
Software and Systems Modeling (2022) 21:939–962
https://doi.org/10.1007/s10270-022-00993-3

SPEC IAL SECT ION PAPER

An exception handling framework for case management

Kerstin Andree1 · Sven Ihde1 ·Mathias Weske1 · Luise Pufahl2

Received: 11 November 2020 / Revised: 12 February 2022 / Accepted: 22 February 2022 / Published online: 8 April 2022
© The Author(s) 2022

Abstract
In order to achieve their business goals, organizations heavily rely on the operational excellence of their business processes.
In traditional scenarios, business processes are usually well-structured, clearly specifying when and how certain tasks have
to be executed. Flexible and knowledge-intensive processes are gathering momentum, where a knowledge worker drives the
execution of a process case and determines the exact process path at runtime. In the case of an exception, the knowledge
worker decides on an appropriate handling. While there is initial work on exception handling in well-structured business
processes, exceptions in case management have not been sufficiently researched. This paper proposes an exception handling
framework for stage-oriented case management languages, namely Guard Stage Milestone Model, Case Management Model
and Notation, and Fragment-based Case Management. The effectiveness of the framework is evaluated with two real-world
use cases showing that it covers all relevant exceptions and proposed handling strategies.

Keywords Exception handling · Knowledge-intensive processes · Flexible processes · Case management

1 Introduction

Business process management (BPM) is the core of each
organization to optimize their business processes in such a
way that an overall business goal is achieved. The main arti-
fact of BPM are business process models [6]. Traditional
control-flow-oriented process models represent all possible
execution paths of a business process and provide a complete
description of possible alternatives.

Therefore, ensuring the business processes fulfill their pur-
pose is a necessary endeavor. However, looking at the real

Communicated by Selmin Nurcan and Pnina Soffer.

B Sven Ihde
sven.ihde@hpi.de

Kerstin Andree
kerstin.andree@student.hpi.de

Mathias Weske
mathias.weske@hpi.de

Luise Pufahl
luise.pufahl@tu-berlin.de

1 Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482
Potsdam, Germany

2 Software & Business Engineering, Technische Universitaet
Berlin, Sekr. EN 6, Einsteinufer 17/3rd floor, 10587 Berlin,
Germany

world it is impossible to always predict the future, thus result-
ing in unforeseeable events (e.g., weather changes, missing
data) happening, which interrupt the execution of a business
process [19]. In general, these unforeseeable events are called
exceptions. In the worst case, these exceptions will not only
interrupt the execution but also may lead to irrecoverable
errors if not handled correctly. That is why exception han-
dling is a vital method for an organization to get its business
process back on track. Standard processmodeling languages,
such as Business Process Model and Notation (BPMN) [22],
offer concepts to capture and handle exceptions in a rather
detailed manner, which can lead to complex process models.
An overview of state-of-the-art methods of event handling in
existing business process management systems (BPMSs) is
given by Russell et al. [27].

In recent years, increasing use and importance of dynamic
and knowledge-intensive processes can be noticed (e.g., in
the areas of medical treatment, education, etc.) [5,12]. For
this processes, so-called knowledge workers determine the
exact process path by their decisions at runtime [5,15]. Dif-
ferent case management languages exist to support case
management, such as CaseManagementModel andNotation
(CMMN) [23]—the standard for case management, Guard-
Stage-Milestone (GSM) approach [16]—the underlying con-
cept of CMMN, and Fragment-based Case Management

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00993-3&domain=pdf


940 K. Andree et al.

(fCM) [14]—an approach using BPMN process fragments
triggered by certain conditions.

Exceptions can be handled by defining additionally frag-
ments in fCMor stages inCMMNandGSM.This approach is
limited because not all exceptions occurring at runtime can be
imagined at design time, so-called unpredictable exceptions.
Moreover, the resulting model would increase in complex-
ity. Unfortunately, an adaption of the exception handling to
flexible processes has not happened yet, leaving the knowl-
edge worker to identify and handle exception on their own
without any support with the risk for delays or issues in the
cases. Thus, in this work, we aim to apply the exception
handling patterns by Russel et al. [27], which were origi-
nally developed for well-structured processes, and develop
an structured exception handling framework for case man-
agement languages. The exception handling patterns offer
a broad range of possible handling strategies for different
exception types structurally identified from business process
execution systems [27]. This categorization can potentially
support knowledge worker in a structured manner to handle
unpredictable exceptions to return to the normal case execu-
tion in a fast and professional way. Thereby, we understand
a normal case execution as the predictable variations and
exceptions in the execution of cases in contrast to unpre-
dictable exceptions. The aim of this work is to re-engineer
the exception handling patterns to case management in order
to enable case workers to handle major exceptions based on
current case management literature and advances in excep-
tion handling in process and case management systems.
Following the structure of [27] and extending it, we define
exception handling in four levels: (1) Activity Level, (2)
Fragment/StageLevel, (3)CaseLevel and (4)RecoveryMea-
surements on Case Level.

