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Abstract
There are many repair alternatives for resolving model inconsistencies, each involving one or more model changes. Enumer-
ating them all could overwhelm the developer because the number of possible repairs can grow exponentially. To address
this problem, this paper focuses on the immediate cause of an inconsistency. By focusing on the cause, we can generate a
repair tree with a subset of repair actions focusing on fixing this cause. This strategy identifies model elements that must be
repaired, as opposed to additional model elements that may or may not have to be repaired later. Furthermore, our approach
can provide an ownership-based filter for filtering repairs that modify model elements not owned by a developer. This filtering
can further reduce the repair possibilities, aiding the developer when choosing repairs to be performed. We evaluated our
approach on 24 UML models and four Java systems, using 17 UML consistency rules and 14 Java consistency rules. The
evaluation data contained 39,683 inconsistencies, showing our approach’s usability as the repair trees sizes ranged from five
to nine on average per model. Also, these repair trees were generated in 0.3 seconds on average, showing our approach’s
scalability. Based on the results, we discuss the correctness and minimalism with regard to the cause of the inconsistency.
Lastly, we evaluated the filtering mechanism, showing that it is possible to further reduce the number of repairs generated by
focusing on ownership.

Keywords Model-driven engineering · Inconsistency repair · Consistency checking · Repair generation

1 Introduction

State of the art on inconsistencymanagement inmodel-based
software development has focused on detecting inconsis-
tencies. Today, many approaches are available to detect
inconsistencies quickly and correctly [6,12,17,32]. While
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it is important to tolerate inconsistencies [4], they must be
resolved eventually. Unfortunately, repairing inconsistencies
is much harder than detecting them because the number of
alternatives grows exponentially with the number of model
elements accessed [42].

Existing approaches either ignore this exponential growth
s [33] or emphasize on selected repairs only [11,40]. Other
approaches, however, pose limitations on the consistency lan-
guage or focus on individual inconsistencies [14,33,54]. All
these limitations are problematic because developers must
choose repair alternatives from a large set of possibilities.
This selection can either overwhelm the developer ormay fail
to include the repairs the developer desires. Since the repair-
ing of inconsistencies goes hand in hand with the creative
process of modeling, we strongly advocate against heuristics
that replace the role of the (human) developer. For example, a
repair that identifies the least number of model changes may
be undesirable as it may, for example, favor the undoing of
a change that caused the inconsistency [36].

Another aspect not addressed in the literature is the
process of repairing inconsistencies in a collaborative envi-
ronment. As software engineering is mostly a team-based
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discipline [31], repairing engineering models can also be
done in collaboration. Collaboration aspects can be used
for dealing with the large set of repair alternatives, filter-
ing out non-feasible options. For instance, when deciding
which repairs to be executed, an engineer may want to focus
on the repairs that impact only the artifacts which are related
to him/her. In this sense, an ownership property from the
artifacts being modified by repair alternatives can be used
for reducing these possibilities. However, there are no repair
approaches considering collaborative environments reported
in the literature [29,49].

Based on the limitations existing in the literature and to
deal with practical needs of developers, the main contribu-
tion of this paper is a scalable approach for generating repair
alternatives focusing on the cause of inconsistencies. Further-
more, in this paper, we extend past work [44] by considering
the ownership of model elements. This ownership is used
for highlighting repair actions based on the model elements
being modified. Then, a filtering mechanism is applied for
generating a set of possible repairs from the repair tree based
on the highlighting. This filtering can be used for reducing
the amount of alternatives, addressing the problem related
with exponential growth of repair alternatives. Despite being
a generic approach, in this paper we also present as a techni-
cal contribution an implementation of our approach as the
DesignSpace-IR1 tool, which is part of the DesignSpace
project.2 The main reason for implementing a new tool is to
extend the Model/Analyzer tool [42], by giving support for
consistency checking and repair generation for other mod-
els, besides UML, which is the only model supported by the
Model/Analyzer.

Inconsistencies can be repaired even if the repair extends
beyond the immediate cause, which is commonly the
case [12].Our approach combines knowledge about the struc-
ture of inconsistent consistency rules, as in xLinkit [32],
with the consistency rules’ expected and observed results,
as in Egyed [13]. Basic facts about the meta-model, such
as types of fields and non-changeable model elements, are
used to remove inapplicable repairs. The structure of consis-
tency rules is important for enumerating repair alternatives
conservatively.

For example, if a consistency rule a ∧ b is inconsistent,
i.e., false, then there are three repair alternatives as gener-
ated by xLinkit: repair a, repair b, or repair a and b. This list
appears reasonable, but it may contain unneeded repair alter-
natives. Let us suppose that merely a was false and b was
true, then (i) repair b would be incorrect because it would
fail to repair a, which is broken; and (ii) repair a and b is
non-minimal because it would repair more than immediately
necessary. By focusing on the cause, which is a in this case,

1 IR stands for Inconsistency Repair.
2 https://isse.jku.at/designspace.

our approach provides a subset of repair actions focusing on
repairing a, rather than a and b. However, the repair of a
may inadvertently break b or another consistency rule as a
side effect. This potential side effect depends on the course
of action chosen by the developer. Despite the need of repair-
ing a, while avoiding to break b, any side effect can only be
observed after applying the repair for a.

By focusing on the cause of an inconsistency, our approach
focuses on a smaller, more manageable problem that must be
repaired. Hence, we do not focus on the much larger prob-
lem of potential side effects that may or may not need to be
repaired later. Thus, we argue that our approach is minimal
with regard to the cause of an inconsistency. Moreover, the
repair actions provided by our approach represent a subset
of repair alternatives. From this subset, one repair alternative
must be performed for repairing the cause of the inconsis-
tency.

Our approach builds on xLinkit and removes repair alter-
natives that do not repair the cause of a given inconsistency. In
doing so, our approach is still able to retain a complete set of
repair alternatives while not necessarily identifying all pos-
sible repair actions within. Yet, the literature distinguishes
abstract and concrete repair actions [32] where abstract
actions identify what model elements to change, e.g., change
element A, and concrete actions identify how to change
them, e.g., change element A to true. Our approach identifies
abstract repair actions though it is also possible to compute
concrete repair actions inmany situations.Additionally, since
there may exist multiple alternatives for repairing inconsis-
tencies and these alternatives may overlap in repair actions,
our approach organizes repair alternatives/actions in a hierar-
chical repair tree. This tree structures the way repair actions
may be selected and developers may find it more useful as a
decision-making tool.

Our approach’s usability and scalability were empirically
evaluated on 24 UML and four Java systems in the context of
39,683 inconsistencies. The results showed an average size
of repair trees ranging from five to nine repair actions per
model. This evidence our approach usability as such range
is reasonable for the developer to deal with when select-
ing repairs. Scalability results showed that the generation of
evaluation trees averaged 4.69 seconds, while the genera-
tion of repair trees takes 0.3 seconds on average. Correctness
and minimalism are argued in comparison to Nentwich et al.
[32,33], showing that our approach is minimal with regard to
the cause. Furthermore, we evaluated the ownership filtering
mechanism considering user-based and artifact-based own-
ership. The results show that the filter reduces the number
of repairs generated based on the number of model elements
owned. Hence, if, for instance, 50% of the model elements
are owned, the number of repairs is reduced to 50% of the
total amount approximately.
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User
Streamer

+ play()
+ stop()
+ play()

(a) Class Diagram

2: wait()

u:User s:Streamer

1: pause()

3: stop()

(b) Sequence Diagram

Fig. 1 UML Model snippets of a VOD System

The paper is organized as follows. Section 2 illustrates the
problem of generating repairs and provides basic definitions.
Section 3 defines the goals of this paper and how it extends the
conference version that precedes this paper [42]. Section 4
discusses the principles of our approach. Section 5 shows
the evaluation of our approach which is followed by Sect. 6
on the threats to validity. Section 7 gives an overview of the
related work on this topic, and finally, Sect. 8 concludes the
paper and gives an outlook on future work.

2 Problem and definitions

To illustrate the problem, we introduce an excerpt of a
video on demand (VOD) system based on a client–server
architecture and a set of consistency rules that specify
well-formedness. For illustrative purposes, we use a simpli-
fied version of UML [38] and Object Constraint Language
(OCL) [37]. The model shown in Fig. 1 consists of two dia-
grams: Fig. 1a) a class diagram describing the structure of
the VOD system, and Fig. 1b) a sequence diagram describing
the process of pausing, waiting, and stopping a video.

Inconsistencies arise if the models violate basic well-
formedness constraints expressed as consistency rules (CRs).
Weuse two such rules for illustration. Firstly,wepresentCR1
that checks if the operation names in a class are unique.More
specifically, an inconsistency is detected if there are two dif-
ferent operations (o1<>o2) with the same name (o1.name
= o2.name) in the same class. In the model of our example,
this CR is violated by the class Streamer (Fig. 1a) because
two operations with the same name, play, exist.

Consistency Rule 1 The name of an Operation must be
unique in the Context of a Class

context Class inv :
not self . operations−>exists (o1,o2:Operation |
o1<>o2 and o1.name=o2.name)

Consistency Rule 2 The Message direction must match the
Class Association direction and theMessagemust be defined
as an Operation in the Receiving Class

context Message inv :
self . receiveEvent−>exists ( l r : Lifeline |
self . sendEvent−>exists ( ls : Lifeline |
ls . attributes−>exists (a :Attribute |
not (a = null ) implies a . type=lr . type) ) )

and
self . receiveEvent−>forAll ( l : Lifeline |

l . operations−>exists (o:Operation | o.name=self .name) )

Consistency rules, however, can also be more complex as
shown in CR 2, which checks that for every message in the
sequence diagram, a corresponding association exists in the
class diagram. Additionally, the rule also checks if the class
diagram defines an operation with a corresponding name of
the sequence diagrammessage. CR 2 is violated bymessages
stop and wait being called from an instance of Streamer to
an instance of User (Fig. 1b). This message call is inconsis-
tent because only the class User may call operations from
Streamer, as shown in Fig. 1a. In addition, the messages
pause and wait are inconsistent because they do not have a
corresponding operation in their class (Fig. 1a), i.e., an oper-
ation with name pause, another with name wait. Since CR 2
is a conjunction, violating at least one argument of the con-
junctionmakes the rule evaluation inconsistent. However, we
can already see that the reasons for the inconsistencies dif-
fer depending on which messages the rule is applied to. For
instance, message stop violates the first conjunction only,
message pause violates the second conjunction only, and
message wait violates both conjunctions. Thus, it is intuitive
that understanding the cause of an inconsistency is important
to guide the developer toward its repair.

2.1 Definitions

Definition 1 (Model) AmodelM consists of model elements
(me ∈ M) which contain properties (py). A property of
a model element is referred to by element dot (.) property
name, e.g., “Streamer.name”. A property can be of (→) a
primitive type (e.g., Boolean, Integer, Float, or String) or
a reference to other model elements. Therefore, model ele-
ments are instances (inst) of a specific type (t y) defined by
themodeling language (ML). For example, the operationplay
in the class Streamer has properties such as name=“play”
which is of the type String (see Fig. 1a).
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M :=
⋃

me

ty ∈ M L

meinstt y

me.py → M ∪ “any value” inst t y

Definition 2 (Consistency Rule) A consistency rule (CR) is
a condition defined for a context that must be fulfilled by the
model. This condition (cond) evaluates to a Boolean value
(B) as true (consistent) or false (inconsistent). A consistency
rule is defined for a context (ct). The context is a meta-model
element, which is a type of a model element.

CR := 〈ct, cond〉
cond(me) �→ true ∨ f alse|me inst ct

Thecondition itself is a hierarchically ordered (tree-based)
set of expressions (ε), where the root expression corresponds
to the condition as a whole and its sub-expressions corre-
spond to parts of the condition. An expression identifies
an operation (op), it has a single parent (except for the
root expression ε0) and one or more arguments (args), an
expected result (exp) and an evaluated result (re).

cond :=
n⋃

i=0

εi |
{∃i, j : ε j ∈ εi .args if j > 0, i �= j

�i, j : ε j ∈ εi .args if j = 0, i �= j

ε := 〈op, args, exp, re〉

Recall that CR 1 is composed of two parts: an exists
expression(-> exists(...)) and an AN D expression com-
posed of two sub-expressions: a not-equals (<>) and an
equals expression (=). Both expressions have two children:
The <> sub-expression has o1 and o2 as children, while =
has o1.name and o2.name. These children are leaf expres-
sions, which either access model elements or are constants.

Definition 3 (Evaluation Tree) An evaluation tree represents
a consistency rule evaluated for a specificmodel element. For
instance, there are three operations in Fig. 1a, hence there
are three evaluations3. Each evaluation checks if a consis-
tency rule’s condition evaluates to true. This can be done
recursively for every expression/sub-expression of a condi-
tion. The root expression of a condition is always expected to
evaluate to true; however, this expectation may change with
sub-expressions, e.g., not expressions, as shown in [44]. An
evaluation tree mirrors the tree structure of the consistency
rule’s condition. However, in case of iterations (e.g., exists

3 From now on, we use the term evaluation to refer to a consistency
rule being evaluated in a model element.

quantifier in CR 2) their (sub) tree structures repeat for every
iteration. Hence, the evaluation tree is an exact log of each
operation computed during the evaluation of a condition. As
an example, Fig. 3 shows an evaluation tree for CR 2. This
evaluation tree will be explained in detail in Section 4.

Definition 4 (Repair Action) A repair action (ra) defines a
change of a model element property that resolves an incon-
sistency in part or full, e.g., often multiple repair actions are
needed to resolve an inconsistency. A repair action identi-
fies the operation (op), the model element (me), the model
element property (py), and, optionally, a concrete value (v
which can be a model element v ∈ M) to change the model
element property. The following operations are possible: add
a model element to the model or to a collection of model ele-
ments, delete (del) a model element from the model or from
a collection of model elements, and modify (mod) a model
element property to a given value. In addition there are the
constraining changes: =, �=, <, >, where, respectively, a
property has to be equal to a value, different from a value,
less than a value, or greater than a value. RA is the set of all
possible repair actions. An abstract repair action (ra) is an
action where no concrete value can be calculated (v =?).

ra ∈ RA := 〈op, me.py, v〉|v �=?

ra ∈ RA := 〈op, me.py, v〉|v =?

op ∈ {add, del, mod,=, �=,<,>}

To illustrate, we can consider class Streamer in Fig. 1a
and CR 1, which is evaluated to false on both operations play,
because their names are not unique. A possible ra in this case
would be to delete (del) one of the play operations (me.py =
Streamer .operations) from the collection of operations.
The value would be one of the operations play (v = play).
Thus, the ra would be: (del, Streamer .operations, play).

