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Abstract
Simulation is a key tool for researching complex system behaviour. Agent-based simulation has been applied across domains,
such as biology, health, economics and urban sciences. However, engineering robust, efficient, maintainable, and reliable
agent-based simulations is challenging.We present a vision for engineering agent simulations comprising a family of domain-
specific modelling languages (DSMLs) that integrates core software engineering, validation and simulation experimentation.
We relate the vision to examples of principled simulation, to show how the DSMLs would improve robustness, efficiency, and
maintainability of simulations. Focusing on how to demonstrate the fitness for purpose of a simulator, the envisaged approach
supports bi-directional transparency and traceability between the original domain understanding to the implementation,
interpretation of results and evaluation of hypotheses.

1 Introduction

Complexity is inherent to life; most areas of science and
policy benefit from an understanding of complex systems.
It is a feature of complexity that instrumenting a system in
order to experiment on it directly disrupts the natural pat-
terns of interaction [9,15,27]: experimental results are at
best approximate. There are also significant ethical problems
with experimentation: it is ethically undesirable to use animal
models, common inmedical and biological research, because
the experimental set-up disrupts the systems under study
and harms (often kills) the experimental subjects. Further-
more, experimentation on live, or recently dead, organisms
is not strictly repeatable or reproducible, as the organism and
the environment are unique and complex. In a similar way,
experimenting on human and engineered complex systems is
disruptive and potentially unethical: we cannot experiment
safely on economic and social systems (though politicians
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like to try), or on complex safety-critical systems such as
aircraft or chemical/nuclear plant controllers.

Simulation offers a computational alternative to live
experiments. If a complex system behaviour can be suit-
ablymodelled, then repeatable and reproducible experiments
can be run, limited only by computational resources. For a
simulation to be trusted, it must be demonstrable that simula-
tion observations are the outcome of appropriately captured
behaviours, not experiment artefacts or coding errors.

An example of the trust problem can be seen in recent
high-profile agent-based and mathematical simulations sup-
porting research on theCOVID-19 pandemic. The simulation
designs and code have attracted substantial criticism from the
software-engineering community, not least for the lack of
recorded rationale (notably parameter value selection). Sci-
entists have declared their confidence that their simulations
are sufficient analogues of reality, but this does not amount
to demonstrable fitness for purpose, and makes it difficult to
challenge and improve the models. Furthermore, the simu-
lations are hard to develop further, reliant on the knowledge
and skill of the original developers.

1.1 Principled simulation

Although there are partial solutions to simulation engi-
neering (cf. Sect. 6), most neglect the important aspect
of fitness-for-purpose, and its connotations for principled
complex-systems simulation. The importance of establishing
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Fig. 1 Overview of the CoSMoS approach [44]

and recording aspects that lead users or developers to trust the
engineering and the resultant simulation has been captured in,
for example, the CoSMoS Process [44]. CoSMoS is a ”life-
cyle model” (see Fig. 1) of the whole simulation process,
from domain exploration and identification of an appropri-
ate simulation focus, to interpretation of results. CoSMoS is
taken as the context for our vision of simulation engineering.

No techniques or work flows are mandated by CoSMoS,
but in projects that have used the approach the modelling
has been informal—often using ad hoc variants of UML.
As a result, whilst developers have used programming
environments, none has taken up CoSMoS’s suggestion of
model-driven engineering. Some of the problems resulting
from the lack of a coherent development approach are:

• simulation development that follows appropriate mod-
elling, but is coded manually, which is error prone,
difficult to trace, and hard to support with a robust argu-
ment of fitness;

• experimentation built incrementally into the simulation
codebase, making it difficult to modify the simulator or
the experiments—and making it difficult to demonstrate
(to outsiders) how the in silico experiments relate to real-
world experimentation and observation;

• experiments designed directly in code, a notation that is
usually unfamiliar to domain experts, reducing under-
standing, and thus trust, of what the simulation exper-
iment represents cf. the real world, as well as limiting
potential for identifying new experiments.

• simulations that are fine so long as the original experts
and engineers are using them, but are not maintainable,
extendable or re-usable by others, resulting in many
wasted hours of development, and failure of the fitness
arguments (loss of understanding of the basis for trusting
the simulation and its results).

These issues mean that simulation development continues
to be a specialist activity, non-viable for many complex sce-
narios that would benefit substantially from computer sim-

ulation. Our vision is of well-founded, tool-supported nota-
tions, supporting CoSMoS-like development that encompass
domain and scope exploration, software design and imple-
mentation, as well as experimental design and the recording
of rationale. The later aspect, for which CoSMoS recom-
mends argumentation techniques needs underpinning with
traceability to development and experimentation designs.
Our vision also needs to support the interpretation of sim-
ulation results into their real-world context, again through
linkages across the family of models facilitating model man-
agement.

The vision underpins principled simulation with automa-
tion, with the potential to remove many of these problems
and opportunities for error from the simulation development
workflow. The envisaged basis for automation is a family of
DSMLs to express features of the domain and simulation,
as well as queries on the development. A DSML approach
would allow domain experts to directly interact with simula-
tion models and experiment specifications, while supporting
the automatic translation of models and specifications into
executable simulations.

Crucially, our envisaged family of DSMLs includes
languages for expressing expected behaviours and fit-for-
purpose arguments, integrated at a fundamental level with
executable simulations, as well as languages for specifying
appropriate simulation experiments and experimental proto-
cols, with appropriate validation and sensitivity analysis to
allow robust conclusions to be drawn. Based on our experi-
ence, the vision is expressed for agent-based simulations, but
we believe that it would generalise to other forms of simula-
tions.

This paper is an extension of [52], adding the following
contributions:

1. A detailed discussion of four user scenarios where a
model-driven approach to simulation development can
be beneficial, including prototypical application to the
motivating scenario from [1,2]; and

2. A broader and more in-depth discussion of related work.

In the remainder of this paper, we first present amotivating
example and highlight some challenges (Sect. 2). Section 3
presents an overview of our vision for a family of DSMLs for
agent-based simulation. In Sect. 4we introduce four user sce-
narios, which we discuss in detail in Sect. 5 applying them to
the challenges identified in Sect. 2. Finally, we discuss other
efforts for systematic engineering of agent-based simulations
in Sect. 6 and conclude in Sect. 7.

