
Software and Systems Modeling (2023) 22:331–349
https://doi.org/10.1007/s10270-022-00998-y

REGULAR PAPER

Extracting LPL privacy policy purposes from annotated web service
source code

Kalle Hjerppe1 · Jukka Ruohonen1 · Ville Leppänen1

Received: 1 December 2020 / Revised: 8 December 2021 / Accepted: 7 March 2022 / Published online: 8 April 2022
© The Author(s) 2022

Abstract
Privacy policies are a mechanism used to inform users of the World Wide Web about the processing of their personal data.
Such processing has special requirements, since personal data are regulated by data protection legislation. For example, a
consent or another legal basis is typically needed. Privacy policies are documents used, among other things, to inform the
data subject about processing of their personal data. These are formally represented by privacy languages. In this paper, we
present a technique for constructing Layered Privacy Language policy data from web service code bases. Theoretically, we
model the purposes of processing within web services by extending the privacy language with composition. We also present
a formal analysis method for generating privacy policy purposes from the source code of web services. Furthermore, as a
practical contribution, we present a static analysis tool that implements the theoretical solution. Finally, we report a brief case
study for validating the tool

Keywords Data protection · privacy engineering · privacy language · static analysis · semantic web · GDPR

1 Introduction

The fundamental right to privacy is included in the Universal
Declaration of Human Rights adopted by the United Nations
General Assembly in 1948 [4]. Despite this right, in practice
privacy has been threatened by many factors, and the age of
the information economy has only intensified the threats. To
abate them, the right to privacy has also been portrayed as
a right to the protection of individuals’ personal data. This
viewpoint has been prominent in Europe. In fact, the right to
the protection of personal data was included in the Charter of
Fundamental Rights of the EuropeanUnion, adoptedwith the
Treaty of Lisbon in 2009. The General Data Protection Reg-
ulation (GDPR) [54] builds upon this fundamental European
foundation and sets the context of the present work.

Communicated by Alfonso Pierantonio.

B Kalle Hjerppe
kphjer@utu.fi

Jukka Ruohonen
juanruo@utu.fi

Ville Leppänen
ville.leppanen@utu.fi

1 Faculty of Technology, University of Turku, Turku, Finland

While personal data must be protected, the capability to
process it is a valuable asset for enterprises. Given this back-
drop, it can be said that there is an inherent conflict between
business interests and the right to privacy and data protection.
However, advances in data protection can also provide new
opportunities for businesses [51], although these opportuni-
ties have not yet fully materialized. One possible explanation
for this is the long-standing gap between research and prac-
tice in the domain of privacy and data protection [41]. The
same argument can be made about information security,
which, likewise, has a long research lineage in computer sci-
ence. Privacy engineering has emerged as a field that seeks
to narrow this gap. In general, privacy engineering can be
defined as a “field of research and practice that designs,
implements, adapts, and evaluates theories, methods, tech-
niques, and tools to systematically capture and address
privacy issueswhendeveloping sociotechnical systems” [29].
The results from privacy engineering research can lower the
adoption costs for industry and eventually bridge the gap
between practice and research. Within this research domain,
privacy-friendliness of a system can be understood to range
from “privacy-by-policy” to “privacy-by-architecture” [50].
The former approach can be summarized as the implementa-
tion of privacy mechanisms to the extent that the users (and
governance) are satisfied, whereas the latter refers to design-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00998-y&domain=pdf
http://orcid.org/0000-0002-3737-4669


332 K. Hjerppe et al.

ing a system in such a way that privacy is inherent to the
system. This paper can be positioned in the middle: A hybrid
approach, as described by Spiekermann & Cranor [50], is
adopted; the goal is to make technical advances in order to
improve the enforcement of privacy and data protection.

Privacypolicies are necessary formany software engineer-
ing practitioners. The GDPR requires that those processing
personal data must keep a record of their data processing
activities, and to establish a lawful basis for each purpose
of processing [54]. Such bookkeeping necessitates the doc-
umentation of the processing activities in privacy policies.
Documentation is required also for establishing the lawful-
ness of a given processing activity and for accountability. In
the Web, the consent of data subjects is presumably the most
commonly used way to establish the lawful basis of process-
ing personal data under the GDPR [18]. But to obtain an
informed and freely given consent, a data subject must know
and understand the purpose(s) of processing his or her per-
sonal data. Given that privacy policies have been repeatedly
shown to be difficult and time-consuming to read and under-
stand [38], it is understandable why the whole concept of
consent has long been recognized as problematic in the dig-
ital era [9,11,28]. There are many practical reasons behind
the problems. For one, there exists an information asymmetry
between service providers anddata subjects [7,49].A service
provider knows exactly how their service operates, while the
data subject only knows information shared with them. This
asymmetry motivates developing new methods for express-
ing privacy policies in more transparent and understandable
ways. At the same time, value can be provided to service
providers in terms of tool-assisted privacy policy manage-
ment, and our work aims to be useful for both.

There is a continuing challenge in the current software
industry: Privacy policies are neither explicit nor specific
enough [42]. In order to overcome this challenge, our
approach makes use of a notion that an abstract purpose for
processing can often be describedmore specifically by asking
a simple question: “what does the purpose consist of?” This
question can then be repeated until the desired level of speci-
ficity is reached. As an illustration, consider a Web Service
(WS) that processes personal data in a context of booking
a hotel room online. In this context, “hotel room reserva-
tion”might denote the high-level purpose for the processing.
However, this purpose does not provide enough details to
obtain an informed consent. Therefore, the purpose could
be augmented to contain more fine-grained elements, such
as “authentication,” “review display,” “account manage-
ment,” “reservation confirmation,” and“online payment.” In
a typicalWS implementation, these specific elements map to
particular software architecturemodules in a service-oriented
architecture (SOA). By further increasing the granularity and
lowering the level of abstraction, it is possible to enumerate
these elements as a sequence ofWS-specific functional calls.

By using a formal privacy policy language, the enumeration
can be further used to generate policies that describe the
distinct elements in the processing. Finally, the lowest-level
sub-purposes can act as building blocks to form a privacy
policy. In essence, a privacy policy for a web service is also
a documentation of its behavior concerning personal data
processing (along with additional factors, of course).

It should be noted that the previous example only covers
processing done by a primary service provider. In practice,
transfers of data to other domains often occur; a single pol-
icy does not cover the entire transitive closure in the flow of
personal data. In the context of the Web, there has been a
culture of sharing data across businesses. Personal data are a
key resource in the information economy, but with resources
come the risks of data breaches, leaks, and misuse [31]. At
a societal level, the risks are increasingly managed by reg-
ulations and standards that seek to protect the fundamental
rights to privacy and data protection. For instance, a payment
transaction might use a third-party provider. In this kind of
a situation, the original privacy policy mentions the transfer
and refers to their privacy policy, layering them in stack.

In terms of privacy engineering, the previous illustration
underlines the possibility to switch between a user-focused
perspective of validating a privacy policy against a concrete
software architecture, and a developer-oriented perspective
of generating the policy automatically [33]. A tool that can
carry out such switching facilitates the writing of privacy
policies—even though human intervention is still required in
practice. The effort of compiling the policy can be assisted
with automatically generated data. The current way to con-
struct policies with privacy languages is by hand; which is
rather impractical. Indeed, a large portion of privacy poli-
cies are not specified in a formal way at all [23], presumably
because it is a daunting task and not required by law (yet).

With this motivation in mind, the present work lays down
the groundwork for generative programming for privacy poli-
cies. The goal of this work is to formulate a method to extract
data fromweb services in a way that fits into a privacy policy.
The following two research questions (RQs) are examined:

– RQ1: How can we model personal data processing for
web services using LPL?

– RQ2:How to automatically extract themodel’s data from
web service source code?

The answers to these two questions establish both a
method (RQ1) and a tool (RQ2). In terms of RQ1, exist-
ing models for privacy policies are extended and augmented
in the web application context; in terms of the RQ2, a con-
crete implementation is presented. From a practical privacy
engineering viewpoint, it is important that the results are pos-
sible to integrate into real-world applications with minimal

123



Extracting LPL privacy... 333

overhead costs. Therefore, a case study is further presented
to demonstrate practical applicability.

Our contribution to the state of the art is combining both
the advances in privacy languages and static analysis to
improve the intersection in the context of web services. We
present improvements to the theory, and a novelmethodology
(both in theory and practice). This paper is an extended ver-
sion of our previous work presented in the 2020 International
Workshop on Privacy Engineering [34], and this paper rep-
resents the final results of the research. The previous work is
extended to complete previously out-of-scope requirements,
with additional theory and extended experimental parts. The
contribution to the model is the integration of data trans-
fers and data recipients, and updating the LPL to the latest
standard. The analysis tool is updated according to the new
model, and is extended with a visualization feature that cre-
ates user-friendly HTML from the raw data of the analysis.
Finally, this paper also contributes further evaluation, repeat-
ing the case study analysis with the updated model, and more
comprehensive discussion.

The remainder of the paper is structured as follows. The
opening Sect. 2 outlines the background and related work.
The subsequent Sect. 3 provides the formal definitions for the
method and the static analysis tool thereto. These definitions
are provided in two parts: The LPL is first extended to accom-
modate composition, after which the language’s Purposes
are mapped to web services. Thus, this section provides the
answer to RQ1. For answering RQ2, Sect. 4 presents a con-
crete implementation based on static analysis and SOAs. The
use of the tool implemented is further elaborated in Sect. 5
with a small case study. Finally, Sect. 6 discusses the impli-
cations of our findings and their integration into engineering
practice, suggests some preliminary quality measures, and
pinpoints opportunities for further work.