Definition 5 (Repair) A repair is a non-empty set of repair
actions (ra) that fixes a specific inconsistency i from the set
of all possible inconsistencies I. This set of repair actions
(ras) may also contain abstract repair actions (ra).

〈i ∈ I, ras ⊆ RA〉

Considering CR 2 evaluation for message wait, the result
is false (inconsistent) as it evaluates to false for both parts
of the conjunction. To fix this inconsistency, a repair should
have ras for fixing both parts of the conjunction. For the first
part, messagewait direction should be inverted, meaning that
classUser should be calling it from class Streamer. Thus, the
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ra should modify (mod) the message receiveEvent property.
In this case, the ra would be: (mod, wait .receiveEvent).
Then, a ra should add message wait to the Streamer class
operations list. Finally, the ra would be: (add, Streamer .

operations, wait). The repair for fixing this inconsistency
would be composed of these two ras.

Definition 6 (Repair Tree) A repair tree is a hierarchical
ordered set of repair nodes for a single inconsistency. The
nodes of a repair tree define whether the underlying repairs
are alternatives (∗) or sequences (+). Repair alternative nodes
follow the exclusive or-alternative (XOR) principle where,
from a set of repair alternatives, only one must be selected at
a time for fixing an inconsistency. Based on that, for select-
ing a different alternative, the user should undo the previous
one. Sequence repair nodes, however, indicate that all those
repairs actions should be performed to fix the inconsistency.
For instance, if we consider CR 1, for fixing the inconsis-
tency on messages play, we could either delete (del) one
of the messages or modify its name (v �= “play”). Thus,
our repair tree would have an alternative repair node (*)
with two possible repairs. More details are discussed in
Sect. 4.

2.2 Ownership-based filter

For reducing the possible combination of repair actions from
the repair tree, we propose filtering repairs based on the own-
ership of model elements. In this paper, we define two types
of ownership: artifact-based ownership and user-based own-
ership. Considering the artifact-based ownership, depending
on the consistency rule, a repair action may suggest modify-
ingmodel elements from different artifacts, e.g., an operation
from a class diagram, or a message from a sequence dia-
gram. We consider these model elements to be owned by
this artifact, as they belong to it. In UML, for example,
this ownership may be based on diagrams, e.g., operation
stop is owned by the class diagram (Fig. 1a), while mes-
sage pause is owned by the sequence diagram (Fig. 1b).
This allows our approach to filter repair actions based on this
ownership.

To better understand this scenario, firstly, let us consider
CR 2. As discussed earlier, message wait violates this CR
in both parts of the conjunction. To fix the first part of the
conjunction, i.e., association direction must match message
direction, a repair action (ra) could suggest changing the
direction of the message on the sequence diagram (ra1)
or changing the association direction on the class diagram
(ra2). For the second part of the conjunction, i.e., message
must be defined as an operation, a ra could suggest renam-
ing message wait on the sequence diagram to “play” (ra3)
or adding an operation called “wait” on the class diagram
(ra4).

Consistency Rule 3 The name of an Operation must be
unique in the Context of a Class and it must have a cor-
responding message in the Sequence diagram

context Class inv :
not self . operations−>exists (o1,o2:Operation |
o1<>o2 and o1.name=o2.name)

and
self . operations−>forAll (o:Operation |

self . behaviour . l ifelines−>exists (m:Message |
m. operation=o) )

Note that for fixing this inconsistency, two repair actions
must be performed, and the possibilities are ra1 and ra3,
ra1 and ra4, ra2 and ra3, or ra2 and ra4. However, if we
consider the type of the diagram as a filtering mechanism
for reducing the possible repairs, we can focus on repairing
the inconsistency only in the sequence diagram. Thus, repair
actions suggesting changes in the class diagram would be
filtered out of the possibilities. In this case, a possible repair
would be to execute ra1 and ra3, reducing the list of possible
repairs.

The aforementioned scenario presents an opportunity for
simplifying the repair tree by filtering out repair actions
originating from different diagrams. Removing these repair
actions, however, could also mean that the inconsistency
might not be fixable. To understand this, let us consider
CR 3 that also contains a conjunction. The first part eval-
uates if an operation on a class has a unique name, while the
second part evaluates if there is a message on the sequence
diagram for all operations in a class. In this case, operation
play would be evaluated to false on both conjunctions as its
name is not unique (Fig. 1a) and it has no corresponding
message (Fig. 1b). Possible repair actions for fixing the first
part of the conjunction would be to change the name of the
first operation play (ra1) or deleting the second operation
play (ra2). For the second part of the conjunction, a mes-
sage corresponding to the operation play could be added in
the sequence diagram (ra3), or the message pause could be
renamed to “play” (ra4). Similarly to CR 2, for fixing this
inconsistency, both parts of the conjunctions must be fixed.
Thus, possible repairs would be ra1 and ra3, ra1 and ra4,
ra2 and ra3, or ra2 and ra4. If we consider filtering repair
actions that only affect the sequence diagram, however, none
of these repairs would be possible. This happens because
for fixing this inconsistency, model elements owned by both
diagrams must be changed.

In the aforementioned example, the total number of repairs
is not big. However, depending on the rule and the model the
number of model elements being accessed by the evaluation
tree can growexponentially [44], for instance,when using the
iterative expression forAll to evaluate a large set of properties.
Thus, the number of repairs for fixing a single inconsistency
can be large. This would overwhelm the developers as they
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would need to decide on executing a repair among hundreds
or even thousands of options. Therefore, while still benefi-
cial as it could reduce the amount of possible repairs, the
filtering has to be handled carefully to prevent not fixing the
inconsistency.

Our approach also considers user-based ownership for
filtering repairs. In this context, the user-based ownership
describes which developers are the owners, thus having read-
ing and writing privileges of a model element. In this paper,
we consider that a model element may have several owners.
The reason why a developer owns amodel element is not sig-
nificant in this work, since companies using our approach can
have different ownership strategies. For example, the own-
ership may be based on the type of UML diagrams, which
would be similar to the scenario described earlier. This own-
ership could also be defined in terms of features,whichwould
make users own several model elements across different dia-
grams.

By considering the user-based ownership aspect, we argue
that developers may only be interested in repair actions that
affect their owned model elements. In this sense, we can
consider filtering repair actions based on the user ownership
of the model elements being modified. However, this could
lead to a problem similar to the artifact-based ownership,
as the repair tree may end up not fixing the inconsistency.
Considering the repair of message wait on CR 2, if a devel-
oper has no ownership rights in the class Streamer, repair
actions for fixing the second part of the conjunction could
not be performed. However, the opposite could also happen
as a large set of repairs could be generated. This would make
the developer choose among hundreds of repairs, which can
be overwhelming. Thus, we argue that filtering repairs can
reduce this number, aiding the developer on the decision-
making.

The user-based ownership may be limited due to compa-
nies not applying this type of restriction in their artifacts,
especially UMLmodels. However, when we consider source
code, developers are responsible for their part of the source
code. For example, we have worked with companies from
the electrical engineering domain which collaborate with
software engineers for modeling and implementing robotic
components. In this case, ownership was important because
engineers from different domains usually only work with
the models from the domain that they are familiar with.
Furthermore, there may be no repairs modifying elements
exclusively owned by a single engineer. Hence, the user-
based ownership can be beneficial by allowing the engineer
to know who are the other engineers that must collaborate to
fix the inconsistency..

We address the ownership filtering for both types of own-
ership, i.e., artifact-based and user-based (see Sect. 4.10).
This is performed by highlighting repair actions in the repair
tree according to the ownership of model elements being

modified. In addition, we discuss how we provide a set of
possible repairs generated from the repair tree, using a high-
lighting mechanism for filtering them.

3 Goal and contribution

By focusing on the causes of inconsistencies, our approach
identifies themodel element properties that must be repaired.
The cause of an inconsistency consists of model element
properties that contribute to that inconsistency (cond(me) =
f alse) [44]. We argue that an inconsistency can be repaired
only by changing at least one of themodel element properties
of the cause. Hence, repairs based on the causemust still enu-
merate all repair alternatives. The focus on the cause gives
developers a complete picture of the breadth of the inconsis-
tency problem and all possible repair alternatives that should
be considered at this point. It is important to mention that
the cause of inconsistencies is almost always a subset of the
model elements involved in the computation of inconsisten-
cies [44]. However, this depends on the expressivity of the
consistency rules being used for evaluating the consistency
of the model. Thus, there is the possibility of rules that are
not expressive enough, e.g., a rule that checks all model ele-
ments in a model, and can induce our approach to provide a
subset of repairs with all possible repair alternatives.

The focus on fast and incremental repairs is an important
part of the goal to ensure that developers continuously have
access to up-to-date repairs. This has several benefits: (i) The
developer is not forced to repair an inconsistency immedi-
ately, but the repairs are kept updated, and (ii) the approach
helps the developer explore the side effects of repairs incre-
mentally because once a repair is chosen by the developer,
its side effects are immediately computed and reflected in
the new set of repairs. In that regard, our approach helps to
guide the developer to explore the depths of an inconsistency
problem.

Based on the goal of this work, this paper proposes an
approach that:

1. generates abstract repairs for causes of inconsistencies,
2. structures repairs into repair alternatives and sequences

using repair trees,
3. supports arbitrary, user-definable consistency rules,
4. is fast, incremental, and scalable as repairs are computed

instantly when the model changes,
5. supports highlighting repair actions based on the model

elements ownership, using this for filtering out repairs,
and

6. supports consistency checking in different types of mod-
els, providing evidence of its use with UML and Java
source code.
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Contributions 1-4 are detailed in previous work [42–44].
In this paper,we extend the discussionon repair generation by
describing how to generate repairs for additional operations
in comparison to previous work [44], including non-Boolean
operations (see Sect. 4.8). Furthermore, contributions 5 and
6 extend previous work, as in this paper we apply a highlight-
ing and filtering mechanism for repairs based on ownership
of the model elements being modified by the repair actions
(see Sect. 4.10). Also, we implemented our approach into a
supporting tool called DesignSpace-IR. This tool provides
support for consistency checking and repair generation to
UML design models as already present in the Model/Ana-
lyzer tool [42], as well as for different types of models (see
Sect. 4.11).

In addition to these contributions, this paper also reports an
empirical evaluation formeasuring the scalability and usabil-
ity of our approach as well as the highlighting and filtering
mechanisms.

4 Approach

In this section, we present our approach. Firstly, we introduce
the principle of computing the cause of the inconsistency.
Then, we discuss how we generate the evaluation tree,
expected results, and repair tree. Next, we present the repair
generator functions, including those for non-Boolean expres-
sions. We also discuss how we simplify a raw repair tree by
removing redundancies. Finally, we introduce the principle
of filtering repairs based on ownership of model elements, as
well as describing how our tool provides support for different
models.

4.1 Principle

Our approach analyzes the evaluation of an inconsistency
to generate repairs. Consider the consistency rule a ∨ (b ∧ c)
where a, b, and c are Boolean expressions on a model. If
inconsistent, any combination of these Boolean expressions
may need repairing. Theoretically possible repair alternatives
are the power set: {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.
For example, repair {b} suggests away of changing themodel
elements referred to by b such that validating b becomes
true. Recall that CR 2 was essentially a conjunction (like
b∧c). Hence, repair {b} could imply repairing an argument of
that conjunction, e.g., self.receiveEvent->exists(. . . ), which
may require repairing one or more model element properties
accessed by that argument. A repair alternativemay also con-
tain sequences of repair actions. For example, repair {b, c} is
a sequence of repair {b} and repair {c}. It is also possible that
repair alternatives overlap in their repair actions, e.g., repair
{a, b, c} overlaps with repair {b, c}.

Nentwich et al. [33] recognized that developers do not
need to investigate the entire power set of repair alternatives.
For example, repair {a} would make a ∨ (b ∧ c) consis-
tent regardless of repairs {b} or {c}. Hence, by considering
the structure of the consistency rule condition, they eliminate
unnecessary sequences of repair actions, such as repair {a, b},
{a, c}, and {a, b, c}. The list of still complete repair alterna-
tives for this consistency rule condition reduces to: {a}, {b},
{c}, or {b, c}. However, this list applies to the consistency rule
as a whole and is not yet customized to a particular incon-
sistency at hand. There are still incorrect repair alternatives.
For example, let us assume that b is true already, while a and
c are false. In this case, a ∨ (b ∧ c) would be inconsistent
but only two repair alternatives out of the four mentioned
would be feasible: repair {a} or repair {c}. Repair {b} is not
necessary because b is already true. And repair {b, c} would
be non-minimal because it would force the developer to also
repair {b}. This is where our work extends Nentwich et al.
[33] because we also consider the cause of the inconsistency,
i.e., why the inconsistency happened.

It is important to understand that the repair alternatives of
a given consistency rule may differ depending on the situa-
tion at hand. For example, if all three expressions a, b, and c
were false, then the correct list of repair alternatives would
be: repair {a} or repair {b, c}. In fact, there is no combina-
tion of a, b and c being true or false that would require all
four repair alternatives {a}, {b}, {c}, and {b, c} as suggested
by Nentwich et al. [33], though their approach generates an
upper bound of all possible repairs. Their approach is thus
complete; however, it does contain irrelevant repair alterna-
tives when applied to specific situations. By investigating
the cause of an inconsistent design, we are able to reduce the
list of repair alternatives. However, the list of repair alterna-
tivesmay still be verbose because repair actions often overlap
among repair alternatives. These two situations discussed are
depicted in Fig. 2. The constraint’s syntactic structures with
evaluation results are depicted on the left and the correspond-
ing repair trees computed by our approach are depicted in the
middle of the figure. For a = b = c = f alse (top), the pos-
sible repair alternatives are: repair {a} or repair {b and c}.
For a = c = f alse and b = true (bottom) the possible
repair alternatives are: repair {a} or repair {c}. The figure
also depicts the equivalent repair tree by Nentwich et al.
[33] (right) which only considers the rule structure but not
the cause. Hence, their approach suggests the same repairs
regardless of the cause of the inconsistency. Their approach is
also a worst-case super-set of repairs that consider the cause.