2 Motivating example

The motivating example is hypothetical but based on simula-
tor development to support laboratory work at York Compu-
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tational Immunology Laboratory on (a) formation of Peyer’s
Patch cell clusters [1,2];1 and (b) granuloma formation in
visceral Lieshmaniasis [33]. For each project, an experi-
enced laboratory team worked with CoSMoS team members
from engineering disciplines. Four PhDs (and some other
PhD and student projects), investigated different hypothe-
ses; models and code were developed, exchanged, extended,
and abandoned. The series of simulator developments, fol-
lowing the CoSMoS principles, were implemented on Java
Mason, Repast and Flame agent platforms [17,26,33,49].

The PPSim (Peyer’s Patch Simulator) was developed to
investigate laboratory research hypotheses relating to cell
cluster development in a neonatal mouse gut. The simu-
lator development involved modelling the domain (cells,
chemicals and interactions), validating models with the lab-
oratory scientists, software modelling, and implementation
on an agent-based platform, developing bespoke code for
component behaviours. The rationale for the development
is carefully documented, with argumentation diagrams and
extensive text recording the belief in the fitness for pur-
pose of the simulator. Experimentation in vivo and in silico
established new understanding of the triggers to cluster for-
mation (see [1,2,4]). The collaboration lasted some 6 years
(2010–2017). The simulator was available as a download-
able application until 2021, latterly at the Kennedy lab, in
Oxford,2 and included manually-developed guidance and
scripts for rerunning existing experiments, and for calibration
and sensitivity analysis.

In the hypothetical analogy, as in reality, having developed
the original PPSim application, the software engineer (SE1)
moved away. However, the team now wants to study clus-
ter distribution, and also to use simulation to explore other
cell cluster formation. This needs modification of simula-
tion components and behaviours. The team has the ability to
modify the domain-modelling for the new hypotheses, but
not the expertise to modify the implementation. It must also
keep the recording and the fitness for purpose argumentation
up to date, and ensure that existing experiments still run.

A new software engineer (SE2) joins the team. To
understand the design, implementation, rationale and fitness-
for-purpose arguments, SE2 needs to recreate all SE1’s
knowledge acquisition. Technical problems arise: missing
version histories, historical incompatibility of open-source
platforms or code. Inevitably, the simulator documentation
does not provide all the detail needed to understand the code:
it is clearwhat the components are, and how they are intended
to be implemented, but not how each agent and interaction
is coded on the Java Mason platform.

1 In reality, the link between projects and simulators is not so simple.
Some of challenges are illustrated in relation to the revisiting of the
PPSim simulation validation in [38]
2 See kennedy.ox.ac.uk

Subsequently, another project wants to adapt the sim-
ulation to explore a “granuloma formation” hypothesis.
SE2 starts to map out how to replace PPSim cells with
granuloma-forming cells. There are 1:1 mappings between
the implicated cell types, but some interaction behaviour and
timing parameters (and the cell environment) are not iden-
tical. SE2 has solved some of the technical issues, but the
code, which comprises the platform representation of agents
along with the bespoke coding of interaction triggers and
behaviours, bespoke agent environment, and bespoke visu-
alisations and data capture—created by two independent
developers with different coding styles—defies systematic
modification.

Key challenges arising in this example include:

– The lack of formal mapping between designs and
code makes traceability subjective. When design mod-
els change, code cannot be simply regenerated.

– The agent platform’s agent architecture distributes code
for an agent across classes, making it difficult to relate
one cell agent to a coherent block of code. This is exac-
erbated by good programming practices such as creating
utility functions for recurrent code and use of domain-
specific agent hierarchies (i.e., a specific cell is a subclass
of mobile cell, which is a subclass of cell).

– The platform code tangles [24] visualisation, data gath-
ering, and computation with agent encodings, meaning
that computation cannot be easily modified separately.

– Lack of clarity on how experimental activities are sup-
ported in the code. The documentation describes exper-
imental design in detail; experiments can be re-run
exactly; but encoding new experiments or parameteri-
sation requires deep understanding of the code.

In short, there is no efficient way to query the domain mod-
elling, the simulation or experiment design, the rationale, or
the code base: to find the answer to even a simple question, the
enquirer needs to read all the documentation and understand
diagrams and code for the simulator and experimentation.

3 Overview of vision

Our vision of a family of DSMLs to support simulation engi-
neering, Fig. 2, would enable incremental transformation,
addressing many of the automation challenges.

Our DSML family centres on a fitness-for-purpose DSML
that will allow fitness-for-purpose arguments to be cap-
tured explicitly and in an analysable form (cf. Fig. 2,
top two rectangles). We believe that the demonstration of
fitness for purpose is the key to trustworthy and scientif-
ically robust computational modelling. Fitness-for-purpose
arguments demonstrate that the domain has been modelled
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Fig. 2 Overview of the family of DSMLs. Outer rectangles relate
to existing CoSMoS products and techniques. The inner 3x3 struc-
ture is the proposed DSML family. Reading top-to-bottom, it moves

from domain-focused to simulation-focused, via software engineering
modelling. Reading left-to-right, the focus moves from designing, to
querying of designs, to results

appropriately for the stated purpose (justifying modelling
decisions based on scientific literature, real-world experi-
ments, etc.), that the model adequately reflects reality (by
showing that it can reproduce results seen in real-world
data), and that the simulation experiments are appropriate to
establish conclusions (including, but not limited to, showing
that the results establish hypotheses with appropriate statis-
tical rigour). The fitness-for-purpose argument must include
explicit hypotheses (e.g., about expected behaviours) and
explicit modelling of the simulation experiments to exercise
the hypotheses.

Fitness-for-purpose analysis cannot be fully automated.
However, an explicit fitness-for-purpose model can main-
tain links between inputs to, and steps of, a fitness-for-
purpose argument, enabling systematic inspection, including
by researchers outside the study team. We propose to adapt
the existing Goal Structuring Notation (GSN) definition by
including explicit,3 computer-processable links to the other
DSML-supported models (and specific versions of these
models) that support development and use of the simulation.

The suite of models (diagrams, text, etc.) expressing the
relevant abstractions of the domain need to be expressed in
a domain-modelling DSML so they are accessible to the
domain expert. This DSML will likely be adapted to each
new research context, to allow natural expression of the
domain’s specific concepts.However,we anticipate consider-

3 https://www.goalstructuringnotation.info

able reuse, supported bymodular language components—for
example, in cellular biology, there are recurrent mechanisms
such as gene-regulation networks or energy minimisation
principles, whilst cell clustering and cell differentiation have
significant generic aspects. A modular approach to language
specialisation also makes it easier to extend models and lan-
guages.

