Software and Systems Modeling (2023) 22:1319-1340
https://doi.org/10.1007/s10270-022-01073-2

REGULAR PAPER O‘)

Check for
updates

A generic framework for representing and analyzing model
concurrency

Steffen Zschaler' - Erwan Bousse? . Julien Deantoni3® - Benoit Combemale*

Received: 11 March 2021 / Revised: 19 November 2022 / Accepted: 27 November 2022 / Published online: 9 January 2023
© The Author(s) 2022

Abstract

Recent results in language engineering simplify the development of tool-supported executable domain-specific modeling
languages (xDSMLs), including editing (e.g., completion and error checking) and execution analysis tools (e.g., debugging,
monitoring and live modeling). However, such frameworks are currently limited to sequential execution traces and cannot
handle execution traces resulting from an execution semantics with a concurrency model supporting parallelism or interleaving.
This prevents the development of concurrency analysis tools, like debuggers supporting the exploration of model executions
resulting from different interleavings. In this paper, we present a generic framework to integrate execution semantics with
either implicit or explicit concurrency models, to explore the possible execution traces of conforming models, and to define
strategies for helping in the exploration of the possible executions. This framework is complemented with a protocol to interact
with the resulting executions and hence to build advanced concurrency analysis tools. The approach has been implemented
within the GEMOC Studio. We demonstrate how to integrate two representative concurrent meta-programming approaches
(MoCCML/Java and Henshin), which use different paradigms and underlying foundations to define an xDSML’s concurrency
model. We also demonstrate the ability to define an advanced concurrent omniscient debugger with the proposed protocol. The
paper, thus, contributes key abstractions and an associated protocol for integrating concurrent meta-programming approaches
in a language workbench, and dynamically exploring the possible executions of a model in the modeling workbench.

Keywords Language engineering - Model execution - Model concurrency - Simulation - Concurrent analyses/debugging

1 Introduction

To realize the vision of model-driven engineering [40]
(MDE) and language-oriented programming [50] (LOP),
where domain-specific modeling languages (DSMLs) are
defined and used for software development, we need to make
the development of such DSMLs and the corresponding tool
support as easy and cost-effective as possible. Over the last
decade, the research community has invested substantial
effort into developing the so-called language workbenches
[20], which provide generic tool support parameterised over
language specifications (syntax, semantics...) that can be
instantiated by interpretation of, or generation from, a largely
declarative language specification. This work has substan-
tially simplified the development of new languages and tool

Communicated by Gabor Karsai.

B Steffen Zschaler
szschaler@acm.org

Erwan Bousse
erwan.bousse @1s2n.fr

Julien Deantoni
julien.deantoni @univ-cotedazur.fr

Benoit Combemale
benoit.combemale @irisa.fr

Department of Informatics, King’s College London, Bush

House, 30 Aldwych, London, UK

University of Nantes, 2 Chemin de la Houssiniere, 92208
Nantes, France

University Cote d’Azur, Sophia Antipolis, France

University of Rennes, Rennes, France

support, making the MDE and LOP vision more feasible in
practice.

While, initially, work on language workbenches focused
on supporting the syntax and static semantics of DSMLs
(and providing editors and static analyzers), leaving execu-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01073-2&domain=pdf
https://orcid.org/0000-0001-6962-7846
http://orcid.org/0000-0002-7104-7848

1320

S. Zschaler et al.

tion primarily to the development of template-based code
generators, more recently, there has been a growing interest
in language workbenches for executable DSMLs (xDSMLs,
e.g., see chapter 26 of [21] or [8]). Here, in addition to a
specification of the language syntax, language engineers pro-
vide a specification of the DSML’s execution semantics (aka.
behavioral semantics) and the language workbench uses this
to provide additional services such as (omniscient) debuggers
and analysis tools. This has enabled the efficient development
of execution and analysis support for new DSMLs.

To date, most language workbenches support the specifi-
cation of an execution semantics in the form of a sequence of
steps (i.e., total order), leading to a sequential execution of the
conforming models. However, modern software systems and
execution platforms involve complex concurrency concerns.
Most modern software systems are distributed and involve
complex communications, and current execution platforms
are involving complex parallel architectures.

When a DSML captures knowledge from a domain where
concurrent aspects are important, its operational semantics
must capture the concurrent aspects so that they can be han-
dled during the execution of a model.

Systematic and generic support for concurrent languages
is still missing; although some specialized implementations
have been developed (e.g., [32,52]). While the execution
semantics can be specified using different paradigms (e.g.,
imperative or declarative rewriting rules), one of the key chal-
lenge is to enable language workbenches to plug in different
meta-programming approaches, with a common execution
engine able to interpret behavioral semantics, possibly with
concurrency.

In this paper, we demonstrate how key abstractions can
be used to handle the concurrency in a behavioral semantics
independently of the way it is actually encoded. Based on
these abstractions, we demonstrate how a generic execution
engine supporting a given set of common services can be
implemented.

We show how this generic execution engine is able to
embrace two very different ways to specify the concurrency
in an operational semantics.

We show how such an implementation can be used to
provide a protocol for analysis techniques such as concur-
rent omniscient debugging. We also show how we can give
additional control over concurrency to the language engi-
neer and language user to enable the dynamic exploration of
a language’s concurrency model. We have implemented our
approach in the GEMOC Studio language workbench [8],
but the overall approach is applicable to any language work-
bench, possibly using different technological spaces [30].

Specifically, we make the following contributions:

@ Springer

1. A set of key abstractions based on studies about multi-
form logical time to embrace concurrent aspect in a
technology independent way;

2. A generic interface for both explicit and implicit concur-
rent models and a generic execution engine;

3. The concept of concurrency strategy to support the
dynamic exploration of the concurrency model for a given
conforming and running model;

4. A set of specific concurrency strategies that we have
found useful for the exploration of concurrency; and

5. A prototypical implementation demonstrating the new
concepts and the overall approach.

The remainder of this paper is structured as follows: We
provide a motivating example in Sect. 2 before introducing
our key abstractions in Sect. 3. Section 4 then gives a high-
level overview of our approach together with a description of
the generic framework for concurrent model execution. Sec-
tion 5 introduces the concept of concurrency strategies and
discusses how they can be used to dynamically explore the
concurrency model. We then present the prototypical imple-
mentation in Sect. 6 and an evaluation of our approach in
Sects. 7 and 8. Finally, we discuss related work in Sect. 9
and conclude the paper in Sect. 10.

2 Background and motivating example

The main ingredients of an executable domain-specific mod-
eling language (xXDSML) are its abstract syntax and its oper-
ational semantics." In this section, we scope the xDSMLs
we are considering in our approach, namely metamodel-
based xDSMLs with concurrent operational semantics. At
the same time, we introduce an xDSML for production line
systems as a motivating and running example used through-
out the paper. Its concurrent operational semantics is defined
twice with very different state-of-the-art meta-programming
approaches.

2.1 Abstract syntax

We assume that the abstract syntax of an xDSML is defined
using a metamodel, which is an object-oriented model
composed of interconnected meta-classes, each capturing a
concept of the domain of interest.

To illustrate our proposal, we introduce an xDSML? that
allows the modeling of simple production line systems (PLS).

1 We deliberately leave out the concrete syntax since it does not impact
the executability of a DSML, and our approach is independent of any,
textual or graphical, concrete syntax.

2 This xDSML has previously been developed for the e-Motions system
[38].

A generic framework for representing and analyzing model concurrency

1321

[E ProductionLineModel]

EE NamedElement ’

= name : EString

r N
’ N E Hammer

|
l J {
¢ ¢

7

I

E Container [0..*] parts

[0.*] containers

L

J

Lﬁ_' H Handle)
; J 4

[0..*] machines Z]X E Head
| | L] |
[E Machine 10..1] ot E Conveyor [0..1] tray H Tray] I
ZP — L) L X
[0.1]in
| I Q GenHead

[E| Assembler] [£ Generator | .)
l J l J i E GenHandle I

Fig.1 Metamodel of the production line language

Fig.2 An example production
line

o —— J—1
M .\‘wandle

cx e [

73

Legend

by GenHead] GenHandle ¢ Assembler JConveyor BTray

As can be seen in the metamodel in Fig. 1, such production
line systems consist of Machines manipulating Parts and
connected to Containers (which can be Trays holding
Partsready to be manipulated by amachine or Conveyors
taking Parts from a Machine to a Tray).

Our production line xXDSML has been specialized to a
very narrow domain, namely for describing production lines
that produce Hammers from Heads and Handles. Con-
sequently, appropriate subclasses are defined for the Part
meta-class and suitable specific types of Machines have
also been defined in the metamodel. The xDSML, then,
allows combining these elements into suitable production
line models, using a concrete syntax defined in Sirius [47].
Figure 2 shows an example model of a simple production
line. On the left, there are two machines producing handles
and heads, respectively, and depositing them onto conveyors
that eventually will move them into a shared tray. An assem-
bler machine then takes handles and heads from this tray and
will produce hammers in turn. The example model shows a

state of the system, where three heads and three handles have
been produced and two of each are awaiting assembly in the
shared tray.

2.2 Defining a concurrent operational semantics

Once the abstract syntax of the language is specified, it is
important to define the behavioral semantics of the language
to enable execution and analysis support for new DSMLs.
Existing language workbenches often overlook the concur-
rency aspect of the DSML behavioral semantics, leading to
poor support of concurrency analysis. For now, we consider a
concurrent operational semantics to be an operational seman-
tics that allows exploration of concurrency related concerns;
typically allowing to explore different execution paths due
to interleavings. While there are many ways to define such
concurrent operational semantics, we use, for illustration
purposes, in this paper two different approaches applied to
the production line xXDSML: one using declarative rewriting

@ Springer

1322

S. Zschaler et al.

rules defined using a graph transformation approach (specifi-
cally, Henshin [42]), and one using imperative rewriting rules
together with a modular and formal description of how and
when the rewriting rules can be applied (specifically, MoC-
CML [16,17]).

To define the concurrent operational semantics of our
xDSML, we first need to differentiate the runtime state of
a model from the static parts of the model. In any executable
model, some parts are static (aka. abstract syntax tree), and
some others correspond to the runtime state, also called the
dynamic state. For instance, if one considers the concept of
Variable in a language, its type and its initial value are static
parts of the model while the current value of the variable is
part of the runtime state. While both the model and the run-
time state will be accessed by the semantics, only the runtime
state can be changed during execution. The GEMOC studio
[10] supports a modular definition of both parts (i.e., separate
cross-referenced metamodels that are subsequently woven
together). However, for the sake of simplicity, we present
a combined version of the metamodel: The runtime state is
captured by meta-class Part and its subclasses and their
associations with other meta-classes. Everything else cap-
tures the static part of any production line model (i.e., the
structure of the production line itself rather than what parts
are currently being produced).

