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Abstract
We present the first parallel algorithms that decide strong and branching bisimilarity in linear time. More precisely, if a
transition system has n states,m transitions and |Act| action labels, we introduce an algorithm that decides strong bisimilarity
in O(n + |Act|) time on max(n,m) processors and an algorithm that decides branching bisimilarity in O(n + |Act|) time
using up to max(n2,m, |Act |n) processors.

Keywords Strong bisimulation · Branching bisimulation · RCPP · Parallel algorithms · PRAM

1 Introduction

The notion of bisimilarity for Kripke structures and labelled
transition systems (LTSs) is commonly used to define
behavioural equivalence. Deciding this equivalence is essen-
tial for modelling and verifying discrete event systems
[1,2]. Kanellakis and Smolka proposed a partition refinement
algorithm for obtaining the bisimilarity relation for Kripke
structures [3]. The proposed algorithm has a run time com-
plexity of O(nm) where n is the number of states and m is
the number of transitions of the input. Later, a more sophisti-
cated refinement algorithm running inO(m log n) steps was
proposed by Paige and Tarjan [4].
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In recent years, the increase in the speed of sequential
chip designs has stagnated due to a multitude of factors
such as energy consumption and heat generation. In contrast,
parallel devices, such as graphics processing units (GPUs),
keep increasing rapidly in computational power. In order to
profit from the acceleration of these devices, we require algo-
rithms with massive parallelism. The article ‘There’s plenty
of room at the Top: What will drive computer performance
after Moore’s law’ by Leierson et al. [5] indicates that the
advance in computational performance will come from soft-
ware and algorithms that can employ hardware structures
with a massive number of simple, parallel processors, such
as GPUs. In this article, we propose two such algorithms to
decide strong and branching bisimilarity.

For strong bisimilarity,we improve on the best-known the-
oretical time complexity for parallel bisimulation algorithms
using a higher degree of parallelism. The proposed algorithm
improves the run time complexity to O(n) on max(n,m)

processors, and we base it on the sequential algorithm of
Kanellakis and Smolka [3]. This time complexity matches
the theoretical lower bound for parallel partition refinement
algorithms given in [6]. The larger number of processors used
in this algorithm favours the increasingly parallel design of
contemporary and future hardware. In addition, the algorithm
is optimalw.r.t. the sequentialKanellakis–Smolka algorithm,
meaning that overall, it does not perform more work than its
sequential counterpart.

We first present our algorithm on Kripke structures where
transitions are unlabelled. However, as labelled transition
systems (LTSs) are commonly used, and labels are not
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straightforward to incorporate in an efficient way (cf. for
instance [7]), we discuss how to extend our algorithm to take
action labels into account. This leads to an algorithm with a
run time complexity of O(n + |Act|) on max(n,m) proces-
sors, with Act the set of action labels.

Our algorithm has been designed for and can be analysed
with theConcurrent ReadConcurrentWrite (CRCW)PRAM
model, following notations from [8]. This model extends
the normal RAM model, allowing multiple processors to
work with shared memory. In the CRCW PRAM model,
parallel algorithms can be described in a straightforward
and elegant way. In reality, no device exists that completely
adheres to this PRAM model. Still, with recent advance-
ments, hardware gets better and better at approximating the
model since the number of parallel threads keeps growing.
We demonstrate this by translating the PRAM algorithm to
GPU code.We straightforwardly implemented our algorithm
that decides strong bisimilarity in CUDA and experimented
with an NVIDIA Titan RTX, a state-of-the-art GPU, show-
ing that our algorithm performs mostly in line with what our
PRAM algorithm predicts.

The present article is an extended version of our confer-
ence paper [9]. We have extended that work with a new
algorithm that decides branching bisimilarity. Algorithms
deciding branching bisimilarity typically propagate informa-
tion over τ -paths sequentially, which can takeO(n) time.We
opt to use up to n2 processors to propagate this information
in constant time. In this way, wemanage to keep a linear time
bound on the algorithm. As far as we know, this is the first
algorithm deciding branching bisimilarity that uses extra par-
allelism to propagate this information. We explain this new
algorithm and provide correctness proofs.

The article is structured as follows: In Sect. 2, we recall
the necessary preliminaries on the CRCWPRAMmodel and
state the partition refinement problems this article focuses on.
In Sect. 3, we propose a parallel algorithm to compute strong
bisimulation for Kripke structures, which is also called the
relational coarsest partition problem (RCPP). In this section,
we also prove the correctness of the algorithm and provide a
complexity analysis. In Sect. 4, we discuss the details for an
adjustment to the algorithm that deals with multiple action
labels, thereby supporting LTSs, which forms the bisimu-
lation coarsest refinement problem (BCRP). In this section,
we also provide a complexness and correctness argument,
and the results of experiments on a GPU implementation. In
Sect. 5, we discuss the modification of the algorithm to com-
pute branching bisimilarity (branching-BCRP). We discuss
the details of the modifications, prove them correct and give
the complete algorithm. In Sect. 6, we discuss related work.
Lastly, in Sect. 7 we draw conclusions and discuss future
work.

2 Preliminaries

2.1 The PRAMmodel

A parallel random access machine (PRAM) is a natural
extension of the normal random access machine (RAM),
where an arbitrary number of parallel processors can access
thememory. Following the definitions of [8],we use a version
of a PRAM that is able to concurrently read and concurrently
write (CRCW PRAM). It differs from the model introduced
in [10] in which the PRAM model was only allowed to con-
currently read from the samememory address, but concurrent
writes (to the same address) could not happen.

A CRCWPRAMconsists of a sequence of numbered pro-
cessors P0, P1, . . . . These processors have all the natural
instructions of a normal RAM, such as addition, subtraction
and conditional branching based on the equality and less-than
operators. There is an infinite amount of commonmemory the
processors have access to. The processors have instructions
to read from and write to the common memory. In addition,
a processor Pi has an instruction to obtain its unique index i .

All the processors have the same program and run in a syn-
chronised way in a single-instruction, multiple-data (SIMD)
fashion. In other words, all processors execute the program
in lock step. Parallelism can be achieved by distributing the
data elements over the processors and having the processors
apply the program instructions to ‘their’ data elements.

We assume that one arbitrary write will succeed whenever
a concurrent write happens to the same memory cell. This is
called the arbitrary CRCW PRAM.

A parallel program for a PRAM is called optimal w.r.t. a
sequential algorithm if the total work done by the program
does not exceed the work done by the sequential algorithm.
More precisely, if T is the parallel run time and P the num-
ber of processors used, then the algorithm is optimal w.r.t. a
sequential algorithm running in S steps if P · T ∈ O(S).

2.2 Strong bisimulation

To formalise concurrent system behaviour, we use LTSs.

Definition 2.1 (Labelled Transition System) A labelled tran-
sition system (LTS) is a three-tuple A = (S, Act,→) where
S is a finite set of states, Act a finite set of action labels and
→⊆ S × Act × S the transition relation.

Let A = (S, Act,−→) be an LTS. Then, for any two states
s, t ∈ S and a ∈ Act , we write s

a−→t iff (s, a, t) ∈ −→.
Kripke structures differ from LTSs in the fact that the

states are labelled as opposed to the transitions. In the current
article, for convenience, instead of using Kripke structures
where appropriate, we reason about LTSswith a single action
label, i.e. |Act| = 1. Computing the coarsest partition of such
an LTS can be done in the same way as for Kripke structures,
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apart from the fact that in the latter case, a different initial
partition is computed that is based on the state labels (see,
for instance, [11]).

Definition 2.2 (Strong bisimulation) On an LTS A =
(S, Act,−→) a relation R ⊆ S×S is called a strong bisimula-
tion relation if and only if it is symmetric and for all s, t ∈ S
with sRt and for all a ∈ Act with s

a−→s′, we have:

∃t ′ ∈ S.t
a−→t ′ ∧ s′Rt ′

Whenever we refer to bisimulation, we mean strong bisimu-
lation. Two states s, t ∈ S in an LTS A are called bisimilar,
denoted by s � t , iff there is a bisimulation relation R for A
that relates s and t .

A partition π of a finite set of states S is a set of subsets
that are pairwise disjoint and whose union is equal to S, i.e.
⋃

B∈π B = S. Every element B ∈ π of this partition π is
called a block.

We call partition π ′ a refinement of π iff for every block
B ′ ∈ π ′ there is a block B ∈ π such that B ′ ⊆ B. We say a
partition π of a finite set S induces the relation Rπ = {(s, t) |
∃B ∈ π. s ∈ B and t ∈ B}. This is an equivalence relation
of which the blocks of π are the equivalence classes.

Given an LTS A = (S, Act,−→) and two states s, t ∈ S,
we say that s reaches t with action a ∈ Act iff s

a−→t .
A state s reaches a set U ⊆ S with an action a iff there is

a state t ∈ U such that s reaches t with action a.
A set of states V ⊆ S is called stable under a set of states

U ⊆ S iff for all actions a either all states in V reachU with
a, or no state in V reaches U with a. A partition π is stable
under a set of states U iff each block B ∈ π is stable under
U . The partition π is called stable iff it is stable under all its
own blocks B ∈ π .

Fact 2.3 [4] Stability is inherited under refinement, i.e. given
a partitionπ of S and a refinementπ ′ ofπ . Ifπ is stable under
U ⊆ S, then π ′ is also stable under U .

2.3 Problems

The main problem we focus on in this work is called the
bisimulation coarsest refinement problem (BCRP). It is
defined as follows:

Input: An LTS M = (S, Act,−→).
Output: The partition π of S which is the coarsest par-

tition, i.e. has the smallest number of blocks, that forms a
bisimulation relation.

In a Kripke structure, the transition relation forms a sin-
gle binary relation, since the transitions are unlabelled. This
is also the case when an LTS has a single action label. In
that case, the problem is called the relational coarsest par-
tition problem (RCPP) [3,4,12]. This problem is defined as
follows:

Input: A set S, a binary relation →: S × S and an initial
partition π0

Output: The partition π which is the coarsest refinement
of π0 and which forms a bisimulation relation.

It is known that BCRP is not significantly harder than
RCPP as there are intuitive translations from LTSs to Kripke
structures [13, Dfn. 4.1]. However, some non-trivial modifi-
cations can speed up the algorithm in some cases; hence, we
discuss both problems separately.

In Sect. 3, we discuss the basic parallel algorithm for
RCPP, and in Sect. 4, we discuss the modifications required
to efficiently solve the BCRP problem for LTSswithmultiple
action labels.

3 Relational coarsest partition problem

In this section,we discuss a sequential algorithmbased on the
one of Kanellakis and Smolka [3] for RCPP (Sect. 3.1). This
is the basic algorithm that we adapt to the parallel PRAM
algorithm (Sect. 3.2). The algorithm starts with an input
partition π0 and refines all blocks until a stable partition is
reached. This stable partition will be the coarsest refinement
that defines a bisimulation relation.

3.1 The sequential algorithm

The sequential algorithm, Algorithm 1, works as follows.
Given are a set S, a transition relation → ⊆ S × S, and an
initial partition π0 of S. Initially, we mark the partition as not
necessarily stable under all blocks by putting these blocks
in a set Waiting. In any iteration of the algorithm, if a block
B of the current partition is not in Waiting, then the current
partition is stable under B. If Waiting is empty, the partition
is stable under all its blocks, and the partition represents the
required bisimulation.