4.2 Generation of the evaluation tree

The evaluation tree represents the detailed results of the eval-
uation of a consistency rule. The evaluation tree is essentially
a hierarchical log of a consistency rule’s evaluation, complete
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a ∨ (b ∧ c)

Cause

∨

a[false]
∧

b[false] c[false]

Repairs

∗

repair a
+

repair b repair c

Repairs

∗

repair a repair b repair c
+

repair b repair c

Consistency Rule Inconsistency Our Approach Nentwich et al. Approach

Cause

∨

a[false]
∧

b[true] c[false]

Repairs

∗

repair a repair c

Repairs

∗

repair a repair b repair c
+

repair b repair c

Fig. 2 Our Approach computes different Repair Trees for Consistency
Rule a ∨ (b ∧ c) depending on the actual evaluation results of a, b, or c
(the causes). Compare bottom and top. The figure depicts the causes, the
repair trees generated by our approach, and the repair trees generated by

Nentwich et al. [33] which is the same in both cases as their approach
does not consider the cause. Our approach’s focus on the causes results
in smaller repair trees that avoid unnecessary repair actions not relevant
to the inconsistency at hand

with all expressions that were evaluated and their observed,
intermediate evaluation results. The evaluation tree forms
the foundation for computing the repair tree. For compact-
ness and to show the general applicability of our approach
to any constraint language that follows first-order logic (cf.
xLinkit [32] and Beanbag [54]), we use the mathematical
notation for the consistency rule condition instead of theOCL
notation, i.e., ∃ ←→ exists. For example, the CR 2 expressed
in first-order logic is presented as:

self �→ Message :
(∃lr ∈ self .receiveEvent.covered|

∃ls ∈ self .sendEvent.covered|
∃a ∈ ls.represents.type.ownedAttribute|

¬(a = null) ⇒ a.type = lr .represents.type)

∧
(∀l ∈ self .receiveEvent.covered|

∃o ∈ l.represents.type.ownedOperation|
o.name = self .name)

The evaluation tree contains a node for every evaluated
expression and the nodes are annotated with their expected
and evaluated results. Algorithm 1 summarizes how an eval-
uation tree is build up during the evaluation of a consistency
rule condition. The algorithm starts with the consistency rule
and the context elements as input (Line 1). The context ele-

ment is the variable “self” used in the consistency rules, the
“evaluate” algorithm executes the consistency checker on
the root element of the rule’s condition (Line 2), and the
“expected” algorithm sets the expected results (Line 3). For
example, for CR2 evaluated onmessagewait the root expres-
sion is a conjunction and this conjunction is evaluated first
(Lines 6-29). The algorithm starts by creating a node for
each expression evaluated (Line 7). If the expression is the
root expression, then its node is remembered (Line 7); other-
wise, the created node is added as a child to the parent node
(Line 9). The algorithm then evaluates the operation of the
expression. As there could be many kinds of operations, we
only present some operations commonly used in this paper,
depicted in Lines 10-25. For example, a conjunction is eval-
uated by recursively calling the “evaluate” algorithm on both
its arguments (Lines 12-13) followed by applying the logical
and operator and their argument results. There are two impor-
tant observations here: (i) The recursive evaluation always
takes the current node as the next parent node, and (ii) the
result of the evaluation is stored in the node’s evaluated field4.
The evaluation of other operations is quite analogous and a
few more examples are provided in the algorithm. However,
do note that the evaluation tree is not a syntax tree. This is

4 Note that our algorithm ignores shortcut evaluation. For example, if
the first argument of a conjunction is false, then the second argument
is still evaluated which is unnecessary for determining the evaluation
result but useful for obtaining a more complete picture of the cause.
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Algorithm 1 Computing the evaluation tree during Consis-
tency Rule evaluation

1 function evaluate (consistencyRule , contextElement)
2 evaluate (consistencyRule . root , evaluationTree<consistencyRule ,

contextElement>)
3 expected(consistencyRule . root .node, true )
4 end evaluate
5

6 boolean evaluate (expression e , node parent )
7 set n = addNode(e)
8 i f (parent not null )
9 parent . addChild(n)
10 i f (e is−a negation)
11 n. evaluated = not(evaluate (e . arg[1] , n) )
12 else i f (e is−a conjunction)
13 n. evaluated = and(evaluate (e . arg[1] ,n) , evaluate (e . arg[2] ,n) )
14 else i f (e is−a disjunction )
15 n. evaluated = or(evaluate (e . arg[1] ,n) , evaluate (e . arg[2] ,n) )
16 else i f (e is−a implication)
17 n. evaluated = or(not(evaluate (e . arg[1] ,n) ) , evaluate (e . arg[2] ,

n) )
18 else i f (e is−a equals)
19 n. evaluated = evaluate (e . arg[1] ,n)=evaluate (e . arg[2] ,n)
20 else i f (e is−a forall )
21 n. evaluated=true
22 foreach i in e . arg[1]
23 i f (evaluate (e . arg[2] , i ) = false )
24 n. evaluated = false
25 end foreach
26 else . . .
27 end if
28 return n. evaluated
29 end evaluate
30

31 function expected(node, expected)
32 node. expected = expected
33 i f (node. e is−a negation)
34 expected(node. child [1] , not expected)
35 else i f (node. e is−a conjunction)
36 expected(node. child [1] , expected)
37 expected(node. child [2] , expected)
38 else i f (node. e is−a disjunction )
39 expected(node. child [1] , expected)
40 expected(node. child [2] , expected)
41 else i f (node. e is−a implication)
42 expected(node. child [1] , not expected)
43 expected(node. child [2] , expected)
44 else i f (node. e is−a equals)
45 expected(node. child [1] , node. child [2]. evaluated)
46 expected(node. child [2] , node. child [1]. evaluated)
47 else i f (node. e is−a forall )
48 foreach i in node. children
49 expected( i , expected)
50 end foreach
51 else . . .
52 end if
53 end expected

most evident for quantifiers. For example, the forall quanti-
fier (Lines 20–26) has two arguments: the first to identify a
collection of elements and the second to describe the condi-
tion that must hold for every element in the collection. This
quantifier is thus evaluated on as many elements as are pro-
vided in the collection. Hence, the evaluation tree creates as
many nodes as there are elements to evaluate (zero to many)
and each node’s sub-tree describes the evaluation of the con-
dition on that element.

4.3 Generation of expected result

It is important to distinguish between the expected and eval-
uated result because an inconsistency is caused only if the
two differ [44]. The “evaluate” algorithm builds up the eval-
uation tree with all its evaluated results, i.e., n.evaluated.
Expected results are computed by the “expected” algorithm
(Lines 31–53). The “expected” algorithm recursively tra-
verses the evaluation tree from top to bottom and passes the
expected results of the parent node to its children (Line 32).
The expected result is always true for the root node (Line 3).
For all its sub-nodes, the expected result must be computed
depending on the node’s operation. For example, the argu-
ments of a conjunction are expected to evaluate to the same
result as the conjunction itself. For (a ∧ b) to be true, both
a and b are expected to evaluate to true also (Lines 35–37).
However, not every conjunction must evaluate to true. For
example, consider ¬(a ∧ b). Here, the negation of the con-
junction implies that the conjunction is expected to evaluate
to false. The negation node is a parent of the conjunction
node. The negation is expected to evaluate to true, and the
“expected” algorithm changes this to false for its child node
(Lines 33-34). The subsequent call of “expected” on the
conjunction thus expects the conjunction to be false. (The
expected argument would be false.) At least one node of the
conjunction is then expected to be false also.

Furthermore, the expected result is not the same as the
cause of a repair. The expected result is determined for
each argument separately as implying:What Boolean state is
expected of the argument for it to not cause an inconsistency.
Consider, for example, the disjunction a ∨ b. Only one of
the two argument needs to be true for the disjunction to be
true. Still, both arguments are expected to be true because
for computing repairs we have to understand the role of each
argument individually. So, if a in a ∨ b should be repaired,
then it ought to be repaired to true. The same is true for b
in a ∨ b. This rationale also explains the implication a ⇒ b
where a is expected to be false and b is expected to be true,
meaning: If a in a ⇒ b should be repaired, then it ought to
be repaired to false because the implication would be true
regardless of b. Or, if b in a ⇒ b should be repaired, then it
ought to be repaired to true because if b matters, then it must
be true.Most expected results are passed fromparents to chil-
dren but there are exceptions. For example, for the equality
a = b to be true, the equality’s argument a is expected to
match its sibling argument b and vice versa (Lines 44-46).

4.4 Evaluation tree structure

Let us return to the illustration and the aforementioned CR 2.
Figure 3 shows its evaluation tree if evaluated on message
wait. The notation we use in this figure and all the follow-
ing figures is that the expected result is indicated as solid
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CR2(wait)

∧
∃lr ∈ self [wait].rec...[{〈rec〉}]

∃lr ∈ self [wait].sen...[{〈sen〉}]

∃a ∈ ls[d].ope...[{〈ass〉}]

⇒

¬

=

a[〈ass〉] null

=

∀ l ∈ self [wait].rec...[{〈rec〉}]

∃ o ∈ l[s].ope...[{play1, stop, play2}]

=

o.name[play]1 self.name[wait]

=

o.name[stop] self.name[wait]

=

o.name[play]2 self.name[wait]

re = true re = false re �= exp → i
/

Fig. 3 Evaluation Tree for the Inconsistency of Consistency Rule 2 on Message wait

edges for true and dashed edges for false. If the evaluated
and expected results are equal, the edges are drawn in gray
thin lines; if they differ, then the expected results are drawn in
black thick lines. The black thick lines thus depict the cause
of an inconsistency. The values of the variables and proper-
ties are given in square brackets and property values without
names are in angle brackets, e.g., 〈rec〉 represents the receive
event element of type MessageOccurenceSpecification.

The root represents the consistency rule evaluation and
has exactly one node which represents the conjunction of the
rule as was discussed earlier. The left-hand side (left argu-
ment) is the rule’s existential quantifier that iterates over the
lifelines the message is sent to. The source argument of a
quantifier is a horizontal branch (lr ∈ sel f [wait].rec . . .).
In our example, there is only one lifeline and therefore only
one branch for the quantifier condition is created. Concern-
ing the quantifiers, the first one iterates over the receivers of
a message and the second one iterates over its senders. The
third and final existential quantifier iterates over the associa-
tions between the sender and receiver (a ∈ ls[d].ope . . .). Its
condition is an implication that has as its left-hand argument
an inequality relation. This relation evaluates if the attribute
of the sender lifeline is not null and, if it is not null, the right-
hand argument of the implications evaluates if the attribute
type of the sender lifeline is equal to the type of the receiver
lifeline. In thewait message, the attribute is null and therefore
the right-hand argument is an empty equality relation with no
arguments. With the left-hand argument of the implication,
we see a case where the expected result for an expression is
not true because the negation expects that the attribute amust
not be null (see dashed-black lines in lower-left of Fig. 3).

The right-hand argument of the root expression (the con-
junction) starts with an universal quantifier that iterates over

the receiver lifelines (l ∈ sel f [wait].rec . . .). As we already
know, there is only one element that satisfies that quantifier
condition. The existential quantifier below thus iterates over
this one element which references the operations of that ele-
ment’s owner: the class of the receiver lifeline object. This
class, Streamer, has three operations, and therefore, the con-
dition has to be evaluated three times. The leaves of the
evaluation tree are expressions that access model element
properties. For example, the source expression of the exis-
tential quantifier on the left-hand argument and the universal
quantifier on the right-hand argument of the root expression
access the same model element properties: first the property
receiveEvent of the message wait and then the operations
property of the element returned by the first property call.
The result is a collection of property calls of the message
and operation names that are the leaves of the right-hand
argument of the conjunction. Since none of the three oper-
ations is named wait, all three equality relation evaluate to
false. However, as the quantifier is expected to evaluate to
true, it is also expected that at least one of its conditions
evaluates to true. Since this is not the case, all three equality
relations are part of the cause of the inconsistency (i.e., any
one of them could have satisfied the expected result). In this
example, nearly the entire evaluation tree causes the incon-
sistency because message wait violates both conjunctions.
Hence, much of the evaluation tree is painted in black, thick
lines.

The evaluation tree reflects one-to-one the execution of
the consistency rule of the message wait, similar to a hierar-
chical log of a program execution. Naturally, the evaluation
of the same rule on another message may result in a different
evaluation tree because: (i) the quantifiers may have different
collections (e.g., more or fewer operations), (ii) the concrete
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CR2(pause)

∧

∃lr ∈ self [pause].rec...[{〈rec〉}]

∃lr ∈ self [pause].sen...[{〈sen〉}]

∃a ∈ ls[s].ope...[{〈ass〉}]

⇒

¬

=

a[〈ass〉] null

=
t

a[〈ass〉].type[Streamer] lr[d].type[Streamer]

∀ l ∈ self [pause].rec...[{〈rec〉}]

∃ o ∈ l[d].ope...[{play1, stop, play2}]

=

o.name[play1] self.name[pause]

=

o.name[stop] self.name[pause]

=

o.name[play2] self.name[pause]

re = true re = false re �= exp → i
/

Fig. 4 Evaluation Tree for the Inconsistency of Consistency Rule 2 on Message pause

model elements accessed may be different, or (iii) the eval-
uation results of the various expressions may be different.
Hence, the evaluation tree of CR 2 evaluated on message
pause (Fig. 4) looks somewhat different from the evaluation
tree for message wait (Fig. 3), even though the consistency
rule is the same. Figure 4 shows that the message pause vio-
lates the second conjunction only, resulting in the right-hand
side of the evaluation tree to be painted in black, thick lines
only. The receiving object’s class is Streamer, and its oper-
ations would lead to sub-trees on the right-hand side of the
evaluation tree, i.e., all of which causing the inconsistency.
Moreover, many of the leaves point to different model ele-
ments. The evaluation tree thus reflects the concrete situation
of an inconsistency which is important for generating appro-
priate repairs. This is discussed next.

4.5 Repair tree structure

The cause of an inconsistency is determined through the eval-
uation tree and it is the basis for the repair tree. Thus, if a
node in the evaluation tree is part of the cause, then it can
be repaired. The repair of a node usually requires the repair
of all its arguments that are also part of the cause. There
are exceptions, however, where we are not required to repair
all arguments, e.g., disjunctions, or existential quantifiers.
Besides that, the repair tree would still have repair nodes
for all the arguments as alternatives for the developer. These
alternatives, however,wouldhave an exclusive relationwhere
only one should be selected.

Based on a conjunction, we show how repair alternatives
are generated if an expression a ∧ b causes an inconsistency.
Table 1 shows the four possible cases of an inconsistency

caused by this expression. If a ∧ b is expected (exp) to be
true for the consistency rule, then a repair is only needed
if a ∧ b evaluates to false (re = a ∧ b). There are three
cases when this may happen: when either a is false, or b is
false, or both a and b are false. Hence, the repair alternatives
are repair {a} or repair {b} or repair {a + b} (a sequence of
repairs where the order is irrelevant). However, if a ∧ b is
expected to be false, e.g., ¬(a ∧ b), then a repair is only
needed if a ∧ b evaluates to true and there is only one case
when this may happen: when both a and b are true. Here, the
only repair alternative is repair {a∗b} (an exclusive-or where
only one must be selected). This example also illustrates the
need for expected and evaluated results because negations in
conditions change the expected outcome.