Next, on the basis of the metamodel (both the static part
and the runtime state), we need to define the actual concur-
rent operational semantics. We implemented a first version
using our Henshin engine for the GEMOC Studio [52]. Hen-
shin provides a graph transformation tool [42]. The rewriting
rules can then be implemented in a declarative way (cf.
Figure 3, focusing on the rules relevant for our example?).
Hence, we provide a structured operational semantics using
graph transformations to describe the individual steps—
called graphical operational semantics by Corradini [14].
Rules generateHandle and generateHead, respec-
tively, specify that a GenHandle and GenHead machine
can produce a new Handle or Head at any time. Rule
moveAlong describes that any Part on a Conveyor
can move to the corresponding Tray, if any. Finally, rule
assemble shows how an Assembler machine takes a
Head and a Handle and produces a new Hammer from
them. The Henshin engine comes with a rule application sys-
tem that computes the applicable rules for a given runtime
state and provides options to apply one or several of them
simultaneously as decided by the user, this way allowing
exploration of different acceptable execution paths [52].

We also implemented a second version of the same con-
current operational semantics for the motivating example
using MoCCML [16,17], a dedicated metalanguage to for-

3 While not shown in these example rules, Henshin also supports rules
that read or modify attribute values of model elements.

@ Springer

Listing 1 A simple Kermeta aspect for the generate head rule

@Aspect (className=GenHead)
class GenHeadAspect {
def void work () {
var aHead = PLSFactory.eINSTANCE.
createHead ()
_self.out.currentParts.add (aHead)

Listing 2 A MoCCML excerpt to constrain the call (partial) order of
rewriting rules

context Machine

def : doWork Event = self.work ()
context Conveyor
def : doMoveAlong Event = self .moveAlong

)
context Conveyor
inv moveAfterMachineProductionNoInitial:

(self .parts->size() = 0) implies
Relation Precedes (
self .Machine->first () .doWork, self.
doMoveAlong)

mally define partial orders, and Kermeta 3 [24] to define the
rewriting rules as object-oriented and imperative methods.
For instance, the generateHead in Kermeta 3 is shown in
Listing 1.

Nothing in Listing 1 specifies when the rewriting rule
should be called. This is the goal of the MoCCML model
[10]. For this purpose, each rule is associated to an event and
the events are constrained together based on the static infor-
mation in the model. For instance, in Listing 2, two events
are defined (doWork and moveAlong). Then, a relation spec-
ifies that, if there are no initial parts on the conveyor, then
the machine feeding the conveyor must work before the con-
veyor can move the item along. This way, if we consider the
top left conveyor of Fig. 2, the head generator can work at
any time but the conveyor can move along only the number
of times the generator worked.

There is a fundamental difference between the two ways
we have specified the concurrent operational semantics—
specifically, how the semantics determine when a particular
event can occur. In graphical operational semantics, this is
implicit in the rules defining the different kinds of events: If
arule’s left hand side matches the current state, the event can
potentially occur, possibly multiple times if there are multiple
matches and possibly concurrently with some other rules if
its right hand side does not overlap with the left hand side of
the other one(s). In contrast, with MoCCML, the conditions
under which an event can occur and the relationships between
event occurrences are specified explicitly.

The two different approaches, namely Henshin and MoC-
CML, come with different underlying paradigms, leading to
different implementations of the same concurrent operational

A generic framework for representing and analyzing model concurrency

1323

g y
= Rule generateHandle
«preserve» «preserve» «create»
GenHandle |—<PLEsEve 51 s Handl
:GenHandle out :Conveyor <Creater :‘Handle
. J
a =\
$ Rule generateHead
«preserve» «preserve» _[«preserve» parts «create»
:GenHead out :Conveyor e :Head
- .
{ 3 { A
= Rule assemble = Rule moveAlong
«delete» | |«delete» «create» «preserves | «preserve»
:Handle | |:Head :Hammer preservex
: - : :Conveyor Tray
tray
«delete» «deletex «create» ‘'parts
parts parts «preserve» «delete» «preserve» | parts
«preserve» kpreservesi«preserve» «preserve» parts :Part ——
Tray > :Assembler :Conveyor
n out - J
- 7

Fig.3 Operational semantics of the production line XDSML specified
using Henshin. In each rule, gray elements marked preserve represent
model elements that need to be present for the rule to be applicable and
that won’t be changed by the rule. Red delete elements represent model

semantics. They both provide interesting features, with dif-
ferent pros and cons.

While a full comparison of these two approaches is out
of scope for this paper, the differences motivate the need for
key abstractions that allow different approaches to be handled
uniformly.

In this paper, we introduce a generic framework in which
concurrency exploration can be done independently of the
approaches used for the description of the concurrent opera-
tional semantics.

3 Key abstractions to embrace concurrency

In order to define a generic framework with concurrency-
specific services independently of any specific technology
used for specifying the operational semantics, we need to
rely on key abstractions to represent the concurrent part of
the operational semantics. In this section, we introduce the
notions of concurrency model, logical steps and their relation
in our definition of a concurrent operational semantics.

elements that must be present and will be removed and green create
elements mark elements that will be newly created in the model when
the rule is executed (color figure online)

Aj;
fork f1:
| > { B; C; }
| -> { D; E; }
join f1;
F3

Fig.4 An illustrating program written in the S language

3.1 Concurrency model

In order to introduce the concepts of concurrency model
and concurrent execution trace, we rely on an introductory
example. Let us consider the simple language S composed
of Statements where a statement can be an Action, a
Fork with its set of Blocks of statements that can be exe-
cuted concurrently, or a Join.

Figure 4 provides a program written in the S language.
In this example, the sequence B; C can be executed concur-
rently with the sequence D; E; both after A and before F.
Additionally, the C must always follow B and E must always

@ Springer

1324

S. Zschaler et al.

\

Q—»Q\ ()
q‘j
Precedes

Fig. 5 A representation of partial order underlying the simple S pro-
gram from Fig. 4, as it could be computed by the concurrency model

follow D. This is a partial order that can be represented like
in Fig. 5 by a set of Precedes constraints between the applica-
tion of rewriting rules. In this partial order, any total order is
a correct execution with respect to the concurrent operational
semantics. This total order is more than just a topological sort
of the graph; it should consider the concurrent application of
rewriting rules. For instance, in program S, the application of
B.exec and D.exec can occur concurrently. Additionally, in
more realistic examples, a partial order is usually not expres-
sive enough since conflicts between two sets of actions may
be required (e.g., due to an if-then-else statement or due to
access to a shared resource). The appropriate expressiveness
to specify the set of acceptable executions in a concurrent
execution context is out of the scope of this paper and has
been theoretically studied for a long time [2,3,15,33,34,51].
We took advantage of Multiform Logical Time [2] to embrace
these formalisms and defined a concurrency model as an arti-
fact which, given a specific program at a given runtime state
(i.e., at a given step of its execution), can provide the exclu-
sive sets of rewriting rules that can be applied to move to the
next step. Each of these sets specifies the rewriting rules that
can be applied concurrently. From the runtime state point of
view, the application of a set of rewriting rules is seen as a
unique operation. These sets are the eligible futures of the
execution. The application of their rewriting rules leads to
different execution branches and they can consequently be
used to explore, to understand or to analyze the intrinsic con-
currency of the model and its implication (e.g., deadlock or
functional non-determinism).

The sets of rewriting rules proposed by a concurrency
model at a given step take both the causalities and the conflicts
into account. Note that conflicts can result in different execu-
tion branches that will never merge again due to their effect
on the runtime state or on the opposite it can result in differ-
ent execution branches representing different interleavings of
rewriting rules that result in a same runtime state where the
branches merge. Itis worth noting that the concurrency model
used in this example assumes that all actions are atomic; that
is they do not take any time. Durative actions—actions that
take time and where an action B may start partway through
the execution of an action A—are an important concept in
concurrency modeling. Such durative actions can be captured

@ Springer

o
Fork Q B h
SRS

Q

Fig. 6 All possible interleaving of actions from the S program from
Fig. 4

on top of our concurrency model—for example, by providing
an explicit model of actions under execution (and possibly of
time) and translating durative actions into an explicit atomic
start and end action (cf. [38,39]), but the details of any such
encoding are out of scope for our paper.

3.2 Logical steps

While executing a concurrent program, there is a need to
make explicit what rewriting rules have actually been applied
between two runtime states. For this purpose, we introduced
the notion of Logical Step. A logical step is abstract and
defined as a set of changes realized in the runtime state. This
means that here also we consider a general form of concur-
rency similar to, for instance, tagged signal [34] or logical
time [15], where the partial ordering of event occurrences
is the primary concern, independently of the actual process
behind each event occurrence. A logical step can be either
an atomic step or a parallel step. An atomic step is a spe-
cific logical step linked to one rewriting rule of the transition
system, whose execution realizes a set of changes in the run-
time state—for example, the execution of an action in an &
program. To execute an atomic step, we need to access and
read different parts of the model and of the runtime state
and, then, change specific parts of the runtime state. We call
atomic step footprint [23] the set of elements of both the
model and the runtime state that are read or changed as well
as the set of meta-classes of the runtime state of which new
instances are created during the execution of an atomic step.
A parallel step is composed of a set of atomic steps that
are executed concurrently. The parallel step footprint is the
union of internal atomic step footprints.

To illustrate, each topological sort of the directed graph
from Fig. 5 is a valid trace of the illustrative program from
Fig. 4; where each edge is a logical step and each node a
runtime state. Figure 6 can be seen as a labeled transition
system [27], where labels are structured by using logical
steps. On the left of Fig. 6, we can see that any execution
starts with an atomic step A. It means that there is a single

A generic framework for representing and analyzing model concurrency

1325

rewriting rule called in the first step of the execution, which
corresponds to the execution of an action in the program.
Then, the execution continues with another single action exe-
cuted: Fork. At this point, three different logical steps are
eligible futures of the execution: one atomic step where only
action B is executed, one where only action D is executed
and one parallel step where both actions B and D are exe-
cuted in parallel. If, for instance, the execution follows the
step where only B is executed, then three new logical steps
are eligible futures: C, C || D, or D alone. Let us consider
that e is a runtime state; - F represents a logical step and
that the name of an action represents the execution of the
underlying rewriting rule. One possible execution trace is

o|AbedForkpe]Ble- g}.-|Ep.-|Jomp.-| Fle. The dia-

mond from Fig. 6 actually represents all the acceptable
interleavings between the execution of the B; C sequence
and the D; E sequence that has been constructed by query-
ing the concurrency model and by visiting all logical steps.*
To summarize, the concurrency model is an artifact that
can be used to figure out what is the next acceptable set of
exclusive logical steps that can be taken at any time during
the execution. It acts as a scheduler of the rewriting rules that
relies on a foundational logical time model. The logical steps
are then a way to (1) store what are the rewriting rules that
have been called between two runtime states; and (2) make
explicit the footprint of the executed rewriting rule(s).

3.3 Concurrent operational semantics

We call a concurrent operational semantics an operational
semantics that provides a specification of the concurrency
semantics (of the constructs defined within the syntax), such
as we can reason about it (e.g., exploring impact of different
interleavings). Indeed, a common approach in the litera-
ture is to rely on the metalanguage provided to specify the
operational semantics to implicitly describe this concurrency
semantics, often intertwined with the operational seman-
tics. This means that the transition system corresponding
to the operational semantics is mixed up with the concur-
rency model that would describe possible interleavings or
parallelism. For instance, one would use Java for defining
the execution semantics of a given DSML (e.g., in the form
of a visitor) and to rely on the thread Java library to spec-
ify the concurrency semantics of the DSML constructs that
require it. Hence, the DSML semantics is not only described
in the DSML semantics’ specification, but also implicitly
inherited from the one from Java thread (thus, from the con-
currency model of the JVM). This makes the concurrency
model depend on the concurrency model provided by the

4 More details about this example can be retrieved from http://github.
com/jdeantoni/simpleConcurrentLanguage.

metalanguages to define DSML execution semantics. As a
result, it is difficult to reason over the concurrency concern
since this is mixed up within the operational semantics.