2 Background and related work

2.1 The GDPR and the web

The GDPR came into force in 2018. Research concerning
the regulation and technical solutions to its requirements has
been active before and thereafter. The regulation covers the
processing of all personal data about people of the European
Union, and the changes from previous legislation obligated
businesses and organizations to review their means of pro-
cessing personal data. In other words, there has been both
organizational and technical consequences from the GDPR
[57].Data protection impact assessments are a good example;
these must be performed, for example, when new technolo-
gies are adopted for the processing of personal data. These
assessments provide a way to demonstrate compliance, serv-
ing as an early warning system about risks [12]. The more

explicit documentation about a system there is, the easier
and lighter the assessment of the system. Indirectly, impact
assessments thus provide a further motivation for the present
work.

Technical approaches forGDPRcompliance are as numer-
ous as the technical ways to process personal data. Previous
research has studied the requirements [5,45], implementa-
tion in software architectures [32], and enterprise modeling
solutions [13], to name three examples. However, the gap
between research and practice still persists. For instance—in
accordance with the topic of this paper, there is an acute need
for better privacy policies in theWeb. Matte et al. studied the
legal bases of purposes in the advertisement space [42]. Their
conclusionwas that several purposeswere neither explicit nor
specific enough to be compliantwith theGDPR. For instance,
they concluded that the legal basis could not be derived from
a purpose called “Personalization.” The apparent vagueness
seemed to imply that the purpose in fact bundled multiple
purposes. Again, this is an example of the information asym-
metry between providers and consumers online. In this paper,
we show how such bundling can be improved with privacy
languages; composition of purposes makes it explicit what
is contained in any given purpose. The ability to create fine-
grained composites improves specificity for each individual
purpose.

Much responsibility in the privacy engineering discipline
is on the shoulders of the software engineers, but this is a
challenge for them due to various reasons [10,48]. We take
this as a call to action to make the “developer experience” of
data protection better.

2.2 Privacy languages and the LPL

Multiple competing formal privacy languages have been pre-
sented in recent years. Of these, the LPL is a good and timely
example as it has been explicitly designed to address the
GDPR’s requirements [25,26]. It adheres to both legal and
technical privacy viewpoints. The main design requirements
for the language included the differentiation of data subjects
and data recipients, purpose-based policies for data, reten-
tion and anonymization elements, the ability to layer policies
for provenance, and human readability.While some previous
research exists for programmable privacy languages [44],
the LPL’s abstraction level focuses on the modeling of pri-
vacy policies. This level is also suitable for the present work,
since it is possible to use our method with usual programs.
The challenge for the type of privacy languages which inte-
grate completely into the programming language is adoption
in practice. This is the balance between holistic privacy-by-
architecture and the “easy”method of privacy-by-policy. Our
view, and the goal of this paper, is that there is room in
between—room to improve existing software design prac-
tices with regards to data protection.

123



334 K. Hjerppe et al.

After the LPL’s initiation in 2018, further effort has
been devoted to extending the language and building fea-
tures around it. Some examples include authentication [61],
personalization [27], and privacy icons [24]. The language
was updated in a later publication [25]. However, there
appears to be no previous work for mapping LPL specifi-
cally to web services, nor does there seem to exist previous
research for grouping purposes. Although LPL itself features
a PurposeHierarchy, this feature is an inheritance relation-
ship. In contrast, the presentwork operateswith composition.
The difference is significant in the practice of modeling poli-
cies, which is demonstrated later on.

One goal of formal languages for expressing privacy poli-
cies is to make them machine-readable. This readability
enables algorithmic validation of a privacy policy, of which
there also exists some previous work in this regard. For
instance, a language has been developed for the requirements
of the GDPR [14], and another for system design [58]. Com-
pared to the original, unmodified LPL, the ontology of the
language is more expressive, modeling consent, processing
of data, location, and related data protection characteristics.
If the goal is compliance checking instead of mere formu-
lation of a policy, such modeling is also necessary. Against
this backdrop, the present work builds upon LPL and takes
it a step closer to implementation. That said, the concepts
presented (excluding Sect. 3.1) are applicable to other policy
languages as well.

Access control policies are policy languages which are
grouped as security-focused in the categorization by Gerl
[26]. The purpose of access policies is to regulate the access
to data with rules and effects. These include examples such
as XACML [52] andConSpec [1]. Generally, these languages
are defined in a generalist way, and not specifically for GDPR
needs; see Gerl for comparison [26]. On the other hand, for
instance, an extension of XACML with privacy awareness
has been presented [3] with further similar approaches [39].
LPL lacks the kind of infrastructure support the standard-
based protocols have, but the present work is a step in the
direction. The notion that purposes can be seen as a directed
acyclic graph which can be used for access control in general
has been explored as well [64].

In essence, the GPDR entails six aspects for privacy poli-
cies: the purposes of data processing, the data processed, the
potential data recipients, transfers of the data, erasure condi-
tions for the data, and information about the processing itself
[14,26]. In addition, a privacy language should be human-
readable and model provenance [26]. In its current state,
LPL covers these aspects, but it is cumbersome to model
details about the processing in a transparent way. Therefore,
the present work provides further means to document web
services in detail and to generate this data automatically.

2.3 Static analysis

Previous research has discussed using static analysis as a
technical measure to ensure data protection [33]. The term
static source code analysis refers to the practice of inspecting
the behavior of a program without executing it. In contrast,
dynamic analysis monitors the behavior while the program
is running. In static source code analysis, the model under
inspection is the program specification or an abstract model
of it. While the concept of static analysis can in general be
applied to other models as well, such as validating BPMN
for requirement conflicts [43], this paper focuses on models
derived from source code. That said, comparable approaches
toward annotating business processes in order to analyze their
privacy properties also exist [8].

Static analysis is commonly used to improve software
quality as it is being developed. A good example is the class
of analyzers called “linters,” which validate that the source
code follows pre-defined style and quality rules [55]. On a
higher abstraction level, the way data flow in the abstract
syntax tree of a program can be assessed for security vulner-
abilities [46]. Furthermore, there is plenty of research about
detecting privacy leaks using static analysis as well; see [21]
as an example in this regard.

This paper takes another perspective on static analysis.
Based on previous work [33], static analysis can be divided
into user-oriented and developer-focused approaches. The
user-focused approach seeks to answer whether a program
follows external rules (i.e., a policy). Often the use case is
indeed that a customer analyzes a program to see whether
its publishers are honest. In contrast, the developer-focused
approach describes the program and creates documentation
from the structure of the program. Although generating an
entire privacy policy is not simple in practice, this approach
seeks to remedy possible disconnects between a policy and
behavior.

2.4 Privacy in web services

In theweb service literature, plenty of differentmodeling and
analysis tools have been presented. The so-called semantic
web would be a prime example [2,56,59]. There are many
industry tools and standards for documenting Application
Programming Interfaces (APIs), of which a good example
would be the OpenAPI initiative.1 In general, these API
frameworks provide means to describe the functionality of a
service and to increase its discoverability [20]. The OpenAPI
specification has been extended with metadata in order to
improve interoperability [17,63]. Discoverability and inter-
operability alignwith theGDPR’s high-level goals. Salnitri et
al. have modeled privacy and security requirements of socio-

1 https://www.openapis.org/.

123

https://www.openapis.org/


Extracting LPL privacy... 335

technical systems in general [47]. The notion of modeling
privacy in web services with composition is a known con-
cept as well [62].

The Platform for Privacy Preferences Project (P3P) was
an effort to integrate machine-readable privacy policies to
the Web [15,36]. Alas, the standard has been deprecated2,
allegedly due to the lack of support inweb browsers.After the
P3P, there have been some follow-up projects, including the
so-called Policy Aware Web [60]. New initiatives have also
been presented in the industry, for instance, the Interactive
Advertising Bureau have pushed a so-called Transparency
& Consent Framework (TCF)3 in an effort to reconcile tar-
geted advertising with the GDPR. Despite the open issues
raised [42], it has become popular. The popularity suppos-
edly demonstrates the difficulties in the adoption of privacy
enhancing technologies. In any case, the adoption of techni-
cal solutions is a factor that must be taken into account in the
present work.

Generating API documentation from source code is an
industry standard practice, and there are tools that inte-
grate this task with OpenAPI.4 In addition to documentation,
these generators can create client libraries that use the
APIs. Another approach is to use business process modeling
and existing enterprise architecture documentation to gen-
erate specific GDPR-related documentation [35]. Such an
approach has its merits—yet it is decoupled from the techni-
cal implementation of services.

Despite these advances, there appears to be no exist-
ing tools specifically tailored for generating privacy policies
from source code. The state of the art in privacy languages is
branched, featuring either entirely theoretical languages or
languages with an application fixed to a certain technology.
The previous version of our work [34] presented the foun-
dation for this goal, but it was incomplete. By building upon
an existing solution for annotating personal data processing
in source code [33], this paper narrows this apparent gap in
both research and practice. Our contribution combines the
advances in privacy languages and static analysis to improve
the state of the art in their intersection.

2.5 Petri nets

The chosen approach tomodelingweb services in thiswork is
based on Petri nets, as introduced by Hamadi and Benatallah
[30], who provide an algebra that is capable of composition
and represents the way web services function in practice.
Petri nets themselves are a visual modeling technique based
on directed graphs of nodes and places [30]. This perspective

2 https://www.w3.org/TR/P3P11/.
3 https://iabeurope.eu/transparency-consent-framework/.
4 https://swagger.io/tools/swagger-codegen/.

on web services is suitable for modeling combinations of dif-
ferent services, and the parallel to compositions of layered
privacy policies is apparent. On this topic there are further
related work as well—for example, Diver and Schafer make
use of the modeling technique in order to visualize informa-
tion flows within applications in order to facilitate privacy by
design [19].