Repairs derived from the cause do not consider side
effects, i.e., the repairing of the cause may inadvertently
break something else or reveal something else that is bro-
ken. For example, repairing a may break b. Indeed, there
often are infinite such side effects if we consider the repair
an open world problem, a problem were developers may add
new information not yet present in the model, e.g., adding
a new operation for class Streamer that will have the mes-
sage’s name; or a new parent class to Streamer which has a
new operation, and so on. The focus on the immediate cause
deals with what must be done rather than what may or may
not happen afterward. It must be noted that understanding
side effects is important but so is understanding the cause.
We argue that it is not possible to repair an inconsistency if it
does not repair the cause. Repairing the cause thus explores
the breadth of repairs for a given inconsistency. If we then
proceed with the repair and the repair indeed breaks some-
thing else or reveals another problem, then our approach will
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Table 1 Repair Alternatives for a ∧ b depending on Expected and
Evaluated Results

# a b exp re = a ∧ b R

1 f alse true true f alse {a}
2 true f alse true f alse {b}
3 f alse f alse true f alse {a + b}
4 true true f alse true {a ∗ b}

Algorithm 2 Computing the Repair Tree based on the Eval-
uation Tree

1 function generateRepairTree(consistencyRule , contextElement)
2 root = evaluationTree(consistencyRule , contextElement)
3 repairTree = generateRepairTree( root , null )
4 end generateRepairTree
5

6 function generateRepairTree(expression e , repairTree parent )
7 {repairNode , causeArgs} = TableLookUp(e)
8 repairNode . parent = parent
9 foreach arg in causeArgs
10 i f (arg is−a Expression)
11 generateRepairTree(arg , repairNode)
12 else i f (arg is−a RepairAction)
13 arg . parent = repairNode
14 end if
15 end foreach
16 end generateRepairTree

update the evaluation tree/repair tree to reflect the new situa-
tion. For example, if repairing a breaks b, then after repairing
a the evaluation tree will update based on new cause (b).
Thus, our approach will suggest to repair b at that point, an
incremental characteristic. It is the role of the developer to
guide the repair. Note that deleting a and b are not valid
repairs here because we want to repair model elements, not
consistency rules.

4.6 Repair tree generation

Algorithm 2 shows how the repair tree is generated. As input,
it takes the evaluation tree of an inconsistent consistency rule.
The generation starts with the root expression of the evalu-
ation tree (Lines 2-3). First the function “TableLookUp” is
called to determine how the expression has to be repaired
(Line 7). The function “TableLookUp” is a lookup onto
Table 2, which contains repairs for individual operations.
This function returns two values: (i) a repair node (an alter-
native ∗ or sequence +) and (ii) the subset of arguments that
are part of the cause and also require repairing (causeArgs).
This subset can contain further expressions that need to be
handled recursively (Line 11) or it may contain repair actions
(Line 13).

Table 2 depicts the various operations of the consistency
rule language and how they can be repaired if violated. The
second column lists the expression type (operation), and the
third column presents the repair generator functions with

their guard conditions. To understand the notation used, con-
sider the conjunction #2 in Table 2, which lists all four repair
alternatives we previously discussed in Table 1. For example,
we see that the function “TableLookUp” returns {+, {b}} if
the expected result is true (exp = t), the first argument a
was evaluated to true (rea = t), and the second argument
b was evaluated to false (reb = f ). This is equivalent to
alternatives #2 in Table 1 with the only difference that we
explicitly define the type of the repair node to be a sequence
(+), which is a sequence of one repair only.

Once Algorithm 2 retrieves the repair node and the argu-
ments that are part of the cause of the inconsistency, it
attaches the retrieved repair node to its parent node which
was given as a parameter to the algorithm (Line 8). Then, for
each argument that is part of the cause of the inconsistency,
the “generateRepairTree” function is called recursively to
add to the repair tree. The arguments to the recursive call are
i) the expression of the argument, and ii) the current repair
node that will become the parent of any recursively added
repair node (Lines 10-11). The algorithm thus navigates the
subset of the evaluation tree that causes the inconsistency
and it attempts to repair each node of the cause through a
corresponding node in the repair tree. The repairs in Table 1
are thus guarded by “if” statements to describe what repair
is necessary depending on the cause.

4.7 Repair generator functions

The repair generator functions in Table 2 may return two
kinds of results. It either suggests: i) sub-nodes (arguments)
of complex expressions that need to be explored recursively,
or ii) if a leaf of an evaluation tree is reached, it suggests repair
actions such as add (add a new property to a model element
or add amodel element to a collection),mod (modify amodel
element property), or del (delete amodel element property, or
remove amodel element fromacollection).Dependingon the
quantifier type and the expected result, one or more elements
must be deleted or added from this model element property.
The condition of the quantifier provides one or more repair
sequences and/or alternatives that are generated recursively
depending on the type of expressions the condition consists
of.

Consider, for example, the universal quantifier of rule #9
in Table 2. If this quantifier is expected to be true (exp = t),
then every element in the quantifier collectionmust satisfy the
quantifier condition. If the quantifier evaluates to false, then
we have two alternatives for every element rebi in the collec-
tionwhere the condition evaluates to false: i)We could delete
this element from the collection, or ii) we could repair (mod-
ify) this element. This is implied by 〈∗, {〈del, A bi 〉, bi }〉,
which denotes an alternative between the deletion of the ele-
ment bi in collection A or the repair of the condition bi .
The first alternative is a simple repair action (Algorithm 2,
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Table 2 Excerpt of Rules for the Generation of the Repair Tree

ε {Repair Node, causeArgs}
#1 ¬a 〈+, {(a,¬exp)}〉

#2 a ∧ b

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈+, {a}〉 if exp = t, rea = f , reb = t

〈+, {b}〉 if exp = t, rea = t, reb = f

〈+, {a, b}〉 if exp = t, rea = f , reb = f

〈∗, {a, b}〉 if exp = f , rea = t, reb = t

#3 a ∨ b

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈∗, {a, b}〉 if exp = t, rea = f , reb = f

〈+, {a}〉 if exp = f , rea = t, reb = f

〈+, {b}〉 if exp = f , rea = f , reb = t

〈+, {a, b}〉 if exp = f , rea = t, reb = t

#4 a ⊕ b

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈∗, {a, b}〉 if exp = t, rea = f , reb = f

〈∗, {(a,¬exp), (b,¬exp)}〉 if exp = t, rea = t, reb = t

〈∗, {(a,¬exp), b}〉 if exp = f , rea = f , reb = t

〈∗, {a, (b,¬exp)}〉 if exp = f , rea = t, reb = f

#5 a ⇒ b

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈∗, {a, b}〉 if exp = t, rea = t, reb = f

〈+, {b}〉 if exp = f , rea = t, reb = t

〈+, {a, b}〉 if exp = f , rea = f , reb = t

〈+, {a}〉 if exp = f , rea = f , reb = f

#6 a = b

{
〈∗, {(mod, a, b), (mod, b, a)}〉 if exp = t

〈∗, {(mod, a, �= b), (mod, b, �= a)}〉 if exp = f

#7 a ≥ b

{
〈∗, {(mod, a,> b), (mod, a, b), (mod, b,< a), (mod, b, a)}〉 if exp = t

〈∗, {(mod, a,< b), (mod, b,> a)}〉 if exp = f

#8 a ≤ b

{
〈∗, {(mod, a,< b), (mod, a, b), (mod, b,> a), (mod, b, a)}〉 if exp = t

〈∗, {(mod, a,> b), (mod, b,< a)}〉 if exp = f

#9 ∀a ∈ A : b

{
〈+, {⋃|A|

i=1{〈∗, {(del, A, bi ), bi }〉|rebi = f }}〉 if exp = t

〈∗, {(add, A, ?), 〈∗, {⋃|A|
i=1{bi }|rebi = t〉}〉 if exp = f

#10 ∃a ∈ A : b

{
〈∗, {〈add, A, ?〉, 〈∗, {⋃|A|

i=1{bi }|rebi = f 〉}〉 if exp = t

〈+, {⋃|A|
i=1{〈∗, {(del, A, bi ), bi }〉|rebi = t}}〉 if exp = f

#11 a.b 〈∗, {(mod, a), b}〉

#12 A.is Empty

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈+, {⋃|A|
i=1{〈+, (del, A, ai )〉}}〉 if exp = t

〈+, {〈add, A, ?〉}〉 if exp = f

〈+, {⋃|A|
i=1{〈∗, {(del, A, ai ), (mod, ai ,¬reai )}〉}}〉 if exp = t and A ∈ ε

〈∗, {⋃|A|
i=1{bi }|rebi = t}〉 if exp = f and A ∈ ε

#13 A.includes(b)

{
〈+, {(add, A, b)}〉 if exp = t

〈+, {(del, A, b)}〉 if exp = f

#14 A.includes All(b ∈ B)

{
〈+, {⋃|B|

i=1{〈∗, {(add, A, bi ), (del, B, bi )}〉}}〉 if exp = t

〈+, {⋃|B|
i=1{〈∗, {(del, A, bi ), (add, B, ?)}〉}}〉 if exp = f

#15 A.si ze() : a

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈+, {⋃|exp+1|
i=rea

{〈+, (add, A, ?)〉}}〉 if op is =, exp > rea

〈+, {⋃|rea+1|
i=exp {〈+, (del, A, ?)〉}}〉 if op is =, exp < rea

〈∗, {〈(add, A, ?), (del, A, ?)〉}〉 if op is �=
〈+, {⋃|exp|

i=rea
{〈+, (add, A, ?)〉}}〉 if op is >

〈+, {⋃|rea |
i=exp{〈+, (del, A, ?)〉}}〉 if op is <

#16 a.subString(x, y)

{
〈+, (mod, a, ?)〉 if op is =
〈+, (mod, a, �= a)〉 if op is �=

#17 a.concat(x)

{
〈∗, {(mod, a, ?), (mod, x, ?)}〉 if op is =
〈∗, {(mod, a, �= a), (mod, x, �= x)}〉 if op is �=
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Lines 12-13). The second alternative is a more complex con-
dition that can be repaired only by exploring its arguments
recursively (Algorithm 2, Lines 10-11).

Note that the alternative applies the repair of a single,
offending element of the quantifier only. Naturally, all violat-
ing elements need to be repaired 〈+, {⋃|A|

i=1{...|rebi = f }},
which explains the sequence + of repairs needed across the
union of all elements of the collection (A) where the condi-
tion is false (rebi = f ). If the universal quantifier is expected
to evaluate to false, then the repair changes significantly as the
negation of an universal quantifier is equivalent to an exis-
tential quantifier with a negated condition (see rule #10 in
Table 2). Table 2 describes multiple sets of repair nodes/ar-
guments (an entire sub-tree) for the quantifier whereas the
algorithm expects a single node. The actual implementation
breaks up the quantifiers into multiple parts that separate col-
lections from conditions. However, doing so makes the table
less readable and hence we opted to keep operations intact
in the table.

4.8 Repairs for collections and non-Boolean values

In this paper, we also extended previous work [42] by gener-
ating repairs for additional expressions, presented in Table 2
(rules #12-#17). The collection expressions presented in rules
#12-#14 are Boolean operations, similar to all rules above
(#1-#11). Rule #15, however, presents the expression size
that returns a non-Boolean value, similarly to the subString
and concat expression in rules #16 and #17. Note that for the
collectionBoolean expressions, the repair generation follows
a similar pattern of the universal and existential quantifiers.

In Table 2, rule #12, we have the isEmpty expression.
As this is a Boolean expression, two expected (exp) val-
ues are possible, either true (t) or false ( f ). If exp = t ,
then collection A should be repaired by removing all its ele-
ments. This would generate a sequence of repairs denoted by
〈+, {⋃|A|

i=1{〈+, (del, A, ai )〉}}〉, which would iterate over all
elements in collection A, and delete all its elements. How-
ever, if exp = f , then A is already empty, so adding any
value to it (add, A, ?) would make it consistent. In this case,
we can only propose an abstract repair for the developer
(thus v =?) because our approach does not handle the gen-
eration of concrete repairs as in [25]. We argue, however,
that by providing the type of repair to the developer as well
as the model element, our approach provides guidance for
fixing the inconsistency. Also, there is the possibility that
A in the isEmpty expression is a collection generated from
a sub-expression, e.g., self.operations->select(o|o.name =
’play’)->isEmpty(). In this case, the isEmpty expression
could also be repaired by repairing the sub-expression that
generated A. Thus, the last two options on rule #12 in Table 2
are called if A is an expression (A ∈ ε). If the expected
result is true, all elements in the collection must be repaired

in accordance with the sub-expression (thus, a sequence of
repair actions +). For doing this, there are two alternatives,
deleting the element (del, A, aai ) or repairing the element
based on the sub-expression. Considering the second alter-
native, if the select expression selects all operations from
Streamer that have their name equals to “play,” it would result
in a non-empty collection as two operations have this name
(see Fig. 1a). To repair the sub-expression, we should change
the name of the operations to something different than it cur-
rently is. Thus, the expected value from the sub-expression
should be the opposite of the actual value (mod, ai ,¬reai ).
This leads to all elements in the collection generated from
the sub-expression being repaired until none of them satis-
fies the select sub-expression. If the expected value of the
isEmpty expression is false, then the select expression is
returning an empty collection. Thus, the operations of class
Streamer should be changed so that at least one element
satisfies the sub-expression name equals “play” (thus, an
alternative list of repair actions ∗). The alternative to repair
sub-expressions such as this is also present in the other collec-
tion expressions described in the following. For simplifying
the explanation, however, we only consider the main expres-
sion when explaining the repair generation.

Furthermore, for includes (rule #13) the repairs would be
either to add or del elements from collection A depending
on the expected result (add, i f exp = t or del, i f exp =
f ). For includesAll (rule #14), however, element B is a
collection as well, so we can add or del elements from
both collections Aand B. If the expected result is true,
then we have two alternatives. For each element from B
not present in A 〈+, {⋃|B|

i=1}〉, we can either add it into A
(add, A, bi ) or remove it from B (del, B, bi ). If the expected
value is false, there are also two alternatives. The first is
to remove from A all elements also present in collection
B 〈+, {⋃|B|

i=1{(del, A, bi )〉}}. The second alternative is an
abstract repair, as we can add a new element into B which is
not present in A (add, B, ?).

Our approach also supports the non-Boolean expression
size. To generate repairs for this case, we have to consider
the operator comparing the size of the collection (a) with
the expected result. Hence, we have four possible opera-
tors (=, �=,>,<) with two different conditions for the equal
operator. In Table 2, rule #15, when the operator is “=”,
we have to check if the expected value is greater or lower
than the result of the size expression rea . For instance, if the
expected value is greater, then we have to add elements to
that collection until we reach a greater size than the expected
value (thus we want rea > exp). Furthermore, we will
have a number x of repairs, where x will be the difference
between the expected value and the actual size of the col-
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lection.5 If exp < rea , the repairs would remove elements
from the collection until its size is equal to the expected
value. For the other operators, we follow a similar logic;
however, the expected result does not affect the repairs gen-
erated as the operators different, greater than, and less than
are enough information for generating the repairs. As stated
before, however, we cannot determine which elements are
added or removed from the collection; thus, repairs, in this
case, are always abstract. However, our approach provides
the correct number of elements to the developer, guiding the
developer through fixing the inconsistency.