In this paper, we investigate how concurrency models
derived from concurrent operational semantics expressed
using different mechanisms can be captured by a common
generic protocol. Once we have this generic protocol, we
can use it to define new concurrency-specific services. In
this paper, we explore an example of such a service by intro-
ducing the new concept of concurrency strategies, which can
be used to dynamically explore concurrent execution traces.
As we will discuss in Sect. 7, this enables new opportuni-
ties for language engineers around the flexible specification
of concurrent semantics and for language users around more
efficient interactive exploration.

4 A generic framework for concurrent model
execution

4.1 Approach overview

Figure 7 presents an overview of the proposed framework
for representing and analyzing model concurrency. It is
illustrated on the basis of our implementation within the
GEMOC Studio (with dashed lines in Fig. 7), but can be
broadly adopted in any language workbench supporting the
specification of the DSL execution semantics with possible
concurrency.

The GEMOC Studio subsumes the Eclipse Modeling
Framework [41] and its ecosystem which provides the Model
Editing Server either for textual editing (thanks to Xtext®
which supports the Language Server Protocol (LSP)) or
graphical editing (thanks to Sirius® which supports the
Graphical Language Server Protocol (GLSP)).

Within the GEMOC Studio, two concurrent metalan-
guages are already included to specify DSL execution seman-
tics with possible concurrency, namely MoCCML combined
with Kermeta [10] and Henshin [42]. While each approach
provides unique constructs leading to some differences in
the expressivity as discussed in the previous section, the pro-
posed framework offers a unified way to interact with the
resulting execution engine and drive the possible executions
of a conforming model.

The proposed framework is customized according to a
given Concurrent DSL Specification expressed with one
of the Concurrent Metalanguages and is responsible for
the execution of a given conforming model. It includes a
generic Concurrent Execution Engine, interacting with (i)
a Concurrent Operational Semantics Runtime, specific to

3 cf. https://www.eclipse.org/Xtext.

6 ¢f. https://www.eclipse.org/sirius.

@ Springer

http://github.com/jdeantoni/simpleConcurrentLanguage
http://github.com/jdeantoni/simpleConcurrentLanguage
https://www.eclipse.org/Xtext
https://www.eclipse.org/sirius

1326

S. Zschaler et al.

Concurrent Metalanguage
(e.g., MoCCML+Kermeta, or Henshin)

Concurrent DSL
Specification

Qe e e e e H .
L L) GEMOC <<conflfvmsTo>> :__" EMF, Xtext, Model Editor
Language Studio o : _______ L :_‘\ /IZ _SEIL;IS
. | N
Engineer strategies ! b e
Qe ! aModel ! ! Model "
e ! 11 Editing |
Language \oooozzizioooill Server
I
User il ininininiiieieinininieisiieie ' /@Analy&ns
< -
- _G_EMQC Tools
Fmmmmm—— e ——— Omniscient Debug L U-Lr
! ! i i GEMOC
: Trace o smes || Concurrent Execution Engine < SEMOC an currency
' Manager | Omniscient Debug — Anglysis Tools

symbolic
Steps

execute
Step

Concurrent .
Operational Semantics <—> execution flow
Runtime — input data

|:> compile/interpret

Fig.7 Approach overview (existing elements in dashed lines and contribution in solid lines)

a meta-programming approach and the associated metalan-
guage initially used, which is in charge of interpreting a given
concurrent operational semantics from the concurrent DSL
specification; and (ii) a Trace Manager in charge of manag-
ing the concurrent execution trace of a given model run.

The framework offers two ways to interact with the exe-
cution:

1. The language engineer or the language user can provide
strategies to drive the resolution of the concurrency of a
given model.

2. The framework provides an interface that can be used
according tothe GEMOC Concurrent Omniscient Debug-
ging protocol, such that language-agnostic Concurrency
Analysis Tools can be developed and used. This proto-
col subsumes the Debug Adapter Protocol (DAP)” and
covers all the provided facilities for analyzing the concur-
rency, including the definition, usage and configuration
of strategies.

7 cf. https://microsoft.github.io/debug-adapter-protocol.

@ Springer

4.2 Framework description

We now review the main ingredients (cf. Fig. 7) provided by
the generic framework for concurrent model execution.
Model and runtime state As explained in Sect. 2, we consider
that the executed model conforms to an xXDSML and that there
is a separation between model and its runtime state.

In the proposed execution flow, we show in a simplified

fashion two high-level services called read for reading the
model and runtime state, and write for changing the runtime
state.
Representation of steps In the proposed framework, an
atomic or parallel step is an explicit object that embodies
a possible execution step, yet to come, in the execution trace.
In particular, step objects are created by the concurrent oper-
ational semantics runtime to publically announce what are
the next possible steps (see below).

Moreover, let us remind that at every point of the execu-
tion, there can be multiple valid combinations of atomic steps,
and thus multiple possible parallel steps. To better represent
such a set of possible parallel steps, the framework provides
a symbolic representation that comprises two pieces of infor-
mation: (1) A set of all the atomic steps that can occur at this
point of the execution; and (2) A set of propositional con-

https://microsoft.github.io/debug-adapter-protocol

A generic framework for representing and analyzing model concurrency

1327

straints specifying which combinations of these atomic steps
can legally occur concurrently.

To simplify the writing, we use the term symbolic steps for

parallel steps represented symbolically with this pair of ele-
ments. Note that, this representation is independent of how
the concurrency model of the semantics is specified and eval-
uated.
Concurrent operational semantics runtime As explained in
Sect. 2, we assume that the considered xDSML has a spec-
ification of a concurrent operational semantics as part of
its concurrent DSL specification. We call concurrent oper-
ational semantics runtime the executable software artifact
obtained from this specification (e.g., using a compiler, or
a generic runtime parameterized by the specification), along
with all third-party software required to execute these arti-
fact (e.g., interpreters or solvers). We remind that executing
a model using a concurrent operational semantics runtime
results in a sequence of parallel steps, each composed of a
valid combination of atomic steps that can be executed con-
currently.

To be able to drive an execution using a concurrent opera-
tional semantics runtime, we consider that it must provide at
least two services: computeSymbolicSteps, which returns the
set of eligible parallel steps at the current runtime state in the
form of a pair (atomic steps, constraints) to avoid enumer-
ating all the eligible steps; and executeAtomicStep, which
executes one of the atomic steps contained in a parallel step,
which will result in changes in the runtime state.

Strategies

In Sect. 5, we will show how the concurrency model can be
dynamically explored using a set of concurrency strategies.

Different types of concurrency strategies will be intro-
duced in Sect. 5. For the purposes of describing the generic
framework, it is sufficient to understand that concurrency
strategies are a non-intrusive way to reduce the interleavings
presented to the user compared to the one proposed by the
concurrency model, itself produced by the underlying con-
current operational semantics runtime.

Concurrent Execution Engine At the core of our proposal
is the engine, which brings together all the parts when
conducting the execution of the model. It is the only part
that an external client—for example, a language user or
engineer through a modeling environment—must use to man-
age the execution of a model. The engine provides three
main services: (a) start takes a model and a concurrent
operational semantics runtime and triggers the initializa-
tion and the beginning of the main execution loop; (b)
computePossibleParallelSteps uses both the concurrent oper-
ational semantics runtime and a set of enabled strategies to
compute the next set of possible parallel steps for the exe-
cuted model—this service is further detailed in Sect. 5.2, after
the presentation of the different types of strategies; (c) exe-

cuteParallelStep tells the engine to execute a given parallel
step, chosen from the set of possible steps.

Note that, among other possibilities, these services aim to
serve as a key piece for concurrent omniscient debugging. An
omniscient debugger is a type of tool enabling the interactive
execution of a model in a similar fashion to a traditional
interactive debugger, but with the extra possibility to jump
back and revisit previously reached execution states. When
used for a concurrent execution, a concurrent omniscient
debugger must also provide the possibility to choose which
execution steps to execute among the possible next ones,
e.g., when revisiting prior states. Our proposed interface and
protocol provide exactly this missing piece, thus enabling
concurrent omniscient debugging.

4.3 Generic concurrent language execution flow

Figure 8 is a sequence diagram showing the execution flow
resulting from the execution of a model using the protocol of
the proposed framework.

From the left, the first lifeline represents the client that
wishes to execute a model. This client is typically a language
user or engineer that uses the engine interactively through
a modeling environment, or a dynamic analysis tool that
automatically explores the state space. The first task is to
configure the engine and start the execution: The client must
provide both a model and a concurrent operational seman-
tics runtime in order to launch the execution (start). Then, the
engine runs a loop while there are more steps to execute. In
each iteration, the client asks the engine to compute the next
set of possible parallel steps (computePossibleParallelSteps).
The client can decide to provide this service with a set of
concurrency strategies in order to filter the possible parallel
steps and can trigger the service as many times as required
to try different combinations of strategies, until it is satis-
fied with the set of possible steps from which to explore the
trace. To fulfill this request, the engine asks the concurrent
operational semantics runtime to compute the set of sym-
bolic steps that can legally occur given the model and the
current runtime state (computeSymbolicSteps). This com-
putation requires accessing the model and the runtime state
(read).

Note that, as this part greatly depends on how the different
types of strategies operate, we postpone its complete descrip-
tion to Sect. 5.2 where strategies are explained in detail.

Once the set of possible parallel steps has been deter-
mined, the client makes a decision and asks the engine to
execute one parallel step among the possible steps (execute-
ParallelStep)

Finally, the concurrent execution engine asks the opera-
tional semantics runtime to execute each of the atomic steps
that comprise the chosen parallel step (executeAtomicStep),
which changes the runtime state in turn (write). Note that,

@ Springer

1328

S. Zschaler et al.

X

_ | :ConcurrentEngine I
Client

| semantics: OpSemanticsRuntime I I model: Model (w/ runtime state)

start(model, semantics) ’

loop / [while there are more steps to execute]

loo / [do until the client is satisfied with the set of possible steps from which to lexplore the trace]
; ; 'strategies' is a collection, possibly empty if
Goinpl cRoss Blekdralels opsClhia £gio5) the Client does not wish to filter the possible steps
computeSymbolicSteps(model)
read() o
atomicSteps, constraints
- -’
= i i
possibleParallelSteps L The missing second half of computePossibleParallelSteps is presented in Sect 4.3. Bi‘
executeParallelStep(chosenParallelStep)
|
loop /|| [for each atomicStep of chosenParalléIStep]
executeAtomicStep(atomicStep)
write() o

»

T T

Fig.8 Sequence diagram of the generic concurrent language execution flow

because the atomic steps can occur concurrently, the order in
which their corresponding changes are applied to the runtime
state does not matter.

5 Dynamic exploration of execution traces

This section presents how the proposed framework can be
used for the dynamic exploration of the concurrency model
for a given model.