3 Definitions

This section defines concepts of our approach to the research
questions. The first definition is a composed Purpose, an
extension to LPL that is accompanied by related constraints.
This composition is used as a bridge from the formal pol-
icy language level to the technical implementation level. The
composition is subsequently mapped as a directed graph to
the structure of web services represented as a Petri net.While
most of the definitions appear in the literature, the forthcom-
ing discussion completes them with additional constraints
and extensions for Data transfers and recipients. We include
the entire extensions of LPL (from [34] and new) here for the
sake of completeness. Whereas previous work is based on an
earlier version of LPL [26], the definitions here are consistent
with the current version [25].

The LPL Purpose “denotes a reason and extent of the
processing of personal data.” [25] and matches to the
GDPR Article 5 Purpose of Processing. This is the foun-
dation upon which privacy policies are built. The subsequent
sub-purposes, on the other hand, are not supposed to be stand-
alone. Rather, they can bridge the abstract legal purposes into
practice by specifying their component parts.

3.1 Defining purpose composition

The LPL has a fundamentally layered nature, as indicated
already by its name. The layering is used to provide a
simplified overview while preserving the details for inter-
ested parties. The mechanisms of layering in LPL are nested
privacy policies with UnderlyingPrivacyPolicy and an
inheritance mechanism for Purposes. While these are use-
ful, our application requires another way to layer granularity
and abstraction levels into the language, to reason about the
component parts that a Purpose consists of. In this con-
text, inheritance is understood as an is-a relationship—a
child may be substituted for its parent—whereas Compo-
sition refers to a has-a relationship of holding a reference
to another component element. The LPL forbids multiple
inheritance, but composition has no such restriction.

To this end, we will define a relation of Composed
Purposes, but let us start with the definition of a policy. A
Layered
PrivacyPolicy, or lpp, that is, an element representing a

123

https://www.w3.org/TR/P3P11/
https://iabeurope.eu/transparency-consent-framework/
https://swagger.io/tools/swagger-codegen/


336 K. Hjerppe et al.

privacy policy, is defined [25, Def. 5.6] as a tuple:

lpp = (version, name, lang, ppU RI , ̂HEAD, ̂DESC,

̂I , ds, ̂P, ̂C, ̂DPO, dsr , lc, upp),

(1)

where version describes the LPL version, name labels the
given policy, lang specifies the language with which the
policy is written, ppU RI is a link to a textual version
of the policy, and ̂HEAD and ̂DESC are reference ele-
ments of human-readable information. ̂I refers to a set of
Icons, ds to the DataSource of the policy in question, upp
is the UnderlyingPrivacyPolicy element, and ̂P is the
set of Purposes the policy consists of. Furthermore, ̂C ,
̂DPO , dsr , and lc define information about the controller,
data protection officer, data subject rights, and instruc-
tions to lodge complaints, respectively. Of these, upp—
UnderlyingPrivacyPolicy—allows composing policies into
layers, while ̂P defines the actual policy content. An LPL
Purpose element, p, is defined [25, Def. 5.17] as the fol-
lowing tuple of values:

p = (name, optOut, required, pointO f Acceptance,
̂HEAD, ̂DESC, ̂D,̂PM, ̂PSM,

̂DR, ̂LB, ̂ADM, r),

(2)

where name defines the identifying name of the purpose, and
the Boolean values optOut and required define whether
the purpose has to be “actively denied” and whether the pur-
pose has to be accepted to be able to consent to the policy.
̂HEAD and ̂DESC , again, are reference elements of human-
readable information. Furthermore, ̂D refers to the set of
Data elements accessed for the given Purpose, and ̂DR
the set of DataRecipients the right to access is granted.
̂PM and ̂PSM refer to applied de-identification methods:
PrivacyModels and PseudonymizationMethods. These spec-
ify the privacy conditions which have to apply to the Data
elements, such as k-anonymity [25]. Finally, ̂LB defines the
legal basis of the purpose, ̂ADM whether the purpose con-
tains automated decision making or profiling, and r refers to
its retention rules.

Given these preliminaries from the LPL definitions, our
goal is to extend the language by defining the relation
among composite Purposes in a Policy. Since a root-level
Purpose in a privacy policy is often not specific or concrete
enough to map to a technical implementation unit, the hier-
archy between Purposes can be defined as a directed graph.
However, abstract concept-level purposes (e.g., “reserve a
room”) contain many concrete parts (e.g., API calls). There-
fore, the aim is to also define constraints under which data
subjects accepting a given p may accept all its composite

purposes, denoted by p′, without weakening their data pro-
tection. The relation is specific to a Policy, which defines
the hierarchy—policies may have different hierarchies.

Let up denote a relation for an UnderlyingPurpose,
represented as a tuple of values in a policy, and ûp a set of
up. Further denote the relation of all ComposedPurposes
in an lpp by cp. Then,

up = (p, p′) and cp = (lpp, ûp), (3)

where p is any Purpose in the policy, and p′ is a Purpose
element with additional constraints to form a valid privacy
policy, as follows. From the relationship that a composite p′
is a component of a Purpose p, the constraints for a Policy
can be reasoned. In any given lpp, where p is a Purpose
belonging to it and p′ its underlying Purpose, i.e., the tuples
in (3) exist and up ∈ ûp, in order for the lpp to be valid, it
must hold that

̂Dp′ ⊆ ̂Dp, (4)

̂DRp′ ⊆̂DRp, (5)

rp′ ≤ rp, (6)

̂PM p′ ≥ ̂PM p, (7)

̂PSM p′ ≥ ̂PSM p, (8)

requiredp′ = requiredp, (9)

optOutp′ = optOutp, (10)
̂LB p′ ⊆ ̂LB p, (11)

̂ADM p′ ⊆ ̂ADM p. (12)

In (6), the inequality is defined as a strictness of aRetention
element depending on its particular t ype. Let I nde f ini te ≥
A f ter Purpose ≥ FixedDate and assume that compar-
isons with the same t ype are decided by point I nT ime.
With these assumptions, A f ter Purpose ≥ FixedDate fol-
lows from not considering a Purpose completed until all
FixedDate retentions are resolved. It is also worth remark-
ing that the comparison of PrivacyModel elements in (7)
is not defined strictly. The reason originates from the LPL,
which does not provide a rigid definition for a set of poten-
tial (pseudo)anonymization methods. A comparison of two
pm’s with the same name (e.g., “k-anonymity”) is decided
by the values of their PrivacyModel Attributes. Without a
definition of an exact comparison across different pm types,
it is possible to avoid the issue by augmenting the criteria
with a requirement that the t ypes of pmp′ and pmp must be
equal. The criteria in (9) are conservatively defined for now:
It can be argued that requiredp′ ≥ requiredp is sufficient
[37], but that raises further questions as well and is not as
unambiguously backwards-compatible.

123



Extracting LPL privacy... 337

p1: Personalization

p4': Personalize feedp1.1: Content Recommendations

p2': Collect page view analytics

p3': Profile preferencesis-a has-many

PurposeHierarchy ComposedPurposes

Fig. 1 An example of a possible PurposeHierarchy using Composed-
Purposes, highlighting both composition and inheritance. Re-drawn
after [34]

The definition for ComposedPurposes, cp, accompa-
nies another structure originally defined in the LPL that
is named PurposeHierarchy, ph. PurposeHierarchy
defines a parent–child relationship as an inheritance hier-
archy. While this hierarchical is-a relationship is similar to
the has-many relationship for ComposedPurposes, there
exists a meaningful difference in capability and intent. In
other words, the relationships are complementary. Whereas
inheritance enables reusing rights and making a Purpose
concrete, ComposedPurposes expose the actual contents
of the Purpose. Following the Liskov substitution principle
[40], inherited Purposes ought to behave like their parent. In
contrast, composed Purposes do not share this limitation and
can thus more explicitly represent a part of the parent. The
following brief example can be used to elaborate this point
further.

Consider “personalization” as a parent Purpose (and
Fig. 1 for a visual example). This purpose, p1, might be
inherited by “content recommendations,” p1.1. Both would
inform the data subject about the categories of personal data
used, but these would not expose any further insights. How-
ever, by adding underlying purposes to p1.1, it is possible to
elaborate the nature of “content recommendations” further.
For instance, in Fig. 1 the purpose p1.1 composes “collect
page view analytics” (p2′), “profile preferences” (p3′), and
“personalize feeds” (p4′). Clearly, when compared to dis-
playing only p1.1, these compositions make the policy more
transparent to the data subject.

It is possible to construct a policy that does not meet the
properties required, but it would not be valid. Using the def-
inition of up in (3), it is possible to display a privacy policy
organized as a directed acyclic graph. A cyclic graph could
be, theoretically, viable in a policy (as long as the constraints
for valid policies are met), but we have not found meaningful
use cases. The root elements of a policy are those which are
not underlying any other purpose—and following the con-
straints, the data subject only needs to study and accept these.
An interested partymay read deeper. Furthermore, the formal
definitions enable the subsequent functionality: coupling the
purposes with technical functions.

LayeredPrivacyPolicy

UnderlyingPrivacyPolicy 1

Purpose 2

Purpose 1

UnderlyingPrivacyPolicy 2

DataRecipient 1

DataRecipient 2

req

Potentially
optional p

Inclusion of upp to lpp
only if necessary

Fig. 2 How the relationships of UnderlyingPrivacyPolicies, DataRe-
cipients, and Purposes are structured

3.2 Data transfers in LPL

In addition to the structure of Purposes, we can also make
observations about data transfers in LPL and suggest two
improvements to facilitate policy creation in this regard.
In the original form, only a single upp can exist for an
lpp, which enables chaining previously consented policies,
and, therefore, data transfer to third parties. In practice, it
appears more useful to treat the upp of a policy as a set of
UnderlyingPrivacyPolicies; a single policy could model
transfers to multiple controllers, which are not necessarily
related to each other. A situation of this kind is difficult
to model clearly in the original structure with a single upp
and would result in multiple top-level policies that could be
mostly redundant. The shorthand we propose, using a set of
upp, appears to make modeling multiple third parties sim-
pler and does not break any features of the language. It is not
a solved issue whether you should combine policies from
different parties into one when presenting it to the data sub-
ject. Our position is that while the arrangement might not be
viable in practice at the present moment, it is an opportunity
that the language could support.