Lastly, Table 2 presents the subString and concat expres-
sions (rules #16 and #17) that are related to String operations.
These two expressions also have to consider the operator of
the parent node, e.g., the “=” in a.subString(0, 1) = x rep-
resents the operator of the parent node, which is an equals
expression (rule #6). For subString, if the parent operator
is “=”, we can repair it by modifying the string a to an
unknown value that satisfies the parent condition (mod, a, ?).
If the parent operator is “�=”, the repair action required is to
change the value of a into any value that is different than a
(mod, a, �= a).

For concat, the repair could be either to modify the value
of the element a or the argument x . The principle is similar
to the subString repairs. If the operator from the parent is
“=”, then either a or x must be modified to a value that
would validate to true when compared to a string. In this
case, we have two abstract repair alternatives (mod, a, ?) or
(mod, x, ?). If the parent operator is “�=”, then the value of
a or the value of x must be changed to something different
than their currently values. Thus, we have the two repair
alternatives (mod, a, �= a) or (mod, x, �= x). These are also
abstract as the value could be any string with the exception
of their current values. The generation of concrete values,
however, is not the focus of our work. However, by providing
these abstract repairs to the developer, we give the guidance
needed to start repairing these non-Boolean expressions.

4.9 Raw and flatten repair trees

When generating a repair tree for CR 2 evaluated onmessage
wait, the result would be the one shown in Fig. 5. Recall
that this consistency rule had a top-level conjunction and
both arguments of that conjunctionwerewrong: Themessage
direction ofwait was wrong, and there was nowait operation
in the Streamer class. Hence, the top node of the repair tree
reflects the repair of the conjunction where both sides need
repairing (hence the +). The next level reveals how each
argument of the conjunction can be repaired.

5 For simplifying this repair in Table 2, we assumed that our iteration
would start with i = rea and finish when i = exp + 1.

The first argument is about the repair of the existen-
tial quantifier of the left-hand argument of the conjunction.
Looking at Table 2, we find that i) we could modify the
property call that identifies over which the quantifier iterates
(self.receiveEvent), ii) we could add an element to the prop-
erty self.receiveEvent.covered that satisfies the condition of
the quantifier, or iii) we could repair some elements accessed
by the condition of the quantifier itself. The first two options
are simple model changes, and the third option is more com-
plex, comprising yet another existential quantifier. It in turn
reveals two alternatives to repair the source of the quantifier
(one modify and one addition). The third alternative of this
quantifier again suggests to repair its condition, which is the
third existential quantifier in the consistency rule. This last
quantifier results in yet again three alternatives for repairing
the source of the quantifier, namely two modifications and
one addition of an element. Finally, the implication provides
no repair alternatives because the source of the last existential
quantifier does not have any elements. This can be seen in
the equality relation on the left-hand side of the implication
that compares if the attribute a is not null.

Thus far we discussed the repair of the first argument but
recall that both arguments of the conjunction were false.
The second branch below the top level node in the repair
tree (Fig. 5) suggests repair actions for the violated univer-
sal quantifier. The first alternative is again a repair action to
modify the first property call in this chain of property calls
(self.receiveEvent). The second alternative is the deletion of
an element from the property self.receiveEvent.covered, and
the third alternative is the repairing of the elements accessed
by the condition of the quantifier. All violated evaluations
of the condition must be repaired and therefore a sequence
repair node is added to the alternatives of the universal quan-
tifier repairs. The condition is evaluated only once (only one
element is in the source of the quantifier) and is represented
by the existential quantifier that iterates over a collection
of operations. Therefore, the first alternatives are again the
property calls of the source. In this case, there are twomodifi-
cations (l.represents, and l.represents.type), and one addition.
The alternatives for repairing the existential quantifier are the
evaluations of the condition. In the evaluation tree, we saw
that the quantifier condition was evaluated three times (the
right-hand side of Fig. 3), one time for each operation in the
class Streamer. The three alternatives consist of two repair
actions caused by the equality relation of the quantifiers con-
dition that compares the name of the message (self.name)
with the name of the operation (o.name). There, the first alter-
native is the modification of the operation name (play1, stop,
play2) and the second alternative is the modification of the
message name.

We consider this repair tree (Fig. 5) to be raw as it shows
all possible repair actions for fixing the inconsistency, even
redundancies such as 〈mod, ‘wait ′.name which appears
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Fig. 5 Repair Tree for the Inconsistency of Consistency Rule 2 evaluated on the Message wait

Fig. 6 Flattened Repair Tree for the Inconsistency of Consistency Rule 2 evaluated on the Message wait

three times. These redundancies can be flattened by elimi-
nating nodes with only one branch (the sequence repair node
caused by the conjunction and universal quantifier) and by
eliminating cascading nodes (the alternatives nodes). The
flattening is a straightforward process that follows the fol-
lowing rules: (i) Nodes with only one branch (regardless of
the type) are merged to the parent node, (ii) an alternative
node with only alternative children can be merged, (iii) a

sequence repair node with only sequence repair node as a
child is merged, and, finally, (iv) duplication can be elimi-
nated. Figure 6 depicts the semantically equivalent, flattened
repair tree that consists of two branches beneath the sequence
node. Hence, possible repair alternatives are combinations of
the two branches.

In total, this repair tree has 13 repair actions and the
hierarchy of sequences and alternatives allows for 63 repair
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Fig. 7 Flattened Repair Tree for the Inconsistency of Consistency Rule 2 evaluated on the Message pause

alternatives with one or two repair actions each. This exam-
ple also suggests that the repair tree is likely a more suitable
means of expressing repairs because it is cognitively eas-
ier to select one repair from each sub-branch of the repair
tree, i.e., two selections among 9 or less repair actions, rather
than enumerating and selecting from the significantly larger
number of repair alternatives, i.e., one selection among 63
alternatives. A usability study would be needed to confirm
this which is the focus of future work.

It is important to note thatweoftenfind that the causeof the
inconsistency is small enough that the repair tree is limited to
a single branch of sequences or alternatives. Figure 7 depicts
such a case for the inconsistent CR 2 evaluated on Message
pause where only one of the two branches is violated. In
this case, the number of repair actions of the repair tree is in
fact that same as the number of repair alternatives. Here, the
repair tree does not provide any cognitive advantages.

4.10 Highlighting and filtering repairs based on
ownership

Although the flattening mechanism simplifies the selection
of repairs for the developer, there is still an opportunity for
improving the way repair actions are represented in the tree.
For this, we explore the ownership property of model ele-
ments. Thus, we propose to use the ownership of an element
for highlighting repair actions if they suggest modifying ele-
ments in the owners’ context. For instance, if the context is a
class diagram, we can use artifact-based ownership to high-
light repair actions that affectmodel elements inside that class
diagram. This strategy can also be applied for user-based
ownership, in which the highlighted repair actions represent
those where the model elements being affected are owned by
the current user of the tool. Furthermore, the repair actions not
highlighted canbeused for retrieving information about other
owners, i.e., owners of other model elements. This informa-
tion will clarify which users require to perform each repair
action in collaboration for fixing an inconsistency.

Algorithm 3 Highlighting and Filtering Repairs based on
Ownership

1 function highlightActions (repairNode , owner)
2 foreach child in repairNode . children
3 i f ( child is RepairNode)
4 highlightActions (child , owner)
5 else i f (checkOwnership(child ,owner) )
6 child . highlight = true
7 end if
8 end foreach
9 end highlightActions
10

11 boolean checkOwnership(repairAction ,owner)
12 element = repairAction .getElement
13 return element .owners. contains (owner)
14 end checkOwnership
15

16 set filterByOwnership( repairs , owner)
17 set filteredRepairs
18 foreach repair in repairs
19 foreach action in repair
20 i f (checkOwnership(action , owner) )
21 filteredRepairs .add( repair )
22 break foreach
23 end if
24 end foreach
25 end foreach
26 return filteredRepairs
27 end filterByOwnership

Algorithm 3 demonstrates this highlightingmechanism. It
starts by iterating over the children of a repair node (Line 2).
If a child is a repair node as well, a recursive call on the
“highlightActions” function is performed (Line 4). Other-
wise, the child is a repair action, thus the “checkOwnership”
function from Line 11 is called on Line 5, passing the action
and the owner as an argument. The repair action contains the
model element that is affected by the repair. In Line 13, it
is checked if the list of owners of this element contains the
owner passed as an argument. Back at Line 5, if the result
from the Boolean function on Line 13 is true, then that repair
action is highlighted.

We extend this approach by using the highlighting for gen-
erating and filtering a set of possible repairs from the repair
tree.More specifically, in addition to the repair tree structure,
our approach also provides a list with all possible repairs gen-
erated based on the repair tree. Recall that the leaf nodes of
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Fig. 8 Repair tree highlighted for the inconsistency of CR 2 evaluated on the Message wait. Repair actions underlined are those where model
elements being affected are “owned” by the class diagram

the repair tree are repair actions, and a repair is a set of repair
actions that fix an inconsistency (Definition 6). This set of
repairs is generated based on the repair nodes, and repair
actions of the repair tree. If we consider Fig. 6, for example,
a generated set of repairs would contain all possible combi-
nations between the alternatives fixing the first part of CR 2
(alternative node at the top) and the alternatives for fixing
the second part of CR 2 (alternative node at the bottom). The
set combines both options because of the sequence node (+)
on the root, which means that there is an conjunction in the
repair tree. As the top alternative node has seven alternatives,
and the bottom node has nine, the total number of possible
repairs would be 63. Consider that this is only an example,
and more complex rules may lead to bigger repair trees with
multiple conjunctions, thus, multiple sequence nodes.

However, when considering the highlighting based on
artifact-ownership in the context of a class diagram, we can
reduce the number of repairs. Figure 8 shows which repair
actions are affecting model elements related to the class dia-
gram (highlighted with underline formatting). Although the
tree structure and size are the same, the highlighting identifies
those repair actions that can be performed only considering
the class diagram. In this context, there are three actions at
the first alternative node, and seven in the second. Hence,
we could use this information for reducing the set of repairs
(previously containing a total of 63 possibilities) to 21 pos-
sibilities. However, this might not work in a different tree,
as illustrated in Fig. 9, because all the highlighted actions
are on the same alternative node. Hence, among the high-
lighted repair actions, there is no possible combination for
fixing both parts of the conjunction. Thus, our filter cannot

maintain only the repair actions highlighted, but rather, fil-
ter out repairs (set of repair actions) that do not contain at
least one repair action highlighted. In this sense, the number
of possible repairs for CR 2 on message wait would reduce
from 63 to 55. However, in the case of CR 3 for operation
play, the number would remain the same.

Algorithm3demonstrates thefilteringmechanismprocess
in Lines 16-27. The function “filterByOwnership” receives
a list of possible repairs from the repair tree, alongside the
owner. Then, it iterates over the repairs (Line 18), and their
repair actions (Line 19). For each action, the “checkOwner-
ship” function from line 11 is called on line 20. If the function
returns a true value, i.e., the owner owns a model element
affected by that action, the repair is added to the set of fil-
tered repairs (Line 21) and the iteration ends for that repair
(Line 22). This means that if only one repair action from that
repair affects a model element owned by that owner, such
repair will be included in the list. If none of the repair actions
in the repair affect model elements owned, then this repair
will not be included in the filtered set. This set of filtered
repairs is returned to the user (Line 26).

By considering the ownership of model elements, our
approach can also provide developers a highlighted repair
tree and a filtered set of repairs. This may aid the developer
when deciding which repair actions to execute. As we intend
to provide a generic approach, the developer can decide if
they want this highlighting and filtering mechanism to be
used. Furthermore, the ownership can be based on different
contexts, while in this paper we discussed the artifact-based
and user-based context, which might allow developers to use
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Fig. 9 Repair tree highlighted
for the inconsistency of CR 3
evaluated on the Message play.
Repair actions underlined are
those where model elements
being affected are “owned” by
the class diagram

different strategies for assigning and using the ownership of
the model elements.

4.11 Support for different models types

To give support for consistency checking and repair gen-
eration for different types of models, we implemented our
approach into a supporting tool, namely DesignSpace-IR.1

DesignSpace-IR is part of the DesignSpace project2, which
supports collaborative work of engineers from different
domains. Thus, our tool gives support to UML models sim-
ilarly to the Model/Analyzer tool [42]. However, we extend
this support as DesignSpace-IR provides the transformation
ofmodels into a common structure, based on theUMLmodel
presented in Fig. 10. Hence, a model is of a model type,
e.g., UML, source code, and consists of model elements.
These elements have a type and properties. Also, elements
have owners. As this is a generic model, these owners may
have different types depending on the context. In this paper,
we consider two types of owners: artifacts, e.g., class dia-
gram (artifact) owns classes (model elements), and users,
e.g., developer owns a class and its operations. Continuing,
the properties of an element have a type and values. Ele-
ments are a sub-class of values, as a model element can also
be a value, e.g., class Streamer is a value of the property
associationEnd in the association between classes User and
Streamer (Fig. 1a).

We developed a standalone plugin that transforms models
from specific types into the generic type specified in Fig. 10.
Following this strategy allows us to extend the support to
any type of model only by implementing new plugins that
transform models using the same generic structure. After the
transformation, our tool loads the transformed model and
applies the consistency checking mechanism. For instance,
if we consider the class diagram in Fig. 1a, this model is of
the type UML. Streamer is a model element of the type class
with properties, such as the operations play and stop. These
operations are also model elements of the type operation.
The operation play, for instance, has a property called name
with the value equals to play. If consider the artifact-based
ownership, Streamer is owned by the class diagram. Thus,
the transformation keeps all original elements, properties,

Fig. 10 UML Model for representing model elements from different
domains

and values from the original model, preventing data-loss that
could impact the consistency checker [49].

By transforming the models using the common structure
presented in Fig. 10, we can use the same strategy for the con-
sistency checker and the repair generation. Furthermore, the
consistency rule syntax for the consistency checking does not
change independently of the model type. However, because
different model types have different properties, the consis-
tency rules have to be designed specifically for that domain.
For instance, consistency rules designed for UML will prob-
ably not work for source code as the UML meta-model and
source code structure are not the same. For instance, in UML
amodel element representing a class can have “associations”
as a property. In Java, an element representing a class would
represent these associations as “fields.” Thus, a rule designed
for UML to access property associations from a class has to
change for Java to access the fields of the class.