We first present concurrency strategies, a novel concept
to define what are the interleavings that should be presented
to the user in order to ease the support of such dynamic
exploration. It is important to notice that this exploration
should be done without altering the concurrent operational
semantics of the language. Rather, it is a mechanism that
can be enabled and disabled on the fly to ease the navigation
into specific execution paths of interest. After we presented
concurrency strategies, we detail how they can be applied
through a generic interface, independently of how the con-
current operational semantics is expressed.

5.1 Concurrency strategies

As explained in the previous section, our proposed frame-
work relies on a symbolic representation of the set of

@ Springer

possible parallel steps. Such a representation can effectively
abstract specific implementations of concurrent operational
semantics in terms of propositional constraints over sets of
atomic steps. This opens the opportunity to provide addi-
tional support for language engineers and language users in
order to dynamically filter and explore the language con-
currency when executing a specific conforming model. In
our framework, this support is provided through the concept
of concurrency strategies used to restrict the potential con-
currency. This allows the human or tool that conducts the
execution to focus on a set of possible futures that are of
interest at a given time. Multiple strategies can be applied
together to further reduce the size of the subset of steps.

We differentiate two types of strategies for filtering the
concurrency model dynamically:

1. Symbolic concurrency strategies add additional con-
straints to the propositional formula provided by a
concurrent operational semantics runtime. One class of
symbolic concurrency strategies adds mutual exclusion
constraints between pairs of atomic steps, specifying
that these steps cannot occur concurrently. More gen-
eral symbolic concurrency strategies add more general
constraints—for example they might constrain the num-
ber of atomic steps that can occur concurrently. Note that,
these strategies already have access to the set of atomic

A generic framework for representing and analyzing model concurrency

steps, so they might generate constraints based on prop-
erties of these steps, including inspecting runtime state
that the steps access or modify.

2. Operational concurrency strategies are applied after a
concrete set of parallel steps has been computed and algo-
rithmically filter this set of steps. This is inherently less
efficient than a symbolic concurrency strategy because it
requires a constraint solver to enumerate all potential par-
allel steps only for some of them to be later filtered out.
However, it allows operational concurrency strategies
to compare different parallel steps and make decisions
based on the comparison result.

Because these strategies can be defined on top of our
symbolic step representation, they can be used for any lan-
guage, independently of the formalism used for specifying
the operational semantics. MoCCML internally encodes the
concurrency model as a propositional formula, which is what
symbolic concurrency strategies manipulate. As a result,
some symbolic concurrency strategies could also be statically
encoded in a MoCCML semantics.® However, by making
them available at the level of the generic concurrency engine,
these strategies can also be applied for languages with other
semantics specifications (e.g., using Henshin). Operational
concurrency strategies cannot be expressed natively in either
semantic formalism.

Moreover, all strategies can be selected and deselected
dynamically during model execution, allowing for the dynamic
exploration of execution traces. This cannot be achieved if the
strategies are statically defined within the semantics. Thus,
we could envision a work flow where a language engineer
or language user might want to explore the effect of differ-
ent choices in the concurrency model on the possible set of
execution traces before properly encoding the final choice in
the semantics (for a language engineer) or the model (for a
language user). Furthermore, the selection and configuration
of strategies could also be made accessible to analysis tools
via a suitable extension of the proposed protocol (see next
section for a brief discussion of the protocol implemented in
the GEMOC Studio), enabling these tools to perform a more
focused analysis of the overall state space.

Consider the example runtime state shown in Fig. 2. In this
state, the operational semantics from Fig. 3 will generate the
following atomic steps:

— GHa: GenHandle,
— GHe: GenHead,
— Me: MoveAlong (Hel),

Ma: MoveAlong (Hal),
A22: Assemble (He2,

Ha2),

8 For example, the overlap strategy we describe below cannot statically
compute the additional constraints.

1329
— A23: Assemble(He2, Ha3),
— A32: Assemble(He3, Ha2),
— A33: Assemble(He3, Ha3).

Not all of these steps can occur concurrently. In particular,
there are only two valid combinations of Assemble steps:
A22 can be combined with A33, and A23 can be combined
with A32. Other combinations would require one Part to
be used twice. This is captured by the propositional formula
generated by the concurrent operational semantics runtime:

(GHav GHeNv Me~ Ma v A22 Vv A23 v A32 v A33)
AN (A22 = —(A23 Vv A32))
A (A23 = —(A22V A33))
A (A32 = —(A22V A33))
A (A33 = —(A23V A32))

From this, a range of parallel steps can be constructed,
including, for example:

(GHa,GHe, Me, Ma, A22, A33)
or
(GHa,GHe,Me, Ma, A23, A32).

Next, we describe some examples of strategies that have
been implemented within the framework provided in the
GEMOC Studio (see next section); note that, videos that
illustrate the use of strategies and more complex examples are
referenced from the companion webpage (see footnote #14):

— Symbolic Concurrency Strategies:

— Set of Events. This strategy allows only atomic steps
realizing one of a particular set of events to be exe-
cuted concurrently. An “event” is a category of atomic
steps: All steps that correspond to the same rewrit-
ing rule (e.g., a graph transformation rule in the
Henshin case or a Kermeta operation in the MoC-
CML case) are said to realize the event named after
that rewriting rule (in MoCCML, events are explic-
itly declared in the specification of the concurrency
model, cf. Listing 2). For example, we could specify
that only GenHead and GenHandle steps can be
executed concurrently (and that all others can only
be executed individually). In our example, this adds
the following constraint to the propositional logic for-
mula:

@ Springer

1330

S. Zschaler et al.

Me — —=(GHa~v GHe N~ Ma v A22 v A23 v A32
Vv A33)A

Ma — —(GHaVv GHe Vv Me Vv A22 Vv A23 Vv A32
Vv A33)A

A22 — —(GHav GHeNv Ma~ Me v A23 Vv A32
Vv A33)A

A23 — —~(GHaVv GHe~ Ma v Me v A22V A32
Vv A33)A

A32 = —=(GHaVv GHe~ Ma~v Me Vv A22 Vv A23
Vv A33)A

A33 = —=(GHaVv GHeVv Ma~ Me v A22Vv A23
Vv A32)

As aresult, only the atomic steps and the parallel step
(GHa, GHe) are kept.

— Overlap. This strategy allows concurrency only
where two atomic steps fully overlap in their static
footprint (that is, the part of the model they query but
do not change). In the PLS example, this is useful to
focus on concurrency at individual machines. For the
example runtime state, this would add the following
constraint.

GHa — —~(GHeVv MeNv Ma v A22
Vv A23 Vv A32 Vv A33)A
GHe — —(GHaVv MeVv Ma Vv A22
Vv A23 v A32 Vv A33)A
Me —> —(GHaVv GHe Vv Ma v A22
VvV A23 v A32 Vv A33)A
Ma — —(GHaVv GHe N Me v A22
Vv A23 Vv A32 Vv A33)A
(A22 v A23 v A32V A33) — —(GHaVv GHe
vV MevV Ma)

Note that, this constraint can only be computed once
the specific atomic steps are known and their footprint
can be established. To calculate the above constraint,
the overlap strategy inspects the footprint of the set
of all potentially concurrent atomic steps and iden-
tifies those with a shared footprint. In the example,
the four Assemble steps A22, A23, A32, A33 are
the only ones with a shared footprint. Specifically,
looking back to the Assemble rule shown in Fig. 3,
the footprint of these steps is given by the instances
of Tray, Assembler, Conveyor, and the links
between them (in and out). It is easy to see that
the four steps share these instances as they refer to
the same Assembler machine, which is only con-

@ Springer

nected to one Tray and one Conveyor. This is
reflected in the implications generated in the con-
straint above: The first four implications state that
GHa, GHe, Me, and Ma cannot be executed concur-
rently with any of the other actions in the current
runtime state, while the final implication states that
the Assemble actions cannot be concurrent with
any of the other non-Assemble actions.’

The constraint is not static, but depends on the spe-
cific runtime state of a given model. In MoCCML,
such constraints cannot be captured at all, because
the concurrency specification does not have access to
the footprint of individual events. In a Henshin-based
semantics, it is possible to disallow concurrent execu-
tion of actions with a shared footprint—for example,
by adding an access counter that is modified by each
rule, creating a write—write conflict between rules.
However, specifying that only rules with a shared
footprint can be executed cannot be done in a generic
way with simple Henshin rules.

Variants of this strategy would disallow concurrency
where there was overlap, or might trigger already for
partial overlap.

Concurrency Limit. This strategy limits the maximal
concurrency. For example, we could specify that at
most three atomic steps should be executed concur-
rently atany given time (e.g., because we have limited
processing capability). The strategy adds a constraint
to ensure that at most three atomic steps are selected
to form a possible parallel step.

Force Presence/Absence. It may be important for a
user to focus on specific (set of) rewriting rule(s) (e.g.,
the generation of head in the PLS language). In such
a case, it may be helpful to reduce the set of steps
to the ones where the rules to investigate are actually
called. Similarly, we defined a strategy to focus on the
absence of a specific set of rules. Note these strategies
are different from the ‘Set of Events’ strategy: that
strategy restricts what can happen concurrently, while
the strategies here completely remove steps that do
not refer to a particular event.

— Operational Concurrency Strategies:

— Token Elements. Sometimes, we may wish to consider

different parallel steps conceptually equal if their
footprint only differs in model elements of a particu-
lar type. For example, for the production line system,
it does not actually matter which pair of Handle
and Head are selected to assemble a Hammer. The
token elements strategy allows to specify the type of
elements which should be considered not to carry

9 This final implication is redundant in this example.

A generic framework for representing and analyzing model concurrency

1331

identity (in essence, these elements are treated as
tokens only'?). For example, we could specify that
any element that is an instance of Part should be
treated as a token. As a result, steps that only differ
in token elements will be treated as equal and only
one of these steps will be kept in the set of possible
parallel steps. In our example, only one of

(GHa,GHe,Me, Ma, A22, A33)
and
(GHa,GHe, Me, Ma, A23, A32)

would be available to be picked.

— Maximal Concurrency. As the number of atomic steps
grows, the set of possible parallel steps can become
too large to comprehend for a human user. In such a
case, it may be helpful to reduce the set to only the
maximally concurrent steps. A step s is maximally
concurrent in a set S of steps if Aso € S.5 # 55 A
s.substeps C sy.substeps.

5.2 Concurrency strategies in the execution flow of
the protocol

In Sect. 4, we presented the execution flow of the protocol
of the proposed framework. A key service required for this
flow is computePossibleParallelSteps, whose purpose is to
use both the concurrent operational semantics runtime and
the strategies to compute the set of possible parallel steps
offered to the client. In this part, we explain in detail how this
service operates within the protocol, in particular regarding
the use of concurrency strategies.

To integrate both symbolic steps and concurrency strate-
gies in the execution flow, the concurrent execution engine
must provide an additional service called enumerateAll-
PossibleParallelSteps, which takes a set of symbolic steps
(i.e., a set of atomic steps and a set of constraints specifying
the combinations of these atomic steps that are allowed or
required to occur concurrently), and enumerates the set of
possible combinations of atomic steps satisfying the given
constraints, which yields the set of possible parallel steps—
for this task, the engine can rely on an existing external CSP
solver such as Choco [25].