Furthermore, it should be noted that DataRecipients,
upp, and Purposes are closely connected. Since a Purpose
p can be optional and thus a data subject can reject it, the
̂DRp of that p can be ignored in the effective policy. If a
rejected p would have featured a data transfer, the upp of
the recipient is no longer required in the policy. There exists,
then, an optional relationship between DataRecipient dr
and upp. Therefore, let

req = (dr , upp), (13)

where the existence of a pair (dr , upp) in the set of ̂REQ
denotes that the dr requires the inclusion of a upp to be used
in a Purpose. How these constructions relate to each other
is displayed in Fig. 2 as an example.

123



338 K. Hjerppe et al.

3.3 Web services as privacy policy purposes

The composed purpose specifications elaborated allow cre-
ating more informative privacy policies. These empower
specifying down from an abstract level of a personal data pro-
cessing Purpose to what the processing concretely consists
of. These specifications enable a deeper validation of a pol-
icy, more transparency, confidence that the policy matches a
corresponding technical implementation, and the subsequent
static analysis method. Although the composed Purpose
is entirely domain-agnostic, it is particularly useful in the
web application domain. Next, this section presents a way to
attach the LPL to a model of a web service.

Consider the naïve definition of aweb service as a function
of requests to responses (see the definition of a server in
RFC 2616; [22]). The web service function can be uniquely
identified by a Uniform Resource Locator (URL) over the
Web. To increase the abstraction depth, we can model what
the web service function does using the concepts of web
services and service nets (SNs) [30]. Roughly, a web service
is a tuple of values describing the service, a set of component
web services, and a service net. An SN, in turn, is a place-
transition Petri net modeling the dynamic behavior of a given
web service. To proceed more formally, let

WS = (NameS, Desc, Loc,URL,CS, SN ), (14)

where NameS is the unique identification code of the service,
Desc a textual description for it, Loc the server in which the
service is located,URL its endpoint, CS a set of component
web services, and SN the service net describing its behavior
[30]. A service net, in turn, can be defined as a tuple

SN = (P, T ,W , i, o, �), (15)

where P is a set of places, T a set of transitions representing
the operations of the service, W a set of directed arcs, i the
input place, o the output place, and � a labeling function for
transitions [30]. A couple of assumptions allow to connect
these definitions to personal data processing. First, in the
present context, any web service is assumed to be governed
by a privacy policy, and that policy can bemodeledwith LPL.
Second, the dynamic behavior exposed by the Petri netmodel
can be exploited by assuming that personal data processing
occurs always within T . The latter assumption necessitates
a more thorough inspection of the behavior of a service and
assumes it is possible to do so.

For a simple instance, say that an SN of a web service
has an input place i , an output o, and three transitions with
labels “register customer” (t1), “create subscription” (t2),
and “send confirmation email” (t3). The set of arcs W con-
nect i → t1 → t2 → t3 → o. Each transition processes its
own set of personal data. If this processing can be inspected,

a union can be used to define the total processing for the
given SN . The principle remains the same in amore complex
instance with branches: A union is the sum of all potential
transitions in the service net.

To this end, a function that inspects personal data process-
ing in any given web service can be defined as:

pd : WS → (̂Dws,̂DRws, ̂U PPws), (16)

where WS is a web service and the return value is a tuple
describing data processing in its behavior. In this tuple, ̂Dws

is a set of personal data (i.e., LPL’s Data elements) processed
in the transitions of a service net of theWS,̂DRws is a set of
authorized parties allowed to access the personal data (i.e.,
LPL’s DataRecipient elements), and, finally, ̂U PPws is
a set of privacy policies (i.e., UnderlyingPrivacyPolicy
elements) of third parties the WS transfers personal data to.

The function pd allows modeling personal data process-
ing at a sufficiently abstract level. Also the mapping of the
definition (14) to LPL Purpose is straightforward by using
the composition rules described earlier. In essence: (i) any
WS processing personal data is governed by a privacy pol-
icy; (ii) the act of processing in LPL is encoded in Purposes;
and, therefore, (iii) at least one Purpose governs any web
service processing personal data. In other words, the defi-
nitions (2) and (14) are composable and flow from a high
abstraction level to concrete operations. These can be further
mapped to the definition (1) by noting that (iv) there exists
a Purpose for any web service WS in a set of web services
̂WS governed by a LayeredPrivacyPolicy. In other words,
for all WS ∈̂WS exists p ∈ lpp for which

pd(WS) := (̂Dws ⊆ ̂D,

̂DRws ⊆̂DR, (17)

̂U PPws ∈ upplpp).

Finally, in order to simplify the notation, let the follow-
ing tuple mark the relation between a Purpose and a web
service:

gov = (WS, p), (18)

which also implies that

̂Dws ⊆ ̂Dp and ̂DRws ⊆̂DRp (19)

for any gov(WS, p). While the relation gov is not specified
as a part of a privacy policy, this mapping between the policy
and a description of a service provides a useful method for
data controllers. Although any compliant web service pro-
cessing personal data does so under a privacy policy, this

123



Extracting LPL privacy... 339

condition does not dictate the practice. For instance, a sin-
gle Purpose could govern all web services of a policy, or
a single WS might be governed by multiple Purposes. In
practice, it is also possible that a policy is invalid: A pd(WS)

does not match any Purpose in a policy. Such cases should
be avoided, obviously.

A further benefit originates from the fact that modeling
can be done at either side of the abstraction; at the level
of web services; or at the level of privacy policies. The pre-
sentedmethod couples the twomodels together but leaves the
responsibility of the desired abstraction to the data controller.
Therefore, it is possible to “attach” a governed web service
at any level of the LPL Purpose graph. In addition, com-
posed web services can be modeled, which offers another
dimension for flexibility. To illustrate these points, Fig. 3
shows a web service S composed of two services S1 and S2,
both of which have a governing Purpose. The Data and
DataRecipient elements are derived from the SN of the
web service in question through the function pd. The depth
and granularity of a privacy policy can be chosen as it is writ-
ten. Different configurations and their privacy implications
are discussed later on in Sect. 6.

4 Implementation of approach

Themethod of our approach has two steps. The first step is to
use static declarations of personal data processing in annota-
tions of source code.While in practice the exact construction
is specific to a programming language, many languages sup-
port some way of encoding meta-data to function or class
declarations. After injecting this meta-data is applied dur-
ing programming, it can be leveraged in the next step, as a
compile-time static analysis of the source code. Thus, we
can reason about the structure of a program and the way the
program processes personal data, and to use this informa-
tion to create privacy policy language constructs from the
capabilities of a given web service.

4.1 Annotations for personal data

The original toolkit for personal data annotations [33]
featured three annotations: @PersonalData for classes
and variables containing personal data, @PersonalData
Handler to declare areas of a code base which may process
personal data, and @PersonalDataEndpoint to declare
the boundaries of the analysis. In that work, the use case
was validating source code structure. For the present work
of extracting data for privacy policies, the annotation set is
useful as a baseline, and we build upon the idea that infor-
mation about data sensitivity can be embedded statically to
source code. In what follows, the theoretical model already
described is further refined into practical use. To account for

personal data transfers,we introduce an additional annotation
to the annotation toolkit.

4.2 Purposes

Since the personal data processing purposes coupled to web
services are derived from the behavior of services, the next
part is to define away to generate data for privacy policies via
static analysis. This construction requires limiting the scope
to a specific implementation level. To still retain a high degree
of generality, the practical solution discussed focuses on a
particular but common design pattern for SOA web services.

In essence, many web frameworks use the same strategy
of defining application entry-points in the source code by
using annotations. Good examples include the Spring frame-
work5 for Java and Flask6 for Python. In this pattern, server
functionality is run by a given library, which maps incoming
requests to (application code) function calls based on anno-
tated entry-point definitions. Strictly speaking, the pattern is a
composite web service, which conditionally calls a different
component web service based on a given request. Consid-
ering it as a single service with multiple entry-points is a
reasonable simplification; the source code for many entry-
points may belong to a single file or class, for instance. In
the present work, each entry-point maps to a privacy policy
Purpose, as defined in Sect. 3.3.

Continuingwith the annotation-based approach, the Data
elements can be derived from object relational mapping
(ORM) classes. Many web service frameworks offer annota-
tions to mark these declaratively and to define the relational
mappings statically (see Hibernate7, for instance). Personal
data stored in these database entity objects can be reasoned
about if the semantic information is provided in a similar
way [33]. Obviously, personal data processing is not limited
to database interactions, so our approach of using ORM-
mappings is only a baseline standard. The relational table
mappings provide a useful categorization of personal data
in a code base, but there are no issues with expanding the
analysis scope. For example, even if a message-passing web
service had no database at all, one could apply the method to
@PersonalData-annotated data transfer objects.

Using both the application entry-point and personal data
ORM-annotations, a code base declares how personal data
is processed statically. These declarations map to the theo-
retical service net definition in a concrete manner. By using
static analysis processing, it is possible to create (at the least
templates for) Purpose definitions. Since each entry-point
is a “main” function of a subprogram of a web service,
they form a distinct directed graph of function dependencies.

5 https://spring.io/.
6 https://pypi.org/project/Flask/.
7 https://hibernate.org/orm/.

123

https://spring.io/
https://pypi.org/project/Flask/
https://hibernate.org/orm/


340 K. Hjerppe et al.

Fig. 3 Illustration of LPL
Purposes mapping to
composed web services; thick
arrows represent privacy policy
data generated from web
services. Extended from [30,34]

S3

p1

p4'p1.1

p2'

p3'

...