As long as some blocks are in Waiting (line 3), a single
block B ∈ π is taken from this set (line 4), and we split
the current partition such that it becomes stable under B.
Therefore, we refer to this block as the splitter. The set S′ =
{s ∈ S | ∃t ∈ B.s → t} is the reverse image of B (line
6). This set consists of all states that can reach B, and we
use S′ to define our new blocks. All blocks B ′ that have a
non-empty intersection with S′, i.e. B ′ ∩ S′ 	= ∅, and are not
a subset of S′, i.e. B ′ ∩ S′ 	= B ′ (line 7), are split into the
subset of states in S′ and the subset of states that are not in
S′ (lines 9–10). These two new blocks are also added to the
set of Waiting blocks (line 11–12). The number of states is
finite, and blocks can be split only a finite number of times.
Hence, blocks are only finitely often put in Waiting, so the
algorithm is guaranteed to terminate.
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Algorithm 1 Sequential algorithm based on Kanellakis–
Smolka
1: π := π0
2: Waiting := π

3: while Waiting 	= ∅ do
4: for all B ∈ Waiting do
5: Waiting := Waiting \ {B}
6: S′ := {s ∈ S | ∃t ∈ B.s−→t}
7: for all B ′ ∈ π with ∅ ⊂ B ′ ∩ S′ ⊂ B ′ do
8: // Split B ′ into B ′ ∩ S′ and B ′ \ S′
9: π := π \ {B ′}
10: π := π ∪ {B ′ ∩ S′, B ′ \ S′}
11: Waiting := Waiting \ {B ′}
12: Waiting := Waiting ∪ {B ′ ∩ S′, B ′ \ S′}
13: end for
14: end for
15: end while

3.2 The PRAM algorithm

Next, we describe a PRAM algorithm to solve RCPP that is
based on the sequential algorithm given in Algorithm 1.

3.2.1 Block representation

Given an LTS A = (S, Act,→) with |Act | = 1 and |S| = n
states, we assume that the states are labelled with unique
indices 0, . . . , n − 1. A partition π in the PRAM algorithm
is represented by assigning a block label from a set of block
labels LB to every state. The number of blocks can never be
larger than the number of states; hence, we use the indices
of the states as block labels: LB = S. We exploit this in
the PRAM algorithm to efficiently select a new block label
whenever a new block is created. We select the block label
of a new block by electing one of its states to be the leader
of that block and using the index of that state as the block
label. By doing so, we maintain an invariant that the leader
of a block is also a member of the block.

In a partition π , whenever a block B ∈ π is split into
two blocks B ′ and B ′′, the leader s of B, which is part of B ′
becomes the leader of B ′, and for B ′′, a new state t ∈ B ′′
is elected to be the leader of this new block. Since the new
leader is not part of any other block, the label of t is freshwith
respect to the block labels that are used for the other blocks.
This method of using state leaders to represent subsets was
first proposed in [14,15].

3.2.2 Data structures

The common memory contains the following information:

1. n : N, the number of states of the input.
2. m : N, the number of transitions of the input relation.
3. The input, a fixed numbered list of transitions. For every

index 0 ≤ i < m of a transition, a source sourcei ∈ S and

target targeti ∈ S are given, representing the transition
sourcei → targeti .

4. C : LB ∪{⊥}, the label of the current block that is used as
a splitter; ⊥ indicates that no splitter has been selected.

5. The following is stored in lists of size n, for each state
with index i :

(a) marki : B, a mark indicating whether state i is able
to reach the splitter.

(b) blocki : LB , the block of which state i is a member.

6. The following is stored in lists of size n, for each potential
block with block label i :

(a) new_leaderi : LB the leader of the new block when
a split is performed.

(b) waitingi : B indicating whether π might not be stable
w.r.t. the block and should be checked as splitter.

As input, we assume that each state with index i has an
input variable Ii ∈ LB that is the initial block label. In other
words, the values of the Ii variables together encode π0.
Using this input, the initial values of the block label blocki
variables are calculated to conform to our block representa-
tion with leaders. Furthermore, in the initialisation, executed
on n processors, waitingi = false for all i that are not used
as block label, and true otherwise.

3.2.3 The algorithm

We provide our first PRAM algorithm in Algorithm 2. The
PRAM is started with max(n,m) processors. These proces-
sors are used for transitions, states and blocks.

The algorithm performs initialisation (lines 1–6) using n
processors, where each block selects a new leader (lines 3–
4). In line 3, we exploit the feature of a CRCW PRAM that
only one write will succeed when multiple processors try to
write to the same memory location. In line 4, the write that
has succeeded is the same for each block, ensuring that the
leader is one of its own states. Next, the algorithm sets the
initial block to waiting. Subsequently, the algorithm enters a
single loop that we explain in three separate parts.

Splitter selection (lines 8–14), using n processors. Every
variable marki is set to false. After this, every processor
with index i will check waitingi .

1 If block i is marked
waiting, the processor tries to write i in the variable C . If
multiple write accesses to C happen concurrently in this
iteration, then according to the arbitrary PRAM model

1 Here processor i is used to both directly go over state i and block i .
Checking waitingblocki would also be correct. However, we can directly
access the blocks using n processors since there are a maximum of n
blocks.
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(see Sect. 2), only one process j will succeed in writing,
setting C := j as the splitter in this iteration.

Mark states (lines 15–17), using m processors. Every pro-
cessor i is responsible for the transition si−→ti and checks
if ti (targeti ) is in the current block C (line 15). If this
is the case the processor writes true tomarksourcei where
sourcei is si . This mark now indicates that si reaches
block C .

Splitting blocks (lines 18–26), using n processors. Every
processor i compares the mark of state i , i.e.marki , with
themark of the leader of the block inwhich state i resides,
i.e. markblocki (line 20). If the marking is different, state
i has to be split from blocki into a new block. At line 21,
a new leader is elected among the states that form the
newly created block. The index of this leader is stored in
new_leaderblocki . The block blocki is set to be waiting
(line 22). After that, all involved processors update the
block index for their state (line 23) and indicate that the
new blocks should be checked as splitter by adding the
blocks to the waiting set (line 24).

The steps of the program are illustrated in Fig. 1. The
notation Bsi refers to a block containing all states that have
state si as their block leader. In the figure on the left, we have
two blocks Bs1 and Bs4 , of which at least Bs4 is marked as
waiting. Block Bs4 is selected to be splitter, i.e. C = Bs4 at
line 12 of Algorithm 2. In the figure in the middle, marki
is set to true for each state i that can reach Bs4 (line 16).
Finally, block Bs4 is removed fromwaiting (line 19), all states
compare their mark with the leader’s mark, and the processor
working on state s3 discovers that the mark of s3 is different
from the mark of s1, so s3 is elected as leader of the new
block Bs3 at line 21 of Algorithm 2. Both Bs1 and Bs3 are set
to waiting (lines 22 and 24).

The algorithm repeats execution of the while-loop until
no blocks are marked waiting.

3.3 Correctness

The blocki list in the commonmemory at the start of iteration
k defines a partition πk where states s ∈ S with equal block
labels blocki form the blocks:

πk = {{s ∈ S | blocks = s′} | s′ ∈ S} \ {∅}

A run of the program produces a sequence π0, π1, . . .

of partitions. Partition πk is a refinement of every parti-
tion π0, π1, . . . , πk−1, since blocks are only split and never
merged.

Algorithm 2 The algorithm for RCPP for each processor Pi
in the PRAM
1: if i < n then
2: waitingi := false
3: new_leader Ii := i � Leader election
4: blocki := new_leaderIi
5: waitingblocki := true
6: end if
7: do
8: C := ⊥
9: if i < n then
10: marki := false
11: if waitingi then
12: C := i
13: end if
14: end if
15: if i < m and blocktargeti = C then
16: marksourcei := true
17: end if
18: if i < n and C 	= ⊥ then
19: waitingC := false
20: if marki 	= markblocki then
21: new_leaderblocki := i
22: waitingblocki := true
23: blocki := new_leaderblocki
24: waitingblocki := true
25: end if
26: end if
27: while C 	= ⊥

A partition π induces a relation in which the blocks are
the equivalence classes. For an input partition π0 we call the
relation induced by the coarsest refinement of π0 that is a
bisimulation relation �π0 .

We now prove that Algorithm 2 indeed solves RCPP. We
first introduce Lemma 3.1 which is invariant throughout the
execution and expresses that states which are related by �π0

are never split into different blocks. This lemma implies that
if a refinement forms a bisimulation relation, it is the coarsest.

Lemma 3.1 Let S be the input set of states, →: S × S the
input relation and π0 the input partition. Let π1, π2, . . . be
the sequence of partitions produced by Algorithm 2, then
for all initial blocks B ∈ π0, states s, t ∈ B and iterations
k ∈ N:

s �π0 t �⇒ ∃B ′ ∈ πk . s, t ∈ B ′

Proof This is proved by induction on k. In the base case, π0,
this is true by default. Now assume for a particular k ∈ N

that the property holds. We know that the partition πk+1 is
obtained by splitting with respect to a block C ∈ πk . For two
states s, t ∈ S with s �π0 t we know that s and t are in the
same block in πk . In the case that both s and t do not reachC ,
then marks = markt = false. Since they were in the same
block, they will be in the same block in πk+1.
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Fig. 1 One iteration of
Algorithm 2

Now consider the case that at least one of the states is
able to reach C . Without loss of generality say that s is able
to reach C . Then there is a transition s → s′ with s′ ∈ C .
By Definition 2.2, there exists t ′ ∈ S such that t → t ′ and
s′

�π0 t ′. By the induction hypothesis we know that since
s′

�π0 t ′, s′ and t ′ must be in the same block in πk , i.e. t ′
is in C . This witnesses that t is also able to reach C and we
must have marks = markt = true. Since the states s and t
are both marked and are in the same block in πk , they will
remain in the same block in πk+1. ��
Lemma 3.2 Let S be the input set of states with →: S × S,
LB = S the block labels, and πn the partition stored in
the memory after the termination of Algorithm 2. Then the
relation induced by πn is a bisimulation relation.

Proof Since the program finished, we know that for all block
indices i ∈ LB we have waitingi = false. For a block index
i ∈ LB , waitingi is set to false if the partition πk , after itera-
tion k, is stable under the block with index i and set to true if
it is split. So, by Fact 2.3, we know πn is stable under every
block B, hence stable. Next, we prove that a stable partition
is a bisimulation relation.

We show that the relation R induced by πn is a bisimula-
tion relation. Assume states s, t ∈ S with sRt are in block
B ∈ πn . Consider a transition s → s′ with s′ ∈ S. State s′ is
in some block B ′ ∈ πn , and since the partition is stable under
block B ′, and s is able to reach B ′, by the definition of stabil-
ity, we know that t is also able to reach B ′. Therefore, there
must be a state t ′ ∈ B ′ such that t → t ′ and s′Rt ′. Finally,
by the fact that R is an equivalence relation we know that R
is also symmetric; therefore, it is a bisimulation relation. ��
Theorem 3.3 The partition resulting from executing Algo-
rithm 2 forms the coarsest relational partition for a set of
states S and a transition relation →: S × S, solving RCPP.

Proof ByLemma 3.2, the resulting partition is a bisimulation
relation. Lemma 3.1 implies that it is the coarsest refinement
which is a bisimulation. ��

3.4 Complexity analysis

Every step in the body of the while-loop can be executed in
constant time. So the asymptotic complexity of this algorithm
is given by the number of iterations.

Theorem 3.4 RCPP on an input with m transitions and n
states is solved by Algorithm 2 inO(n) time usingmax(n,m)

CRCW PRAM processors.

Proof In iteration k ∈ N of the algorithm, let us call the total
number of blocks Nk ∈ N and the number of blocks marked
as waiting Uk ∈ N. Initially, N0 = U0 = |π0|. In every
iteration k, a number of blocks lk ∈ N is split, resulting in lk
new blocks, so the new total number of blocks at the end of
iteration k is Nk+1 = Nk + lk .

First the current block C in iteration k which was marked
as waiting is no longer waiting which causes the number of
waiting blocks to decrease by one. In this iteration k, the
set of lk blocks B1, . . . , Blk are split, resulting in lk newly
created blocks. These lk blocks are all marked as waiting.
A number of blocks l ′k ≤ lk of the blocks B1, . . . Blk were
not yet marked as waiting and are now set to waiting. The
current blockC is possibly one of these l ′k blocks which were
not marked as waiting and are now waiting again. The total
number of blocks marked as waiting at the end of iteration k
is Uk+1 = Uk + lk + l ′k − 1.