Figure 9 is a complete sequence diagram of the compute-
PossibleParallelSteps service. The first part is identical to
what is presented in Sect. 4.3: The concurrent operational
semantics runtime provides the engine with the set of sym-
bolic steps that can legally occur at this point of the execution.
Then, the engine provides the symbolic steps to symbolic

10 The term ‘token’ is inspired by the notion of tokens in Petri nets.

concurrency strategies. In return, these strategies strengthen
the set of constraints and thus reduce the amount of pos-
sible parallel steps. The engine then enumerates the set of
possible combinations of atomic steps satisfying the given
constraints, which yields the set of all possible parallel steps
(enumerateAllPossibleParallelSteps). The list of possible par-
allel steps is given to the second set of enabled strategies,
namely operational concurrency strategies. In return, these
strategies simply remove parallel steps that do not satisfy
certain criteria.

It is easy to see how this part of the execution flow can
be implemented for the different metalanguages we have
introduced earlier in this paper for specifying concurrent
operational semantics:

— MoCCML already represents a concurrency model as a
set of constraints about what events can or must occur
concurrently. This can be provided directly to the generic
concurrent execution engine.

— Graph transformation-based operational semantics run-
times can use conflict analysis [31] to identify pairs of
rule applications that are in conflict and must, therefore,
not be executed concurrently. This information can be
encoded as a set of constraints provided to the generic
concurrent execution engine.

6 Implementation

We have implemented our complete approach in the GEMOC
Studio language workbench for executable domain-specific
modeling languages [8]. The code is open-source (EPL-1.0)
and can be found on Github.!! The GEMOC Studio uses the
concept of an execution engine to separate the operational
semantics of an XDSML from generic IDE features such as
omniscient debugging or behavioral analysis. Most execu-
tion engines available for the GEMOC Studio are sequential;
that is, they do not support the concurrent execution of steps.
We have implemented a generic abstract concurrent execu-
tion engine for the GEMOC Studio, which allows support
for specific concurrent metalanguages to be developed as
subclasses. Each one of these metalanguage integrations pro-
vides, for all xDSMLs implemented using the corresponding
metalanguage, the complete interface for concurrent opera-
tional semantics runtimes presented in Sect. 4 and Sect. 5.
Figure 10 shows a screenshot of the GEMOC Studio running
the motivating example model.

I Links to the Github repositories and to a working build of the imple-
mentation can be found in the companion web page: http://gemoc.org/
concurrency2021/.

@ Springer

http://gemoc.org/concurrency2021/
http://gemoc.org/concurrency2021/

1332

S. Zschaler et al.

Clielnt -
| computePossible i
! ParallelSteps(strategies)_ |

:ConcurrentEngine

semantics: OpSemanticsRuntime I | model: Model (w/ runtime state) I l :SymbolicStrategy I | 8

OperationalStrategy I

computeSymbolicSteps(model)

read()

atomicSteps, constraints

loo

for each symbolic concurrency strategy in strategies]
applyStrategy(atomicSteps, constraints)

constraints

v

<

1
i
T
'
enumerateAllPossible- H
ParallelSteps(atomicSteps, constraints) |
1
1
1
i
i
i
.

ibleParallelSteps

loop /)

[for each operational concurrency strategy in strategies]

applyStrategy(possibleParallelSteps)

T
'
|
'
|
|
I
1
|
|
|
|
1
I
I
I
|
|
'
I
1
|
|
I
1
'
|
|
I
I
I
'
|
|
L
T
|
1
i

possibleParallelSteps

R S L e R S

el E R |

J

possibleParallelSteps

Fig.9 Sequence diagram of the computePossibleParallelSteps service

& gemoc.nightly.concurrent_engines.runtime - p

resource/uk.ac.kelinf.modelling.pls

aird/new Production Line Diagram - GEMOC Studio

File Edit Diagram Navigate Search Project Run Window Help

B-E@i®in|mn e
& (@ *new Production Line Diagram §3
|0~ %~| =

R

[¢

2.2 23RO EIGIH-0-Q-i® P F-C

#lav@-@Q | =

Cro-|mim|

= [m] X
Q s
= Al
4| =
Ao
Tl
"
v
= [m]

E Console [*! Problems @ Debug Shell # Concurrent Logical Steps Decider 3 . = 0 ® Strategy Selection 32
K

Logical Steps/MSEs DSA (o)

v o LogicalStep [1484593273] [J Set Of Events
Meatch for rule 'generateHandle": GenHandle->null.generateHandle()

v o LogicalStep [445301646]
Meatch for rule 'generateHandle": GenHandle->null.generateHandle()
Match for rule 'assemble’: Assembler->null.assemble() O Overlap
Match for rule ‘assemble’: Assembler->null.assemble()
Match for rule 'moveAlong: Head->null.moveAlong() [Concurrency limit
Match for rule 'moveAlong': Handle->null.moveAlong()

v o LogicalStep [1578640924]
Match for rule 'generateHandle": GenHandle->null.generateHandle()
Match for rule 'generateHead": GenHead->null.generateHead()
Naa e S e Azzmseras i v

+ | Update strategy selection below. This will take effect from the next step.

generateHandle
generateHead
assemble
moveAlong

[JFull overlap? [Static overlap only?

ProductionLineModel
Machine

Container

Part

Convevor

Fig. 10 Screenshot of the GEMOC Studio running the motivating
example with the Henshin operational semantics. Area (1) shows the
current runtime state in the Sirius editor. Area (2) shows the possible

@ Springer

logical steps to be taken next and allows the user to select the step to
take. Finally, Area (3) allows the concurrency strategies to be selected

and configured

A generic framework for representing and analyzing model concurrency

1333

@ AbstractConcurrentExecutionEngine

Set<ParallelStep> possibleLogicalSteps
ParallelStep selectedLogicalStep

® ConcurrencyStrategy

abstract void executeSmallStep(SmallStep smallStep)

abstract org.chocosolver.solver.Model computelnitialLogicalSteps()
List<ParallelStep> getPossibleLogicalSteps()

void setSelectedLogicalStep(ParallelStep step)

void addConcurrencyStrategy(ConcurrencyStrategy strategy)

void addEnumeratingFilteringStrategy(EnumeratingFilteringStrategy strategy)
void addSymbolicFilteringStrategy(SymbolicFilteringStrategy strategy)

concurrencyStrategies [*]

boolean canBeConcurrent(SmallStep stepl,
SmallStep step2)

symbolicFilteringStrategy [*]

enumeratingFilteringStrategies [*]

® EnumeratingFilteringStrategy

Set<ParallelStep> filter(Set<ParallelStep> steps,
Comparator<Step> stepComparator)

@ MoccmiExecutionEngine © HenshinExecutionEngine

® SymbolicFilteringStrategy

CcslSolver solver
K3DSLCodeExecutor codeExecutor

org.eclipse.emf.henshin.interpreter.Engine henshinEngine

void filterSymbolically(

org.chocosolver.solver.Model symbolicPossibleSteps)

Fig.11 GEMOC concurrent engine API, part of the proposed protocol

To integrate a new concurrent metalanguage in the
GEMOC studio, a subclass of the generic abstract con-
current execution engine needs to implement two methods
(cf. Fig. 11):

1. computeInitialLogicalSteps () correspondsto
computeSymbolicSteps in Fig. 8. It returns a Choco [25]
Model encoding a constraintoverasetof SmallStep-
Variables—special Boolean variables that are each
linked to a specific SmallStep object.!?

2. executeSmallStep (smallStep) corresponds to
executeAtomicStep in Fig. 8.

The generic concurrent execution engine can be con-
figured with a set of concurrency strategies, which are
automatically applied to the symbolic steps. Strategies must
implement the appropriate one of three possible interfaces to
provide their functionality (cf. Fig. 11):

1. Symbolic concurrency strategies:

1. ConcurrencyStrategy: :canBeConcurre
nt (stepl, step?2)returns false if the strategy
wishes to veto concurrent execution of the two
SmallSteps.

2. SymbolicFilteringStrategy::filterSy
mbolically (symbolicPossibleSteps)
can add further constraints to the given set of sym-
bolic steps.

12 In the GEMOC Studio, SmallStep objects represent atomic steps.

2. EnumeratingFilteringStrategy::filter
(steps, stepComparator) returns an opera-
tionally filtered version of the set of ParallelSteps
provided. The given comparator can be used to check
equality of atomic steps.'?

We have implemented the strategies discussed in Sect. 5.
All strategies are dynamically managed by a central strategy
registry, so it is easy to add new strategies. Many strategies
are parameterized and can be configured. Strategies can be
selected and configured initially when a launch configuration
is defined. During the model execution, the user can also
change dynamically the strategy selection and configuration
through a dedicated view (Area (3) in Fig. 10).

To allow the definition of strategies that make decisions
based on what part of the runtime state will be accessed
or changed by a step (e.g., the Overlap strategy), we have
extended the internal GEMOC API so thateach SmallStep
is associated with a Footprint that records where in the
model the step will affect (cf. Fig. 12). It is the responsibil-
ity of the operational semantics runtime to fill this footprint.
Currently, the Henshin-based implementations do so already.
For MoCCML, we will extend, in future work, Kermeta 3
(the underlying implementation language for atomic steps)
to provide annotation of operations indicating the footprint.

We have integrated two concurrent metalanguages in
GEMOC Studio, namely Henshin and MoCCML. These are

13 This may require mechanisms specific to the operational semantics
runtime.

@ Springer

1334 S.Zschaler et al.
Ecore \ @ AbstractConcurrentExecutionEngine
© ParallelStep @ EObject

substeps [*]

@Smallstep

accesses [*] change$ [*]

© Footprint

footprint [1] instantiations [*]

@ EClass

Fig. 12 Metamodel for parallel steps in GEMOC

implemented as subclasses of AbstractConcurrent-
Engine. The implementations are available on Github.

7 User scenarios for concurrency strategies

In Sect. 5, we have introduced the idea of concurrency
strategies as a tool for dynamically exploring the “raw” con-
currency model. In this section, we discuss user scenarios
exemplifying how these strategies could be used—providing
some evidence of the benefits this new concept offers. We
discuss user scenarios from the perspective of two different
types of users: 1. language engineers design new model-
ing languages and develop their supporting infrastructure
(editors, debuggers, interpreters, compilers, ...), while 2. lan-
guage users use pre-defined modeling languages to create,
manipulate, analyze, and execute models.

7.1 Concurrency strategies for language engineers

Language engineers can use concurrency strategies to enrich
the semantics of their languages. Concretely, we envision two
such scenarios:

1. Compensating for limitations in existing semantics spec-

ification formalisms. Existing formalisms for defining
language semantics can have limited expressivity to con-
strain the potential concurrency in execution of any given
model. For example, MoCCML-based semantics strug-
gle to define how concurrency constraints change in
response to data values, while Henshin-based semantics
struggle to express scoping of concurrency to particular
areas in a model. Both approaches cannot easily capture
limits to the number of steps that can occur in parallel or
notions such as token elements.
Using our concurrency strategies, language engineers can
decouple the representation of aspects of the concur-
rency model from the representation of other aspects of
the language semantics, choosing the most appropriate
mechanism for each.

