilities for executing and debugging DSLs, which in other
LWRBs are either lacking or primitive.

The Canon Production Printing example illustrated
another shortcoming in relation to the design and implemen-
tation of DSLs. Although multiple text books on program-
ming languages, language design, and software language
engineering exist, among others, [17,26,27], there is no text
book that proposes a methodology for designing and develop-
ing DSLs. Before creating a DSL, it is important to identify
and understand the application area or (problem) domain,
the goal of the language, the involved stakeholders, and
the technical environment. There is an overlap with regular
requirements engineering except the software language engi-
neering makes it more complicated. For instance, what are
the language concepts needed by the domain or what is the
best (textual/graphical) representation of the language con-
cepts for the end-users? Multiple iterations may be needed
to obtain a usable DSL. Most of the existing literature solely
focuses on the technical challenges when creating DSLs. The
existing language workbenches are excellent tools to specify
a DSL, but do not support the above mentioned steps before
the actual creation of a DSL. The current generation of lan-
guage workbenches have a strong focus on language engineer
tool smiths but do not really support end-users. Recent devel-
opments in the area of language workbenches for block-based
languages are a promising step [28].

Acknowledgements I would to thank Mauricio Verano Merino and
Ivan Kurtev for proofreading and providing feedback.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Reps, T.W.: Generating Language-Based Environments. MIT
Press, Cambridge (1984)

2. van den Brand, M.G.J.: PREGMATIC—a generator for incremen-
tal programming environments. PhD thesis, Radboud University
Nijmegen (1992)

3. Klint, P.: A meta-environment for generating programming envi-
ronments. ACM Trans. Softw. Eng. Methodol. 2(2), 176-201
(1993). https://doi.org/10.1145/151257.151260

4. Borras, P, Clément, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang,
B., Pascual, V.: CENTAUR: the system. In: Henderson, P.B. (ed.)
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environments,
Boston, Massachusetts, USA, 28-30 Nov, 1988, pp. 14-24 (1988).
https://doi.org/10.1145/64135.65005

5. vanden Brand, M., van Deursen, A., Klint, P., Klusener, S., van der
Meulen, E.: Industrial applications of ASF+SDF. In: Wirsing, M.,
Nivat, M. (eds.) Algebraic Methodology and Software Technology,
5th International Conference, AMAST *96, Munich, Germany, 1-5
July, 1996, Proceedings. Lecture Notes in Computer Science, vol.
1101, pp. 9-18 (1996). https://doi.org/10.1007/BFb0014303

6. vanden Brand, M., Visser, E.: Generation of formatters for context-
free languages. ACM Trans. Softw. Eng. Methodol. 5(1), 1-41
(1996). https://doi.org/10.1145/226155.226156

7. van den Brand, M., Heering, J., Klint, P., Olivier, P.A.: Compiling
language definitions: the ASF+SDF compiler. ACM Trans. Pro-
gram. Lang. Syst. 24(4), 334-368 (2002). https://doi.org/10.1145/
567097.567099

8. Visser, E.: Syntax definition for language prototyping. PhD thesis,
University of Amsterdam (1997)

9. Wachsmuth, G., Konat, G.D.P., Visser, E.: Language design with
the spoofax language workbench. IEEE Softw. 31(5), 3543
(2014). https://doi.org/10.1109/MS.2014.100

10. Ekman, T., Hedin, G.: The JastAdd system—modular extensi-
ble compiler construction. Sci. Comput. Program. 69(1-3), 14-26
(2007). https://doi.org/10.1016/j.scico.2007.02.003

11. Krahn, H., Rumpe, B., Volkel, S.: Monticore: a framework for
compositional development of domain specific languages. Int. J.
Softw. Tools Technol. Transf. 12(5), 353-372 (2010). https://doi.
org/10.1007/s10009-010-0142-1

12. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible
attribute grammar system. Electron. Notes Theor. Comput. Sci.
203(2), 103-116 (2008). https://doi.org/10.1016/j.entcs.2008.03.
047