For all k ∈ N, in iteration k we calculate the total number
of blocks Nk = |π0| + ∑k−1

i=0 (li ) and waiting blocks Uk =
|π0| − k + ∑k−1

i=0 (li + l ′i ). The number of iterations is given

by k = ∑k−1
i=0 (li + l ′i ) − Uk + |π0|. By definition, l ′i ≤ li ,

and the total number of newly created blocks is
∑k−1

i=0 (li ) =
Nk−|π0|; hence,∑k−1

i=0 (li+l ′i ) ≤ 2
∑k−1

i=0 (li ) ≤ 2Nk−2|π0|.
The number of waiting blocks is always positive, i.e.Uk ≥ 0,
and the total number of blocks can never be larger than the
number of states, i.e. Nk ≤ n, so the total number of iterations
z is bounded by z ≤ 2Nz − |π0| ≤ 2n − |π0|. ��
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4 Bisimulation coarsest refinement problem

In this section, we extend our algorithm to the bisimulation
coarsest refinement problem (BCRP), i.e. to LTSs with mul-
tiple action labels.

Solving BCRP can in principle be done by translating an
LTS to a Kripke structure, for instance by using the method
described in [16]. This translation introduces a new state for
every transition, resulting in a Kripke structure with n + m
states. If the number of transitions is significantly larger than
the number of states, then the number of iterations of our
algorithm increases undesirably.

4.1 The PRAM algorithm

Instead of introducing more states, we introduce multiple
marks per state, but in total we have no more than m marks.
For each state s, we use a mark variable for each different
outgoing action label relevant for s, i.e. for each a for which
there is a transition s

a−→t to some state t . Each state may have
a different set of outgoing action labels and thus a different
set of marks. Therefore, we first perform a preprocessing
procedure in which we group together states as blocks in
the initial partition that have the same set of outgoing action
labels. This is valid, since two bisimilar states must have the
same outgoing actions. Since in the sequence of produced
partitions each partition is a refinement of the previous one,
the algorithm has the invariant that two states of the same
block have the same set of action labels. For the extended
algorithm, we need to maintain extra information in addition
to the information needed for Algorithm 2. For an input LTS
A = (S, Act,−→) with n states and m transitions, the extra
information is:

1. Each action label has an index a ∈ {0, . . . , |Act | − 1}.
2. The following is stored in lists of size m, for each transi-

tion s
a−→t with transition index i ∈ {0, . . . ,m − 1}:

(a) ai := a, the action label of transition i ,
(b) orderi : N, the order of this action label, with respect

to the source state s. For example, if a state s has the
list [1, 3, 6] of outgoing action labels, and transition
i has label 3, then orderi is 1 (we start counting from
0).

3. mark : [B], a list of up to m marks, in which there is a
mark for every state, action pair for which it holds that the
state has at least one outgoing transition labelledwith that
action. This list can be interpreted as the concatenation
of sublists, where each sublist contains all the marks for
one state. For each state s ∈ S, we have:

(a) off (s) : N, the offset to access the beginning of the
sublist of the marks of the state s in mark. The posi-
tionsmarkoff (s) up tomarkoff (s+1) contain the sublist
of marks for state s. For example, if state s has outgo-
ing transitions with 3 distinct action labels, we know
that off (s+1) ≡ off (s)+3, and we have 3 marks for
state s. We write markoff (s)+orderi to access the mark
for transition i which has source state s.

4. mark_length : N, the length of the mark list. This allows
us to reset all marks in constant time using mark_length
processors. This number is not larger than the number of
transitions (mark_length ≤ m).

5. In a list of size n, we store for each state s ∈ S a variable
splits : B. This indicates if the state will be split off from
its block.

With this extra information, we can modify Algorithm 2
to work with labels. The new version is given in Algorithm 3.
The changes involve the following:

1. Lines 7–9: Reset the mark list.
2. Line 11: Reset the split list.
3. Line 17: When marking the transitions, we do this for

the correct action label, using orderi . Note the indexing
into mark. It involves the offset for the state sourcei and
orderi .

4. Lines 19–21: We tag a state to be split when it differs for
any action from the block leader.

5. Line 24: If a state was tagged to be split in the previous
step, it should split from its leader.

6. Line 29: If any block was split, the partition may not be
stable w.r.t. the splitter.

To use Algorithm 3, two preprocessing steps are required.
First, we need to partition the states w.r.t. their set of outgo-
ing action labels. This can be done with a modified version
of Algorithm 2, which performs one iteration for each action
label. For the second preprocessing step, we need to gather
the extra information that is needed in Algorithm 3. This is
done via sorting the action labels and subsequently perform-
ing some parallel segmented (prefix) sums [17]. In total, the
preprocessing takes O(|Act | + logm) time. For details how
this is implemented, see Appendix A.

4.2 Complexity and correctness

The correctness of this algorithm follows directly from the
arguments in Sect. 3.3.
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Algorithm 3 The algorithm for BCRP, the lines highlighted
differ from Algorithm 2.
1: if i < n then
2: waitingi := false
3: waitingblocki := true
4: end if
5: do
6: C := ⊥
7: if i < mark_length then
8: marki := false
9: end if
10: if i < n then
11: spli ti := false
12: if waitingi then
13: C := i
14: end if
15: end if
16: if i<m and blocktargeti = C then
17: markoff (sourcei )+orderi := true
18: end if
19: if i<m and markoff (sourcei )+orderi 	= markoff (blocksourcei )+orderi

then
20: splitsourcei := true
21: end if
22: if i < n & C 	= ⊥ then
23: waitingC := false
24: if spliti then
25: new_leaderblocki := i
26: waitingblocki := true
27: blocki := new_leaderblocki
28: waitingblocki := true
29: waitingC := true
30: end if
31: end if
32: while C 	= ⊥

Theorem 4.1 Given an LTS A = (S,−→, Act), the partition
π resulting from executing Algorithm 3 is the coarsest par-
tition that induces a bisimulation relation, solving BCRP.

Proof The proof goes in a completely analogous way to the
proof of Theorem 3.3.

We can modify the proof of Lemma 3.1, for it to still hold
in the setting of labels. The mark for each action label is
the same for two bisimilar states. This means bisimilar states
have the same value for split. Therefore, they will always be
split into the same block together. Thus, bisimilar states will
always be in the same block.

The proof of Lemma 3.2 still works in the setting with
labels, proving that the partition π is stable with respects to
all blocks B ∈ π , and thereby that π induces a bisimulation
relation.

Thus, these two facts imply that π is the coarsest partition
inducing a bisimulation relation. ��
For Algorithm 3, we need to prove why it takes a linear
number of steps to construct the final partition. This is subtle,
as an iteration of the algorithm does not necessarily remove
a block from the waiting set.

Theorem 4.2 BCRP on an input with m transitions and n
states is solved by Algorithm 3 in O(n + |Act |) time using
max(n,m) CRCW PRAM processors.

Proof The total preprocessing takesO(|Act |+ logm) steps,
after which thewhile-loop will be executed on a partitioning
π0 which was the result of the preprocessing on the partition
{S}. Every iteration of thewhile-loop is executed in constant
time. Using the structure of the proof of Theorem 3.4, we
derive a bound on the number of iterations.

At the start of iteration k ∈ N the total number of blocks
and waiting blocks are Nk,Uk ∈ N, initially U0 = N0 =
|π0|. In iteration k, a number lk of blocks is split into two
blocks, resulting in lk new blocks, meaning that Nk+1 =
Nk+lk . All new lk blocks aremarked aswaiting and a number
l ′k ≤ lk of the old blocks that are split were not waiting at
the start of iteration k and are now marked as waiting. If
lk = l ′k = 0 there are no blocks split and the current block
C is no longer marked as waiting. We indicate this with a
variable ck : ck = 1 if lk = 0, and ck = 0, otherwise. The
total number of iterations up to iteration k in which no block
is split is given by

∑k−1
i=0 ci . The number of iterations inwhich

at least one block is split is given by k − ∑k−1
i=0 ci .

If in an iteration k at least one block is split, the total
number of blocks at the end of iteration k is strictly higher
than at the beginning; hence, for all k ∈ N, Nk ≥ k−∑k−1

i=0 ci .
Hence, Nk + ∑k−1

i=0 ci is an upper bound for k.
We derive an upper bound for the number of iterations

in which no blocks are split using the total number of wait-
ing blocks. In iteration k there are Uk = ∑k−1

i=0 (li + l ′i ) −
∑k−1

i=0 ci + |π0| waiting blocks. Since the sum of newly
created blocks

∑k−1
i=0 (li ) = Nk − |π0| and l ′i ≤ li , the

number of blocks marked as waiting Uk is bounded by
2Nk − ∑k−1

i=0 ci − |π0|. Since Uk ≥ 0 we have the bound
∑k−1

i=0 ci ≤ 2Nk − |π0|. This gives the bound on the total
number of iterations z ≤ 3Nz − |π0| ≤ 3n − |π0|.

With the time for preprocessing this makes the run time
complexity O(n + |Act | + logm). Since the number of
transitions m is bounded by |Act | × n2, this simplifies to
O(n + |Act |). ��

4.3 Experimental results

In this subsection, we discuss the results of our implemen-
tation of Algorithm 3. Note that this implementation is not
optimised for the specific hardware it runs on, since the goal
of this article is to provide a generic parallel algorithm. This
implementation is purely a proof of concept, to show that
our algorithm can be mapped to contemporary hardware and
to understand how the algorithm scales with the size of the
input.

The implementation targets GPUs since a GPU closely
resembles a PRAM and supports a large amount of paral-
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lelism. The algorithm is implemented in CUDAC++ version
11.1 with use of the Thrust library.2 As input, we chose all
benchmarks of the VLTS benchmark suite3 for which the
implementation produces a result within 10 minutes. The
VLTS benchmarks are LTSs that have been obtained from
various case studies derived from real concurrent system
models.

The experiments were run on an NVIDIA Titan RTX
with 24GBmemory and 72 StreamingMultiprocessors, each
supporting up to 1024 threads in flight. Although this GPU
supports 73,728 threads in flight, it is very common to launch
a GPU program with one or even several orders of magni-
tude more threads, in particular to achieve load balancing
between the Streaming Multiprocessors and to hide memory
latencies. In fact, the performance of a GPU program usually
relies on that many threads being launched.

Table 1 shows the results of the experiments we con-
ducted. The |Act| column corresponds to the number of
different action labels. The |Blocks| column indicates the
number of different blocks at the end of the algorithm, where
each block contains only bisimilar states. With #It, we refer
to the number of while-loop iterations that were executed
(see Algorithm 3). The number of states and transitions can
be derived from the benchmark name. In the benchmark
‘X_N_M ,’ N ∗ 1000 is the number of states and M ∗ 1000
is the number of transitions. The Tpre give the preprocessing
times in milliseconds, which includes the memory transfers
to the GPU, sorting the transitions and initial partitioning.
The Talg give the times of the core algorithm, in millisec-
onds. The TBCRP is the sum of the preprocessing and the
algorithm, in milliseconds. We have not included the loading
times for the files and the first CUDAAPI call that initialises
the device. We ran each benchmark 10 times and took the
averages. The standard deviation of the total times varied
between 0% and 3% of the average; thus, 10 runs are suffi-
cient. All the times are rounded with respect to the standard
error of the mean.

We see that the bound as proved in Sect. 4.2 (k ≤ 3n) is
indeed respected, #It/n is at most 2.20, and in most cases
below that. The number of iterations is tightly related to the
number of blocks that the final partition has, the #It/|Blocks|
column varies between 1.00 and 2.53. This can be under-
stood by the fact that each iteration either splits one or more
blocks or marks a block as non-waiting, and all blocks are
waiting at least once. This also means that for certain LTSs
the algorithm scales better than linearly in n. The prepro-
cessing often takes the same amount of time (about a few
milliseconds). Exceptions are those cases with a large num-

2 The source code can be found at https://github.com/sakehl/gpu-
bisimulation.
3 https://cadp.inria.fr/resources/vlts/.

ber of actions and/or transitions, for instance Vasy_25_25 or
Vasy_574_13561.