To further facilitate reuse and extension, we propose to
develop the domain-modelling DSML atop a generic agent
modelling language providing the basic concepts for agent-
based simulation. The generic language will then be spe-
cialised for each specific simulation platform (e.g., [28,35]),
enabling automated transformations of generic agent models
into platform-specific simulation models.4 We envisage that
simulation experiments are also designed and modelled via a
hierarchy of languages, with a model querying DSML at the
highest abstraction level. Again, such a language has to be
specific to each domain, with the potential for reuse across
domains, and the use of templates for recurring query types.
The query DSMLs should support generation of experiment
execution scripts (simulation experiment models) in a step-
wise fashion.Explicitly separatingqueries (inDomainModel
Queries) from domainmechanisms (in the DomainModel) is
important as it helps avoid encoding the expected emergent

4 Many generic simulation platforms already come with a platform-
specific simulation-modelling language, often as a library or framework
in a general-purpose language such as Java.
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behaviours into the simulation. InCoSMoS, this is realised by
explicitly separating the Basic Domain Model [44, pp. 130]
(containing the hypothesised mechanisms, similar to our
Domain Model) from Domain Behaviours [44, pp. 135]
(a model of the observed emergent behaviours, similar our
Domain Model Queries used from our Hypothesis Model).
The latter are explicitly ignored when constructing a Plat-
form Model to avoid tainting the simulation implementation
with knowledge about the expected emergent behaviours.

Once simulation experiments have been run, the results
need to be presented to domain experts for interpretation.
This requires translation back from a platform results model
(e.g., a log file of a simulation run) to a domain-specific
results model expressing results in terms of the domain
queries and domain-model concepts, including information
about statistical significance. Again, this is a stepwise trans-
lation via an intermediary agent-based results model. Results
models are referenced from fitness-for-purpose argument
models, ensuring the full end-to-end argument is docu-
mented. Thus, fitness-for-purpose arguments become live
models tracking the current simulation rationale.

3.1 Expected benefits

Automated generation of executable simulations (Simulation
platforms in CoSMoS and Fig. 2) enables separation of con-
cerns: domain experts can focus on expressing their mental
model of the domain, whilst software engineers can focus on
simulation implementation. Further benefits arising from our
vision of a family of DSMLs include the following:

– Automated generation means simulations consistently
implement the domain model using well-defined trans-
formations that can be inspected by domain experts
and software engineers when maintaining the fitness-
for-purpose argument. Because fitness-for-purpose is
modelled explicitly, the specific implementation of the
transformation can be directly referenced from a fitness-
for-purpose argument, enabling complete traceability.
This is impossiblewhere simulations aremanually devel-
oped from domain models.

– In generating simulation experiment models, the auto-
mated generator can take into consideration expected
boundaries for statistical significance and choose appro-
priate sensitivity analyses for robustness checking—for
example by building on tools such as MC2MABS [20] or
Spartan [5]. Again, the generation rules are explicit arte-
facts that can be referenced from the fitness-for-purpose
argument and inspected as needed.

– Building a hierarchy of DSMLs with stepwise transla-
tion improves reuse: languages closer to the simulation
platform are more likely to be reusable for different
types of simulations in different domains. Simulation has

been studied for a long time, so simulation platforms are
largely stable and do not change substantially. Equally,
many domain problems can be simulated using the same
fundamental agent-based concepts, but there are prob-
lems that will require different concepts to be efficiently
simulated.While some aspects of domainmodels may be
reusable across different specific domains (e.g., gene reg-
ulation networkmodels), potentially allowing libraries of
reusable model components to be created, many aspects
of domain models may require highly domain-specific
languages.

– Stepwise transformation in a hierarchy of DSMLs also
simplifies inspecting the transformation specification
by domain experts (together with software engineers).
Analysing individual transformation steps induces lower
cognitive load. Analyses of lower-level transformation
steps can be reused; these do not have to be re-inspected
every time. Thus, a hierarchical argument for fitness-for-
purpose can be constructed, increasing acceptance and
trust.

4 User scenarios

We have identified four user scenarios where we expect a
model-driven approach to simulation development as out-
lined in Sect. 3 to be beneficial:

(US1) Tracking of fitness-for-purpose artefacts. As the
team’s understanding of the domain and the prob-
lem under study develops, so do the various
models being developed, the simulations being
run and the experiments these enable, the results
obtained, and the overall argument for fitness for
purpose. Any set of results needs to be mappable
to the specificmodels and simulator code, and the
specific fitness arguments. For instance, when it
comes to writing a paper, the paper authors need
to identify which (versions of the) artefacts con-
tribute to the overall scientific argument and how
they do so. But scientific work does not stop with
one paper. The simulation andmodels are likely to
evolve and be extended to address new challenges
and hypotheses. At any point, it is important to
track existing fitness arguments efficiently, and
to verify whether extended and refined models
still adequately support the original results, iden-
tifying where changes have emerged.

(US2) Explicit domain translation. A key step in the
development of a computational simulation is the
translation of a domain model into a platform
model and executable simulation [44, pp. 149–
152]. Typically, this is a manual translation pro-
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cess. While CoSMoS patterns such as Seamless
Development [44, pp. 214f] aim to make the
translation as direct as possible, a translation is
invariably required as simulation development
moves from the language of the domain to the
language of formal computation. This creates
problems: it becomes difficult to validate the fit-
ness of a given simulation platformas it is difficult
to link implementation choices back to domain
concepts, reducing reproducibility and maintain-
ability as well as making it difficult to bring new
team members onboard. CoSMoS creates signif-
icant documentation requirements (e.g., Docu-
ment Assumptions [44, pp. 108f]) to document
the relationship between domain concepts and
computational implementation. However, docu-
mentation that is separate to the implementation
is likely to become outdated very quickly.

(US3) Statistical analysis. A key aspect of any experi-
ment is robust statistical analysis. This requires
expertise significantly different from the domain
expertise required to describe observations and
hypotheses. Statistical arguments need to be
incorporated into the fitness-for-purpose argu-
ment to capture, inter alia, whether a sufficient
number of runs of a simulation experiment have
been executed to control for the aleatory uncer-
tainty inherent to any randomised process (such
as a typical computer simulation), or how sensi-
tive the results are to changes in parameter values
(identifying key parameters and parameter ranges
with largely unchanged simulation outcomes) [3].
This often requires input from experts with train-
ing in mathematical statistics.