...
...

...
...

...
...

...
i

S

S1 S2

S2

i1 i2

o2o1

o

...
...

Personal Data

Data transfer

Privacy Policy

Data-elements Purposes DataRecipients

UnderlyingPrivacyPolicy

Web Services

As the abstraction levels of the graph range from modules
and classes to methods, the Purposes compose in a simi-
lar manner. Analyzing each function of the code base during
compilation allows marking personal data a given function
depends on.

The other values from the tuple p in (2), including name
and descr , can also be generated with static analysis and
matching annotations. That said, the values for optOut ,
required, retention r , and privacy model pm require human
judgment in the present work. In addition, a web service
could have capabilities beyond the reach of static analysis,
thus confirming that the subsets of the mentioned elements
are indeed complete sets—and completing them is also a
manual process.

Themethodwe have so far described addresses generating
Purpose templates with Data elements from source code
in a specific architecture. Full capabilities of the inspection
function pd require providing the DataRecipients of a web
service—aswell as the set ofUnderlyingPrivacyPolicies
of third parties the WS transfers data to.

4.3 Data transfers

Referring to the definition of pd in (16), a necessary dimen-
sion for generating privacy policies is detecting transfers of
personal data to the realmof other policies. For anyWSunder
inspection, the set of underlying privacy policies ̂U PPws

must exist. Since any WS processing personal data are gov-

erned by a policy, it follows that any WS that receives data
has also a policy of its own. The layered nature of the LPL
implies that to accept a policy, one must accept all under-
lying policies contained within. Consider then WS1 which
callsWS2 through a software development kit (SDK) library,
transferring personal data in the process. In order to create
the privacy policy governing WS1, it is then required to find
the policy of WS2. If WS2 has further transfers, those must
be also located, and so forth.

Compiling all the layered privacy policies into a single one
while developing the original WS1 is impractical. They must
be available at run time—otherwise a data subject cannot
consent. To further complicate the process, it is not unimag-
inable to have circular dependencies in this stack of layered
policies. To solve this problem, our approach simply links
the underlying policies. The management of the links is then
automated via the data extraction tool.

Managing the links to underlying privacy policies is
accomplished using another annotation in the source code.
We extend the personal data annotation toolkit [33] with
@PersonalDataTransfer, which is applied to a func-
tion or a class. In addition tomarking a point of a data transfer
in source code statically, an annotation instance is parameter-
ized to contain the identifier of the policy it refers to. Thus,
the static analysis process for extracting purposes also has
the capability to find all underlying policies used in a WS.
How the web service structure can be mapped to a privacy
policy is illustrated in Fig. 4.

123



Extracting LPL privacy... 341

Fig. 4 Illustration of personal
data transfers mapping to first-
and third-party privacy policies
from Web Service Service Nets

dr1: PaymentProvider_1

p1: "Reserve Room"

p1.2: "Initialize Payment"

p1.1: "Create Profile"

lpp1: "Hotel Policy" upp1: "Payment Provider"

p3: "Handle credit card
details"

req

...

S1

S1.1

S3

...
...

S3

...

...
S1.2

POST

Generated Purpose

Generated
Purpose

Personal Data
Transfer

The ideal use case and the optimal path for the spread
of practical use of the @PersonalDataTransfer anno-
tation would be SDK libraries that provide clients services
with predefined annotations. With this assumption, correct
linking occurs without effort from a developer. In practice,
however, such optimal situation would require effort from a
whole software ecosystem. Therefore, it remains a task for
developers to annotate functions that perform data transfers
in a given application code.

4.4 Data recipients

The mechanism for detecting occurrences of data transfers
can also be applied to a class of DataRecipients. Referring
again to definition of pd in (16), and recalling the definition
of p in (2), to create a complete privacy policy and purposes
for it, the framework ought to extract DataRecipient-
elements from a WS. To be clear, our method detects only
a subset of̂DRws ; those associated with the transfer of per-
sonal data. Other groups would include different classes of
processors of the data controller of the policy in question.
This requirement is partially expressed in definition (17),
where any WS inspected by pd(WS) is a subset of the
DataRecipients of the privacy policy. The limits are further
illustrated in Fig. 5.

DataRecipients:
1: of a Policy
2: of a Web Service
3: statically analysable

1 2 3

Fig. 5 AVenn diagram illustrating the limits of the Data−Recipients
analysis

In LPL, DataRecipients exist as one of the components
of a Purpose. They are defined as “the authority that gets
specific processing rights (defined by the Purpose) granted”
[25] by a Purpose. In our context of technical Purposes
we are extracting from a code base, DataRecipients repre-
sent those entities the web service transfers data to, during
the execution of one of the entry-point functions. To find
this information through static analysis, we can refer to the
strategy for analyzing data transfers. The issue amounts to
encoding DataRecipient-information to the source code
annotations in a suitable and sustainableway. To avoid redun-
dancy, our approach again only encodes the identifier of a
DataRecipient (name-field in LPL) in the parameters of
the @PersonalDataTransfer annotation. Thus, data
transfers and DataRecipients are tightly coupled in our

123



342 K. Hjerppe et al.

approach, and the relationship req(dr , upp) in (13) is in the
scope of the analysis.

4.5 Implementation as data extraction tool

To demonstrate practical use, a concrete implementation was
developed for the Java programming language. The data
extraction part of the program was developed as a compiler
plugin for the Java language. The tool runs as an annotation
processing tool (APT) and generates a fresh dataset automati-
cally upon building a project it is enabled on. The source code
of the tool is published under an open source license.8 Using
theAPT interface, the package can be integrated to both com-
mand line tools and integrated development environments. In
addition, a data visualization script was developed during the
study.

The prototype implementation is limited to a particular
set of supported annotations using the Spring framework:
@RequestMapping and @Document. These annotations
are used, by framework convention, to mark application
entry-point functions and ORM-classes, respectively. In
addition to these, the implementation requires the use of the
personal data annotations described earlier. It should be rela-
tively trivial to extend the support for alternative framework
annotations, though, as long as the target architecture is sim-
ilar.

Developing the inspection process for the specific envi-
ronment required some further design choices. Given that
there are no right or wrong answers in this context, other
implementations might differ slightly. In particular, Java’s
Interfaces are handled with a pessimistic approach. For
instance, consider a Purpose entry-point using an inter-
face with multiple implementations. The tool implemented
handles this by summing the personal data found in all avail-
able implementations. Another design choice made pertains
to other modules (libraries) imported in a web service. As
the tool is tied to compile-time static analysis, other (pre-
compiled) modules are out of the scope of the tool. In
practice, this choice was not seen as a hindrance because the
given business logic generally defines the type of personal
data processed. Regarding data transfers, the convention for
libraries is to declare @PersonalDataTransfer in the
interface provided.

To best of our knowledge, no standard data file format for
LPL exists. While different use cases have different needs, a
uniform format could be beneficial for the adoption of LPL.
This task is out of the scope of this paper, however. For the
purposes of the tool presented, the extracted Purposes are
stored as JavaScript Object Notation (JSON) files. The nat-
ural mapping is using the names of the LPL tuple values as
keys in the objects themselves. Our data format also omits

8 https://github.com/devgeniem/personaldataflow.

the contents of Data-elements and refers to them by data
group name. These decisions are mostly incidental and serve
practical needs; should a data format become standard, the
method will adapt. To summarize, the tool presented imple-
ments the data extraction needs for a specific case, of the
general solution that was outlined.

5 Validation: a case study

To demonstrate the presented method in practical use, the
implemented tool was applied to a web service code base of
a company. The goal of the case study was to validate that
the static analysis method and the developed tool both work
as intended. The case study methodology was simple: The
generated documentation should match the expectations of
the implicit model of the case web service. This was com-
pared by hand, matching the data with the API specification
and usage of the case service—this process did not require
interpretation as the generated data must match the source
code exactly. Building the final policy would be subjective,
and thus not the focus of this work. The initial analysis of the
case web service was done in [34], and the data extraction
and analysis were repeated after the extensions presented in
this paper, in order to have the full set of policy data. As
the code base had slightly evolved in-between, the numbers
presented here are partially different from the initial work.

The caseWS has been in production for processing trans-
actions in a Finnish company since 2014. There have been
different maintainers and product owners. Despite ongoing
maintenance and development, there was no tooling for auto-
mated documentation in use before the case study.Deploying
the tool required annotating the personal data database entity
classes and installing the annotation processor to the build
chain. This integration amounted to a moderate amount of
work. The moderate work amount indicates applicability of
the tool to new targetswith roughly similar software architec-
tures. After the initial setup, repeated data extraction and tool
version updates were low effort. To summarize, integrating
the tool into the code base was successful.

The case WS is a single monolithic code base, which is
split into modules. Despite having multiple responsibilities,
the WS uses and is used by multiple service. The total of
323 classes (amounting to about 28 thousand lines of code)
at the time of the initial analysis can be understood as a
Model/View/Controller architecturewith specific service and
database layers. Considering the definition for composable
web services, the entire system would be the root WS. It
would composeWSmodules (“Controllers”), which, in turn,
compose WS endpoint functions. These functions are gov-
erned by composed Purposes, which the data extraction tool
maps. Although the case WS uses several libraries, these
being out of scope were not a hindrance for analysis; as dis-

123

https://github.com/devgeniem/personaldataflow


Extracting LPL privacy... 343

Fig. 6 Excerpt of Purpose data visualization generated from the case WS, featuring Purposes, Data-elements, and DataRecipients. In the Purposes,
p’ stands for the number of sub-purposes

cussed in Sect. 4.5, any library processing personal data are
supplied the data by the business logic code that is in the
scope of the analysis. It should also be noted that authoriza-
tion for the entry-points is out of scope of the analysis; the
sessions are checked in the framework rather than in the code
inspected.