Concerning the run times, it is not true that each iteration
takes the same amount of time. AGPU is not a perfect PRAM
machine. There are two key differences. Firstly, we suspect
that the algorithm is memory bound since it is performing a
limited amount of computations. The memory accesses are
irregular, i.e. random, which caches can partially compen-
sate, but for sufficiently large n and m, the caches cannot
contain all the data. This means that as the LTSs become
larger, memory accesses become relatively slower. Secondly,
at a certain moment, the maximum number of threads that a
GPU can run in parallel is achieved, and adding more threads
will mean more run time. These two effects can best be seen
in the Talg/#It column, which corresponds to the time per
iteration. The values are around 0.02 up to 300, 000 transi-
tions, but for a larger number of states and transitions, the
amount of time per iteration increases.

4.4 Experimental comparison

We compared our implementation (BCRP) with an imple-
mentation of the algorithm by Lee and Rajasekaran (LR)
[12] on GPUs, and the optimised GPU implementation by
Wijs based on signature-based bisimilarity checking [18],
with multi-way splitting (Wms) and with single-way split-
ting (Wss) [14]. Multi-way splitting indicates that a block
is split into multiple blocks at once, which is achieved by
computing a signature for each state in every partition refine-
ment iteration, and splitting each block off into sets of states,
each containing all the states with the same signature. The
signature of a state is derived from the labels of the blocks
that this state can reach in the current partition. Note that
we are not including comparisons with CPU bisimulation
checking tools; the fact that those tools run on completely
different hardware makes a comparison problematic, and
such a comparison does not serve the purpose of evaluat-
ing the feasibility of implementing Algorithm 3. Optimising
our implementation to make it competitive with CPU tools
is planned for future work.

The running times of the different algorithms can be found
in Table 2. Similarly to our previous benchmarks, the algo-
rithms were run 10 times on the same machine using the
same VLTS benchmark suite with a time-out of 10 minutes.
In some cases, the nondeterministic behaviour of the algo-
rithms Wms and Wss led to high variations in the runs. In
cases where the standard error of the mean was more than
5% of the mean value, we have added the standard error
in Table 2 in parentheses. Furthermore, all the results are
rounded with respect to the standard error of the mean. As a
preprocessing step for the LR, Wms and Wss algorithms the
input LTSs need to be sorted. We did not include this in the
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Table 1 Benchmark results for BCRP (Algorithm 3) on a GPU, times (T ) are in ms

Benchmark name |Act| |Blocks| #It Tpre Talg #It/n #It/ |Blocks| TBCRP/n Talg/#It TBCRP

Vasy_0_1 2 9 16 0.50 0.37 0.06 1.78 0.003 0.023 0.87

Cwi_1_2 26 1132 2786 0.63 56.5 1.43 2.46 0.029 0.020 57.1

Vasy_1_4 6 28 45 0.56 1.01 0.04 1.61 0.001 0.022 1.58

Cwi_3_14 2 62 122 0.63 2.68 0.03 1.97 0.001 0.022 3.30

Vasy_5_9 31 145 193 0.84 4.22 0.04 1.33 0.001 0.022 5.06

Vasy_8_24 11 416 664 0.70 13.9 0.07 1.59 0.002 0.021 15

Vasy_8_38 81 219 319 1.12 6.64 0.04 1.46 0.001 0.021 7.76

Vasy_10_56 12 2112 3970 0.73 82.0 0.37 1.88 0.008 0.021 82.7

Vasy_18_73 17 4087 6882 1.01 142 0.37 1.68 0.008 0.021 143

Vasy_25_25 25,216 25,217 25,218 159 519 1.00 1.00 0.027 0.021 678

Vasy_40_60 3 40,006 87,823 0.87 1810 2.20 2.20 0.045 0.021 1811

Vasy_52_318 17 8142 15,985 2.52 338 0.31 1.96 0.007 0.021 340

Vasy_65_2621 72 65,536 98,730 12.2 10,050 1.51 1.51 0.154 0.102 10,060

Vasy_66_1302 81 66,929 91,120 6.70 5745 1.36 1.36 0.086 0.063 5752

Vasy_69_520 135 69,754 113,246 4.13 3780 1.62 1.62 0.054 0.033 3780

Vasy_83_325 211 83,436 148,012 4.41 3093 1.77 1.77 0.037 0.021 3097

Vasy_116_368 21 116,456 210,537 2.50 5900 1.81 1.81 0.051 0.028 5900

Cwi_142_925 7 3410 5118 4.85 238 0.04 1.50 0.002 0.047 243

Vasy_157_297 235 4289 9682 4.58 201 0.06 2.26 0.001 0.021 206

Vasy_164_1619 37 1136 1630 8.34 125 0.01 1.43 0.001 0.077 134

Vasy_166_651 211 83,436 145,029 6.13 5710 0.87 1.74 0.034 0.039 5720

Cwi_214_684 5 77,292 149,198 3.58 6948 0.70 1.93 0.032 0.047 6952

Cwi_371_641 61 33,994 85,858 4.72 4050 0.23 2.53 0.011 0.047 4050

Vasy_386_1171 73 113 199 7.38 14.0 0.00 1.76 0.000 0.070 21

Cwi_566_3984 11 15,518 23,774 16.0 3707 0.04 1.53 0.007 0.156 3723

Vasy_574_13561 141 3577 5860 71.5 3770 0.01 1.64 0.007 0.643 3841

Vasy_720_390 49 3292 3782 3.97 143 0.01 1.15 0.0002 0.038 147

Vasy_1112_5290 23 265 365 24.0 99.3 0.0003 1.38 0.0001 0.272 123

Cwi_2165_8723 26 31,906 66,132 37.0 23,660 0.03 2.07 0.011 0.358 23,700

Cwi_2416_17605 15 95,610 152,099 64.1 96,400 0.06 1.59 0.040 0.634 96,500

Vasy_6020_19353 511 7168 12,262 221 11,690 0.002 1.71 0.002 0.954 11,910

Vasy_6120_11031 125 5199 10,014 74.0 6763 0.002 1.93 0.001 0.675 6837

Vasy_8082_42933 211 408 660 281 1149 0.0001 1.62 0.0002 1.739 1429

times, nor the reading of files and the first CUDA API call
(which initialises the GPU).

This comparison confirms the expectation that our algo-
rithm in all cases (except the small LTS Cwi_1_2) outper-
forms LR and that LR is not suitable for massive parallel
devices such as GPUs.

Furthermore, the comparison demonstrates that in most
cases our algorithm (BCRP) outperforms Wss. In some
benchmarks (Cwi_1_2, Cwi_214_684, Cwi_2165_8723 and
Cwi_2416_17605) Wss is more than twice as fast, but in 16
other cases our algorithm is more than twice as fast. The last
comparison shows that our algorithm does not outperform

Wms. Wms employs multi-way splitting which is known
to be very effective in practice. Furthermore, contrary to our
implementation,Wms is optimised for GPUs while the focus
of the current work is to improve the theoretical bounds and
describe a general algorithm.

In order to understand the difference in performance
betweenWms and our algorithmbetter,we analysed the com-
plexity of Wms [14]. In general this algorithm is quadratic
in time, and the linearity claim in [14] depends on the
assumption that the fan-out of ‘practical’ transition systems
is bounded, i.e. every state has no more than c outgo-
ing transitions for c a (low) constant. We designed the
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Table 2 Comparing the total
time of our BCRP algorithm
with other algorithms, times (T )
are in ms

Benchmark name TBCRP TLR TWss TWms

Vasy_0_1 0.87 2.29 0.49 0.45

Cwi_1_2 57.1 17 18.8 21.8

Vasy_1_4 1.58 4.78 1.68 0.62

Cwi_3_14 3.30 60 3.80 3.72

Vasy_5_9 5.06 134 35.3 3.45

Vasy_8_24 15 277 31.5 3.03

Vasy_8_38 7.76 127 35.1 5.94

Vasy_10_56 82.7 860 40.9 4.6(0.2)

Vasy_18_73 143 1354 211 21.7

Vasy_25_25 678 21,960 t.o. 416

Vasy_40_60 1811 17,710 1290 1230

Vasy_52_318 340 11,855 368 152(20)

Vasy_65_2621 10,060 t.o. 27,000 1230

Vasy_66_1302 5752 480,600 20,450 240(20)

Vasy_69_520 3780 94,800 16,090 35.4

Vasy_83_325 3097 57,190 21,500 5880

Vasy_116_368 5900 80,900 6360 2930

Cwi_142_925 243 3363 220(30) 140(20)

Vasy_157_297 206 1058 1240 579

Vasy_164_1619 134 8173 470(30) 46.8

Vasy_166_651 5720 80,210 29,660 9560

Cwi_214_684 6952 19,250 440(30) 450(50)

Cwi_371_641 4050 26,940 6970 1548

Vasy_386_1171 21 334 30.6 34.8

Cwi_566_3984 3723 98,200 6700 2200

(200)

Vasy_574_13561 3841 144,810 11,700 1853

Vasy_720_390 147 2454 1633 183

Vasy_1112_5290 123 4570 293 36.8

Cwi_2165_8723 23,700 140,170 9700 1965

Cwi_2416_17605 96,500 257,200 16,300 15,300

(1,100)

Vasy_6020_19353 11,910 107,900 34,000 19,230

(2000)

Vasy_6120_11031 6837 55,750 7010 1280

Vasy_8082_42933 1429 17,272 5530 2030

transition systems Fan_outn for n ∈ N
+ to illustrate the

difference. The LTS Fan_outn = (S, {a, b},−→) has n states:
S = {0, . . . , n−1}. The transition function contains i a−→i+1
for all states 1 < i < n − 1. Additionally, from state 0 and 1
there are transitions to every state: 0

b−→i, 1
b−→i for all i ∈ S.

This LTS has n states, 3n−3 transitions and a maximum out
degree of n transitions.

Fig. 2 shows the results of calculating the bisimulation
equivalence classes for Fan_outn , with Wms and BCRP. It
is clear that the run time for Wms increases quadratically
as the number of states grows linearly, already becoming

untenable for a small number of states. On the other hand, in
conformance with our analysis, our algorithm scales linearly.

5 Branching bisimilarity

When systems get more complex, abstractions are an essen-
tial tool to gain insight into the behaviour of the system.Often
a special action label τ is used to model internal behaviour in
LTSs. Branching bisimilarity, as introduced byVanGlabbeek
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Fig. 2 Run times of BCRP and Wms on the LTS Fan_outn

and Weijland [19] is an equivalence that takes these internal
actions into account. It is defined as follows.

Definition 5.1 (Branching bisimulation [19, Definition 2.4])
Given an LTS A = (S,→, Act) a relation R ⊆ S × S is
called a branching bisimulation relation iff it is symmetric
and for all states s, t ∈ S such that sRt and for all actions
a ∈ Act : if s

a−→s′ then either

• a = τ and s′Rt , or
• there is a sequence t

τ−→· · · τ−→t ′ of zero or more τ -
transitions such that sRt ′, t ′ a−→t ′′ and s′Rt ′′.

Branching bisimilarity is the coarsest branching bisimulation
relation, and we denote this as �b.

The problem we address in this section is taking into
account branching bisimulation relations. We define the
branching bisimulation refinement problem (branching-
BCRP) as follows:

Input: An LTS M = (S, Act,−→) with a dedicated inter-
nal action τ ∈ Act .

Output: The partition π of S, which is the coarsest par-
tition, i.e. has the smallest number of blocks, that forms a
branching bisimulation relation.

This section explains how to adapt our parallel algorithm
for strong bisimilarity (BCRP) to decide branching bisimi-
larity (branching-BCRP) in O(n+|Act |) parallel time using
max(n2,m, |Act |n) parallel processors.

The section is structured as follows: In Sect. 5.1, we recall
some preliminaries specific to branching bisimulations and
establish the notation we use throughout this section. Next,
in Sect. 5.2, we explain key ingredients from the sequen-
tial algorithm by Groote and Vaandrager [20]. After that, in
Sect. 5.3, we explain the key modifications in a parallel set-
ting. Then, in Sect. 5.4, we give the details of the algorithm.
Lastly, in Sect. 5.5, we prove the correctness and complexity
bounds of the parallel algorithm.

Fig. 3 Example LTSwith internal transitions. At the top, all states are in
one block. At the bottom, we grouped the states by branching bisimilar

5.1 Preliminaries on branching bisimulation

For the next section, we assume that in any LTS the internal
τ -action is available, so τ ∈ Act .