@ Springer

Set<EnumeratingFilteringStrategy> initialEnumeratingFilteringStrategies()
Set<SymbolicFilteringStrategy> initialSymbolicFilteringStrategies()
Set<ConcurrencyStrategy> initialConcurrencyStrategies()

wrappedEngine [1]

@ WrappingConcurrentExecutionEngine

Fig. 13 Template methods for pre-defining and refining concurrency
strategies

2. Refining the concurrency model of a pre-defined lan-
guage. Language engineers may wish to refine the
concurrency model of a given language—for example
to create a language variant that takes into account the
concurrency limitations of a particular execution plat-
form (e.g., a limited number of processors for parallel
execution). This could be achieved by redefining the
core semantics specification of the language, but this can
be cumbersome and may require touching a significant
proportion of specification rules. Alternatively, language
engineers could refine a language’s concurrency seman-
tics by packaging the language with a set of concurrency
strategies.

Such language extensions are easily enabled by adding a
hook method [22] to the abstract concurrent engine, which
can instantiate a set of concurrency strategies to always be
enabled for this engine. The second scenario above can then
be easily supported by creating a new type of concurrent
engine that wraps another engine, applying the given set of
concurrency strategies. Figure 13 summarizes the necessary
additions to the concurrent engine classes.

7.2 Concurrency strategies for language users

As a language user, concurrency strategies are useful as part
of the interactive exploration of models. Similarly to the
“refining concurrency model” scenario above, a language
user may wish to explore the appropriate dimensioning of
hardware by exploring the impact of different additional
concurrency constraints. This can be done by enabling appro-
priate concurrency strategies before analyzing models (e.g.,
adding a concurrency limit strategy to explore the impact
of hardware with a specific maximum number of available
cores).

A generic framework for representing and analyzing model concurrency

1335

More generally, concurrency strategies can be useful as
part of interactive debugging because they can be used to
quickly reach a particular runtime state of interest, from
which to debug the model behavior in more detail. Because
concurrent models can capture a potentially exponentially
large state space using a static constraint similar to condi-
tional breakpoints is not feasible. Instead, it may be necessary
to step through a sequence of steps to reach a particular run-
time state. Manually stepping through model behaviors for
this becomes difficult as the number of possible events rises.
Our concurrency strategies allow the language user to limit
the choice making it easier to reach a runtime state of interest.
The video on the companion web page'* shows an example
of this user scenario.

8 Genericity of the concurrency model
representation

In this section, we present how we evaluated the genericity
of our approach through our implementation in the GEMOC
Studio language workbench.

8.1 Research questions

As stated early in Sect. 1, the main objective of this work
is to provide a generic interface for operational semantics
runtimes and a generic execution flow for concurrent exe-
cution of xDSMLs. In particular, such a generic solution
must be able to deal with both concurrency semantics based
on implicit concurrency models, and concurrency seman-
tics based on explicit concurrency models. Accordingly, we
evaluated our approach through the following two research
questions:

Concurrency model independence: How independent are
the proposed framework, execution flow, and strategies
of the way the concurrency model of a concurrent oper-
ational semantics of a considered xXDSML was defined
(i.e., defined implicitly or defined explicitly)?

Tools definition: How well can the proposed framework
be used to define relevant analysis tools for concurrent
model execution, regardless of the metalanguages used
to define the concurrent operational semantics of a con-
sidered xDSML?

8.2 Experimental setup
The evaluation was done using the implementation of the
presented approach for the GEMOC Studio language work-

bench. This implementation is presented in Sect. 6.

14 http://gemoc.org/concurrency2021/.

Considered metalanguages To demonstrate that the approach
is able to work with both implicit and explicit concurrency
models, we considered two very different metalanguages,
namely Henshin and MoCCML. As already explained in
Sect. 2, these two metalanguages each take a very different
approach to the definition of the concurrency model of the
operational semantics—one through an implicit definition
based on transformation rules, the other through an explicit
definition of the conditions under which an event can occur.
As such, they aptly cover an interesting part of the spectrum
of possible concurrent metalanguages.

Considered xDSMLs and models To actually run and test
the implementation of the approach, actual xDSMLs are
required, along with executable models conforming to said
xDSMLs. For this evaluation, we considered two different
xDSMLs: (1) the xDSML for production systems previously
introduced in Sect. 2, and (2) SigPML, an xDSML dedi-
cated to data flow processing, based on blocks, ports and
connectors. This required implementing one variant of the
operational semantics of each xXDSML per considered met-
alanguage, thus one variant in Henshin and one variant in
MoCCML for each xDSML. Regarding the executable mod-
els, we considered one model per xXDSML, including the
example model shown in Fig. 2 for the production systems
xDSML. Details on the considered xDSMLs and models can
be found in the companion webpage'”.

Considered execution scenarios Since we are dealing with
concurrent xDSMLs, each considered executable model can
lead to many different execution traces due to parallelism or
interleaving. In addition, the presented approach provides a
set of strategies that, when enabled, may alter the presented
set of available parallel steps. This further expands the list
of possible user actions during the execution of a model. For
this evaluation, we therefore identified a set of interesting
execution scenarios for each considered model. Each sce-
nario follows the following structure: (1) start the execution
of a model with an xXDSML, (2) apply a specific sequence of
parallel steps, in order to reach a point where the amount of
possible parallel steps to choose from is too large, (3) undo
the last performed parallel step, (4) enable a specific set of
strategies, in order to explore, from this point on, a specific
part of the concurrency model, (5) re-do the parallel step
again, observe that the set of possible parallel steps is now
reduced, and arguably significantly easier to choose from.
More information on the exact scenarios can be found in the
companion webpage!?.

8.3 Experiments
Concurrency model independence To answer the first research

question, we used the proposed framework to integrate both
considered metalanguages in the GEMOC Studio language

@ Springer

http://gemoc.org/concurrency2021/

1336

S. Zschaler et al.

workbench. The integration of both Henshin and MoCCML
is presented in Sect. 6.

Tools definition To demonstrate that the framework pro-
posed in our approach can be used to define relevant tools
for concurrent model execution, we implemented a generic
concurrent omniscient debugger. This omniscient debug-
ger provides a graphical view showing the execution traces
obtained from the execution of the model and shows what
are the possible parallel steps at any instant of the execu-
tion. More interestingly, it gives the possibility to easily “go
back in time” into a previous runtime state and to choose
from there an alternate execution path using another paral-
lel step that was possible then. Thereby, a language user or
engineer can explore and compare as needed all the different
execution traces that an executed model may produce. The
GEMOC concurrent omniscient debugger user interface is
shown in Fig. 14.

Note that, this tool was built using the addon mechanism of
the GEMOC Studio [8]. An addon is a component attached
to an execution engine of the GEMOC Studio, and that is
notified of each and every parallel or atomic step executed
by the engine. For the concurrent omniscient debugger, these
notifications are used to construct an execution trace that
can then be used for restoring previous runtime states and
previous possible parallel steps.

For both experiments, we manually conducted all consid-
ered execution scenarios—each relying on the generic con-
current omniscient debugger for undoing a parallel step—on
both considered integrations (i.e., Henshin and MoCCML)
and on both considered xXDSMLs and models.

8.4 Results

Concurrency model independence Both integrations of Hen-
shin and MoCCML worked successfully: all the generic code
used to drive the execution flow and the use of strategies
worked as expected in both cases. We can therefore answer
that the proposed approach can work for both concurrency
semantics based on implicit concurrency models, and con-
currency semantics based on explicit concurrency models.
As a complementary note, we can observe that the generic
execution engine (1.e., the reusable code that does not have
to be re-written for each metalanguage) is made of 589 LoC
(Lines of Code), while the Henshin metalanguage integration
is only 182 LoC and the Moccml metalanguage integration
is only 256 LoC. Thus, the majority of the implementation
code is generic and not specific to any metalanguage, and
integrations can be built atop the framework with reasonable
amounts of efforts.
Tools definition The concurrent omniscient debugger worked
as planned after testing, with both variants of each xDSML
(i.e., the Henshin variant and the MoCCML variant). No code
specific to these metalanguages was needed in the imple-

@ Springer

mentation of the tool, which means that this tool can be
reused for the concurrent execution of any model executed
in the GEMOC Studio, provided that the metalanguages
used for the operational semantics were well integrated. We
can therefore answer that the proposed framework can be
used to define relevant tools for concurrent model execution,
regardless how was defined the concurrency model of the
concurrent operational semantics of the considered xDSML.

9 Related work

Much work has been done on the design and implementation
of executable DSLs. In this paper, we proposed a conceptual
and technical framework to explore concurrency indepen-
dently of the way the concurrent operational semantics has
been defined. This section presents related work in the field of
language design and implementation. It also addresses some
existing approach in the field of Multi-Agent Systems where
concurrency has been explicitly managed, and some existing
work in the field of graph rewriting.

A language workbench is a software package for design-
ing software languages [49]. For instance, it may encompass
parser generators, modern editors (e.g., with completion,
quick fix), DSLs for expressing the behavioral semantics
and others. Early language workbenches include Centaur
[6], ASF+SDF [28], and TXL [12]. More recent proposals
include Generic Model Environment (GME) [43], Meta-
case’s MetaEdit+ [44], Microsoft’s DSL Tools [11], Krahn
et al’s Monticore [29], Kats and Visser’s Spoofax [26], Jet-
brain’s MPS [48]. While more and more elaborated, such
language workbenches rarely focus on the debugging of mod-
els. This preoccupation related to domain-specific debugging
is recent [35]; and few existing approaches propose debug-
ging as a software package. For instance, MetaEdit+ provides
a specific API as a crude way to debug/animate models from
an external software and Spoofax provides a simple hard
coded debugger. We can also cite the Debugger Adapter
Protocol (DAP!?) proposed by Microsoft, which defines the
services which are required to enable the debugging of a
program independently of the language it conforms to. More
elaborated approaches like [7,9,13,46] proposed to augment
such protocol to provide omniscient debugging; i.e., a way to
navigate (forward and backward) in a sequential execution.