The results of the data extracted by the tool can be sum-
marized as follows. The case WS was found to comprise 30
Controller modules, each of which was composed of multi-
ple entry-points (a total of 245 with a range of [1, 51], and
an average of 8.2). Out of these, not all processed personal
data. Regarding those that concern privacy policies, a total
of 24 Controller modules remained (with a total of 224, a
range of [1, 51], and an average 9.3). In total, 19 different
personal data entity and three DataRecipient types were
identified. Each controller processed on average three per-
sonal data classes with a range of [1, 11].

Following our formulation of the problem, the case WS
was viewed as set of component web services (i.e., Con-
troller modules), which in turn are composed of entry-point
web services. The data visualization tool developed as a
part of the effort is demonstrated in Figs. 6 and 7, which
display generated figures of the different types of policy
data extracted (after slight post-processing: cropping, cen-

soring private titles). The analysis tool extracts the data for
each entry-point, most of which were omitted from these
figures for brevity. As defined before, the sets of Data ele-
ments belonging to any component Purposes p′ are subsets
of their higher-level Purpose p. The data also visualize
the application architecture and highlight important areas:
those where many entities concentrate in a single Purpose
as well those where entities are used across multiple
purposes.

There is no existing formal privacy policy for the caseWS,
so an exact number for coverage cannot be given. Regard-
less, it is possible to gain insights by comparing the implicit
Purposes in the system to those extracted with the tool
implemented. With manual verification, it is confirmed that
the results of the analysis cover all of the entry-points. Thus,
in this sense, the tool appears sound. However, the com-
plete logical hierarchy of the composed Purposes cannot
be constructed by inspecting the WS source code alone.
As a counterexample, the process of purchasing (a pur-
pose) composes of entry-point Purposes fromweb service’s
SubscriptionController and LoginController . This pur-
pose can only be inferred by viewing the clients in addition
to the web service. An example of this case is illustrated
in Fig. 8, where composed Purposes (p22, p175′) and

123



344 K. Hjerppe et al.

Fig. 7 Excerpt of Composed Purposes data visualization generated
from the case WS

p22: SubscriptionController

p172': #createSubscriptionWithCampaign

p?: SubscribeExistingUser

p120': #loginp13: LoginController

...

...

Fig. 8 Another example of composed Purposes of the case study,
with an identified out of analysis scope Purpose (white) inferred from
client-side. Extended from [34]

(p13, p120′) also have a third Purpose p? that could not be
found in the web service analysis.

The case study demonstrates the possibility to construct
any Purpose concerning the case system, by composing the
extracted Purposes that act as building blocks. The pre-
sented method thus answers to RQ2. To create the whole
Policy, it is not sufficient to analyze server-side code alone.
As the web service API provides a collection of capabil-
ities, different possible combinations of these cannot be
constructed without additional context.

6 Discussion

This paper provides a method for improved means to express
and reason about privacy policies and personal data pro-
cessing formally. In essence, any web service processing
personal data must be governed by a privacy policy. The
method presented in this paper does not, however, enforce
that transparency for a data subject is increased. Having the
means to automatically generate data might lower the effort

of creating expressive privacy policies. The results of this
paper still assume a good faith effort on part of the service
provider; maintaining a policy with more detail could also
be a liability for maintenance. Moreover, a vague policy that
is decoupled from the technical means of the service does
allow more “freedom” for the data controller. The question
is then: Is it worthwhile?

As discussed in the motivation of the paper, a privacy pol-
icy must be specific and explicit [42]. The first principle of
the GPDR requires personal data processing to be lawful,
fair, and transparent [54]. In a practical environment, these
abstract principles are weighed against multiple other con-
straints and business requirements [32]. The example and
standards put forth by the privacy engineering research com-
munity is away to drive industry adoption of privacy-friendly
means for data processing. This paper is a small step on
that path, which also requires cultural changes in addition
to technical means. Needless to say, change is not easy.
The automated method to generate privacy policy data does
require a change in practice instead of only implementing
technical improvements—but the process can be incremen-
tal and iterative.

The question can be raised whether using source code as
the basis for generating privacy policy data is useful in prac-
tice, in comparison with other approaches. Another alterna-
tive that has been explored, see Sect. 2, would be annotating
Business Process Models instead and using that for static
analysis. There are trade-offs between these approaches.
Using source code, as per our approach, maintains a single
source of truth for the privacy policy data and the model will
not become out of sync with reality. Admittedly, this way
of relinquishing control of policy to developers is not suit-
able for every organization, and thus, adopting this method
requires consideration.

The presented method for automatically generated
Purposes cannot fully describe a privacy policy in most
cases, as mentioned in Sect. 5. This result can be viewed
through an optimistic lens, remarking that fully generated
privacy policies are not realistically wanted to begin with.
Indeed, some authors have recently warned about using
automatically generated privacy policies without prior con-
sultation with legal experts [53]. That said, tools still make
the task easier; the method is suitable for generating building
blocks from which the final policy is compiled from. Rarely
does the web services hierarchy of a business, which can
be modeled, exhaustively map to the logical processes used
by clients. However, as we can claim, any policy that uses
a web service ought to include the Purpose governing that
WS in its composition. The minimum viable policy would
be one Purpose which governs all web services, but there
is no upper limit (other than practicality) to the number of
Purposes governing any given web service. These assump-
tions raise the question whether it is possible to draw any

123



Extracting LPL privacy... 345

judgments about the quality of a privacy policy by looking
at the LPL structure.

Even looking at a valid LPL policy, it is not guaranteed
that it is specific or explicit enough to be compliant with the
GDPR. As we are mapping (composed) Purposes to web
service entry-points, it would seem that a single Purpose to a
single WS entry-point is the most explicit mapping that can
be constructed. Having a single Purpose governing many
WS entry-points could be made more explicit by detailing
the purpose of each entry-point. A single WS entry-point
serving multiple purposes—besides being questionable pro-
gramming practice—could be split to multiple entry-points
with specific functionality. It should be noted that these con-
siderations apply to the lowest-level composable Purposes,
and the more abstract high-level Purposes have their own
scope.

The method of this paper then suggests a ground-up
approach to arranging a privacy policy. If the lowest com-
posed purposes layer follows the one-to-one mapping with
technical functionality, the higher abstraction-level purposes
based on business needs are built on specific and explicit
ground. Building on from these assumptions, the breadth of
the ComposedPurposes graph should be minimized (i.e.,
consent is not asked for unnecessary purposes), while the
height appears only as the consequence of raising abstrac-
tion level and bundling low-level Purposes.

The quality of a privacy policy still has nuances. For
instance, it cannot be conjectured that more information
would always imply “better” privacy policies [9]. A privacy
policy that overwhelms a data subjectwith informationmight
not be presented in “intelligible and easily accessible form,
using clear and plain language” [54]. By implication, the
legal requirements for a consent might not be satisfied. The
composed purpose definition of this paper somewhat allevi-
ates this issue: It is possible to specify purposes in detail and
only show deeper levels of a given tree to those data subjects
who are interested in the details. To overcome potentially
confusing and ambiguous linguistic expressions, standard-
ized terms and expressions could be used for Purpose
descriptions.Also graphical user interface elements andother
visual cues could be used to improve the presentation. While
our approach leaves the final composition of a privacy policy
to a practitioner, the automatic data generation facilitates a
fine-grained policy.

6.1 Integration in engineering practice

We propose three ways to make use of the data extraction
tool in software engineering practice and present a reference
architecture to demonstrate these use cases. The Purpose
data extracted from a code base serve different needs in
different phases of development. We refer to these three as
activities.

Local
development

Privacy
Repository

Privacy
policy

validate document compose

Fig. 9 Proposed use-case activities for the data extraction tool

Before continuing, a few assumptionsmust bemade about
the context. Let there be a process of continuous development
of multiple web services in a business with multiple teams.
Here, continuous means that there is no single project deliv-
erable, but iterations over an undefined time period. Multiple
teams and web services imply that there are multiple privacy
policies, which may possibly overlap. Continuous develop-
ment, multiple teams, and many web services all necessitate
internal documentation even in agile environments [6].

The first activity for the data extraction tool is validation
during development. As a developer compiles code, the tool
can be used to extract the current purposes matching cur-
rent version of the code. The results can either be checked
with unit tests (comparing to data from previous versions)
or reviewed manually that they match expectations. The use
case here is to validate that code changes do not process per-
sonal data in an unexpected way.

After local changes to source code are integrated to a
main repository in a continuous integration or related system,
the tool can document Purpose data in an internal “privacy
repository.” We propose this documentation as an integrated
part of an enterprisemeta-datamanagement strategy (see [16]
for an example). The Purposes are stored as-is. They also
represent capabilities of a web service. If required, the repos-
itory allows to further enrich the data with values not created
by the tool. For instance, additional Purposes not within the
realm of static analysis can be created with other means. To
facilitate this use case, the data extraction tool repository fea-
tures a visualization script that generates hypertext markup
language (HTML) documents from the Purpose data.

Finally, the data collected in the privacy repository can
be used to compose privacy policies. Since these documents
have legal implications, it seems useful to separate creating
them from the data extraction. The Purposes (and other col-
lected data) are then used as building blocks for the policy. At
this step, the policies from third partiesmust be also compiled
into the final product.

The proposed process and the activities are summarized in
Fig. 9. Obviously, there may be also other use cases beyond
the three described. To this end, the use cases could be used as
the starting point for developing mature industry-wide solu-
tions.

123



346 K. Hjerppe et al.

6.2 Limitations and further work

The presented work is by no means exhaustive. Leveraging
static analysis for privacy policies has further potential, and
the presented work is limited in many aspects. Some limita-
tions of this paper are a deliberate scoping choice, which can
be briefly discussed further.