(US4) Experimental design. Designing a (computa-
tional) experiment is an incremental and itera-
tive process requiring the creation and execution
of many simulation experiments whose results
can be compared to results of laboratory (or
other scientific) experiments—for example dur-
ing simulation calibration—and eventually can
be interpreted into insights in the real world, per-
haps tested further in new laboratory experiments.
Experimental design may require specialisation
of any part of the simulation model—identifying
the questions or hypothesis to be investigated,
determining the data to be collected, changing
the mechanisms implemented in the simulator,
etc. Each set of experiments needs to be matched
to a specific version of models and code, and to
specific parameter sets, making the correct and
consistent execution of simulation experiments a
challenging task.

Fig. 3 PPSimexpected behaviours [1], using a notation devised byYork
Computational Immunology Labs. “Real world” observables of interest
are listed at the top. Those on which the focus rests are elaborated with
hypotheses, and each hypothesis is linked to abstract representations of
the key “real world” concepts implicated in the hypotheses. These mod-
els, which are the result of many hours of collaborative work between
domain experts and developers, are used to derive a simulation purpose
and the level of abstraction for the simulation development

5 Application to example

In this section, we discuss the user scenarios in some more
detail, relating them to the example from Sect. 2. We begin
by giving somemore details about the PPSim example before
discussing each user scenario in turn.

5.1 Somemore detail on PPSim

We illustrate how our vision contributes to these user
scenarios using artefacts from the PPSim simulator devel-
opment [1,2]. It is worth noting that, while some of these
artefacts are diagrammatic models, they do not originally
use any formally defined DSMLs. We will show the original
artefacts and then show prototypical reimplementations of
part of the artefacts to demonstrate the benefits DSMLs and
a model-driven approach would offer.

It is useful, at this point, to give some more detail
of the PPSim simulation activity. In the original PPSim
development, the domain understanding was captured
diagrammatically—an example from [1] can be seen in
Fig. 3.

The agreed simulation purpose focused on an explo-
ration of the mechanisms and actors in the formation of
Peyer’s patches—clusters of cells that are ultimately part
of the immune system, as formed in a neonatal mouse gut.
Experimentation using the simulator established unexpected
responses to chemicals that were subsequently tested in vivo.
A key part of the simulation activity was to simulate the
chemical stimuli and cell behaviours implicated in how cells
bind together to form these clusters.

It is useful to give an intuition for what (simulated) bind-
ing and clustering entails. The basic context is that cells, of
various sizes and properties, move through a tube (represent-
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ing part of the gut), and may interact both with the surface of
the tube and with other cells. Interactions are typically medi-
ated by the state of the environment in the tube, modelling
dispersing chemicals, flowing fluids, etc. Cell binding occurs
when two cells—or a cell and the tube wall—are determined
to have made contact: in reality, cells have receptors on their
surface, and chemical bonds are created or broken. Interac-
tions lead to changes of state in the cells: the new state may,
for instance, cause one or both cells to emit a chemical, or
respond differently to a chemical, or to differentiate to a state
that enables different capabilities. Some of the cell states are
labelled (biologically and in simulation) as “bound”, and it is
the persistence of a group of bound cells that forms a cluster.
Binding is not a once-and-forever action; the bind may be
strengthened or weakened by interactions with and around
the bound cells.5 Note that here, as in much of the natural
world, terms such as “bound” and “cluster” are labels applied
by scientists towhat they observe: within the context and pur-
pose of the simulation, there is no exact definition of when a
cell is bound or a group of cells becomes a cluster.

In PPSim, the simulation is designed to cover a period of
a few (specific) days in the development of an embryonic
mouse gut. Unlike the real mouse “system”, the simulation
of the behaviours starts with one type of cell already bound
to the wall of the gut (the behaviours preceding this state
are not relevant to the simulation purpose). The simulation
ends at the point in simulated time that corresponds to the
observed real-world appearance of significant cell clusters.
Two similar but distinct types of cell are simulated moving
through the tube/gut, with appropriate simulated behaviours,
depending on the current state of each of the cells. The sim-
ulator design is thus a set of state changes, which model
the known biological interactions that result in cell binding,
including chemical expression and attraction (chemotaxis)
by cells. Clusters can be identified visually (as they are in
real-world experiments), but cell states include a variable
that indicates whether a specific cell is bound or not, and a
cell behaviour can probabilistically break a bind, mediated
by the simulated chemical environment. Binding has poten-
tial self-reinforcement through both chemicals emitted by
bound cells, and by further contacts from cells attracted by
chemotaxis on such chemicals.

Whilst ongoing binding and recruitment of further cells is
aspecific, the first bind relevant to the formation of a cluster
is critical: it takes place between a mobile cell and a cell that
is already bound to the tube/gut wall (i.e. the cells that exist
in the initial state of the simulation). Both cells must be in
the right state to take the first step towards binding once the
initial, ephemeral, contact is made.

The PPSim simulation goal is simply to model the
behaviours from which clustering of cells emerges, over a

5 A summary of the biology of binding can be found in [4, Fig. 1.4].

Claim 1.1.3:
Simulated cell behaviour between 
12 and 13h is representative of 
that observed in ex vivo culture

Strategy 1.1.3.1:
Argue that simulated cell behaviour is 
statistically similar to that ex vivo at 12h

Claim 1.1.3.1.1:
Simulated cells <50µm from a forming 
patch behave as observed ex vivo

Claim 1.1.3.1.2:
Simulated cells >50µm from a forming 
patch behave as observed ex vivo

Mann-Whitney test reveals 
no statistical difference [14]

Mann-Whitney test reveals 
no statistical difference [14]

Definition: representative
cell behaviour observed in simulation 
can be compared to that observed in 
cell culture using statistical techniques

Justifications:
Mann-Whitney 
U-test (don’t 
know if data 
are normally 
distributed)

Fig. 4 Extract of argument that the PPSim simulation is an appropriate
representation of the biological domain for this simulation project, using
the CoSMoS variant of Goal Structuring Notation [4,44]

short period of time. This strict purpose and focus makes the
simulation computationally feasible by limiting the range of
behaviours, cell states, environmental chemicals, and so on,
that need to be simulated. In reality, beyond the simulated
time-window, the cluster itself eventually assumes identity
and behaviours (becomes a Peyer’s patch), but this is out of
scope for this simulation.