Fig. 3 shows an LTS at the top with all states in one block.
We group branching bisimilar states at the bottom, where we
denote the branching bisimilarity equivalence classes B1 up
to B7.

Next, we define bottom states, which are states that do not
have an outgoing τ -transition to another state in the same
block.

Definition 5.2 (Bottom state [20]) Let A = (S, Act,→) be
an LTS, π a partition of S, and s ∈ B ∈ π where B is a
block. We call s a bottom state iff there is no s′ ∈ B such that
s

τ−→s′.
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In Fig. 3, at the top states s5, s6 and s7 are bottom states. In
the situation at the bottom every state except s3 is a bottom
state.

We call a τ -transition silent when both the source and
target state are in the same block.

Definition 5.3 (Silent τ -transition) Let A = (S, Act,→) be
an LTS. Let π be a partition of S.We call a τ -transition s

τ−→s′
silent with respect to π iff s, s′ ∈ B ∈ π .

So in Fig. 3 on the top side all τ -transitions are silent and on
the bottom only s3

τ−→s5 is silent.
Below we define the silent transitive closure of

τ−→ transi-
tions, denoted by ⇒π , which relates each state s to all states
that are reachable starting from s via a path of zero or more
silent τ -transitions.

Definition 5.4 (Transitive and reflexive τ -closure) Let A =
(S, Act,→) be an LTS. Let π be a partition of S. We denote
s ⇒π s′ iff s can reach s′ performing zero or more silent τ -
transitions s

τ−→s1
τ−→· · · τ−→sn

τ−→s′ where for some B ∈ π all
s, s′, s1, . . . , sn ∈ B. We call⇒π the transitive and reflexive
τ -closure with respect to π .

In Fig. 3, we indicate the transitive τ -closure for the two
different partitions. To improve readability, we do not show
the reflexive part.

The following lemma expresses that not only the first state
t and the last state t ′ on a silent τ–path t τ−→ · · · τ−→t ′ are related
but every intermediate state is related to t .

Lemma 5.5 (cf. [19, Lemma 2.5]) Let A = (S,−→, Act) be
an LTS, and let for some n > 0, t0

τ−→t1
τ−→ . . .

τ−→tn be a path
of τ -transitions in A with t0 �b tn. Then for every 0 ≤ i ≤
n : t0 �b ti .

In order to talk about the directly reachable non-silent
transitions of a state, we define the direct markings of a state.

Definition 5.6 (Direct markings) Let A = (S, Act,→) be
an LTS, and π a partition of S. Let s ∈ S and B ∈ π . We
define the direct markings of s to B as:

dir(s, B) = {a | ∃t ∈ B.s
a−→t ∧ (a 	= τ ∨ s /∈ B)}.

For branchingbisimulations, the stability condition changes
slightly. Given an LTS A = (S, Act,−→) and π a partition of
S. A block B is called stable modulo branching bisimulation
with respect to a block B ′ ∈ π , iff for all actions a ∈ Act
either for all states s ∈ B there is an s′ ∈ B such that s ⇒π s′
and a ∈ dir(s′, B ′), or for all states s ∈ B, a /∈ dir(s, B ′).

A partition π is again called stable under a block B ′ iff
each block B ∈ π is stable under B ′. The partition π is called
stable iff it is stable under all its own blocks B ∈ π .

5.2 The sequential algorithm

In this section, we explain the key ideas used in the sequen-
tial Groote–Vaandrager algorithm [20] to decide branching
bisimilarity. In this algorithm, similar to the sequential
Kanellakis–Smolka algorithmas explained inSect. 3.1, a par-
tition ismaintained and iteratively refined based onbehaviour
that distinguishes states. For strong bisimulation, a block is
split into the set of states that can directly reach a splitter
block. However, in the Groote–Vaandrager algorithm, states
are also split if they can reach the splitter by first doing a
sequence of silent τ actions. In [20], this initial silent path
is called stuttering and comes from the related problem of
deciding stuttering equivalence on Kripke structures [21].

Another subtle but essential difference between the two
algorithms is that stability modulo branching bisimulation is
not necessarily preserved under refinement, i.e. Fact 2.3 may
not hold. This is also observed in [20, Lemma 5.2.3] and
is addressed by always considering all blocks as potential
splitters.

In summary, when solving branching-BCRP the twomain
modifications we need to address with respect to the parallel
algorithm for BCRP.

1. Modification 1: A different splitting strategy, that takes
into account initial τ -paths.

2. Modification 2: After refinement of partition π into π ′
check that blocks that are stable w.r.t π are still stable for
π ′.

5.3 The parallel algorithm

This section addresses the necessarymodifications in the par-
allel setting such that we have a linear parallel algorithm to
decide branching bisimilarity.

In the strong bisimilarity algorithm, we choose a block as
a splitter. We check which actions can reach this splitter for
each state by going over all transitions and storing a mark
for each action label. We also store a marking for each action
label for branching bisimulation, but we must consider the
τ -paths. Therefore, to address Modification 1, we need to
propagate the markings over the τ -paths. For example, in
Fig. 3 any marking that state s5 has can potentially propagate
to state s1, s2, s3 and s4.

This method of propagating information backwards over
τ -paths is also used in the sequential algorithms [11,20].
Likewise, the parallel algorithm [14] for branching bisimilar-
ity propagates information from the bottom states backwards
over the silent τ -paths. However, this approach is inher-
ently sequential since, in the worst case, we propagate state
information over long silent paths before we can calculate a
refinement. For a better asymptotic complexity, we calculate
a transitive closure in the style of [22,23].
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In our parallel algorithm,wemaintain the relation⇒π that
is the transitive and reflexive closure of all silent τ -transitions
in π . This closure changes throughout the algorithm, but
we can update this information in constant parallel time.
Lemma 5.9 states that if π refines into π ′, we only need to
check the source and target of a silent τ -path to see whether
it remains silent in π ′.

For Modification 2 regarding stability, we use the fact
that a block not in the waiting list can only make the partition
unstable if a state has become newly bottom, as Lemma 5.8
shows.

A state that is non-bottom can become bottom only once,
and this happens if a silent τ -transition becomes non-silent.
For example, in Fig. 3 the transition s1

τ−→s2 is non-silent at
the bottom in the picture; thus, s1 became a bottom state at
some point.

Finally, we add a further modification. Throughout the
algorithm, we ensure that each block has a bottom state as
a leader. This is well defined since we consider LTSs with a
finite number of states, and in the preprocessing phase, we
remove τ -loops, and therefore, each block has at least one
bottom state. This modification makes it easier to compare
states since bottom states do not get extra marks via silent
τ -steps.

5.3.1 Modification 1: splitting

We split blocks by considering all actions a state can reach
via the silent transitive τ -closure. A similar approach is used
in [20] where the set of states that can reach a certain block
with a specific action label after an initial inert τ -path is con-
sidered. We initially mark all states with the actions they can
take directly to the splitter block. Afterwards, we distribute
all the marks via the silent transitive τ -closure. This results
in a similar set of states as in [20] but not with respect to
a specific action label but with respect to all action labels.
Distributing the marks naively would mean we hand out up
to |Act |n2 marks since there can be |Act | markings per state
and up to n2 elements in the transitive τ -closure. Thus, we
opt only to distribute one element per state if a state should
split, thus distributing n2 elements maximally.

For a partition π of S, we consider a block B ∈ π that
acts as a splitter, and we let Bsb denote any block in π that
has the bottom state sb ∈ S as its leader. We define:

PreSplitπ (Bsb , B) =
{s ∈ Bsb | dir(s, B) � dir(sb, B)} ∪
{s ∈ Bsb | s is a bottom state and

dir(s, B) � dir(sb, B)}
Splitπ (Bsb , B) =

{s ∈ Bsb | ∃s′ ∈ PreSplitπ (Bsb , B)

such that s ⇒π s′}

InformallyPreSplitπ (Bsb , B) contains all the states of Bsb
that have a behaviour with respect to B that sb cannot mimic,
and it also contains the bottom states that cannot mimic the
behaviour of sb with respect to B. The first means that the
state can reach B with an action a which sb cannot. The
secondmeans that s is a bottom state, and sb can reach B with
an action a, which s cannot. The set Splitπ (Bsb , B) contains
all states that have silent τ -transitions to states that are in
PreSplitπ . These states are also necessarily not branching
bisimilar to sb.

The states that are in the set Splitπ (Bsb , B) are all the
states that should split from the block Bsb into a new block.
Based on this function we derive a new partition Ref(π, B)

in which every block Bsb is split into Splitπ (Bsb , B) and the
states not in Splitπ (Bsb , B)

Ref(π, B) =
⋃

Bsb∈π

{Splitπ (Bsb , B), (Bsb \ Splitπ (Bsb , B))} \ ∅

From the initial partition π0 = {S}, we iteratively refine
the current partition π by finding a splitter for which
Ref(π, B) 	= π and continue based on the partition π ′ =
Ref(π, B). The correctness relies on the fact that Ref(π, B)

never splits states that are branching bisimilar and the fact
that if the partition π does not induce the relation �b then
there still is a splitter B such that Ref(π, B) 	= π .

In Sect. 5.5.1, we will prove that this splitting procedure
is correct.

5.3.2 Modification 2: stability

The key property (Fact 2.3) does not hold for stabilitymodulo
branching bisimilarity. Counterexamples show that refine-
ment can cause blocks to lose stability. See [20, Remark 3.4],
where a counterexample is given. In the Groote–Vaandrager
algorithm, the authors resolve this by reconsidering all blocks
if new bottom states are added [20, Lemma 3.3]. This strat-
egy would result in a quadratic worst-case algorithm in our
parallel setting.

The following lemma expresses when a block can act as
a splitter. We observe that only item 5.7 from Lemma 5.7 is
not inherited under refinement.

Lemma 5.7 (cf. [20, Lemma 5.2.2]). Let A = (S,−→, Act)
be anLTS,π apartition of S refined by�b and blocks B, B ′ ∈
π . The block B ′ is a splitter of B (Splitπ (B, B ′) 	= ∅) iff there
is an a ∈ Act such that:

1. a 	= τ or B 	= B ′,
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2. for some s ∈ B and s′ ∈ B ′ : s a−→s′, and
3. there is some bottom state sb ∈ B such that for no s′ ∈

B ′ : sb a−→s′.

Proof sketch. The proof is similar to the one in [20, Lemma
3.2 and 5.2.2]; thus, a full proof is omitted. We provide
a rough sketch since the splitting condition is different.
We only need to prove that the conditions 1 to 3 hold iff
PreSplitπ (B, B ′) 	= ∅, since Splitπ (B, B ′) is only empty
when PreSplitπ (B, B ′) is as well.

For the ( �⇒ ) part, wemake a case distinction on the two
sets that define PreSplitπ (B, B ′) and it follows that we find
a state and bottom state for which the three conditions of this
lemma hold. For the (⇐�) part, we make a case distinction
on whether the bottom state in condition 3 of this lemma is
the block leader of B. In both cases, we can prove that there
are states in PreSplitπ (B, B ′). ��
In order tomaintain our invariant that if a block is not marked
as waiting the partition is stable modulo branching bisimu-
lation under this block of states, we perform extra steps for
each new bottom state to check if there is a block that now
is a splitter conform Lemma 5.7. Since a bottom state never
becomes a non-bottom state, this is maximally done at most
once for each state.

The following lemma is a slightmodificationofLemma5.7.
However, here we specify that a new bottom state must wit-
ness that the partition is not stable anymore with respect to a
block. We define bottom(π) as all states that are bottom in
the partition π .

Lemma 5.8 Let A = (S,−→, Act) be an LTS. Let π be a
partition of S and π ′ be a refinement of π and both are
refined by �b. Now suppose B ′ ∈ π and B ′ ∈ π ′ and that
Ref(π, B ′) = π , thus π is stable with respect to B ′.

Now for some block B ∈ π ′ we find that B ′ is a splitter of
B (Splitπ ′(B, B ′) 	= ∅) iff for all actions a ∈ Act:

1. a 	= τ or B 	= B ′,
2. for some s ∈ B and s′ ∈ B ′ : s a−→s′, and
3. there is somebottomstate sb ∈ (bottom(π ′)\bottom(π))

∩ B such that for no s′ ∈ B ′ : sb a−→s′.