Our approach leverages static information encoded in
source code files for generating the privacy policy Purposes
of web services. To achieve this, there are some costs for the
practitioner in the form of additional work in setup and devel-
opment. To generate the data using the architecture described
in Sect. 6.1, a practitioner must (1) annotate source code,
(2)maintain data extraction tool infrastructure, and (3) com-
pile the final privacy policies from the data. In comparison,
a lightweight privacy-by-policy approach must only main-
tain incremental versions of a textual privacy policy. While
the crux for adoption covers all three facets, these are all
essentially context-dependent. First, whether automatically
updating data based on software updates is useful. Second,
whether machine-readable privacy policy data is useful. And
last, how is the transparency benefit of more fine-grained
policies valued. One argument to support these qualities is
the value of having internal documentation in addition to
customer-facing policies.

The definition of ComposedPurposes has the necessary
limitation that a sub-purpose cannot have more lax privacy
attributes than its parent. This work has deliberately limited
its scope so that we do not consider the “privacy hierarchy”
of different anonymization methods and instead require sub-
purposes to implement the samemethod as the parent. Should
some future work present an unambiguous hierarchy of the
methods that defines comparison between them; the restric-
tion imposed by us in (7) can be reduced accordingly.

The implementation of pd within the constraints defined
in Sect. 4 is just one instance of the general problem. How-
ever, similar definitions should be possible for other archi-
tectures and programming languages. Dynamically typed
environments would of course require another approach for
the analysis part. While the analysis method does cover data
transfers, to gain full extent of the value of LPL also the
recipient parties should describe their processing in a formal
language. At this time, translations between different privacy
languages are not developed (which is a potential research
space). In practice, this implies that to create a full LPL pol-
icy, the data recipients should also use LPL. Extending the
method to further programming languages is more challeng-
ing, but not impossible.As of yet, only the data extraction part
is fully automatic: Visualizing the results in an IDE plugin is
a possible opportunity for further work.

As discussed previously, our approach of generating
Purposes from web services does not have the full infor-
mation for a complete Policy on its own. In addition to the

Purposes matching web services, a complete Composed
Purposes graph requires client-side information to know
the combinations on how the building blocks are arranged.
Further research might analyze client-side source code in
order to combine data with the web service Purposes.
Although a similar approachwould suffice, themethodwould
require novelty: Whereas the execution tree of a web ser-
vice starts from a single point and branches deep, client-side
code typically has a wide array of different execution paths
that culminate into web service calls. Completely removing
human judgment from the process of creating privacy poli-
cies might not even be useful. If generated data are used as
a basis to build a policy manually, more coverage always
provides more options.

The case studypresented in thiswork should be considered
merely a validation project. While an example was presented
on how the method works as a proof of concept, more com-
prehensive experiments with multiple different code bases
are needed for quantitative evaluation. Likewise, qualitative
evaluation of the approach and the tool is necessary as well.
This paper proposed some ways to integrate the data extrac-
tion into the software engineering process, and thatwas not an
exhaustive example at all. For instance, a better theory around
what constitutes a “good” arrangement of Purposes to web
services could be studied. Another path forward would be to
integrate LPL (or another related language) to the OpenAPI
standard (or a similar specification) and generate the cor-
responding documents automatically. This path would fully
start to leverage formal privacy languages in the semantic
web.

6.3 Conclusion

This paper sought answers to two researchquestions. Thefirst
asked about a way to formalize an LPL model to describe
personal data processing in web services. To this end, the
privacy language was extended to include composition for
Purposes. This extension was formally integrated with the
definition of web services to form the model that couples
privacy policies and web services together.

The second question solicited a method for extracting the
corresponding data automatically from a web service code
base. This question was approached both theoretically and
practically. In theory, by defining an inspection function that
would satisfy LPL requirements of both Purposes and data
transfers. In practice, limiting the work to a certain web ser-
vice design pattern: by presenting and evaluating an analysis
tool for the method. The results were validated with a case
study.

Acknowledgements We thank the three anonymous reviewers whose
comments have improved this manuscript.

123



Extracting LPL privacy... 347

Funding Open Access funding provided by University of Turku (UTU)
includingTurkuUniversityCentralHospital. This researchwas partially
supported by the Strategic Research Council at the Academy of Finland
(grant number 327391) and Geniem Oy.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aktug, I., Naliuka, K.: ConSpec—a formal language for policy
specification. Sci. Comput. Program. 74(1–2), 2–12 (2008)

2. Amato, F., Coppolino, L., D’Antonio, S., Mazzocca, N., Mosca,
F., Sgaglione, L.: An abstract reasoning architecture for privacy
policies monitoring. Futur. Gener. Comput. Syst. 106, 393–400
(2020)

3. Ardagna, C.A., De Capitani di Vimercati, S., Paraboschi, S.,
Pedrini, E., Samarati, P.: An XACML-based privacy-centered
access control system. In: Proceedings of the first ACM workshop
on Information security governance, pp. 49–58 (2009)

4. Assembly, U.G.: Universal declaration of human rights. UN Gen-
eral Assembly 302(2), 14–25 (1948)

5. Ayala-Rivera, V., Pasquale, L.: The grace period has ended: An
approach to operationalize GDPR requirements. In: 2018 IEEE
26th InternationalRequirements EngineeringConference (RE), pp.
136–146. IEEE (2018)

6. Baca, D., Carlsson, B.: Agile development with security engineer-
ing activities. In: Proceedings of the 2011 International Conference
on Software and Systems Process, ICSSP ’11, p. 149-158. Associ-
ation for Computing Machinery (2011)

7. Bashir, M., Hayes, C., Lambert, A.D., Kesan, J.P.: Online privacy
and informed consent: the dilemma of information asymmetry.
Proc. Assoc. Inf. Sci. Technol. 52(1), 1–10 (2015)

8. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by neces-
sity: compliance under the GDPR. In: International Conference on
Financial Cryptography and Data Security, pp. 20–37. Springer,
Berlin (2018)

9. Bechmann, A.: Non-informed consent cultures: privacy policies
and app contracts on facebook. J. Media Bus. Stud. 11(1), 21–38
(2014)

10. Bednar, K., Spiekermann, S., Langheinrich, M.: Engineering pri-
vacy by design: are engineers ready to live up to the challenge? Inf.
Soc. 35(3), 122–142 (2019)

11. Belli, L., Schwartz, M., Louzada, L.: Selling your soul while nego-
tiating the conditions: from notice and consent to data control by
design. Heal. Technol. 7, 453–467 (2017)

12. Bieker, F., Friedewald,M., Hansen,M., Obersteller, H., Rost,M.: A
process for data protection impact assessment under the European
general data protection regulation. In: Annual Privacy Forum, pp.
21–37. Springer, Cham (2016)

13. Blanco-Lainé, G., Sottet, J.S., Dupuy-Chessa, S.: Using an enter-
prise architecture model for GDPR compliance principles. In: IFIP

Working Conference on The Practice of Enterprise Modeling, pp.
199–214. Springer, Cham (2019)

14. Bonatti, P.A., Kirrane, S., Petrova, I.M., Sauro, L.: Machine
understandable policies and GDPR compliance checking (2020).
arxiv:2001.08930

15. Cranor, L.: Web privacy with P3P. “O’Reilly Media, Inc.” (2002)
16. Dahlberg, T., Nokkala, T.: A framework for the corporate gover-

nance of data-theoretical background and empirical evidence. Bus.
Manag. Educ. 13(1), 25–45 (2015)

17. Dastgheib, S., Whetzel, T., Zaveri, A., Afrasiabe, C., Assis, P.,
Availlach, P., Jagodnik, K., Korodi, G., Pilarczyk, M., De Pons,
J., et al.: The smartAPI ecosystem for making web APIs fair. In:
ISWC2017, the 16e International SemanticWeb Conference 1931,
1–4 (2017)

18. Degeling,M., Utz, C., Lentzsch, C., Hosseini, H., Schaub, F., Holz,
T.: We value your privacy... now take some cookies: Measuring the
GDPR’s impact on web privacy. In: 26th Annual Network and Dis-
tributed System Security Symposium, NDSS. The Internet Society
(2019)

19. Diver, L., Schafer, B.: Opening the black box: Petri nets and privacy
by design. Int. Rev. Law Comput. Technol. 31(1), 68–90 (2017)

20. Ed-Douibi, H., Izquierdo, J.L.C., Cabot, J.: Example-driven web
API specification discovery. In: European Conference on Mod-
elling Foundations and Applications, pp. 267–28. Springer, Cham
(2017)

21. Enck,W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P.,
Jung, J., McDaniel, P., Sheth, A.N.: TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. ACM Trans. Comput. Syst. (TOCS) 32(2), 1–29 (2014)

22. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-Lee, T.: RFC 2616: Hypertext transfer protocol–
HTTP/1.1 (1999)

23. Fouad, I., Santos, C., Al Kassar, F., Bielova, N., Calzavara, S.:
On compliance of cookie purposes with the purpose specification
principle. In: 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS PW), pp. 326–333 (2020)

24. Gerl, A.: Extending layered privacy language to support privacy
icons for a personal privacy policy user interface. In: Proceedings
of the 32nd International BCS Human Computer Interaction Con-
ference, p. 177. BCS Learning & Development Ltd. (2018)

25. Gerl, A.: Modelling of a privacy language and efficient policy-
based de-identification. Ph.D. thesis, Université de Lyon; Univer-
sität Passau (Deutscheland) (2019)

26. Gerl, A., Bennani, N., Kosch, H., Brunie, L.: LPL, Towards
a GDPR-Compliant Privacy Language: Formal Definition and
Usage. Transactions on Large-Scale Data- and Knowledge-
Centered Systems XXXVII (2018)

27. Gerl, A., Meier, B., Becher, S.: Let users control their data–privacy
policy-based user interface design. In: International Conference
on Human Interaction and Emerging Technologies, pp. 790–795.
Springer, Cham (2019)