From these approaches, it is not possible to explore the
impact of concurrency on the system behavior since they
consider a single execution trace. There exist approaches that
focus on the debugging of concurrent systems [18,19,36].
However, all of these approaches focused only on a “com-
puter science notion of concurrency”; that is, they reified
the technical artifacts found in traditional operating systems

15 https://microsoft.github.io/debug-adapter-protocol/.

https://microsoft.github.io/debug-adapter-protocol/

A generic framework for representing and analyzing model concurrency

runtime-New_configuration2 - platform:/resource/uk.ac.kcLinf.modelling.pls.example/representations.aird/new Production Line Diagram - GEMOC Studio

File Edit Diagram Navigate Search Project Run Window Help
HFYOvYQRv @GOGV &

v O ~ig~ B~

B@:?: &

5 ProjectExpl %2 & ModelExplor = [| *new Production Line Diagram 53 = O | & Gemoc Engines Status 53 8 X %

53 Y 8|efvivliviN~y av B B I Ava v i ivow q basic.pls 40[-20]

» (24 uk.ac.kclinf.modelling.pls.design [pls_lang

~ #& > uk.ac.kelinf.modelling.pls.example [pls_
» G gemoc-gen
21 basic.pls
» [representations.aird
» & uk.ac kelinf.modelling.pls.henshin [pls_lan

[Strategy Selection &2 =N5

‘ Overlap Strategy

Update strategy selection below. This will take effect from the next step.
Concurrency Strategies

Fully Overlap Strategy | | Set Of Rules Strategy

-

Filtering Strategies

Sl

[0 Properties (2 Problems & Console

MultiBranch Timeline %2

Synchronized diagram

a]

Concurrent Logical Steps Decider 52

~ 4Logicalstep [15654087]
Match for rule ‘generateHead" :
- no paraneters
- node #1 => uk.ac.kcl.inf.modelling.pls.pls.im|
- node #2 => uk.ac.kcl.inf.modelling.pls.pls.im|

Match for rule ‘moveAlong’:

- no parameters

- node #1 => uk.ac.kcl.inf.modelling.pls.pls.im|
- node #2 => uk.ac.kcl.inf.modelling.pls.pls.im|
- node #3 => uk.ac.kcl.inf.modelling.pls.pls.im|

Match for rule ‘generateHandle’:

- no parameters

- node #1 => uk.ac.kcl.inf.modelling.pls.pls.im
- node #2 => uk.ac.kcl.inf.modelling.pls.pls.im|

Match for rule ‘moveAlong':
- no parameters

- node #1 => uk.ac.kcl.inf.modelling.pls.pls.im
- node #2 => uk.ac.kcl.inf.modellina.nls.ols.im

Productior

7Te v =0

GenHead->null.generateHead()

Head->null.moveAlong()

GenHandle->null. generateHandle ()

Head->null.moveAlong()

Fig. 14 In the bottom left corner, the concurrent omniscient debugger
view in the GEMOC Studio, while executing a model using the Henshin
integration. A blue circle represents a reached runtime state. A green
circle represents a possible parallel step that was not taken during a run-
time state. A yellow circle is a possible parallel step that can be executed

or middleware (e.g., Thread, Process, Fork, Join). In con-
trast, we relied on the notion of interleavings and parallelism
between atomic steps, an atomic step being an abstraction of
any change in a model runtime state. This kind of reason-
ing about the order of relevant events is inspired by Tagged
Signal Model [34] and more recent works on logical time
[1,15], which proved to be adaptable to different notions
of concurrency from different domains. Consequently, we
abstracted away from technical artifacts of concurrency to
keep only a simple notion of atomic step (comparable to an
event) and parallel steps (comparable to synchronous events).
This allowed us to align the omniscient and concurrent debug
protocol directly on the definition of the language semantics
rather than on abstractions over the execution of the under-
lying models / programs.

In the domain of Multi-Agent Systems, concurrency is a
main concern. However, like in other domains, most of the
existing approaches to debug such systems focused on tech-
nical artifacts (e.g., the Mailbox state). However, since these
approaches can be massively parallel, the idea of concur-
rency presentation appeared. In [45], they proposed different
abstraction levels for the presentation of the concurrency to
the user of the debugger. These abstractions are domain-
specific (e.g., Agent view or Interaction View) but the goal

from the last reached runtime state. Double-clicking on a yellow circle
advances the execution with one parallel step, while double-clicking on
a blue circle restores a previous runtime state and starts a new execution

branch (color figure online)

was to present the relevant information (which is activity

dependent) to the user.

In comparison, our notion of filtering strategy shares the
same goal to provide relevant information to the user that
debugs the system. However, we used it not only for repre-
sentation purpose but also to enable more focused exploration

of possible executions.

In graph rewriting, semantics of specifications have been
based on the notion of unfolding [5] for a considerable time.
The key idea here is that the semantics of a graph grammar
(an initial graph and a set of graph transformation rules) is
given by the set of traces that are given by all sequences
of rule applications starting from the initial graph. Work on
unfolding explores compact representations of these trace
sets for analysis, using occurrence grammars. In practical
tooling contexts, this has been used to generate state-space
diagrams from a given graph grammar. These are directed
graphs, where edges represent rule applications and nodes
represent graphs being transformed; where different paths
lead to equivalent graphs, these are represented by the same
node in the state-space diagram. For example, the Henshin
tool used in one of the concurrency engines in this paper
supports the generation of state-space diagrams as well as
their integration with a model-checking tool [4]. This is sim-

@ Springer

1338

S. Zschaler et al.

ilar to the trace model built up by the omniscient debugger
in our work. In contrast to the works cited, however, in our
approach, the trace model can be used in a generic omniscient
debugger to go backwards and forwards in “time.” Moreover,
we can construct trace models irrespective of whether the
semantics are captured using graph transformations. Finally,
we introduce the possibility of using concurrency strategies
to flexibly and dynamically shape the concurrency model.
While graph transformation systems offer higher-level con-
trol structures (e.g., units in Henshin [4]), these need to be
statically coded and do not allow the kind of control of con-
currency offered by our concurrency strategies. Using such
control structures to capture behavior patterns to match for
to select traces of interest has been shown in the context of
Maude in [37]. This is similar in intent to our concurrency
strategies but focuses on capturing sequential patterns rather
than filtering the concurrent occurrence of steps.

10 Conclusions

We presented a generic interface for concurrent operational
semantics runtimes, allowing them to be plugged into a
language workbench for concurrent xDSMLs. This enables
any such xXDSML to be supported by concurrent omniscient
debugging and dynamic analysis services with minimal addi-
tional implementation effort and based on an explicitly
modeled operational semantics.

Specifically, we have demonstrated how the generic inter-
face enables the introduction of strategies that can be used
flexibly and dynamically to explore a language’s concurrency
model. This can be useful in multiple scenarios (and we aim
to further explore each of these scenarios in future work):

1. Language engineering. Language engineers need to
ensure they have specified the right semantics for their
language. This is best achieved in an incremental man-
ner, where different alternative semantics are explored
with example models before the final choice is made. The
ability to dynamically restrict the concurrency model of
a language without having to rewrite the formal spec-
ification allows quicker exploration of alternatives. An
interesting research question is whether it is possible to
take a given choice of strategies and (semi-)automatically
suggest changes to the underlying semantics specification
that will achieve the same effect.

2. Model engineering. Modelers need to ensure the mod-
els they have created do indeed capture the behavior
they are interested in. This can be understood using
model debuggers. While problems related to concurrency
are encountered, the different strategies provide a use-
ful tool for clarifying the concurrency that is actually
intended before trying to understand how the model can

@ Springer

be changed to achieve this intended concurrency. An
interesting research question is whether a given set of
strategies and a model can be (semi-)automatically trans-
lated into a set of proposed model changes to encode the
intended concurrency in the model.

3. Dynamic analysis. Dynamic analysis tools often need to
explore a large number of execution traces, and limiting
the set of traces that need exploring can substantially
increase the efficiency of the analysis. An interesting
research question is how our concurrency strategies can
be used by dynamic analysis tools to tactically constrain
the set of traces to be analyzed so that problematic traces
can be identified more efficiently.

Our generic interface is based on a concurrency model of
atomic actions. This concurrency model is generic enough to
express different concurrent semantics, including those with
durative actions. However, it may be too low level to provide a
convenient interface for understanding, analyzing, or debug-
ging models. An interesting research question is how one can
build on our generic interface to support more sophisticated
concurrency models—for example, in the way specifically
prototyped for durative and periodic actions in the context of
e-Motions [38].

Acknowledgements The authors wish to thank Kinga Bojarczuk for
contributing to an early prototype of these ideas.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. André, C.: Syntax and Semantics of the Clock Constraint Specifica-
tion Language (CCSL). Research Report RR-6925, INRIA (2009).
https://hal.inria.fr/inria-00384077

2. André, C.,DeAntoni, J., Mallet, F., de Simone, R.: The Time Model
of Logical Clocks Available in the OMG MARTE Profile, pp.
201-227. Springer, Boston (2010). https://doi.org/10.1007/978-1-
4419-6400-7_7

3. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) Model Driven Engi-
neering Languages and Systems, pp. 559-573. Springer, Berlin
(2007)

4. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: Advanced concepts and tools for in-place EMF model
transformations. In: Petriu, D., Rouquette, N., Haugen, @. (eds.)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.inria.fr/inria-00384077
https://doi.org/10.1007/978-1-4419-6400-7_7
https://doi.org/10.1007/978-1-4419-6400-7_7

A generic framework for representing and analyzing model concurrency

1339

10.

11.

12.

13.

14.

15.

18.

19.

20.

Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MoDELS’10), LNCS, vol.
6394, pp. 121-135. Springer (2010). https://doi.org/10.1007/978-
3-642-16145-2_9

Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Unfolding
semantics of graph transformation. Inf. Comput. 205(5), 733-782
(2007). https://doi.org/10.1016/j.ic.2006.11.004

Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G.,
Lang, B., Pascual, V.: Centaur: the system. In: 3rd ACM Soft-
ware Engineering Symposium on Practical software Development
Environments, pp. 14-24. ACM (1988)

Bousse, E., Corley, J., Combemale, B., Gray, J., Baudry, B.: Sup-
porting efficient and advanced omniscient debugging for xdsmls.
In: Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Software Language Engineering, pp. 137-148 (2015)
Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J.,
Combemale, B.: Execution framework of the GEMOC studio (tool
demo). In: Proceedings of the ACM SIGPLAN Int’l Conference
on Software Language Engineering (SLE’16), pp. 84-89 (2016)
Bousse, E., Leroy, D., Combemale, B., Wimmer, M., Baudry, B.:
Omniscient debugging for executable DSLs. J. Syst. Softw. 137,
261-288 (2018)

Combemale, B., DeAntoni, J., Larsen, M.V., Mallet, F., Barais,
O., Baudry, B., France, R.B.: Reifying concurrency for executable
metamodeling. In: Erwig, M., Paige, R.F., Wyk, E.V. (eds.), Soft-
ware Language Engineering—6th International Conference, SLE
2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings,
Lecture Notes in Computer Science, vol. 8225, pp. 365-384.
Springer (2013). https://doi.org/10.1007/978-3-319-02654-1_20
Cook, S., Jones, G., Kent, S., Wills, A.: Domain-Specific Develop-
ment with Visual Studio DSL Tools. Addison-Wesley Professional
(2007)

Cordy, J.R., Halpern, C.D., Promislow, E.: TXL.: a rapid prototyp-
ing system for programming language dialects. In: Conference of
the International Computer Languages, pp. 280-285 (1988)
Corley, J.A.: Exploring efficient and scalable omniscient debugging
for MDE. Ph.D. Thesis, University of Alabama Libraries (2016)
Corradini, A., Heckel, R., Montanari, U.: Graphical operational
semantics. In: Proceedings of the Workshop on Graph Transfor-
mation and Visual Modelling Techniques (2000)

Deantoni, J., André, C., Gascon, R.: CCSL denotational seman-
tics. Research Report RR-8628, Inria (2014). https://hal.inria.fr/
hal-01082274

Deantoni, J., Diallo, PI1., Champeau, J., Combemale, B., Teodorov,
C.: Operational Semantics of the Model of Concurrency and Com-
munication Language. Research Report RR-8584, INRIA (2014).
https://hal.inria.fr/hal-01060601

Deantoni, J., Issa Diallo, P., Teodorov, C., Champeau, J., Combe-
male, B.: Towards a meta-language for the concurrency concern
in DSLs. In: Design, Automation and Test in Europe Conference
and Exhibition (DATE). Grenoble (2015). https://hal.inria.fr/hal-
01087442

Dotan, D., Kirshin, A.: Debugging and testing behavioral UML
models. In: Companion to the 22nd ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems and Applications
Companion, OOPSLA ’07. Association for Computing Machinery,
New York, pp. 838-839 (2007). https://doi.org/10.1145/1297846.
1297915