13. Voelter, M.: Language and IDE modularization and composition
with MPS. In: Lammel, R., Saraiva, J., Visser, J. (eds.) Gener-
ative and Transformational Techniques in Software Engineering
IV, International Summer School, GTTSE 2011, Braga, Portugal,
3-9 July, 2011. Revised Papers. Lecture Notes in Computer Sci-
ence, vol. 7680, pp. 383430 (2011). https://doi.org/10.1007/978-
3-642-35992-7_11

14. Combemale, B., Barais, O., Wortmann, A.: Language engineering
with the GEMOC studio. In: 2017 IEEE International Confer-
ence on Software Architecture Workshops, ICSA Workshops 2017,
Gothenburg, Sweden, 5-7 Apr, 2017, pp. 189-191 (2017). https://
doi.org/10.1109/ICSAW.2017.61

15. Klint, P, van der Storm, T., Vinju, J.J.: EASY meta-programming
with rascal. In: Fernandes, J.M., Liammel, R., Visser, J., Saraiva, J.
(eds.) Generative and Transformational Techniques in Software
Engineering III—International Summer School, GTTSE 2009,
Braga, Portugal, 6-11 July, 2009. Revised Papers. Lecture Notes
in Computer Science, vol. 6491, pp. 222-289 (2009). https://doi.
org/10.1007/978-3-642-18023-1_6

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/151257.151260
https://doi.org/10.1145/64135.65005
https://doi.org/10.1007/BFb0014303
https://doi.org/10.1145/226155.226156
https://doi.org/10.1145/567097.567099
https://doi.org/10.1145/567097.567099
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1007/978-3-642-18023-1_6

850

M. van den Brand

16. Bovet, J., Parr, T.: Antlrworks: an ANTLR grammar development
environment. Softw. Pract. Exp. 38(12), 1305-1332 (2008). https://
doi.org/10.1002/spe.872

17. Fowler, M.: Domain-Specific Languages. The Addison-Wesley
signature series (2011). http://vig.pearsoned.com/store/product/1,
1207, store- 12521 _isbn-0321712943,00.html

18. Erdweg, S., van der Storm, T., Volter, M., Boersma, M., Bosman,
R., Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A.,
Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R., Schindler,
E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist,
K., Wachsmuth, G., van der Woning, J.: The state of the art in lan-
guage workbenches—conclusions from the language workbench
challenge. In: Erwig, M., Paige, R.F., Wyk, E.V. (eds.) Software
Language Engineering—6th International Conference, SLE 2013,
Indianapolis, IN, USA, 26-28 Oct, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 8225, pp. 197-217 (2013). https://
doi.org/10.1007/978-3-319-02654-1_11

19. Erdweg, S., van der Storm, T., Volter, M., Tratt, L., Bosman, R.,
Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat,
G.D.P,, Molina, PJ., Palatnik, M., Pohjonen, R., Schindler, E.,
Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist,
K., Wachsmuth, G., van der Woning, J.: Evaluating and compar-
ing language workbenches: existing results and benchmarks for the
future. Comput. Lang. Syst. Struct. 44, 24—47 (2015). https://doi.
org/10.1016/j.¢1.2015.08.007

20. Mooij, A.J., Hooman, J., Albers, R.: Gaining industrial confi-
dence for the introduction of domain-specific languages. In: IEEE
37th Annual Computer Software and Applications Conference,
COMPSAC Workshops 2013, Kyoto, Japan, 22-26 July, 2013, pp.
662-667 (2013). https://doi.org/10.1109/COMPSACW.2013.83

21. Tikhonova, U., Manders, M., van den Brand, M., Andova, S.,
Verhoeff, T.: Applying model transformation and event-b for spec-
ifying an industrial DSL. In: Boulanger, F., Famelis, M., Ratiu, D.
(eds.) Proceedings of the 10th International Workshop on Model
Driven Engineering, Verification and Validation MoDeV Va 2013,
Co-located with 16th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2013), Miami,
Florida, USA, October 1st, 2013. CEUR Workshop Proceed-
ings, vol. 1069, pp. 41-50 (2013). http://ceur-ws.org/Vol-1069/
07-paper.pdf

22. Tikhonova, U.: Reusable specification templates for defining
dynamic semantics of DSLs. Softw. Syst. Model. 18(1), 691-720
(2019). https://doi.org/10.1007/s10270-017-0590-0