Again, it is worth noting that the point at which bound
cells become a cluster is not well defined. A scientist can
examine a section of gut and count the clusters, identifying
each intuitively, perhaps based on their understanding of the
subsequent phases of development where a cluster assumes
the form and behaviour of a Peyer’s patch. In the simulation,
cell states include variables that record contact and binding,
to enable appropriate probabilistic behaviours. Since all clus-
ters start from a single cell bound to the cell wall (of a type
different to the mobile cells), the simulator can “count clus-
ters” by setting a threshold value for the number of cells that
are in contact and bound to the originating cell which is part
of the initial state of the simulator. Terms like stable binding
can be defined in biological terms, but assume a different sort
of meaning computationally.

Next, we discuss each user scenario in turn.

5.2 (US1) tracking of fitness-for- purpose artefacts

We begin by discussing user scenario (US1), concerning
the creation and maintenance of fitness-for-purpose argu-
ments. The rationale for the PPSimmodel can be expressed in
argument diagrams syntactically based on GSN (cf. Fig. 4).
However, thesemodels are essentially structured text, provid-
ing no explicit link to any of the concrete artefacts comprising
the overall simulation model. The argument in Fig. 4 is only
valid for a particular version of the simulation model and,
in fact, relies on the results from a particular set of runs of
the simulation. It also references data from relevant scientific
publications of wetlab experiments (“[14]” in the figure), but
this link is not explicitly encoded and quickly becomes dif-
ficult to track. It is possible to use hyperlinks within GSN,
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rather than text references such as “[14]” that have no inher-
ent meaning, but this does not guarantee traceability over
time.

Similarly, the Peyer’s-patch domain can be represented
using adiagram like theone shown inFig. 3.Todate, this form
of diagram does not have a formalised notation, but it could
be presented in a DSML. The “Observables” at the top of the
diagram correspond to domain model queries in Fig. 2 while
the “Hypotheses” below correspond to the domain model
capturing the hypothesised and to-be-simulatedmechanisms.

Building on these observations, Fig. 5 shows an initial
meta-model for a fitness-for-purpose DSML. The right part
shows the standard GSN concepts of claims, justifications,
definitions, solutions, and strategies, each allowing for a tex-
tual description.6

The Domain-Specific Domain Modelling Language for
PPSim would define a Simulation Model concept
that represents a container for all domain-model concepts.
A specific instance of this concept can be referenced
directly from the fitness-for-purpose argument model (see
the Simulation Model concept in Fig. 5). Similarly, the
Domain-Specific Model-Query Language for PPSim would,
inter alia, define a concept of Query, with any specific
observable being an instance of this concept—also making
this explicitly referencable from the fitness-for-purpose argu-
ment model.

As we can see, a fitness-for-purpose argument model for-
malised on the basis of the meta-models above explicitly
references all the specific artefacts making up the compu-
tational model. This enables the use of standard software
versioning tools, such as Git [8], for tracking consistent
sets of artefacts—and thus complete fitness-for-purpose
arguments—as models and simulations change incremen-
tally and iteratively. Such tracking can be done in different
ways:

1. A simple set up would place the fitness-for-purpose
argument model into the same repository as the var-
ious artefacts it references. This way, every version
checked out from the repository contains a specific ver-
sion of the fitness-for-purpose argument together with
the corresponding versions of the artefacts it refer-
ences. This works well for iterative development of one
fitness-for-purpose argument, including maintaining a
record of model versions underpinning specific scientific
publications—the corresponding versions can be tagged
using the relevant mechanism of the versioning software
used.

6 This is a simplification of the GSN meta-model defined in the GSN
standard [6] as a specialisation of the OMG’s Structured Assurance
Case Metamodel [36]. For the purposes of this paper, we focus on the
key GSN concepts, omitting the more generic SACM concepts.

2. Where there is a need to develop different experiments on
top of a shared (and possibly iteratively refined) domain
model, this simple set up may not be sufficient: changing
one fitness-for-purpose argument may require changes
to some of the underlying artefacts, but these changes
may break the validity of other fitness-for-purpose argu-
ments. Keeping all fitness-for-purpose argument models
in the same repository together with the underlying arte-
facts, while technically possible, makes it impossible
to track the specific artefact versions attached to spe-
cific fitness-for-purpose arguments. The core problem
is that fitness-for-purpose arguments and the underlying
artefacts may evolve on different time scales. This can,
however, be supported by modern versioning systems.
For example, in the context of the Git versioning system,
one solution might be to place each fitness-for-purpose
argument into its own repository referencing the repos-
itory/ies containing the underlying artefacts through Git
submodules.7 In thisway, fitness-for-purposemodels and
the underlying artefacts can evolve independently while
still ensuring that for each fitness-for-purpose argument
version it is always explicitly clear which precise version
of each artefact it references.

Combined with support for citable code (e.g., the GitHub–
Zenodo integration8), this completely supports user sce-
nario (US1).

5.3 (US2) explicit domain translation

In the PPSim development, Fig. 3 summarises extensive
dialogue between scientists and simulation developers, and
expresses the abstraction level and potentially-simulatable
scenarios, based on observations (data, visualisable emergent
behaviours/structures) from real-world experimentation. The
next phase of PPSim development, leading to the platform
development, was to deduce behaviour diagrams. The simu-
lator code was deduced from the diagrammatic design (and
a lot of supporting text) [1]. Focusing on the step from
state machine diagrams to code, Polack [38] explores the
undocumented manual derivation, and how this might be
replaced by transformation, noting the challenges of tra-
cability and documentation of a manual complex system
simulation development. This work also identified the way in
which some of the non-diagrammatic information was used
in manual design and coding, and showed how a systematic
translation of the design resulted in often-subtle differences
in the derived code structure.

In our vision, we need to establish how these manual
derivation can become a series of model transformations.