Elmas, T., Burnim, J., Necula, G., Sen, K.: Concurrit: a domain spe-
cific language for reproducing concurrency bugs. SIGPLAN Not.
48(6), 153-164 (2013). https://doi.org/10.1145/2499370.2462162
Erdweg, S., van der Storm, T., Volter, M., Tratt, L., Bosman,
R., Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A.,
Konat, G., Molina, P.J., Palatnik, M., Pohjonen, R., Schindler, E.,
Schindler, K., Solmi, R., Vergu, V., Visser, E., van der Vlist, K.,
Wachsmuth, G., van der Woning, J.: Evaluating and comparing lan-

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

guage workbenches: existing results and benchmarks for the future.
Comput. Lang. Syst. Struct. 44, 24-47 (2015). https://doi.org/10.
1016/j.c1.2015.08.007. (Special issue on the 6th and 7th Interna-
tional Conference Software Language Engineering (SLE 2013
and SLE 2014))

Fowler, M.: Domain-Specific Languages. Pearson Education
(2010)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Professional
Computing Series, Addison Wesley Professional (1995)
Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model
operations. In: Proceeding of the 33rd International Conference on
Software engineering—ICSE *11. ACM Press (2011). https://doi.
org/10.1145/1985793.1985875

Jézéquel, J.M., Combemale, B., Barais, O., Monperrus, M., Fou-
quet, F.: Mashup of metalanguages and its implementation in the
Kermeta language workbench. Softw. Syst. Model. 14(2), 905-920
(2015)

Jussien, N., Rochart, G., Lorca, X.: choco: an open source java
constraint programming library. In: CPAIOR’08 Workshop on
Open-Source Software for Integer and Contraint Programming
(OSSICP’08), pp. 1-10 (2008). https://hal.archives-ouvertes.fr/
hal-00483090

Kats, L.C., Visser, E.: The spoofax language workbench: rules
for declarative specification of languages and IDEs. In: OOP-
SLA’10, pp. 444-463. ACM (2010). https://doi.org/10.1145/
1869459.1869497

Keller, R.M.: Formal verification of parallel programs. Commun.
ACM 19(7), 371-384 (1976)

Klint, P.: A meta-environment for generating programming envi-
ronments. ACM TOSEM 2(2), 176-201 (1993)

Krahn, H., Rumpe, B., Volkel, S.: MontiCore: modular develop-
ment of textual domain specific languages. In: Objects, Compo-
nents, Models and Patterns, LNBIP. Springer (2008)

Kurtev, 1., Bézivin, J., Aksit, M.: Technological spaces: an initial
appraisal. In: CooplS, DOA’2002 Federated Conferences, Indus-
trial Track (2002)

Lambers, L., Kosiol, J., Striiber, D., Taentzer, G.: Exploring conflict
reasons for graph transformation systems. In: Guerra, E., Orejas, F.
(eds.) Proceedings of the 12th International Conference on Graph
Transformations (ICGT’19), pp. 75-92. Springer (2019)
Latombe, F., Crégut, X., Combemale, B., Deantoni, J., Pantel, M.:
Weaving concurrency in executable domain-specific modeling
languages. In: Proceedings of the ACM SIGPLAN International
Conference Software Language Engineering (SLE’15), pp. 125-
136 (2015). https://doi.org/10.1145/2814251.2814261. https://
www.scopus.com/inward/record.uri?eid=2-s2.0-84962533506&
partnerID=40&md5=9c4a9c76eb479a24bb42a8e8ef371e4a

Le Guernic, P., Talpin, J.P., Le Lann, J.C.: Polychrony for system
design. J. Circuits Syst. Comput. 12(03), 261-303 (2003)

Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for com-
paring models of computation. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 17(12), 1217-1229 (1998)

Mannadiar, R., Vangheluwe, H.: Debugging in domain-specific
modelling. In: International Conference on Software Language
Engineering, pp. 276-285. Springer (2010)

Marr, S., Torres Lopez, C., Aumayr, D., Gonzalez Boix, E.,
Mossenbock, H.: A concurrency-agnostic protocol for multi-
paradigm concurrent debugging tools. In: Proceedings of the
13th ACM SIGPLAN International Symposium on on Dynamic
Languages, DLS 2017, pp. 3-14. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3133841.
3133842

Rivera, J.E., Duran, F., Vallecillo, A.: Formal specification
and analysis of domain specific models using Maude. Sim-

@ Springer

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1016/j.ic.2006.11.004
https://doi.org/10.1007/978-3-319-02654-1_20
https://hal.inria.fr/hal-01082274
https://hal.inria.fr/hal-01082274
https://hal.inria.fr/hal-01060601
https://hal.inria.fr/hal-01087442
https://hal.inria.fr/hal-01087442
https://doi.org/10.1145/1297846.1297915
https://doi.org/10.1145/1297846.1297915
https://doi.org/10.1145/2499370.2462162
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/1985793.1985875
https://doi.org/10.1145/1985793.1985875
https://hal.archives-ouvertes.fr/hal-00483090
https://hal.archives-ouvertes.fr/hal-00483090
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/2814251.2814261
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962533506&partnerID=40&md5=9c4a9c76eb479a24bb42a8e8ef371e4a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962533506&partnerID=40&md5=9c4a9c76eb479a24bb42a8e8ef371e4a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962533506&partnerID=40&md5=9c4a9c76eb479a24bb42a8e8ef371e4a
https://doi.org/10.1145/3133841.3133842
https://doi.org/10.1145/3133841.3133842

1340

S. Zschaler et al.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

438.

49.

50.

51.

52.

ulation 85(11-12), 778-792 (2009). https://doi.org/10.1177/
0037549709341635

Rivera, J.E., Duréan, F., Vallecillo, A.: A graphical approach for
modeling time-dependent behavior of DSLs. In: Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’09), pp. 51-55. IEEE (2009). https://doi.
org/10.1109/VLHCC.2009.5295300

Rivera, J.E., Duran, F., Vallecillo, A.: On the behavioral semantics
of real-time domain specific visual languages. In: Olveczky, P.C.
(ed.) Rewriting Logic and Its Applications, pp. 174-190 (2010)
Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2),
25-31 (2006)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework. Eclipse Series, 2nd edn. Addison-
Wesley, Berlin (2009)

Striiber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrn-
dorf, M., Tichy, M.: Henshin: A usability-focused framework for
EMF model transformation development. In: de Lara, J., Plump, D.
(eds.), Proceedings of the 10th International Conference on Graph
Transformations (ICGT*17), pp. 196-208. Springer (2017)
Sztipanovits, J., Karsai, G.: Model-integrated computing. IEEE
Comput. 30(4), 110-111 (1997)

Tolvanen, J., Rossi, M.: MetaEdit+: defining and using domain-
specific modeling languages and code generators. In: Companion
of the 18th Annual ACM SIGPLAN Conference OOPSLA, pp.
92-93. ACM (2003)

Van Liedekerke, M.H., Avouris, N.M.: Debugging multi-agent sys-
tems. Inf. Softw. Technol. 37(2), 103—112 (1995). https://doi.org/
10.1016/0950-5849(95)93487-Y

Van Mierlo, S.: A multi-paradigm modelling approach for engi-
neering model debugging environments. Ph.D. Thesis, Universiteit
Antwerpen (2018)

Viyovi¢, V., Maksimovi¢, M., Perisi¢, B.: Sirius: a rapid devel-
opment of DSM graphical editor. In: IEEE 18th International
Conference Intelligent Engineering Systems (INES’14), pp. 233—
238 (2014). https://doi.org/10.1109/INES.2014.6909375

Voelter, M., Solomatov, K.: Language modularization and com-
position with projectional language workbenches illustrated with
MPS. In: SLE, LNCS. Springer (2010)

Volter, M.: From programming to modeling — and back again. IEEE
Softw. 28(6), 20-25 (2011)

Ward, M.P.: Language-oriented programming. Softw. Concepts
Tools 15(4), 147-161 (1994)

Winskel, G.: Event structures. Advances in petri nets. LNCS 255,
325-392 (1987)

Zschaler, S.: Adding a HenshinEngine to GEMOC Studio: an expe-
rience report. In: Proceedings of the 6th International Workshop on
The Globalization of Modeling Languages (GEMOC’18) (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

Steffen Zschaler is a Reader in
Software Engineering at King’s
College London and the directore
of MDENet, the expert network
on model-driven engineering. His
research interests include model-
driven engineering, graph trans-
formations, and principled simu-
lation engineering. More informa-
tion can be found at www.steffen-
zschaler.de and he can be con-
tacted at szschaler@acm.org.

Erwan Bousse is an Associate
Professor at Nantes Universit
(France). His current research inter-
ests include Software Language
Engineering (SLE), Model-Driven
Engineering (MDE), Domain-
Specific Languages (DSLs), model
execution and simulation, and the
debugging and testing of mod-
els. Contact him at erwan.bousse @
Is2n.fr, or visit https://bousse-e.
\penalty-\@Muniv-nantes.io/.

Julien Deantoni is a full Professor
at the University Cote d’ Azur. His
research activity focuses on the
joint use of Model-Driven Engi-
neering and Formal Methods for
Software and System Engineer-
ing. More information at
http://www.i3s.unice.fr/~deantoni/.

Benoit Combemale is a Full
Professor of Software Engineer-
ing at the University of Rennes.
His research interests in Software
Engineering include Software Lan-
guage Engineering, Model-Driven
Engineering, and Software Val-
idation & Verification. Contact him
at benoit.combemale @irisa.fr, or
visit http://combemale.fr.

https://doi.org/10.1177/0037549709341635
https://doi.org/10.1177/0037549709341635
https://doi.org/10.1109/VLHCC.2009.5295300
https://doi.org/10.1109/VLHCC.2009.5295300
https://doi.org/10.1016/0950-5849(95)93487-Y
https://doi.org/10.1016/0950-5849(95)93487-Y
https://doi.org/10.1109/INES.2014.6909375
www.steffen-zschaler.de
www.steffen-zschaler.de
https://bousse-e.penalty -@M univ-nantes.io/
https://bousse-e.penalty -@M univ-nantes.io/
http://www.i3s.unice.fr/~deantoni/
http://combemale.fr

	A generic framework for representing and analyzing model concurrency
	Abstract
	1 Introduction
	2 Background and motivating example
	2.1 Abstract syntax
	2.2 Defining a concurrent operational semantics

	3 Key abstractions to embrace concurrency
	3.1 Concurrency model
	3.2 Logical steps
	3.3 Concurrent operational semantics

	4 A generic framework for concurrent model execution
	4.1 Approach overview
	4.2 Framework description
	4.3 Generic concurrent language execution flow

	5 Dynamic exploration of execution traces
	5.1 Concurrency strategies
	5.2 Concurrency strategies in the execution flow of the protocol

	6 Implementation
	7 User scenarios for concurrency strategies
	7.1 Concurrency strategies for language engineers
	7.2 Concurrency strategies for language users

	8 Genericity of the concurrency model representation
	8.1 Research questions
	8.2 Experimental setup
	8.3 Experiments
	8.4 Results

	9 Related work
	10 Conclusions
	Acknowledgements
	References