4.12 Concrete repair actions

The repair algorithm discussed earlier generates abstract
repair actions. In some cases, however, our approach is also
able to compute concrete repair actions because the evalu-
ation tree contains concrete values which we can use. For
example, if we want to rename the message wait, there are
an infinite number of strings available as concrete repair val-
ues. However, only two strings would lead to consistency,
namely play and stop, and these two strings can be found in
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Table 3 Evaluation results for
each model

UML models #mes #ev (#I) #ras #ras

VOD 71 76 (3) 3 26

ATM 204 253 (12) 114 115

Microwave Oven 292 156 (12) 11 92

MVC 385 350 (57) 40 298

eBullition 448 320 (58) 46 533

Curriculum Planner 621 568 (56) 106 598

Inventory Sales 1064 809 (77) 251 1673

Dice 1100 756 (109) 85 831

Tele-operated Robot 1257 736 (31) 22 138

Course Registration 1261 802 (113) 634 2611

Home Appliance Contr. 1464 923 (106) 382 2190

Vacation and Sick-Leave 1466 1127(117) 504 1716

IOCF05aT12 1540 994(185) 1028 2035

DESI 1979 1779 (276) 385 1266

iTalks 2048 2062 (196) 397 4679

Build. Management 2093 1259 (278) 273 2474

Biter Robocup 2636 2205 (389) 215 1673

Calendarium 2796 2397 (378) 1017 2540

UMLLCAF03aT1 3009 1547(138) 468 546

XVNPI 5857 3351 (529) 1991 5772

dSpace 8771 5660 (1005) 784 4717

oodt 9853 10835 (2013) 1895 8594

Word Pad 11419 7003 (1485) 320 7385

V Insurance Network FC 15619 10772 (3309) 679 18264

Java Systems

chess 12055 6038 (1226) 8653 3175

gantt 51169 38978 (8402) 45318 22080

iTrust 63098 37846 (7223) 45670 18383

jHotDraw 92820 47698 (11900) 74296 30456

#mes - number of model elements; #ev—number of evaluations; #I—number of inconsistencies;
#ras—number of abstract repair actions; #ras—number of concrete repair actions

the evaluation tree. How to compute concrete values would
exceed the scope of this paper and may be found in [25,26].

5 Evaluation

We evaluated our approach in terms of usability and scala-
bility. We also argue the correctness and minimalism of the
approach. Furthermore,we evaluated the impact of highlight-
ing and filtering repairs based on the model elements being
modified. In the following sections, we describe our evalua-
tion protocol, results and analysis, and threats to validity.

5.1 Evaluation design

To evaluate our approach, we defined different sets of con-
sistency rules, one for each type of model. More specifically,

we defined 17 rules for UML (see Appendix A) and 14 for
Java code (see Appendix B). All these rules were written
using our consistency-language syntax, which is a simplified
version of OCL, e.g., instead of having “OCLAsType”, our
language has “asType” expression. Furthermore, the mod-
els used were gathered over the course of many years and
most are proprietary, e.g., Inventory Sales is owned by IBM
Rational and was shipped with IBM Rational Rose as a sam-
ple UML model. The evaluations were carried out using our
consistency checking tool (see Sect. 4.11). The specifications
for the execution environment are an Intel Core i7-7700 CPU
@3.6GHz with 16GB (8GB available for the tool) RAM and
Windows 10 x64-based. The evaluation results, UML mod-
els, Java source code, and the CRs are available at our online
repository [30].

Table 3 shows the models used in our evaluation as well as
the number of model elements (#mes). The third column of
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Fig. 11 Average number of repair actions by model size

Table 3 shows how many evaluations (#ev) were conducted
in each model for checking the consistency. This column
also shows how many inconsistencies (#I) were found, i.e.,
how many evaluations returned false. For instance, the ATM
UML model has 204 model elements, and it was evaluated
253 times from where 12 inconsistencies were found. For
fixing these inconsistencies, 114 abstract (ras) and 115 con-
crete (ras) repair actions were generated, 229 in total. These
results show that for each inconsistency in the ATM model,
an average of around 19 repair actions is being provided to the
developer. In the following sections, we discuss the results.

It is important to mention that the goal of our evaluation
is to collect data regarding the practicality of our approach.
Thus, the data collected aim to show how the inconsistency
repair behaves in practice, rather than in theory. Themain rea-
son for this is that our approach should be applied in practice
during modeling/designing. Hence, we argue that our results
are true for practical cases, rather than universally valid (for
theoretical cases).

5.2 Usability results

Considering the results inTable 3,wenotice that the bigger
models do not always generate a greater number of incon-
sistencies. This can be seen, for instance, when comparing
models oodt and Word Pad. The former has less #mes but has
more inconsistencies. Aswe used the same set of consistency
rules for all models, this indicates that somemodels are more
consistent than others. Thus, analyzing the total number of
inconsistencies and repair actions is not enough for achieving
conclusions about the usability of our approach. However,
considering the average of these numbers provides us inter-
esting data. Figure 11, for example, shows that the average
repair tree sizes (number of repair actions) ranged from five
to nine per model considering the model size (#mes). Most
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Fig. 12 Average number of repair actions by rule complexity (number
of expressions)

of these repair trees were flat in containing single “alterna-
tives” and “sequences” only. In this figure, we can notice that
the average number of repair actions is not influenced by the
model size. This can be seen as repair trees for bigger mod-
els, such as jhotdraw and iTrust, averaged less than ten repair
actions. In contrast, repair trees for models CourseRegistra-
tion, iTalks and InventorySales averaged between 25 and 30
repair actions. This result is important for understanding the
usability of our approach, as the results show that, on aver-
age, the number of repair actions in a repair tree is reasonable
for a developer to deal with.

Figure 12 compares the average size of the repair trees
per consistency rule, considering the complexity of the rule
(number of expressions). As can be seen, most rules generate
an average number of repair actions ranging from 1 to 50.
We can also see that the number of the expressions within the
rule does not impact the average number of repair actions.
This can be seen as CR7 (see appendix A) is the rule with
more repair actions on average, while not being one of the
most complex rules. In contrast to CR9, the rule with more
expressions is within the average size range of most other
rules. Thus, the number of model elements within a model
and the complexity of the rule do not always affect the size of
the repair tree. This happens because depending on the con-
sistency rule, the number of elements evaluated, i.e., accessed
by the rule, varies. This is more explicit if we analyze the
structure of the rules to understand what impacts the average
number of repair actions in a repair tree. If we consider CR7,
we can see that its context is Package, and the rule checks
the list within a package. Thus, the rule is checking every
model element inside the list of packagedElement for eval-
uating the consistency. The first element in a UML model is
a package, which contains a list of packages with packaged
elements inside. Hence, a large number of model elements
are being evaluated, and if found to be inconsistent, need to
be modified. Thus, the results shown in Fig. 12 represent that
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this particular rule has a large number of repair actions due to
a large number of model elements being evaluated. Based on
this analysis, while considering the conclusions mentioned
earlier, we can conclude that:

The usability of our approach is satisfactory as the
size of a repair tree is not directly impacted neither
by the number of model elements in the model or
by the consistency rule complexity. Rather, the size
of the repair tree is directly impacted by the number
of model elements evaluated by the consistency rule.
Moreover, the usability of our approach is shown by
the low average number of repair actions. As said,
this number does not increase in largermodels orwith
more complex consistency rules. However, if a rule
evaluates a large set of inconsistent model elements,
the repair tree size may be too large for a developer
to handle.

5.3 Scalability results

To evaluate the scalability of our approach, Fig. 13 shows
the average time, in milliseconds (ms), for generating the
evaluation and repair tree for each model. In this figure, we
can see that the generation of the evaluation tree is always
higher than the repair tree. While the evaluation ranges from
more than 103 to less than 105 ms on average, the repair tree
generation ranges from below 10 up to 103 ms on average.
This represents that, on average, our approach takes 4.69
seconds for generating an evaluation tree and 0.3 seconds
for generating a repair tree considering the evaluated mod-
els. The reason for this difference is that for generating the
evaluation tree, all model elements in the context of the rule
are evaluated. For the repair tree, however, only inconsistent
model elements are considered. As the number of incon-
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Fig. 14 Average time for generating repair tree by rule complexity

sistent model elements will never be greater than the total
number of model elements, these results were expected. We
can also see that the average generation time remained small
and stable regardless of themodel size. This result has shown
that our approach is scalable as it is applicable in models of
different sizes as the trees’ generation time is not impacted
by the number of model elements being checked.

Considering the rule complexity, the size of the evalua-
tion tree is related to the time for computing it. Thus, as
we discussed in the usability results, consistency rules with
iterative expressions (forAll, select, exist) tend to evaluate
more model elements. However, the number of model ele-
ments evaluated also depends on the context of the rule. For
instance, in a UMLmodel, there are more packagedElements
than classes, e.g., CR7 presented the repair trees with the big-
ger sizes. Hence, the time needed for the generation of the
evaluation tree is not the complexity of the rule (number of
sub-expressions), rather the number of model elements eval-
uated by the rule. This is also evidenced by the average repair
generation time which is presented in Fig. 14. Most of the
repair trees were generated, on less than 102ms on average,
except for CR9, CR5, CR7, and CR3, which are between 102

and 104ms. As argued, these results show that the complexity
of the rule by itself does not affect the generation time in a sig-
nificant way, as the growth is linear. The variable that always
impacts both the generation time and the size of the trees is
the number of model elements accessed by the rule. To clar-
ify this, we can consider CR3 (appendix A), the CR with the
greater average time for generating repair trees, and CR12,
which had one of the smaller average times. CR12 is a more
complex rule than CR3 as it contains more sub-expressions;
however, CR3 evaluates more model elements because its
context and types of expressions consider all associations in
the UML model.

Wehighlight these results as theygo in a different direction
from what theoretical results show [5]. In theory, the size of
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themodel should have a direct impact on the time for evaluat-
ing the elements. This happens because the more elements a
model has, the more evaluations are performed, and the more
inconsistencies could be found, leading to more repairs to be
computed. However, this is directly related to the rule defini-
tion. For instance, a consistency rule to compare all elements’
names with all other elements’ names would generate, in the
worst case, #me2 evaluations. Thus, bigger models would
take more time and resources to evaluate than smaller mod-
els. However, such rules are may not be used in practice. As
we mentioned, our goal when elaborating our approach is to
use it in practice during the designing of models. This claim
is supported by analyzing which consistency rules are found
in other approaches [22,26,33,36,44].We still plan, however,
to conduct further research in the regard of how well-defined
consistency rules must be for the approach to work properly.
Hence, by analyzing our findingswe conclude that, regarding
scalability:

Our approach is scalable to be used with different
(larger) models/rules as the time for computing the
evaluation and repair trees is not directly impacted by
the model size or by the consistency rule complexity.
Rather, the time for generating the evaluation/repair
trees is impacted by the number of model elements
evaluated by the consistency rule.

5.4 Correctness andminimalism results

The correctness of our approach essentially hinges on the
correctness of the cause computation. Nentwich et al. [33]
demonstrated that their approach must be complete (no
missing repair actions). As was discussed, our approach
essentially extends on [33] by removing non-minimal repair
actions by considering the cause of inconsistency. Hence,
our approach always computes a subset of the repair actions
computed by [33]. Recall that the causes of inconsistencies
are almost always a subset of the model elements involved
in the computation of inconsistencies [44]. In the subset pro-
vided by our approach, however, repairs that do not repair
the cause directly are not considered (side effects). So, we
argue that the correctness and minimalism of our approach
rely on the correctness and minimalism of the mechanism
for removing non-minimal repairs.

First, let us discuss if our approach is correct. To compute
the cause of inconsistency, we compare the expected result
of an expression with the evaluated result. The evaluated
result is simply observed during the evaluation of a consis-
tency rule. In this sense, an inconsistency cannot be caused
if the expected result is equal to the evaluated result. Hence,
all expressions where the expected result equals the evalu-
ated result can be ignored safely during repair computation.

This implies that our approach is conservative, because the
expressions ignored are not related to the cause. Thus, repairs
generated from these expressions would not repair the cause
of a given inconsistency. Therefore, ignoring these expres-
sions not related to the cause does not impact the correctness
of the approach.

Considering the minimalism, we have to discuss if our
approach produces minimal repair alternatives and if it is
an optimal result with regard to the cause. For this, we
have to consider the possibility of an expression where the
expected result is different from the evaluated result, while
this expression does not cause a given inconsistency. This
case is possible whenever an expression is irrelevant to a
parent’s expression. Consider the disjunction a ∨ b. If both
a and b evaluate to false, then both cause the disjunction to
be false, i.e., an inconsistency. However, if only a evaluates
to false and b does not, then the expected result of a differs
from the evaluated result, as a is expected to evaluate to true.
In this case, we have the situation where the expected/evalu-
ated results of a differ. This difference, however, is irrelevant
to the parent’s expression a ∨ b whose expected result still
equals the evaluated result. Algorithm 2 avoids this problem
through the top-down recursive exploration of expressions,
which does not explore an expression’s argument unless the
expression’s expected result differs from the evaluated result.
Consequently, there cannot be any repair actions for expres-
sions where the expected and evaluated results differ, while
the parent’s expressions do not.

Based on the aforementioned, we can define the minimal-
ism of our approach based on the difference of our work
and Nentwich et al. [33], as illustrated in Fig. 2. While the
approach of Nentwich et al. [33] provides a set of all possible
repair actions (A), our approach provides a subset of repair
actions (B) which only contains repair actions that repair the
cause of an inconsistency 〈B ⊂ A〉. However, as we do not
consider side effects that may or may not be repaired later,
repair actions present inB only represent the starting point for
the developer to start fixing all inconsistencies in the model
(one at a time). Thus, it is possible that some repairs present
in the subset B are more complete (fix multiple inconsisten-
cies) than others. Hence, we argue that our approach must be
minimal with regard to the cause of an inconsistency.

Our approach is correct and minimal with regard
to the cause of an inconsistency as it improves on
Nentwich et al. [33] by generating a subset of repair
actions focusing on fixing the cause of the inconsis-
tency, thus providing a minimal and optimal result
for repairing this inconsistency.
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5.5 Evaluating the ownership-based filter

The last analysis of the results is related to the repair filtering
considering two different types of ownership, namely user-
based and artifact-based. The goal of this evaluation is to
check if the filtering based on the ownership presents similar
results independently of the type of ownership applied (either
artifact-based or user-based).