7 https://www.git-scm.com/book/en/v2/Git-Tools-Submodules
8 https://www.guides.github.com/activities/citable-code/
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Fig. 5 A first meta-model for capturing fitness-for-purpose arguments that link to simulation model artefacts

To improve the reproducibility of the simulation experi-
ments and enable a clearer—and maintainable—argument
for fitness for purpose, it would be beneficial to capture the
translation as a model transformation between the domain
model and the simulation platform. This would first require
formalisation of the key domain concepts (the Glossary [44,
pp. 127f]) as a meta-model so that the transformation into
an agent model and, eventually, a platform model can
be specified using an existing transformation language. In
defining the transformation specification, the need for addi-
tional information may become evident; just as additional
information became relevant when manually generating the
simulation implementation before. Different to the manual
approach, this would trigger an incremental extension of
the domain-modelling meta-model, ensuring that all relevant
information is explicitly captured in a structured artefact.

A similar effect occurs in relation to the “Observables”—
Fig. 3—remember that these would be captured in the
domain-specific query modelling language. For example,
consider the observable ‘small cell clusters around LTo cell’.
To express this in a formal model, we need to be able to
have concepts such as ‘cell cluster’ or ‘LTo cell’ in our
domain-modelling language. An agreed (possibly parame-
terised) definition of what it means for cells to form a cluster,
and the rationale for this, could also be defined, with appro-
priate transformations into computation, so that a change in
the agreed cluster definition could be easily translated into a
change in the simulator platform code. By focusing attention
away frommanual traceability issues, this would allowmore
effective consideration of any side-effects of the change in
definition (e.g. required changes in visualisation or experi-
mental design).

In the PPSim example, binding of cells is captured stati-
cally via a reference between objects representing cells and
dynamically via a set of operations that encode the conditions
under which cells bind or unbind. Having an explicitly spec-
ified transformation between the concept of ‘cell cluster’ and
these computation-oriented concepts makes the transforma-

tion explicitly inspectable and subject to discussion as well
as referencable from a fitness-for-purpose argument. Our
proposed transformation approach, linking models, queries
over models, and fitness for purpose, would enable, for
instance, differentiation in the simulator between “small” and
“large” clusters, or between cell-type composition of clus-
ters, without manual adjustment of the codebase. We could
then generalise from this simulation instance, for instance
to provide a more general expression language as part of
the domain-specific model-query language to allow domain
experts to capture different classifications of cell clusters that
interest them, enabling new simulation experimentation and
hypothesis creation without manual reworking of the simu-
lator.

5.4 (US3) statistical analysis

Another benefit of themodel-based approach is that it enables
separation of concerns and contribution of expertise fromdif-
ferent backgrounds. In the example, assessing whether sim-
ulation results are aligned with real-world experimental data
requires an appropriate domain model, but also requires sig-
nificant statistical expertise to ensure the simulation results
are interpreted correctly.Authors of fitness-for-purpose argu-
ments may not have expertise in all of these areas. However,
the model-driven approach means that some expertise that
is required across domains can be encoded into the DSML.
This is related to the notion of generic arguments proposed
in [44, pp. 200ff] to capture recurring argument structures
in simulation engineering. An MDE-based approach can go
one step further by (partially) automating the evaluation of
these argument structures.

As an illustrative example, the left part of the meta-model
in Fig. 5 shows how a particular type of claim can be defined,
which would capture an assertion of a statistically significant
similarity between data from two separate sources (labelled
left and right in the figure). Such a statistical similar-
ity claim would still come with a textual explanation, but
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would further include explicit, computer-processable infor-
mation about the kind of statistical test employed as well as
the specific data sources compared. A data source has two
components: the actual source of the data (in the meta-model
this can be a CSV data file—for example, taken from a wet-
lab experiment or a published paper—or a simulation model)
and a query that extracts the specific information required
from the data source. We are using the Query concept from
the model-query language, so such a query could be one of
the observables from Fig. 3.9 A Simulation Model data
source references a specific domain model and indicates that
the data to be compared against comes from a simulation of
that domain model.

Figure 6 shows the output of a prototype diagram-
matic editor that supports generation of and reasoning
about the fitness argument for part of the simulation.
The editor is built using Eclipse Sirius [46], based on
the meta-model from Fig. 5. The diagram shows a sub-
set of the argument from Fig. 4, focusing on part of the
statistical claims. The claim towards the bottom of the
diagram (indicated by the orange arrow) is an instance
of StatisticalSimilarityClaim from the meta-
model. It references two data sources: a CSV file taken from
a wetlab experiment, from which we extract the data in the
first column, and a simulation model, from which we extract
information about the patch behaviour. Here, neither the jus-
tification on the left, nor the solution entity at the bottom
was specified by the user of the tool: the editor added both
automatically as soon as the user inserted the claim that the
statistical evaluation uses a Mann–Whitney test. The editor
generates the argument, and tests it against the identified data
sources, using a Mann–Whitney test (cf. Fig. 7). In this illus-
tration, the claim is found not to hold, and the editor thus
coloured the offending solution in red to highlight where
the fitness-for-purpose argument breaks. This linkage of the
argument and the experiment at the DSML level means that
the argument, the data, or the model can be changed, and
the argument updated automatically: for instance, a differ-
ent data set (either the real world or simulation data) can
be provided, and the fitness for purpose claim re-evaluated.
Combined with standard software version-control mecha-
nisms, this approach can satisfy the requirements of user
scenario (US1).

5.5 (US4) experimental design

The fitness-for-purpose argument in Fig. 6 simply references
the simulation model, but does not specify anything about
how this model is to be executed. Knowledge about how to

9 For simplicity, we are encoding queries in Java classes implementing
a simple interface. In future work, this would be replaced by a separate
DSML for capturing queries of relevance in the domain.

execute a simulation is already encoded in the translation
process that takes a domain model and produces a simula-
tion implementation. The execution scripts thus generated
can also include statistical analysis—for example using the
Spartan tool [3] and its aleatory analysis to determine the
number of simulation runs required to allow robust conclu-
sions to be drawn.

The fitness validation shown in Fig. 6 requires running
simulation experiments, which can be an expensive task.
Validation of fitness-for-purpose argument models, there-
fore, needs to be triggered by the user. This also allows the
experiment executions to be automatically scheduled so as to
minimise the computational impact, similar to how modern
software build tools automatically schedule themost efficient
execution of only required build tasks. All of this execution
infrastructure is provided as explicit code and transformation
specifications, all of which are explicitly referenced from the
fitness-for-purpose argument model, enabling full traceabil-
ity.