Proof (⇐�): This follows immediately from Lemma 5.7.
( �⇒ ): Suppose Splitπ ′(B, B ′) 	= ∅, then we know by
Lemma 5.7 that we have for some s ∈ B and s′ ∈ B ′ : s a−→s′,
a 	= τ or B 	= B ′, and there is a bottom sb ∈ B such
that for no s′ ∈ B ′ : sb

a−→s′. We now need to show that
sb ∈ bottom(π ′) \ bottom(π). We assume to the contrary
that sb is not part of this set and show that this leads to a
contradiction.

If sb /∈ bottom(π ′) \ bottom(π), this must mean that
sb ∈ bottom(π). Since π ′ refines π , we must have a C ∈ π

such that B ⊆ C . Now sb ∈ C and there is a bottom state

s ∈ C and either a 	= τ or C 	= B ′. Thus, we have found
an sb, and s to which Lemma 5.7 applies and we know that
Splitπ (C, B ′) 	= ∅. This means that Ref(π, B) 	= π which is
a contradiction. ��

This lemma implies that a block B ′, which is not in the
waiting set, is a new splitter for the partition iff there is a
newly created bottom state in block B that is unable to reach
this block B ′, while there is some state in the block B that can
reach this block B ′. A procedure to find these blocks B ′ for a
newly created bottom state sb ∈ B ∈ π , can be run in parallel
(see Algorithm 7). This procedure can be summarised as
follows.

• For every transition s
a−→s′, if s ∈ B do:

– Find block B ′ such that s′ ∈ B ′.
– If s = sb mark that sb reaches B ′ with a.
– If s 	= sb check if sb was able to reach B ′ with a if

not split by B ′ immediately.

5.4 Algorithm

Based on the modifications, we mention in Sect. 5.3 and
the parallel algorithm for strong bisimilarity, we construct
an algorithm that decides branching bisimulation in O(n +
|Act |) time in parallel on a PRAM with max(n2,m, |Act |n)

processors. In Algorithm 4, we give the main structure of our
algorithm. The algorithm is similar to the parallel algorithm
for strong bisimilarity. We add the modifications mentioned
in Sect. 5.3 to subroutines, which we give in Algorithms 5, 6
and 7.

In this subsection, we first define the additional data we
store in memory. Next, we discuss preprocessing. Finally,
we discuss the algorithm in more detail and give an example
iteration.

5.4.1 Data structure

The main memory contains the following extra data for our
algorithm for branching bisimulation:

• We indicate sb : S as the current bottom state we are
inspecting for unstability. It has value⊥ if no new bottom
state has been selected.

• For every index 0 ≤ i < n of a state si we added the
boolean values:

– bottomi indicating whether the state is a bottom state;
– old_bottomi showing whether the state was already

bottom in the previous iteration;
– new_bottomi telling whether si is a new bottom state;
– sure_spli ti : B expressing whether state si can take

an action that its leader cannot;
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– same_marksi : B specifying whether the state si has
the same direct markings as its leader.

• An array of booleans of size m such that for index 0 ≤
i < m of a transition i the boolean value silenti : B

indicates whether the transition is silent.
• We use t : N to indicate the number of transitive τ -
transitions.

• For every index 0 ≤ i < t of a transitive τ -transition
(s ⇒π s′):

– t_sourcei : S the source state (s);
– t_targeti : S the target state (s′);
– t_silenti : B which is true iff the transitive τ -
transition is silent.

• We need to adjust the marki : B array to not only con-
tain the marks for directly reachable actions, but also
actions that can be reached after performing τ -steps. This
is needed since states with the same reachable actions
can be in the same block and must be able to compare
marks with each other. Each state always has a mark for
the τ -action, regardless of whether it has τ -actions. For
example, state s3 of Fig. 3 has markings for τ , a and b.
Additionally, for each mark, we now keep track of

– mark_sourcei : S the state to which this mark
belongs;

– mark_orderi : N the order of themark. For example,
state s3 of Fig. 3 has order 0, 1 and 2 for its τ , a and
b marks, respectively.

• In the algorithm we use orderi : N such that a transi-
tion can set the correct mark of a state. Since marki is
different, we need to update this array as well.

• An array that has for each block B and action a ∈ Act the
boolean value reachableB,a : B. This is used for storing
whether the current new bottom state under inspection
can reach block B with a non-silent a action. We note
that we can maximally have n blocks. Thus, this array
has size n · |Act |.

5.4.2 Preprocessing

First, we calculate the transitive τ -closure, which we can
view as a pairwise shortest path computation. We can com-
pute this using n2 processors inO(n) [22,23]. If we consider
the transitive τ -closure as transitions, we can end up with up
to n2 of these transitions. Thus, we need n2 processors to go
over them inO(1) time. In real-life examples of LTSs, espe-
cially when only considering the silent τ -steps, the number
of these transitions is much smaller than n2.

As in Groote and Vaandrager [20], we first remove τ -
cycles since all states in a cycle endup in the sameblockof the
final partition. We use the transitive τ -closure to remove the

Fig. 4 An example LTS and its derived preprocessing information. The
variables action_switchi , order′

i , nr_marks
′
sourcei are auxiliary and we

explain them in Sect. 1 of Appendix

τ -cycles. We start a processor for each state s, and each state
iterates over each other state s′, and looks if both s ⇒π s′
and s′ ⇒π s hold. We note that π = {S} here. We store the
lowest state number, sl , for which this holds, which we use
to replace all references to s with sl . All states in a cycle have
one such number, namely the lowest. So this is consistent. In
this way, we removed all τ -cycles in O(n) time using O(n)

processors.
As opposed to the original algorithm, we now need to

group states on directly possible actions and actions that
a state can take after performing silent τ -steps. Therefore,
we again use the base algorithm to split the sets of states
into blocks based on the actions they can take and addition-
ally let the transitive τ -closure distribute the marks for silent
τ -paths. We describe this procedure in Appendix in Algo-
rithm 8.Afterwards, we set all the blocks of this new partition
to waiting, i.e. waitingblocki = true. Since we loop over all
the actions and execute the loop body in constant time, this
step takes O(|Act |) time.

Initially we mark all states as non-bottom (bottomi :=
false), all non-τ -transitions as non-silent and all τ - and tran-
sitive τ -transitions as silent (silenti := true, t_silenti :=
true). In the first partition, not every (transitive) τ -transition
is actually silent anymore and we need to know which states
are bottom. We use the procedure SetSilentAndBottom
to determine this. To elect bottom states as leaders, we also
execute ElectBottomLeaders. Both these procedures can
be found in Algorithm 5. Finally, we mark all the values for
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Fig. 5 An iteration of Algorithm 4 on example LTS from Fig. 3

new_bottomi to false sincewe actually do not have to fix sta-
bility for these bottom states because every block is already
waiting.

We can now remove any transitive τ -transitions which are
not silent anymore. This step is unnecessary to guarantee cor-
rectness, but we expect it to significantly reduce the number
of transitive τ -transitions. Therefore, this would improve the
run time of the algorithm. Filtering these transitions takes
O(log t) time when using a parallel scan to put the elements
in a consecutive array again. Note that we can writeO(log t)
as O(log n), since t ≤ n2.

Finally, we must preprocess the mark and order arrays
differently. We only had a mark for each possible direct
action in the original preprocessing.We now consider actions

that a state can reach using silent τ -steps. Thus, a state can
have a mark for an action that it cannot take directly. Since
a bottom state only takes direct actions, and we always pick
a bottom state as a block leader, we let each state look at its
block leader to determine the needed marks. Each state also
needs a mark for a τ -action. For more details, see Sect. 1 in
Appendix. At most, this preprocessing step takes O(log n +
|Act |) time on max(n2,m, |Act |n) processors.

Combining all the bounds on the complexity of the com-
plete preprocessing procedure, we end up withO(n+|Act |)
time using max(n2,m, |Act |n) processors in the worst case.
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Algorithm 4Main loop for the branching bisimulation algo-
rithm.
1: do
2: C := ⊥
3: if i < mark_length then
4: marki := false � Reset Marks
5: end if
6: if i < n then
7: spli ti := false � Reset split
8: end if

� If not stable anymore, get a splitter here
9: CheckStability()
10: if i < n and waitingi and C = ⊥ then
11: C := i � Select splitter, if not picked
12: end if
13: if i < m and blocktargeti = C and ¬silenti then
14: markoff (sourcei )+orderi := true
15: end if
16: DetermineSplits()
17: if i < n and C 	= ⊥ then
18: waitingC := false
19: if spli ti then
20: waitingC := true � If split, C waits
21: new_leaderblocki := i � Elect a state
22: waitingblocki := true � Old block waits
23: blocki := new_leaderblocki � Do split
24: end if
25: end if
26: SetSilentAndBottom()
27: ElectBottomLeaders()
28: if i < n and spli ti then
29: waitingblocki := true � New block waits
30: end if
31: while C 	= ⊥

5.4.3 Algorithm

In Fig. 5, an iteration of Algorithm 4 is performed on the
example LTS from Fig. 3, starting at Line 13, after a splitter
C has been selected.

Following Algorithm 4, the first lines up to Line 13 are
to reset the variables and select a splitter. In the proce-
dure CheckStability, the condition from Lemma 5.8
is used to determine whether there is a new bottom state that
causes a split. If this procedure finds a splitter C , we use it.
On the other hand, if this procedure does not yield a splitter,
a splitter is selected uniformly among the blocks for which
the partition is not considered stable yet (Line 9–10).

In Lines 13–15, the direct markings are set for each
transition reaching the currently selected splitter C . After
which the procedure DetermineSplits, given in Algo-
rithm 6, marks states that are supposed to split. For each state
s ∈ Bsb ∈ π , the variable spliti is set (Algorithm 6 Lines 14–
16) to indicate whether the state is in the PreSplitπ (Bsb ,C).
Finally the transitive τ -closures are followed to also set the
spliti variable for states that are in the set Splitπ (Bsb ,C).

In lines 17–25, the new partition Ref(π,C) is calculated.
This is done in the same way as in the algorithm for strong

Algorithm 5Mark the states which are bottom, and for each
block elect a bottom as block leader.
1: function SetSilentAndBottom()
2: if i < n then
3: old_bottomi := bottomi � Safe old values
4: bottomi := true � Initialize bottom value
5: end if
6: if i < m and ai = τ then
7: if blocksourcei 	= blocktargeti then
8: silenti := false
9: else

� Otherwise, source state is not bottom
10: bottomsourcei := false
11: end if
12: end if
13: if i < t and blockt_sourcei 	= blockt_targeti ) then
14: t_silenti := false
15: end if
16: if i < n and bottomi 	= old_bottomi then
17: new_bottomi := true
18: end if
19: end function
20:
21: function ElectBottomLeaders()
22: if i < n and ¬bottomblocki then
23: if bottomi then
24: new_leaderblocki := i � Elect bottom
25: end if
26: blocki := new_leaderblocki � Set leader
27: end if
28: end function

Algorithm 6 Determine for each state if it splits or stays in
the block.
1: function DetermineSplits()
2: if i < n then
3: sure_spli ti := false
4: same_marksi := true � Same as leader
5: end if
6: if i < mark_length then
7: if ¬markoff (blockmark_sourcei )+mark_orderi and marki then

� Reaches C, but leader does not
8: sure_spli tmark_sourcei := true
9: end if
10: if markoff (blockmark_sourcei )+mark_orderi 	= marki then

� Mark is different than mark of leader
11: same_marksmark_sourcei := false
12: end if
13: end if
14: if i < n and (sure_spli ti or bottomi and¬same_marksi ) then
15: spli ti := true; � PreSplit
16: end if
17: if i < t and t_silenti and spli tt_targeti then
18: spli tt_sourcei := true � Split via τ -path
19: end if
20: end function

bisimulation. The partition π is only considered stable with
respect to C if Ref(π,C) = π , meaning not a single split
happened.