23. Schindler, E., Moneva, H., van Pinxten, J., van Gool, L., van der
Meulen, B., Stotz, N., Theelen, B.: Jetbrains MPS as core DSL
technology for developing professional digital printers. In: Buc-
chiarone, A., Cicchetti, A., Ciccozzi, F., Pierantonio, A. (eds.)
Domain-Specific Languages in Practice: With JetBrains MPS, pp.
53-91 (2021). https://doi.org/10.1007/978-3-030-73758-0_3

24. Konat, G.D.P.,, Kats, L.C.L., Wachsmuth, G., Visser, E.: Declara-
tive name binding and scope rules. In: Czarnecki, K., Hedin, G.
(eds.) Software Language Engineering, 5th International Confer-
ence, SLE 2012, Dresden, Germany, 26-28 Sept, 2012, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 7745, pp.
311-331 (2012). https://doi.org/10.1007/978-3-642-36089-3_18

25. Vergu, V.A., Neron, P., Visser, E.: Dynsem: A DSL for dynamic
semantics specification. In: Ferndndez, M. (ed.) 26th International
Conference on Rewriting Techniques and Applications, RTA 2015,
Warsaw, Poland. LIPIcs, vol. 36, pp. 365-378 (2015). https://doi.
org/10.4230/LIPIcs.RTA.2015.365

@ Springer

26. Lammel, R.: Software Languages: Syntax, Semantics, and
Metaprogramming (2018). https://books.google.nl/books?
id=milbDwAAQBAJ

27. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander,
M., Kats, L.C.L., Visser, E., Wachsmuth, G.: DSL engineering-
designing, implementing and using domain-specific languages
(2013). http://www.dslbook.org

28. Merino, M.V, van Wijk, K.: Workbench for creating block-based
environments. In: Fischer, B., Burgueiio, L., Cazzola, W. (eds.)
Proceedings of the 15th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2022, Auckland, New
Zealand, 6-7 Dec, 2022, pp. 61-73 (2022). https://doi.org/10.1145/
3567512.3567518

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mark van den Brand is a full
professor of Software Engineer-
ing and Technology in the Depart-
ment of Mathematics and Com-
puter Science and a visiting pro-
fessor at Royal Holloway, Uni-
versity of London. His current
research activities are on model
driven engineering, domain-specific
languages, meta-modeling, model
management, digital twins, and
automotive software engineering.
His research is industry inspired;
he works with most of the high-
tech companies in the Eindhoven
(The Netherlands) region. He is project leader of a research project
on Digital Twins, the focus in this project on the orchestration and
management of models involved in the Digital Twins. He has been
an invited lecturer and keynote speaker at various conferences, work-
shops, and doctoral schools. He was and is member of PCs on work-
shops and conferences related to software engineering, language engi-
neering, rewriting, reverse engineering, and software maintenance.
He initiated the special issues of Science of Computer Programming
devoted to academic software development (Experimental Software
and Toolkits) and since 2007 has been guest editor of six of these
special issues. He is on the editorial board of the journals Science
of Computer Programming and Computer Languages (COLA). He is
deputy Editor-in-Chief of platinum open access journal JOT. He is one
of the Editors-in-Chief of the open access Journal of Software Engi-
neering for Autonomous Systems (JSEAS).


https://doi.org/10.1002/spe.872
https://doi.org/10.1002/spe.872
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1109/COMPSACW.2013.83
http://ceur-ws.org/Vol-1069/07-paper.pdf
http://ceur-ws.org/Vol-1069/07-paper.pdf
https://doi.org/10.1007/s10270-017-0590-0
https://doi.org/10.1007/978-3-030-73758-0_3
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://books.google.nl/books?id=mi1bDwAAQBAJ
https://books.google.nl/books?id=mi1bDwAAQBAJ
http://www.dslbook.org
https://doi.org/10.1145/3567512.3567518
https://doi.org/10.1145/3567512.3567518

	A personal retrospective on language workbenches
	Abstract
	1 EAGs and pregmatic
	2 ASF+SDF Meta-Environment
	3 LDTA, SLE, and language workbenches
	4 DSLs in the high-tech industry
	5 My final reflections
	Acknowledgements
	References