6 Related work

Effective development of agent-based models and simula-
tions has been studied for some time, and model-driven
approaches have been explored. As a result, some pieces
of our vision have already been studied in various contexts.
However, to the best of our knowledge, a vision addressing
the entire argument an agent-based model and simulation
supports, from the original hypotheses, to the simulation
implementation, the simulation experiments, the calibration
and model validation and to the final conclusions, has yet to
be achieved. In this section, we point out existing work that
addresses some parts of the vision. We structure the discus-
sion according to the three columns in Fig. 2 plus a section
on work around fitness-for-purpose arguments.

6.1 Domainmodelling

So far, model-driven approaches to describing the domain
under study have primarily focused on developing agent lan-
guages and (semi-)automated transformations into platform
models. For example, the INGENIAS project [13] intro-
duces an agent-modelling language to support replication
by enabling the automated translation to different simula-
tion platforms. MAIA [16] is a similar, slightly more recent
approach.Here, there is some support formodelling variables
of interest and extracting visualisations from the simulation
logs. However, this is not connected to hypotheses, simula-
tion experiments, or rationale for developing the simulation
in the first place.

The OCOPOMO project [42] is, to the best of our knowl-
edge, the first approach that partially addresses the need for
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Fig. 6 Part of the argument in Fig. 4 modelled in an explicit DSML.
Note the red solution shape at the bottom, indicating that the Mann–
Whitney U test did not actually confirm that the two sets of data are

from the same distribution. The orange arrow is not part of the diagram,
but highlights the claim discussed in the text

Fig. 7 Checking statistical significance of a comparison based on model information
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achieving traceability from the original domain understand-
ing and research context to the simulation implementation
and final data, by allowing the inclusion of hyperlinks to the
original data. However, models remain at the agent-language
level, thus requiring a mental shift for domain experts to
understand the models and relate them to their domain
expertise. Other examples of model-driven approaches to
agent-based modelling and simulation can be found in [21]
(possibly the first such approach) and [41], a more recent
approach that provides a more domain-specific visual syntax
for its agent language.

In [37], Parunak shows an interesting example of a
domain-specific modelling approach for an agent-based
model in the defence domain. Although this does not explic-
itly use language-engineering and model-driven engineering
technologies, it is perhaps the closest work in intention and
conceptualisation to our vision: high-level domain-specific
languages (encoded in a variety of technologies, includ-
ing spreadsheets) are made available to domain experts to
express their domain conceptualisation and are automatically
translated into an agent-based model that is automatically
simulated and results extracted. While Parunak provides
examples of domain-modelling DSMLs, there is no support
for explicitly capturing a fitness-for-purpose argument over
the agent-based model.

Muñoz et al. [34] describe the use of UML and some
bespoke modelling languages for capturing the structure and
behaviour in an agent-based model of autonomically driving
vehicles and pedestrians, developed for purposes of training
and testing autonomic-driving AI systems. This work pro-
poses some domain-modelling DSMLs—for example, the
authors provide a DSML for specifying different levels of
uncertainty of agents about road conditions and other agents
based on levels of visibility, etc. At the same time, however,
the approach requires some very low-level ABM features to
bemodelled, too. In particular, the user is required to produce
a UML model that captures the simulation-implementation
classes down to the level of tick() methods. Thus, the
approach has aspects that are more low-level than the
agent-modelling approaches in [13,16,21,41,42] mixed with
approaches that are at a similar abstraction level to the lan-
guages introduced in [37] andproposed in our vision. Explicit
models of fitness-for-purpose arguments are again not con-
sidered in [34].

Barat et al. [7] describe OrgML, a domain-specific mod-
elling language for describing organisational structures,
levers and outcomes and translating these into agent-based
models and simulations. This is similar to the left column in
Fig. 2 in that OrgML is a domain-specific domain-modelling
language and the underlying actor language is an agent mod-
elling language.

6.2 Query and experiment modelling

In the wider simulation community, it has been recognised
that the definition of simulation experiments follows sim-
ilar patterns across domains and can be captured through a
domain-specific language. SESSL [12] is one such language,
which allows the specification of simulation experiments and
the processing of results—for example for visualisation—
in an internal DSL embedded in Scala. SESSL focuses, in
particular, on providing a unifying mechanism for specify-
ing simulation experiments that can be executed on different
simulation platforms. However, the specification remains at
what in our vision we refer to as the platform-specific level:
domain-specific or agent-specific concepts are not used in
the DSL.

ESS [30] is an external DSL for the specification of
simulation experiments. Here, the focus is less on sup-
porting different simulation ‘back ends’ and more on the
support for different statistical analyses. However, as with
SESSL, ESS also remains at what we would refer to as
the platform-specific level and does not provide support to
domain stakeholders.

There has been extensive research interest in the vali-
dation of agent-based models, and some of this work has
started to explore approaches for ensuring the statistical
soundness of the conclusions drawn from simulations. For
example, Spartan [5] is a toolkit supporting statistical anal-
ysis of simulation runs to alleviate aleatory uncertainty and
undertake sensitivity analysis, focusing on numerical output
data. Similarly, MC2MABS [20] provides support for draw-
ing statistically sound conclusions based on temporal-logic
queries about patterns of agent behaviour. However, neither
of these approaches are currently integrated with the initial
domain model; they remain at the platform-specific level. As
a result, they require extensive manual translation and inte-
gration effort from domain experts and software engineers to
be applied to a new simulation context.

ProMoBox [31] is an interesting example of a domain-
specific query language outside the simulation world. The
authors observe that domain experts struggle to work with
linear temporal logic expressions and relating them to their
domain concepts. To address this challenge, they provide a
mechanisms for generating domain-specific query languages
by lifting the structure of LTL expressions to the domain
level and replacing predicates with patterns in the original
domain language. This is achieved via a domain-specific
meta-modelling language [53].

6.3 Result modelling

We are not aware of many works on results modelling. Many
simulation tools allow the specification of what parameters
and attributes should be monitored and exported as results
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of a simulation run. SESSL [12] discussed in more detail
above, includes concepts for describing what data to extract
and how to visualise it, in a manner that is independent of
specific simulation tools.

6.4 Fitness-for-purpose arguments

Arguing for the validity of experiments and simulations is
important and has been studied from different perspectives.