The final step is updating the necessary information. The
procedure SetSilentAndBottom updates all the silent
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Algorithm 7 For all newly created bottom states check if
they have a splitter.
1: function CheckStability()
2: do
3: sb := ⊥;
4: if i < n and new_bottomi then
5: sb := i ; � Elect a new bottom to check
6: end if
7: if sb 	= ⊥ then
8: CheckBottom() � Check for splitter
9: if C = ⊥ then
10: new_bottomsb := false � Done for sb
11: end if
12: end if
13: while sb 	= ⊥ and C = ⊥ � Exit if splitter
14: end function
15:
16: function CheckBottom()
17: if i < m then
18: if sourcei = sb then
19: reachableblocktargeti ,ai := true � Mark the blocks sb reaches
20: end if
21: if blocksourcei = blocksb and ¬silenti and

¬reachableblocktargeti ,ai then
� State can reach a block that sb cannot

22: C := blocktargeti
23: end if
24: if sourcei = sb then
25: reachableblocktargeti ,ai := false � Reset
26: end if
27: end if
28: end function

τ -paths by checking the conditions fromLemma5.9.With all
τ -steps nowcorrectlymarked silent, we can calculate the new
bottom states, and the procedure ElectBottomLeaders
ensures that for each new block, the leader is a bottom state.
After we found the new leaders for split blocks, we set the
newly split blocks to waiting.

5.5 Complexity and correctness

First, we proof that our splitting procedure of Sect. 5.3.1 is
correct. Next, showing the correctness of the algorithm can
be done in a similar fashion as in the previous algorithm.
By first showing the resulting partition induces a branching
bisimulation relation, and secondly showing it is the coarsest
partition forming a branching bisimulation relation. Lastly,
we prove the complexity of the algorithm.

5.5.1 Correct splitting

To establish that we have a valid splitting procedure, we need
to prove that branching bisimilar states never end up in dif-
ferent blocks and that if we cannot split blocks anymore, the
partition induces a branching bisimulation relation.We prove
these two properties in the remainder of this subsection, but
we first prove two auxiliary lemmas.

Firstly, the following auxiliary lemma shows that updating
the silent transitive closure ⇒π by only checking whether
states are still in the same block is correct with the given
splitting procedure.

Lemma 5.9 Let A = (S,→, Act) be an LTS where S con-
tains no τ -cycles, π a partition of S, s, s′ ∈ S two states, C ∈
π a splitter, and π ′ the partition given by π ′ = Ref(π,C).
Then s ⇒π ′ s′ if and only if s ⇒π s′ and s and s′ are in the
same block B ∈ π ′.

Proof Given a partition π of an LTS A = (S →, Act), two
states s, s′ ∈ S and a partition π ′ = Ref(π,C), as mentioned
in the lemma. We prove both directions:
( �⇒ ) If s ⇒π ′ s′ then since there is a silent path we know
that s and s′ are in the same block B ∈ π ′. Since π ′ is a
refinement of π there is a block B ′ ∈ π such that B ⊆ B ′,
and s ⇒π s′.
(⇐�) Assuming s ⇒π s′ and there is a block B ′ ∈ π ′ such
that s, s′ ∈ B ′ we show that s ⇒π ′ s′. Since π ′ refines
π there is a block Bsb ∈ π that contains s and s′ and has
the state sb as leader. There is a set of states s1, . . . , sn ∈
Bsb that witnesses the silent path s

τ−→s1
τ−→· · · τ−→sn

τ−→s′. The
block Bsb will either remain the same in π ′ or be split into
Splitπ (Bsb ,C) and the remainder. If s, s′ ∈ Splitπ (Bsb ,C)

then by the transitive closure s1, . . . , sn ∈ Splitπ (Bsb ,C),
since every s1, . . . , sn reaches s′ with inert τ steps. If s, s′ /∈
Splitπ (Bsb ,C) then also s1, . . . , sn /∈ Splitπ (Bsb ,C) since if
for any 1 ≤ i ≤ n we have si ∈ Splitπ (Bsb ,C) then since
s ⇒π si it holds that s ∈ Splitπ (Bsb ,C). Thus, we conclude
that s1, . . . , sn ∈ B ′ witnessing s ⇒π ′ s′. ��

Secondly, the next auxiliary lemma shows that two bisim-
ilar states can always reach branching bisimilar states within
a block via silent τ -paths.

Lemma 5.10 Let A = (S, Act,−→) be an LTS. Given a par-
tition π of S such that �b is a refinement of π . For two states
s, t in the same block B ∈ π , if s �b t and s ⇒π s′ then
there is a state t ′ ∈ B such that t ⇒π t ′, s′

�b t ′.

Proof We prove this using induction on i .
Induction Hypothesis: If s �b t , s0

τ−→s1
τ−→· · · τ−→si and

s0, s1, . . . , si ∈ B, then there is a state t ′ ∈ B such that
t ⇒π t ′ and si �b t ′.

For i = 0, we have s0 = si ; thus, we can take t as t ′ and
the induction hypothesis holds.

Now, assume that the induction hypothesis holds for i , we
prove that it holds for i+1.Wehave s0

τ−→s1
τ−→· · · τ−→si

τ−→si+1

and we want to find a t ′′ such that t ⇒π t ′′ and si+1 �b t ′′.
From the induction hypothesis, we know that we have a t ′
such that t ⇒π t ′, si �b t ′. We now have two cases.
Case 1: si �b si+1. Then also t ′ �b si+1 and if we take
t ′′ = t ′ we are done.
Case 2: si 	�b si+1. We have si �b t ′ and si

τ−→si+1. The first
case of the definition of �b does not hold, so we know from
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the second case that there exists a sequence t ′ τ−→· · · τ−→t ′′′
such that t ′′′ �b si , t ′′′

τ−→t ′′ and t ′′ �b si+1. Now all states
of the sequence t ′ τ−→ · · · τ−→t ′′′ are in B, because�b refines π

and byLemma5.5 all intermediate states are related. Because
si+1 ∈ B we know t ′′ ∈ B also holds. Thus, we have t ⇒π t ′′
and si+1 �b t ′′ which proves the induction hypothesis for
i + 1.

Thus, by mathematical induction, the lemma holds. ��
Wenowprove thatwe nevermove two branching bisimilar

states to different blocks.

Lemma 5.11 Let A = (S, Act,−→) be an LTS where S con-
tains no τ -cycles. Given a partition π which is refined by �b

and two states s, t ∈ S in a block B ∈ π . Then for all B ′ ∈ π

if s �b t either s, t ∈ Splitπ (B, B ′) or s, t /∈ Splitπ (B, B ′).
Proof Let sb be the leader state of B. This allows us to write
Bsb for B. Consider a partitionπ , and twobranching bisimilar
states s, t ∈ Bsb ∈ π , i.e. s �b t as in the lemma. Assume
that s ∈ Splitπ (Bsb , B

′) for any B ′ ∈ π , we will show that
t ∈ Splitπ (Bsb , B

′). First we distinguish on whether s ∈
PreSplitπ (Bsb , B

′).
In the first case, we assume that s ∈ PreSplitπ (Bsb , B

′),
and show that this implies t ∈ Splitπ (Bsb , B

′). Assuming
s ∈ PreSplitπ (Bsb , B

′), we can distinguish the following
two cases:

• If it is the case that dir(s, B ′) � dir(sb, B ′), this means
there is an action a ∈ Act such that s

a−→s′ for some
s′ ∈ B ′ and sb 	 a−→s′′ for any s′′ ∈ B ′. From the definition
of dir, we know that it is not the case that a = τ and
s �b s′; thus, we can ignore the first case of the definition
of �b. Following the second case, since s �b t there is a
sequence t

τ−→· · · τ−→t ′ such that t �b t ′, t ′ a−→t ′′ and t ′′ �b

s′. Since�b refinesπ weknow that t ′ ∈ Bsb , t
′′ ∈ B ′ and,

usingLemma5.5, t ⇒π t ′. Therefore, with dir(t ′, B ′) �

dir(sb, B ′), t ′ ∈ PreSplitπ (Bsb , B
′) holds, and hence,

t ∈ Splitπ (Bsb , B
′).

• For the other case where s is a bottom state and
dir(sb, B ′) � dir(s, B ′), notice that there is at least
one bottom state t ′ ∈ Bsb such that t ⇒π t ′. By
Lemma 5.10 as s �b t there has to be a s′ ∈ Bsb such
that s ⇒π s′ and s′

�b t ′. Since s is a bottom state
it has to be the case that s �b t ′. By the definition of
branching bisimilarity and the states are bottom states it
has to be the case that dir(t ′, B ′) ⊆ dir(s, B ′). Since
for every letter a ∈ Act and s′′ ∈ Bsb , if s

a−→s′′ then
there is a t ′′ ∈ B ′ such that t ′ a−→t ′′ and s′′

�b t ′′. Since
dir(sb, B ′) � dir(s, B ′) and dir(t ′, B ′) ⊆ dir(s, B ′)
we know that also dir(sb, B ′) � dir(t ′, B ′), and thus,
t ′ ∈ PreSplitπ (Bsb , B

′), meaning t ∈ Splitπ (Bsb , B
′).

This concludes that if s ∈ PreSplitπ (Bsb , B
′) it is the case

that t ∈ Splitπ (Bsb , B
′).

In the second case we assume s /∈ PreSplitπ (Bsb , B
′) but

s is part of the split, i.e. s ∈ Splitπ (Bsb , B
′), and show that

t ∈ Splitπ (Bsb , B
′). In this case there is a state s′ ∈ Bsb

such that s′ ∈ PreSplitπ (Bsb , B
′) and s ⇒π s′. According

Lemma 5.10 there is a t ′ ∈ Bsb such that t ⇒π t ′ and t ′ �b

s′, and since s′ ∈ PreSplitπ (Bsb , B
′) by the previous argu-

mentation we know that t ′ ∈ Splitπ (Bsb , B
′) and since

t ⇒π t ′ also t ∈ Splitπ (Bsb , B
′).

We are now ready to conclude that if s ∈ Splitπ (Bsb , B
′)

then also t ∈ Splitπ (Bsb , B
′). Since s, t are chosen arbitrarily

if t ∈ Splitπ (Bsb , B
′) then also s ∈ Splitπ (Bsb , B

′). This
means that either both states s, t ∈ Splitπ (Bsb , B

′), or both
s, t /∈ Splitπ (Bsb , B

′), proving this lemma. ��
Lastly, we show that if the current partition is not yet

branching bisimilar, there is still a block that refines the par-
tition with our splitting procedure.

Lemma 5.12 Let A = (S,→, Act) be an LTS, andπ a parti-
tion of S. If for all blocks B ∈ π it holds that Ref(π, B) = π

then the relation Rπ induced by the partitionπ is a branching
bisimulation.

Proof Let π be a partition of S for which every B ∈ π it
holds that Ref(π, B) = π as in the lemma. Assume two
states s, t ∈ S are related sRπ t , i.e. there is a block Bsb ∈ π ,
with leader sb ∈ S such that s, t ∈ Bsb . For all actions
a ∈ Act and s′ ∈ B ′ such that s a−→s′, if a = τ and B ′ = Bsb
we know that s′, t ∈ Bsb . Hence, s

′ Rπ t . If this is not the
case then a ∈ dir(s, B ′). We know that since Ref(π, B ′) =
π , also Splitπ (Bsb , B

′) = PreSplitπ (Bsb , B
′) = ∅. This

means that s /∈ PreSplitπ (Bsb , B
′), and hence, dir(s, B ′) ⊆

dir(sb, B ′). Additionally, we know that there is at least one
bottom state t ′ ∈ Bsb such that t ⇒π t ′, and thus, t Rπ t ′.
Since t ′ is a bottom state and also t ′ /∈ PreSplitπ (Bsb , B

′)
we know that dir(t ′, B ′) ⊇ dir(sb, B ′) ⊇ dir(s, B ′). This
means a ∈ dir(t ′, B ′), so there is a state t ′′ ∈ B ′ such that
t ′ a−→t ′′ and s′ Rπ t ′′. Since Rπ is also symmetric, it follows
that Rπ forms a branching bisimulation. ��

5.5.2 Correctness of algorithm

Theorem 5.13 Let A = (S,Act,−→) be an LTS that contains
no τ -loops. The partition π resulting from executing Algo-
rithm 4 with input A forms the coarsest partition inducing a
branching bisimulation, solving branching-BCRP.