For user-based ownership, we aim at collecting evidence
that our filter brings benefits for a variety of scenarios. For
this, we simulated four different scenarios for collecting data:
(i) ownership of all model elements (100%); (ii) ownership
of 75% of the model elements; (iii) ownership of 50% of
the model elements; and (iv) ownership of 25% of the model
elements. Thus, we configured all four scenarios for each
model by randomly selecting themodel elements to be owned
until the total number represented the respective percentage
for each scenario, i.e., 100, 75, 50, and 25. We used the same
models described in Table 3. After assigning this ownership,
we generated the repairs and filtered them. The reason for
performing this strategy for the evaluation is to mitigate the
threat of not being able to simulate a real user scenario. In
this configuration, we can analyze our approach results in
a variety of possibilities and see if the results differentiate
based on the scenarios.

Figure 15 shows the total number of repairs per model
based on the different user–ownership scenarios. The num-
ber of repairs generated ranged from less than 10 up to almost
105. As shown, for most models, reducing the number of ele-
ments owned also reduced the number of repairs generated.
The percentage of repairs filtered was around the same per-
centage of model elements owned. Thus, when 75% of the
elements were owned, the repairs remaining after the filter
represented 75% from the total number of repairs without
filtering. The reason for this is related to the usability results
mentioned earlier.Aswementioned, the size of the repair tree
is impacted by the number of inconsistent model elements.
The repair tree also impacts the set of generated repairs.
Thus, by reducing the number of owned elements, the num-
ber repair actions highlighted also reduces. This impacts the
number of generated repairs, as repairs with no-highlighted
repair actions are filtered from the set.

There were some cases where the user-based ownership
filter did not reduce the number of repairs following this pat-
tern. This happenedwhen the repair trees generated presented
a high amount of alternatives modifying a single model ele-
ment. Thus, as this single element might have been owned in
all four scenarios, the number of repairs generated from this
treewould remain the same.This indicates that the user-based
filter presents better results when the repair tree contains
repair actions modifying different model elements.

For evaluating the artifact-based filter we separated the
UML and Java source code, as these use different types of
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Fig. 15 Repairs per Model Filtered by User–Ownership

artifacts. For the UML models, we considered the owner-
ship of different diagram types, namely class and sequence.
Thus, a filter for class diagrams would filter out repairs mod-
ifying model elements that were not part of a class diagram.
Figure 16 illustrates the results of each filter, as well as no
filtered results, per each UML model. For most of the mod-
els, by filtering out repairs of different diagrams, the number
of repairs reduced. Only in five cases the number of repairs
with no filter and with the class diagram filter was the same.
This happened because some models did not contain incon-
sistencies outside their class diagrams, and thus, all repairs
generated were fixing this type of diagram only. Thus, our
filter presented better results when applied in a repair tree
modifying model elements from different diagram types.

For the Java source code, we filtered the repairs based on
the Java classes. Thus, if a class was owned, all the elements
within this class were also owned, e.g., fields and methods.
However, as the number of classes varied among the mod-
els, before collecting the data we assigned the ownership of
the classes similar to the user scenarios. More specifically,
we randomly assigned the classes of each model in four dif-
ferent scenarios: (i) All classes were owned; (ii) 75% of the
classes were owned; (iii) 50% of the classes were owned;
and (iv) 25% of the classes were owned. Figure 17 shows the
results of the four scenarios for Java. By reducing the num-
ber of classes owned, the number of repairs remaining after
the filter also reduced. Similarly to the user-based ownership,
when 75% of the classes were owned, the number of repairs
remaining after the filter was applied was around 75% of the
total. The same pattern happened for 50 and 25%. Thus, in
this case, our filter presented similar results in all scenarios,
not being impacted by the model size or consistency rule.

For collecting evidence about the scalability of our repair
generation, we collected the time in milliseconds required
for generating the repairs from a repair tree for each model.
This result is shown in Fig. 18. We can see in this figure
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that the average time for generating the repairs is not always
impacted by the model size. We can also see that the genera-
tion time took on average between 0.1 seconds (102 ms) and
100 seconds (105 ms), with only a few outliers below and
above this range. This resulted in an average of 8.3 seconds
for generating the repairs for all models. Hence, we under-
stand that the repair generation and filtering are scalable as
the model size does not impact the time required for generat-
ing the repairs. Also, the time required is within a satisfactory
range.

Based on the results discussed, we can conclude that:

Our approach provides a set of possible repairs gen-
erated based on the repair tree in a satisfactory time.
Furthermore, this set can be reduced by filtering out
repairs based on different types of ownership.

6 Threats to validity

This section discusses internal, external, and conclusion
threats to validity and how we mitigated them based on [53].

6.1 Internal validity

An internal threat is related to the selection of the models
used for the evaluation. In this threat, a set of only small
or large models could result in too many or too few incon-
sistencies found, thus also impacting the repair generation.
For mitigating this threat, we used 24 UML and four Java
systems with their sizes ranging from 71 to 92,820 model
elements. This resulted in a range from 3 to 11,000 inconsis-
tencies per model, aggregating in a total amount of 39,683
inconsistencies, 1417.25 on average. These numbers show
that the models used are varied enough for supporting our
findings.

Another threat is the set of consistency rules used as the
evaluation and repair tree sizes may be impacted by the rules.
To mitigate this threat, we defined a varied set of rules with
different sizes, expression types, and evaluating different
contexts. The results regarding the number of evaluations
per model support our claim that this threat was mitigated.
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The evaluations number ranged from 76 to 47,698, result-
ing in a total of 187,300, 6,689 on average. These numbers
show that more than 50% of the model elements were evalu-
ated for eachmodel. Thus,we argue that the consistency rules
were varied as they were not only checking the consistency
of a small set of model elements per model.

6.2 External validity

An external threat is related to the generalization of our
results to other model domains. In this evaluation, we used
UMLmodels and Java source code, sowe only have evidence
to support our approach in these domains. Our approach,
however, can be extended to other domains. For this, we pro-
vided and discussed a generic structure (Fig. 10) that can
be used from transforming models from different domains.
After this conversion, the consistency of these models can be
checked by defining the rules based on that domain.

6.3 Conclusion validity

A conclusion threat is related to the scenarios considered
for the evaluation of the user-based ownership filter. As
we did not use a real scenario with real users, the results
may be impacted. For mitigating this problem, we randomly
assigned the model elements considering four different sce-
narios. These different scenarios configured as 25, 50, 75,
and 100% of the model elements were owned. These differ-
ent ownership scenarios provide us with a variety that can be
used for collecting data about the usability and scalability of
the filter. However, we acknowledge that user-based owner-
ship is still not adopted in theUMLmodeling community yet,
as it is considered still a challenge even in cross-domain col-
laborative tools [49]. As our approach does not focus only
on UML, however, we believe that giving support for this
type of ownership is important. In source code, for instance,
user-based ownership is being applied by different version
control systems, e.g., Git6, as well as in project management
tools, e.g., Jira.7

We also considered the artifact-based filter for achieving
our conclusions. For the artifact-based filter of Java, we also
defined four different scenarios. Our goal was collecting data
considering this variety of ownership of the Java classes. Our
results show that for both cases, the filter follows a pattern as
the number of repairs reduces based on the number of model
elements owned. As mentioned before, the main reason for
using the four possible scenarios with different percentage
of ownership is to obtain results considering this variety of
possibilities. By analyzing these results we could check if
our filtering mechanism was behaving differently according

6 https://git-scm.com/.
7 https://www.atlassian.com/software/jira.

to the scenario. As the results showed, this was not the case
as the filtering kept a pattern among all scenarios.

7 Related work

The approach presented in this work relies on analyzing
consistency rules that are expressed in first order predicate
logic [24,50]. However, a key aspect is that our approach
detects the cause of an inconsistency based on the structure
of a consistency rule and the behavior during its evaluation.
The novelty of our approach is the combination of the struc-
ture of the consistency rule and its evaluation behavior while
most existing approaches focus on the structure only (or a few
on the behavior only). Despite this, our approach is similar
to most existing approaches in using a language for consis-
tency rules based on predicate logic [26,32,54]. Thus, our
approach can still be applicable to all of them in principle.
In this section, we discuss these pieces of work, presenting
their similarities and differences compared to our approach.
We structure this discussion based on the different topics that
are relevant to our work.

7.1 Cause of inconsistencies

A pre-requisite for correct and meaningful repairs is the
calculation of the real cause of an inconsistency. In the
SAT community, there is such an equivalent: a Minimal
Unsatisfiable Set (MUS) [28] which is the minimal set of
unsatisfied clauses that cause a UNSAT, which is analogous
to inconsistent. In this case, a design model and its con-
straints can be transformed into an SATmodel [10], followed
by applying (High-level) Unions of Minimal Unsatisfiable
Sets ((H)UMUS) [34]. However, this might lead to problems
because the models and constraints have to be transformed
into SAT, then the (H)UMUS calculation is performed. This
is a problem due to the computational needs being expensive
and not necessarily incremental. Thus, we argue that it is
beneficial to identify causes directly in design models reduc-
ing these computational needs. Furthermore, Czarnecki and
Pietroszek [10] use OCL to define well-formedness rules for
the verification of feature-based model templates which are
analyzed by a SAT solver. While not directly related to the
aforementioned problem, the ability to translate constraints
requires detailed understanding of constraint semantic which
is very relevant in this work. König and Diskin [23] proposed
an algorithm for consistency checking on interrelatedmodels
to reduce cost of inconsistency detection caused by model-
merging. They achieve this reduction by performing early
localization based on the specified formalization of the inter-
relation on an arbitrary number of typed models. However,
they dot not propose repairs for these inconsistencies.
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Nentwich et al. [32] provide an incremental approach
(xLinkit) to evaluate the consistency of arbitrary XML doc-
uments. However, their approach is conservative and it
may suggests non-minimal and even incorrect repairs, for
instance, if the consistency rule is partially violated only,
i.e., if not all parts of a consistency rule evaluation that
access model element properties contribute to the cause of an
inconsistency. This happens because their approach uses the
structure of a constraint for generating and filtering repairs
for inconsistencies. Thus, it does not use the actual cause of
the inconsistency. This is a problem because the cause is usu-
ally different for every inconsistency. Nonetheless, we will
see that our approach builds on their work. Table 2 is clearly
based on their principles. Like them, we do not consider side
effects on other constraints.

7.2 Repair generation

Hegedus et al. [19] present an approach that is based
on graph transformations which generates quick fixes for
Domain-Specific Modeling Languages (DSMLs). They use
a graphical notation to express the model and the con-
straint, which is different comparing to our strategy. Based
on the DSMLs, the approach creates quick fixes to resolve
an inconsistency using Constraint Satisfaction Problem over
models. The quick fixes contain as many actions as needed
to resolve a given inconsistency. Document management
systems (DAGs) check the consistency of interrelated docu-
ments that are processed by a team of authors. For example,
Scheffczyk et al. [46] use s-DAGs [47] to represent the docu-
ments and the consistency rules. Repairs for inconsistencies
are derived from the s-DAG representation and not from
the documents. Heuristics are used to eliminate unneces-
sary repairs. These heuristics may be useful in their field,
but they are not necessarily useful for model-based software
development, because each software project has different
requirements. Thus, no generic heuristics can be derived and
applicable for all software projects. Furthermore, the gener-
ation process of repairs is independent of the inconsistency
detection process which requires additional computation as
opposed to our approach, where the repair generation is built
directly on top of the consistency detection mechanism.

Xiong et al. [54] present an approach that combines the
detection of errors and provides actions to repair them on
UML models. They use their own language to define the
consistency relations. This language, called Beanbag, has
an OCL-like syntax and provides a fixing semantic for ele-
ments that are changed. However, when writing consistency
relations, the developer also has to specify how this rela-
tion has to be fixed when it is violated, a manual and error
prone activity without guarantee for completeness or cor-
rectness. Dam and Winikoff [11] analyzed and developed an
approach on how OCL constraints, based on their internal

structure, can be violated or resolved, respectively. They dis-
tinguish five different actions that can be taken to achieve a
violation or resolution. Abstract repair plans are generated
at compile time, i.e., the set of OCL constraints is statically
defined in the tool, and these abstract actions are instantiated
if the constraint is violated by the model. The repair plans
that resolve the inconsistency are ranked and provided to the
user who decides which plan to execute. The repair plans
can also be modified or executed partially. Their approach
is designed exclusively for OCL and a proof is given that
this approach is correct and complete regarding single OCL
operations. However, in contrast to [33], this approach con-
siders all inconsistencies at once which is both a scalability
problem as recognized by the authors and not necessarily in
the spirit of tolerating inconsistencies [4].

Straeten andD’Hondt [48] use aknowledgebase (expressed
in description logic) as well as the query and rule language
nRQL to generate repairs for inconsistentmodels. The incon-
sistencies are detected by nRQL queries where the variables
of these queries are bound tomodel elements. The resolutions
are represented as nRQL rules that consist of statements that
add or remove data from the model to resolve the incon-
sistency. This approach also considers all inconsistencies at
once and generates a set of repair actions that transform the
model from an inconsistent state to a fully consistent one,
if a solution exists. As their approach must transform the
model and the inconsistency rules into description logic, it
has no incremental characteristic, i.e., the operation is similar
to batch-based approaches that are time consuming. More-
over, the same limitations as for Dam and Winikoff [11]
apply. An incremental approach for detecting and repairing
inconsistencies is also presented in [12,13]. It uses various
languages for the definition of consistency rules, like C# or
Java and is extended to OCL for the definition of dynamic
constraints (consistency rules). It does not need any anno-
tations or modifications of existing languages to check the
consistency of UMLmodels. Based on this approach, Egyed
[13], Egyed et al. [14] present how to repair inconsisten-
cies in models and how the generated choices are evaluated.
However, their approach is overly conservative and generates
repairs for all model elements accessed by the evaluation of
an inconsistency, while often only a subset thereof causes the
inconsistency. Nonetheless, our work borrows extensively
from these approaches. Particularly, in that the repair tree is
computed from an evaluation tree which is a refinement of
their approach.

7.3 Repair planning

Almeida da Silva et al. [3] developed a Prolog-based
approach that generates repair plans for inconsistencies.
These repair plans consist of actions in Praxis notation that
are needed to resolve as many inconsistencies as possible
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causing as few new inconsistencies as possible. As there
exists an infinite number of ways to resolve inconsisten-
cies, this approach has a configurable exploration level that
reduces the number of repairswith the danger of not resolving
the inconsistencies. Favoringminimal changeswithmaximal
consistency is a heuristic that may be useful in certain cases
but does not explore the breadth of the repair alternatives
available, and it thus has limitations in applicability.