6.4.1 Experimental frame and validity frame

As a general concept, Zeigler [51] introduce the “experimen-
tal frame” capturing the context of a system under study as
the inputs and corresponding outputs allowing to establish a
validity argument as a comparison of input–output behaviour
of the real system as compared to the simulation system.
Denil et al. [10] (the foundation for [30]) identify further
aspects that need to be captured to support reproducibility of
simulation experiments, including information about what
data is to be collected and how these observations are made
and information about the solvers used. They refer to this
extended set of information as the validity frame of a simu-
lation experiment.

In the context of agent-based models in computational
science, the CoSMoS approach [44] suggests that a richer
set of information is required, linking modelling decisions to
the scientific literature, real-world experimentation, expert
decision making, etc. They argue that such a rich rationale
for the fitness-for-purpose of a given simulation can only be
captured as a structured argument, some of which subsumes
aspects that are covered by experimental and validity frames.
Our vision in Fig. 2 is based on this understanding.

6.4.2 Provenance and scientific workflows

One aspect of this is an understanding of how a particular
model came to be as a consequence of a series of decisions,
linked to previous experiments and scientific papers, and how
the execution of an experiment led to the results obtained.
A similar argument applies to scientific process descrip-
tions and our envisioned family of languages could form an
integral part of a formalised description of an experimen-
tal process. An alternative model-based approach to process
description is described in [43]. Concepts of provenance have
long been applied to the documentation of scientific work-
flows [32]. Specifically for simulation experiments, the use
of provenance has been discussed in [39].

6.4.3 Argument structures

We have borrowed the structure of fitness-for-purpose argu-
ments (and the language used for these) from the domain of

safety assurance cases. As a result, work in that area is poten-
tially relevant here, too. In particular, we note considerations
on pattern/template-based development of assurance cases,
on automated instantiation of assurance cases, and on the
assurance of DSML-based systems.

Kelly and McDermid [23] introduced the idea of cap-
turing recurring argument structures in assurance cases as
assurance patterns. Assurance patterns can be considered
parametrised partial assurance arguments that are meant to
be instantiated into actual assurance cases by linking param-
eters to data from the system being developed. Yan et al. [50]
survey different approaches to using assurance patterns for
the creation of assurance cases. One of the approaches—also
realised in the AdvoCATE tool [11]—constructs assurance
cases by, in effect, gluing together instantiated assurance-
case patterns.We have previously shown howmodel patterns
(or model fragments) can be abstracted into DSML language
constructs [22]. The StatisticalSimilarityClaim
concept we introduced in Sect. 5 is an example where we
have identified an assurance pattern for part of a fitness-for-
purpose argument for simulations and have encoded this as a
language concept directly in the fitness-for-purpose DSML.
An interesting question for future research is: What are the
argument patterns for fitness-for-purpose models in simula-
tion engineering and how can they be best captured as DSML
concepts.

Wassyng et al. [48] point out that just having a structured
approach to describing assurance arguments does not guar-
antee that meaningful arguments will be constructed. They
argue for a twofold solution: (1) to use assurance templates
(in effect, assurance patterns with additional contextual and
guidance documentation for when and how to use them) to
drive system development rather than only creating assur-
ance cases as documentation after the fact, and (2) improved
structure of assurance-case models that is able to capture
not just the top-down decomposition of arguments, but also
the logical recomposition of sub-arguments into supporting
a larger claim. The latter is also elaborated in [40], which
argues for a formalised underpinning of assurance-casemod-
els. The use of assurance templates to drive the design and
implementation of systems is a very interesting idea; one
research question is whether the fitness-for-purpose model
can be used to drive rather than document the scientific pro-
cess, perhaps even acting as a form of structured electronic
lab notebook [25].

Assurance cases—and we expect the same to be true of
fitness-for-purpose arguments—can become quite large and
complex themselves. However, some aspects will be largely
mechanistic (e.g., connecting to appropriate data sources and
establishing relevant properties), while others require more
significant human input. In the safety assurance literature,
this has been recognised early [14], leading to significant
research into (often model-driven) mechanisms for automat-
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ically instantiating assurance cases (e.g., [18,19,29]). This is
typically based on instantiating assurance patterns, explic-
itly leaving open inputs that need to be provided by humans;
offering a way to focus human attention and drive system
design based on where the most value can be added to the
overall case [48]. An interesting research question in the
area of simulation engineering is, then, which aspects of
the fitness-for-purpose argument can be instantiated auto-
matically, and which require human construction. [29] also
introduces the interesting idea of defeaters as part of the
assurance case: these “capture doubts and objections” and
may be useful in simulation engineering to capture, for exam-
ple, calibration failures that motivated changes in the model
and other information about the incremental and iterative
refinement of the model.

In [47], Voelter et al. discuss the risks involved in using
DSMLs and the underlying language-workbench technology
in safety-critical systems. They provide a catalogue of risks
and corresponding technological and process-based mitiga-
tions. While they do not provide this, the catalogue would
translate quite straightforwardly into an assurance-case tem-
plate to be instantiated as part of a wider assurance case.
The same concerns, in effect, apply to the fitness-for-purpose
argument for DSML-based construction of simulations,
though the lower criticality of the overall system (in partic-
ular, where it is used more for discovery and as the basis
for later wet-lab experimentation than for product devel-
opment) will likely mean that less stringent arguments are
required. Nonetheless, the risks and mitigations discussed
in [47] should be considered as part of a fitness-for-purpose
argument for computational simulations based on DSMLs.

7 Conclusions and outlook

We have presented a vision for a family of DSMLs for build-
ing robust and trustworthy agent-based simulations, where
the models can be understood by domain experts and can
be clearly traced to the final simulation and the simulation
results, thus constructing an integrated fitness-for-purpose
argument. Some parts of the vision have been explored
before. However, the combination of modular DSMLs for
modelling domain knowledge, model queries and simulation
experiments, and computer-analysable fitness-for-purpose
arguments has never been explored.We have shown an initial
proof of concept for automated argument management, and
we are extending our work to prototyping such languages in
the domains of computational biology and health improve-
ment science.

In addition to underpinning high-quality, reproducible and
maintainable simulation, our vision would allow linkage
of simulation with the growing body of work on uncer-
tainty [45]. A range of meta-models now exist for belief

uncertainty, partial specification, bounded knowledge, etc.
These can be merged with DSMLs to allow arguments that
reflect the relative state of knowledge among domain scien-
tists and developers, with a holy grail of establishing the level
of trust to be placed on results.
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