28. Giannopoulou, A.: Algorithmic systems: the consent is in the
detail?. Internet Policy Rev. 9(1) (2020)

29. Gürses, S., del Alamo, J.M.: Privacy engineering: shaping an
emerging field of research and practice. IEEE Secur. Privacy 14(2),
40–46 (2016)

30. Hamadi, R., Benatallah, B.: A Petri net-based model for web ser-
vice composition. In: Proceedings of the 14thAustralasian database
conference-Volume 17, pp. 191–200. Australian Computer Soci-
ety, Inc. (2003)

31. Hirsch, D.D.: The glass house effect: Big Data, the new oil, and
the power of analogy. Me. L. Rev. 66, 373 (2013)

32. Hjerppe, K., Ruohonen, J., Leppänen, V.: The general data pro-
tection regulation: requirements, architectures, and constraints. In:
2019 IEEE 27th International Requirements Engineering Confer-
ence (RE), pp. 265–275. IEEE (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2001.08930


348 K. Hjerppe et al.

33. Hjerppe, K., Ruohonen, J., Leppänen, V.: Annotation-based static
analysis for personal data protection. In: IFIP International Sum-
mer School on Privacy and Identity Management, pp. 343–358.
Springer, Cham (2019)

34. Hjerppe, K., Ruohonen, J., Leppänen, V.: Extracting layered
privacy language purposes fromweb services. In: 2020 IEEEEuro-
pean Symposium on Security and PrivacyWorkshops (EuroS PW),
pp. 318–325 (2020)

35. Huth, D., Tanakol, A., Matthes, F.: Using enterprise architecture
models for creating the record of processing activities (Art. 30
GDPR). In: 2019 IEEE 23rd International Enterprise Distributed
Object Computing Conference (EDOC), pp. 98–104. IEEE (2019)

36. Khurat, A., Suntisrivaraporn, B., Gollmann, D.: Privacy policies
verification in composite services using owl. Comput. Secur. 67,
122–141 (2017)

37. Leicht, J., Gerl, A., Heisel, M.: Technical Report on the Extension
of the Layered Privacy Language. Tech. rep. (2021)

38. Libert, T.: An automated approach to auditing disclosure of third-
party data collection in website privacy policies. In: Proceedings
of the World Wide Web Conference (WWW 2018), pp. 207–216.
International World Wide Web Conferences Steering Committee
(2018)

39. Lin, L., Hu, J., Zhang, J.: Packet: a privacy-aware access control
policy composition method for services composition in cloud envi-
ronments. Front. Comp. Sci. 10(6), 1142–1157 (2016)

40. Martin, R.C., Newkirk, J., Koss, R.S.: Agile software development:
principles, patterns, and practices, vol. 2. Prentice Hall Upper Sad-
dle River, NJ (2003)

41. Martin, Y.S., Kung, A.: Methods and tools for GDPR compli-
ance through privacy and data protection engineering. In: 2018
IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pp. 108–111. IEEE (2018)

42. Matte, C., Santos, C., Bielova, N.: Purposes in IAB Europe’s TCF:
which legal basis and how are they used by advertisers? In: Annual
Privacy Forum (APF 2020) (2020)

43. Ramadan, Q., Strüber, D., Salnitri, M., Jürjens, J., Riediger, V.,
Staab, S.:A semi-automatedBPMN-based framework for detecting
conflicts between security, data-minimization, and fairness require-
ments. Software and Systems Modeling pp. 1–37 (2020)

44. Ramezanifarkhani, T., Owe, O., Tokas, S.: A secrecy-preserving
language for distributed and object-oriented systems. J. Logic.
Algebr. Methods Program. 99, 1–25 (2018)

45. Ringmann, S.D., Langweg, H., Waldvogel, M.: Requirements for
legally compliant software based on the GDPR. In: OTM Con-
federated International Conferences. On the Move to Meaningful
Internet Systems, pp. 258–276. Springer, Cham (2018)

46. Sadeghi, A., Bagheri, H., Garcia, J., Malek, S.: A taxonomy and
qualitative comparison of program analysis techniques for security
assessment of android software. IEEE Trans. Softw. Eng. 43(6),
492–530 (2016)

47. Salnitri, M., Angelopoulos, K., Pavlidis, M., Diamantopoulou, V.,
Mouratidis,H.,Giorgini, P.:Modelling the interplayof security, pri-
vacy and trust in sociotechnical systems: a computer-aided design
approach. Softw. Syst. Model. 19(2), 467–491 (2020)

48. Senarath, A.R., Arachchilage, N.A.G.: Understanding user privacy
expectations: a software developer’s perspective. Telemat. Inform.
35(70), 1845–1862 (2018)

49. Soh, S.Y.: Privacy nudges: an alternative regulatory mechanism to
informed consent for online data protection behaviour. Eur. Data
Prot. L. Rev. 5, 65 (2019)

50. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans.
Softw. Eng. 35(1), 67–82 (2009)

51. Spiekermann, S., Novotny, A.: A vision for global privacy bridges:
technical and legal measures for international data markets. Com-
put. Law Secur. Rev. 31(2), 181–200 (2015)

52. Standard, OASIS: Extensible access control markup language
(XACML) version 3.0 (2013)

53. Sun, R., Xue, M.: Quality assessment of online automated privacy
policy generators: An empirical study. In: Proceedings of the Eval-
uation and Assessment in Software Engineering (EASE 2020), pp.
270–275. ACM (2020)

54. The European Union: Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the Protection
of Natural Persons with Regard to the Processing of Personal Data
and on the Free Movement of Such Data, and Repealing Directive
95/46/EC (General Data Protection Regulation) (2016)

55. Tómasdóttir, K.F., Aniche, M., Van Deursen, A.: The adoption of
javascript linters in practice: a case study on eslint. IEEE Trans.
Softw. Eng. 46, 863–891 (2018)

56. Tumer, A., Dogac, A., Toroslu, I.H.: Semantic-based user privacy
protection framework for web services. In: Intelligent Techniques
for Web Personalization (ITWP), pp. 289–305. Springer, Cham
(2005)

57. Van Alsenoy, B.: Data protection law in the EU: roles, responsibil-
ities and liability. J. Data Prot. Privacy 3(1), 113–115 (2019)

58. Vanezi, E., Kouzapas, D., Kapitsaki, G.M., Philippou, A.: Towards
GDPR compliant software design: A formal framework for ana-
lyzing system models. In: International Conference on Evaluation
of Novel Approaches to Software Engineering, pp. 135–162.
Springer, Cham (2019)

59. Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller, S., Steiner,
T., Taheriyan,M., Van deWalle, R.: Survey of semantic description
of RESTAPIs. In: REST: Advanced Research Topics and Practical
Applications, pp. 69–89. Springer, New York (2014)

60. Weitzner, D.J., Hendler, J., Berners-Lee, T., Connolly, D.: Creating
a policy-aware web: Discretionary, rule-based access for the world
wide web. In: Web and information security, pp. 1–31. IGI Global
(2006)

61. Wilhelm, S., Gerl, A.: Policy-based authentication and autho-
rization based on the layered privacy language. BTW 2019–
Workshopband (2019)

62. Yan, D., Tian, Y.: Privacy policy composition of privacy-aware
RBACmodel for composite web services. In: 2013 5th IEEE Inter-
national Conference on Broadband Network Multimedia Technol-
ogy, pp. 312–316 (2013). https://doi.org/10.1109/ICBNMT.2013.
6823964

63. Zaveri, A., Dastgheib, S., Wu, C., Whetzel, T., Verborgh, R., Avil-
lach, P., Korodi, G., Terryn, R., Jagodnik, K., Assis, P., et al.:
SmartAPI: Towards a more intelligent network of Web APIs. In:
EuropeanSemanticWebConference, pp. 154–169. Springer,Cham
(2017)

64. Zhang, F., Fan, X., Zhou,W., Zhou, P.: Purpose-based access policy
on provenance and data algebra. arXiv preprint arXiv:1912.00445
(2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/ICBNMT.2013.6823964
https://doi.org/10.1109/ICBNMT.2013.6823964
http://arxiv.org/abs/1912.00445


Extracting LPL privacy... 349

Kalle Hjerppe is a doctoral student
and a project researcher at the
University of Turku. His research
interest is in data protection and
privacy engineering, intersecting
with software engineering and
architecture.

JukkaRuohonen is currently work-
ing as a project researcher at the
University of Turku. He has
recently published in diverse jour-
nals, such as Information and
Software Technology, Information
Systems, Computers in Human
Behavior, and Applied Comput-
ing and Informatics.

Ville Leppänen is a full profes-
sor in software engineering and
software security in University of
Turku, and the vice dean of Fac-
ulty of Technology. He has now
over 230 international conference
and journal publications, with
research interests related broadly
to software engineering and secu-
rity, ranging from software engi-
neering methodologies, practices,
and tools to security and quality
issues, as well as to programming
languages, parallelism, and archi-
tectural design topics.

123


	Extracting LPL privacy policy purposes from annotated web service source code
	Abstract
	1 Introduction
	2 Background and related work
	2.1 The GDPR and the web
	2.2 Privacy languages and the LPL
	2.3 Static analysis
	2.4 Privacy in web services
	2.5 Petri nets

	3 Definitions
	3.1 Defining purpose composition
	3.2 Data transfers in LPL
	3.3 Web services as privacy policy purposes

	4 Implementation of approach
	4.1 Annotations for personal data
	4.2 Purposes
	4.3 Data transfers
	4.4 Data recipients
	4.5 Implementation as data extraction tool

	5 Validation: a case study
	6 Discussion
	6.1 Integration in engineering practice
	6.2 Limitations and further work
	6.3 Conclusion

	Acknowledgements
	References