Proof At the end of the iteration for all block labels i ∈
N, i ≤ |S|, waitingi = false. Since for all new bottom
states we did the extra stability procedure in Algorithm 7
by Lemma 5.8 we know that the partition is stable modulo
branching bisimulation. By Lemma 5.12 this means π is a
branching bisimulation relation.

Finally by Lemma 5.11 it never happens that two branch-
ing bisimilar states are split. This means that π is the
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coarsest partition inducing a branching bisimulation, solv-
ing branching-BCRP. ��

5.5.3 Complexity of algorithm

Theorem 5.14 The algorithm for branching bisimulation ter-
minates in O(n+|Act |) parallel time onmax(n2,m, |Act |n)

processors.

Proof As indicated in the preprocessing section, the prepro-
cessing takes O(n + |Act |) time using max(n2,m, |Act |n)

processors in the worst case.
In every iteration of the algorithm, either there is a splitter

that causes the number of blocks to increase, or a block is
removed from waiting. This means that the proof of The-
orem 4.2 still holds with our modifications. So there are
maximally 3n iterations of the main algorithm. Except for
the procedure to maintain stability, every part of the algo-
rithm runs in constant time. So our total running time is the
number of iterations in addition to the number of iterations of
CheckStability that does not result in a splitter. The sta-
bility check only happens at most once for every new bottom
state since a bottom state can never become non-bottom.

Weusemax(n,m, t,mark_length)processors.Weobserve
that the size of the transitive closure t is maximally size
n2 and mark_length ≤ |Act |n. Therefore, we need
max(n2,m, |Act |n) processors.

Thus, the main part of the algorithm runs in O(n) time
using max(n2,m, |Act |n) processors.

Therefore, the total complexity of preprocessing and run-
ning the algorithm isO(n+|Act |) usingmax(n2,m, |Act |n)

processors. ��

6 Related work

Deciding bisimilarity is P-complete [24], which suggests
that bisimilarity is an inherently sequential problem. This
fact has not withheld the community from searching for
efficient parallel algorithms for deciding the bisimilarity of
Kripke structures. In particular, Lee and Rajasekaran [12,25]
proposed a parallel algorithm based on the Paige–Tarjan
algorithm that works in O(n log n) time complexity using
m

log n log log n Concurrent, Read Concurrent Write (CRCW)
processors, and one using only m

n log n Concurrent Read
Exclusive Write (CREW) processors. Jeong et al. [26] pre-
sented a linear-time parallel algorithm, but it is probabilistic
in the sense that it has a nonzero chance of producing an
incorrect result.

Furthermore, Wijs [14] presented a GPU implementation
of an algorithm to solve the strong and branching bisimula-
tion partition refinement problems. But as shown in Sect. 4.3
it has only linear complexity in the number of states if the fan-

out of an LTS is bounded and can otherwise have quadratic
complexity. However, the multi-way splitting Wijs employs
is effective in practice.

In a distributed setting, Blom and Orzan studied algo-
rithms for refinement [18]. These algorithms use message
passing to communicate between different workers in a net-
work and rely on a small number of processors. Therefore,
they are very different in nature fromour algorithm.The algo-
rithms of Blom and Orzan [18] were extended and optimised
for branching bisimulation [27].

Parallel partition refinement algorithms are also studied
in the problem of minimising deterministic finite automata
(DFAs) [28]. These DFAs can be seen as the restricted
LTSs where the transition relation is deterministic, and there
is an initial partitioning distinguishing accepting and non-
accepting states. This means our algorithm also works in the
setting ofDFAs. To our knowledge, this is the first linear-time
parallel algorithm for DFA minimisation.

The sequential algorithm introduced in [11] requires time
O(m log n) compared to the original Groote–Vaandrager
algorithm that requires O(mn) time [20]. The techniques in
[11] are complex, using among others the principle of the
smaller half [4]. These are therefore less suitable when aim-
ing for maximal parallelism.

Recent work [6] provides a linear lower bound for the
class of parallel partition refinement algorithms,matching the
run time of our algorithm. The most efficient algorithms that
decide bisimilarity use partition refinement; however, there
is a possibility that other techniques give rise to algorithms
that are faster than O(n).

Examples of these different techniques can be found in
[29–31]. In [30], a linear-time sequential algorithm is given
to decide bisimilarity in the restricted setting of determin-
istic automata with only a single action label. In the same
setting, a parallel version of this algorithm is proposed in
[31] with a time complexity ofO(log n). The run time com-
plexity of these algorithms is fundamentally faster than the
partition refinement algorithms. However, we do not think
this approach can be generalised to a setting with multiple
action labels or non-determinism.

The sequential algorithm proposed in [29] finds and
merges bisimilar states in a way different from partition
refinement. However, this algorithm performs in a run time
complexity that is worse than that of partition refinement
algorithms.

7 Conclusions and future work

In this work, we proposed linear-time PRAM algorithms to
decide strong and branching bisimilarity. We implemented
the strong bisimilarity algorithm in CUDA and conducted
experiments that show the potential to compute bisimula-
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tion in practice in linear time on contemporary hardware.
Further advances in parallel hardware will make this more
feasible.

Other work suggests no significant improvement on the
time complexity O(n) is possible using partition refine-
ment [6]. On the other hand, the sequential run time of
O((m + n) log n) of the Paige–Tarjan algorithm suggests
there might be an improvement in the number of proces-
sors needed. For future work, it would be interesting to see
whether a linear algorithm deciding bisimilarity is feasible
using fewer processors, for instance m

n log(n).
Another future direction is to optimise these algorithms

for the available highly parallel hardware, such as GPUs.
Optimising these algorithms should give a better insight into
whether using an abundance of processors performs well in
practice or other trade-offs should be made in practice. For
instance, data locality and synchronisation play an important
role in GPU performance but are not taken into account in a
PRAM model.
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Appendix A: Preprocessing for strong bisim-
ulation

To use the Algorithm 3, we need to do two preprocessing
steps. First, we need to partition the states w.r.t. their set
of outgoing action labels. This can be done with an altered
version of Algorithm 2. Instead of splitting on a block, we
split on an action a ∈ A.We visit all transitions, and wemark
the source if it has the same action label a. This can be done
by the following PRAM pseudocode.

1: if i < m and ai = a then
2: marksourcei := true
3: end if
Each block can be split into two blocks: a block that con-

tains states that have a as an outgoing action label and a block
with states that do not have this outgoing action label. After

Fig. 6 An example LTS and its derived preprocessing information

doing this for all different action labels, we end up with a
partition of blocks, in which all states of a block have the
same set of outgoing action labels, and each pair of states
from different blocks have different sets of outgoing action
labels. Using m processors, this partition can be constructed
in O(|Act |) time.

For the second preprocessing step, we need to gather the
extra information that is needed in Algorithm 3. Only ai is
part of the input, the other information like order and offset
need to be calculated. We start our preprocessing by sort-
ing the transitions by (sourcei , ai ), which can be done in
O(logm) time withm processors, for instance using a paral-
lelmerge sort [32]. In order to calculate orderi and nr_marks,
we first calculate action_switchi for each transition i , which
is done as follows:

1: if i ≤ m then
2: if i = 0 or sourcei 	= sourcei−1 or ai = ai−1 then

action_switchi = 0;
3: elseaction_switchi = 1;
4: end if
5: end if
See Fig. 6 for an example. Now, orderi can be cal-

culated with a parallel segmented inclusive scan [17] of
action_switch. A parallel segmented sum can be performed
on action_switch to calculate nr_marks, where wemake sure
to set nr_markss to 0, if state s has no outgoing transitions.
Finally, off s , for the mark offsets, can be constructed as
a list and calculated by applying a parallel exclusive scan
on nr_marks. Calculating action_swi tch takes O(1) time
on m processors, and a parallel (segmented) sum/scan takes
O(logm) time [17].

In total, the preprocessing takes O(|Act | + logm) time
using m processors.
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Appendix B: Preprocessing for branching
bisimulation

We needmarks to keep track of all actions a state can directly
take or can take after performing silent τ -transitions. After
executing Algorithm 8, all states are now in blocks for which
the reachable actions are the same. Each block now has a
leader, which is a bottom state, and a bottom state cannot per-
form silent τ -steps. Thus, the leader has only direct actions
for which we need to store markings. Therefore, we can first
calculate how many marks we need for visible markings and
afterwards, each state updates this by looking at its leader.
See Fig. 4 for an example of the preprocessing we do in this
section.

First we sort the transitions again on (sourcei , ai ), we
note that we consider τ -actions and place them before action
labels in the sorted list. Next, we need the help variable
action_swi tchi which keeps track of not counting the same
action label for the same source state twice. It is defined
exactly by the code below:

1: if i < m then
2: if i = 0 and ai = τ then
3: action_switchi = 0 � Initialize for i = 0
4: else if i > 0 and sourcei 	= sourcei−1 and ai = τ

then
5: action_switchi = 0 � State switch
6: else if i > 0 and sourcei = sourcei−1 and ai = ai−1

then
7: action_switchi = 0 � Same action
8: else
9: action_switchi = 1
10: end if
11: end if

We cannot calculate order and nr_marks directly, so we
calculate them first as a sort of approximation which we call
order′ and nr_marks′, which only contain the correct values
for bottom states.

We calculate a order ′ by doing a parallel segmented inclu-
sive scan on action_swi tch. We calculate nr_marks′ by
performing a segmented sum on action_swi tch and adding
1 to each result. We note that states with no transitions still
get a mark for τ . Now each state s determines its actual
nr_marks by copying this from its leader: nr_markss :=
nr_mark′

blocks . Next, we calculate off by performing an
exclusive scan on the nr_marks array and mark_length by
calculating the sum of the nr_marks array. We can now cal-
culate mark_source by starting mark_length processors
and letting each processor do a binary search on off . Now,
we create mark_order using a segmented exclusive scan
on an array filled with ones and mark_source as a segment
indicator. Lastly, we need to update orderi again. First, by
going over all transitions, we store the action label of a mark

Algorithm 8 Split the initial partition into blocks that have
the same reachable actions.
1: if i < n then
2: blocki := 0 � Put all states in a single block
3: end if
4: for all a ∈ Act do � Check a = τ last
5: if i < n then
6: marki := false � Reset marks
7: end if
8: if i < m and ai = a and ¬(ai = τ and blocksourcei =

blocktargeti ) then � Set marks for transitions except silent τ ones
9: marksourcei := true
10: end if
11: if i < t and markt_targeti and blockt_sourcei = blockt_targeti )

then
� Propagate marks via silent τ -paths

12: markt_sourcei := true
13: end if
14: if i < n and marki 	= markblocki then
15: new_leaderblocki := i � Elect new leader
16: blocki := new_leaderblocki � Split block
17: end if
18: end for

in mark_action for transitions that start in a leader state
(using order ′). Next, we look if the order indexes the cor-
rect action label in the mark array for each transition. If this
is not the case, we loop and increase the index where we look
and see whether this is the correct action label. Here is the
exact code:

1: if i < m then
2: if blocksourcei = sourcei then
3: mark_actionoff (sourcei )+order ′

i
:= ai

4: end if
5: incri := 0
6: while ai 	= τ and ai 	= mark_ do
7: actionoff (blocksourcei )+order ′

i+incri
8: incri := incri + 1
9: end while
10: orderi := order ′

i + incri
11: end if

This procedure is correct since a state never has fewer
marks than the original nr_marks′. Thus, we always find the
correct action later in the mark array. This loop has at most
|Act | iterations.

Eventually, parallel sorting takes O(logm) time, a par-
allel sum or scan also takes O(logm) time, the binary
search takes O(logmark_length) time, and the looping
takes O(|Act |) time. Therefore, this preprocessing takes
O(logm + logmark_length + |Act |) time on
max(n,m, t,mark_length) processors. This can be sim-
plified to O(log n + |Act |) on max(n2,m, |Act |n) proces-
sors, when observing that m ≤ |Act |n2, t ≤ n2 and
mark_length ≤ |Act |n.
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