Puissant et al. [41] propose to use automated planning
for resolving design model inconsistencies while aiming at
a fast computation of repairs without assessing the relevance
of the repair plans. With a similar goal, the work of Ohrn-
dorf et al. [35,36] traces unfinished modifications to identify
the cause of inconsistencies and propose possible repairs.
Our approach differs from these by checking for inconsis-
tencies and proposing repairs incrementally. Allaki et al. [2]
focus on repairing inconsistencies in collaborative modeling
scenarios. They organize and analyze the decision making
concerning the inconsistency fixing, thus aiding the repair
process. Their approach handles repairs from a management
perspective, focusing more on the decision-making on how
to handle the repairs. Our approach, however, focus on gen-
erating repairs based on the source of the inconsistencies, as
well as providing a tree structure to help the selection of the
generated repairs.

7.4 Non-repair-based approaches

There are approaches that emphasize on instrumentality and
optimizations but are not necessarily amendable to repairs.
Xu et al. [55] described how consistency rules can be opti-
mized for the re-evaluation. They use a run-time observation
of the consistency rule evaluation to filter out parts of the
evaluation that do not contribute immediately to the overall
evaluation result. The filtering is not, like in this paper, opti-
mized to detect the cause of an inconsistency but to optimize
the memory consumption and re-evaluation time for the per-
vasive context where the resources are limited. While their
approach is able to detect inconsistencies, it is not able to
compute the cause of an inconsistency. Nonetheless, we bor-
row from the idea of trying to understand the evaluation to
optimize a process, althoughwe do so for a different purpose.

Blanc et al. [7] introduced an incremental approach that
is based on the model changes that can be made. In their
approach, a consistency rulewill be re-evaluated only if a cer-
tain change in the model affects the result of the consistency
rule. They pointed out that the performance of re-validating
a consistency rule depends on the complexity of the consis-
tency rule condition, but little is known about the overall
scalability. Nonetheless, understanding whether a change
impacts a consistency rule is related to understanding repairs
though their paper does not explore this aspect. Jongeling
[21] proposed a methodology that helps developers to main-

tain consistency. This is done by identifying inconsistencies
during the development and maintenance of the system. The
work also reports how tomitigate these inconsistencies,with-
out relying on repairs.

7.5 Studies on concrete repairs and side effects

Two limitations of our approach are not generating concrete
repairs and not dealing with side effects generated from
repairing an inconsistency. Kretschmer et al. [25] propose
the generation of concrete repairs based on abstract repairs
generated. Khelladi et al. [26], Kretschmer et al. [22] dealt
with change propagation of models considering repairs and
their side effects. However, these approaches focus on how
to transform abstract repairs into concrete ones, and how the
side effects of a repair impact other repairs, rather than the
generation of repair alternatives, the focus of our approach.
Also, our approach supports highlighting and filtering the
repairs generated based on the model elements being modi-
fied. Another difference from their work is that our tool also
supports different types of models besides UML.

Wang et al. [51,52] present ARepair, an automated tool
for repairing Alloy models [20]. Their tool captures desired
model properties through the use of AUnit tests, repairing the
model so that all AUnit tests pass. Relying on unit tests gives
information for repairing inconsistent models automatically,
which may be a good option depending on the engineering
scenario. In addition, theBeAFix tool [18] also supports auto-
mated repair of Alloymodels. Their approach, however, does
not rely on unit tests, but on assertions on the models, which
are used in formal declarative languages. Our approach, how-
ever, goes toward a different direction of these approaches, as
we do not intend to repair the models automatically. Rather,
our approach aims at giving the developer a subset of repair
alternatives that ismanageable and applicable to its intention.

7.6 Database repairs

Finally, it is important to point out that the repair of design
models has conceptual similarity to database repairs when
integrity constraints are violated [5]. Thus, database repair
techniques have been applied for fixing inconsistencies in
UML/OCLconceptual schemas [16]. Rull et al. [45] present a
tool (AuRUS) that analyzes UML/OCL conceptual schemas
and presents the result of consistency checking of integrity
constraints. These integrity constraints describe the reason
why a property of the schema was not satisfied, causing an
inconsistency. We may also find other tools with the similar
goal of checking for problems in UML schemas [8,9,16].
All these approaches provide a way of formalizing a UML
schema by relying on the constraints defined. They mostly,
however, only support specific UML diagrams, such as class
diagrams [9].
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A more generalizable approach is presented by Oriol et
al. [39]. With this approach, given a structural schema with
its constraints and an information base, the consistency of
such information base can be maintained after the appli-
cation of some update. Their approach relies on a chase
algorithm for computing repairs, a technique applied in
database repairs [1]. Their approach was evaluated using
UML schemas with constraints defined in OCLF O [15], a
fragment of OCL. The limitation of their approach is the
need of a schema-like structurewith constraints defined in the
OCLF O , thus restricting its applicability in other types of arti-
facts as well as using constraints defined with regular OCL.
While our approach can be applied with regular OCL, as well
as to different types of artifacts such as source code, a similar
approach is presented by Krieger et al. [27], called OCLexec,
which translates OCL constraints defined in the conceptual
schema into an SAT problem. Then, it simulates the oper-
ation by generating Java source code that invokes an SAT
reasoner. This reasoner provides an information base that is
guaranteed to satisfy the OCL constraints defined. This work
is also restricted to situationswhere schemas are present. Fur-
thermore, due to the technologies limitations of using Java,
their approach is limited to specific types of repairs, e.g., the
approach is not able to deal with deletions. Also, none of
these approaches consider the owner of the artifacts being
checking for consistency, which we support with the own-
ership concept. This support can provide a way to perform
collaborative repairs among users.

8 Conclusion

This paper presented an approach for generating repair trees
for fixing model inconsistencies. Our approach achieves this
result by focusing on identifying the cause of the inconsis-
tency and generating a repair tree with a subset of repair
actions focusing on fixing this cause. We also discussed how
we build on past work by including in the approach support
for collection and non-Boolean expressions. Furthermore,
we implemented a highlighting mechanism based on owner-
ship. With this mechanism, our approach can generate a set
of repairs from the repair tree, filtering out repairs modifying
model elements not owned by the developer.

The approach was implemented as a standalone tool, and
we discussed how we extended this tool to support consis-
tency checking and repair generation for different types of
models.We empirically evaluated our approach on a set of 24
UML models and four Java systems. For collecting the data
of the evaluation, we used a set of 17 UML consistency rules
and 14 Java consistency rules. The data were collected in a
context of 39,683 inconsistencies identified in the models.
It was shown that the focus on the causes of inconsistencies
provides amoremanageable repair tree. In terms of usability,

the size of the repair trees generated per model ranged from
five to nine on average. The time for generating these repair
trees averaged around 0.3 seconds, showing the scalability
of our approach. We also found that the computation time of
the evaluation and repair trees was independent of the model
size, which can vary widely. We argue that our approach is
correct and minimal with regard to the cause, due to improv-
ing on [33] with the difference that we focus on the cause of
the inconsistency, thus removing non-minimal repairs from
the repair tree. In addition, we evaluated our approach con-
sidering an ownership-based filter. The results evidenced that
this filter can reduce the number of possible repairs generated
from a repair tree based on the number and type of model
elements owned by a developer.

For futurework,we plan to conduct an evaluationwith real
users, as well as use additional types of models such as Jira8

and 4diac9 to extend our evidence concerning the support
for different models. We also plan to conduct evaluations
considering models from other domains. Furthermore, we
plan to mine source-code repositories to obtain user-based
ownership information from artifacts. This information may
be considered for applying the inconsistency repair approach,
for filtering out repairs as well as expanding the collaborative
aspect of repairing artifacts. Lastly, we aim at investigating
how well-defined a consistency rule must be to have impact
in the scalability of our approach.

Acknowledgements The research reported in this paper has been partly
funded by the Austrian Science Fund (FWF) (grant # P31989-N31
as well as grant # I4744-N) and by the Austrian COMET K1-Centre
Pro2Future of the Austrian Research Promotion Agency (FFG) with
funding from the Austrian ministries BMVIT and BMDW.

Funding Open access funding provided by Johannes Kepler University
Linz.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

8 https://www.atlassian.com/software/jira
9 https://www.eclipse.org/4diac/

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.atlassian.com/software/jira
https://www.eclipse.org/4diac/


326 L. Marchezan et al.

A: Consistency rules (CR) for UMLmodels

CR 1: Message Action must be defined as an Operation in
Receiver’s Class

context Message inv :
self . receiveEvent .asType( InteractionFragment) . covered−>forAll( r | r . represents . type .asType(Class) .

ownedOperation−>exists (op | op.name=self .name) )

CR 2: The connected Classifier of the Association End
should be included in the Namespace of the Association

context Association inv :
self .memberEnd. size () > 0 implies self .memberEnd−>forAll(p | p. type <> null implies p. type .

namespace = self .namespace)

CR 3: AssociationEnds must have unique Names within
the Association

context Association inv :
self .memberEnd−>forAll(p1,p2 : Property | p1 <> p2 implies p1.name <> p2.name)

CR 4: At most one AssociationEnd may be an Aggrega-
tion or Composition

context Association inv :
self .memberEnd−>size () > 0 implies self .memberEnd−>select (p | p. aggregation .name = ’composite’)−>

size () <= 1 or self .memberEnd−>select (m | m. aggregation .name = ’shared ’)−>size () <= 1

CR 5: A Class may use Unique Attribute Names

context Class inv :
self . ownedAttribute−>forAll(p1,p2:Property | p1 <> p2 implies p1.name <> p2.name)

CR 6: A Classifier may not belong by Composition to
more than one Composite Classifier

context Property inv :
( self . association <> null and self . aggregation .name=’composite’) implies ( self . upper >= 0 and self

. upper <= 1)

CR 7: A Package must have a non-empty unique name

context Package inv :
self .packagedElement−>forAll(e1,e2 | (e1 <> e2) and (e1 .name <> ’’ and e2.name <> ’ ’) implies (e1 .

name <> e2.name) )

CR 8: An Interface can only contain Public Operations
and no Attributes

context Interface inv :
self . ownedAttribute−>forAll(pr : Property | pr . association <> null or pr . vis ibi l i ty .name = ’public ’)

and self .ownedOperation−>forAll(o: Operation | o. vis ibi l i ty .name = ’public ’)

CR 9: No two Class Operations may have the same Sig-
nature

context Class inv :
self .ownedOperation−>forAll( o1,o2 : Operation | o1 <> o2 implies (o1.name <> o2.name or o1.

ownedParameter−>size () <> o2.ownedParameter−>size () or o1.ownedParameter−>collect (p1:
Parameter | p1. type )−>exists ( t1 : Type | o2.ownedParameter−>collect (p2: Parameter | p2. type )
−>excludes( t1 ) ) or o2.ownedParameter−>collect (p3: Parameter | p3. type )−>exists ( t2 : Type | o1
.ownedParameter−>collect (p4: Parameter | p4. type )−>excludes( t2 ) ) ) )

CR 10: Operation Parameters must have unique Names

context Operation inv :
self .ownedParameter−>forAll(p1,p2: Parameter | p1 <> p2 implies p1.name <> p2.name)

CR 11: The Type of Operation Parameters must be
included in the Namespace of the Operation Owner

context Operation inv :
self .ownedParameter−>forAll(p: Parameter |p. type <> null implies p. type .namespace = self .owner.asType(

Class) .namespace)

CR 12: The Parent must be included in the Namespace of
the Generalizable Element

context Generalization inv :
self . source−>forAll(e1: Element | e1 . isKindOf(NamedElement) implies self . target−>forAll(e2 :

Element | e2 . isKindOf(NamedElement) and e1.asType(NamedElement) .namespace = e2.asType(
NamedElement ) .namespace) )

CR 13: Statechart Actionmust be defined as an Operation
in the Owner’s Class

context Transition inv :
let classif ier : BehavioredClassifier = self .owner.asType(Region) . stateMachine .context in ( self .

owner.asType(Region) . stateMachine <> null implies classif ier . isTypeOf(Class) implies
classif ier .asType(Class) .ownedOperation−>exists (o:Operation> | o.name = self .name) )

CR 14: An Operation has at most one return Parameter

context Operation inv :
self .ownedParameter−>select (p : Parameter | p. direction .name = ’return ’)−>size () <= 1

CR 15: Every lifeline has to have a corresponding Class

context Lifeline inv :
self . represents . type . isTypeOf(Class)

CR 16: Every transition has to have a corresponding mes-
sage

context Lifeline inv :
self .coveredBy−>asList ()−>f irst () .asType(PackageableElement) .ownedBehavior−>asList ()−>f irst () .asType(

StateMachine) . region−>asList ()−>f irst () .asType(Region) . transition−>forAll( t : Transition | self .
coveredBy−>exists (m|m. isTypeOf(MessageOccurrenceSpecification) implies m.asType(
MessageOccurrenceSpecification) .message.name = t .name) )

CR 17: A lifeline without messages must not have a cor-
responding transition

context Lifeline inv :
self .coveredBy−>asList () . size () > 0 implies self .coveredBy−>asList ()−>f irst () .asType(

InteractionFragment) . covered−>isEmpty()

B: Consistency rules (CR) for Java

CR 18: A method has to be owned by a Class

context Class inv :
self . parentClass <> null

CR 19: An interface must be implemented by a class

context Class inv :
self . interfaces−>forAll( i | self .methods−>includesAll( i .methods) ) ;

CR20:Aclassmust implement all methods from its inter-
faces

context Class inv :
self .coveredBy−>asList () . size () > 0 implies self .coveredBy−>asList ()−>f irst () .asType(

InteractionFragment) . covered−>isEmpty() ";

CR 21: A class can only have one super class

context Class inv :
not ( self . superClasses−>size () > 1)

CR 22: A class should have methods and fields

context Class inv :
self .methods−>size () > 0 and self . fields−>size () > 0

CR 23: A field name must be unique within the class

context Class inv :
self . field−>forAll(f1 , f2 | f1 <> f2 implies f1 .name <> f2 .name)

CR 24: A field name should not be longer than 20 char-
acters
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context Field inv :
self .name−>size () <= 20

CR 25: A field should be accessed by at least one method
context Field inv :

self . acessingMethods−>size () > 0

CR 26: A method name within a class can only be the
same if the parameters are different
context Class inv :

self .methods−>forAll(f1 , f2 | ( f1 <> f2 and f1 .name = f2 .name) implies f1 . parameters−>exists (p1 | f2
. parameters−>exists (p2 | p2.name <> p1.name ) ) ) )

CR 27: A method name should not be longer than 20
characters
context Method inv :

self .name−>size () <= 20

CR 28: A method must be called at least once
context Method inv :

self . callers−>forAll(m| m. callees−>exists (c | c . puid = self . puid") )

CR 29: A method should have more than 0 and less than
11 statements
context Method inv :

self . statements−>size () > 0 and self . statements−>size () < 11

CR 30: A method should have less than 11 parameters
context Method inv :

self . parameters−>size () < 11

CR 31: A method should have parameters with unique
names
context Method inv :

self . parameters−>forAll(p1,p2 | p1 <> p2 implies p1.name <> p2.name)
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