In a previous work [3], we have presented the applica-
tion of the exceptions handling patterns to fCM. In this
work, we want to generalize the approach to other rele-
vant stage-oriented case management languages, such as
GSM and CMMN. Additionally, we have defined require-
ments for exception handling in case management and added
a discussion on the limitations of the current exception
handling patterns. Furthermore, the coverage of the frame-
work is evaluated by an elicitation of exceptions from two
knowledge-intensive processes.

In the remainder of this paper, we introduce the basics and
related work on exceptions and case management in Sect. 2.
Following that, we present a real-world case model example
in Sect. 3 and discuss the requirements for exception handling
in case management. In Sect. 4, the exception patterns are
introduced as the foundation to ourwork. Then,we extend the
current exception handling to adapt to the increased require-
ments of dynamic, knowledge-intensive processes in Sect. 5.
Lastly, the coverage on real-world use cases is evaluated in
Sect. 6 and the findings of this work are concluded in Sect. 7.

2 Basics on exceptions and case
management

This section introduces the concept of exceptions and their
classifications in Sect. 2.1. Further, case management is
introduced as an approach to support knowledge-intensive
processes in Sect. 2.2. Finally, related work is presented in
Sect. 2.3.

2.1 Exceptions: terms and definitions

In general, exceptions are triggeredby certain causes that lead
to a deviation of the normal process execution [18]. While a
cause can occur at any time (even outside of process execu-
tion), we only speak of an exception when the effects hinder
an activity from being executed. Thus, we can assign a spe-
cific process state to each exception, which is defined by the
states of all activities involved according to the activity life
cycle. Consider the following example: Due to an external
cause, a resource is already faulty before process execution.
We do not yet speak of an exception in this case because
there are no effects or relations to a process yet. Only when
the process starts and the resource is allocated to an activ-
ity that cannot be executed as a direct consequence of the
defect, an exception is thrown. So, we define in the scope of
this research work exceptions in relation to the activity that
threw it and the current process state.

Kurz et al. [18] differentiates between three types of
exceptions regarding their predictability: (1) routine, (2)
minor and (3) major exceptions. Exceptions, in addition to
their predictability, can also be classified into types that pro-
vide more information about their cause. Table 1 shows the
five different types introduced by Russell et al. [27]. Besides
the very general exception type Activity Failure, there are
more specific types of exceptions like Deadline Expires or
wrong Resource Allocation. An external trigger—external

Table 1 Exception types defined for an activity based on [27]

Exception type Explanation

Activity failure Activity is not able to continue its
execution.

Deadline expires Deadline (i.e., time when it should
be finished) of an activity is not
reached

Resource allocation 1. No fitting resource was found
2. Issue with a resource occurs after
allocation
3. Wrong resource was allocated

External trigger External information leads to an
interruption of the execution.

Constraint violation Invariant of an on-going process is
violated.

123



An exception handling framework for case management 941

information— can also lead to an exception. This differentia-
tion into different types serves to limit the variety of possible
handling strategies in order to propose more specific and
therefore more useful handling.

As routine and minor exception defined by Kurz et al.
[18] are predictable, only the handling of routine exceptions
is modeled in the process model. The handling of minor
exceptions is not explicitly modeled for reasons of model
complexity. However, this type of exceptions can be handled,
for example, with a template-based strategy with best prac-
tices and guidelines presented by Kurz et al. [18]. Another
possibility is the use of so-called exception handling patterns
introduced by Russell et al. [27]. Major exceptions, though,
have to be handled currently ad-hoc outside the case man-
agement system.

In this work, we want to focus on major exceptions and
want to provide a structured approach to handle them in a
case management system. The exceptions will be classified
into the five event types introduced by Russell et al. [27].

2.2 Knowledge-intensive processes

In recent years, research has addressed increasingly the need
for flexibility in business processes to enable reliability and
support of static and dynamic changes [1,31]. Reichert and
Weber [26] distinguish four major flexibility needs, namely
(a) variability, i.e., the need to have different process model
variants to handle different groups of customers, products,
etc., (b) looseness, which is the need to leave some aspects
unspecified duringmodeling because cases are unpredictable
etc., (c) adaptation as the need to react to exceptions or special
cases by adapting the process, and (d) evolution is the need for
process model changes over time due to changing business
environments.

So-called Knowledge-intensive processes (KiPs) have a
high need of variability and looseness. They are defined
as “processes whose conduct and execution are heavily
dependent on knowledge workers performing various inter-
connected knowledge-intensive decision-making tasks” [5].
Process execution heavily relies on the exchange of knowl-
edge in which content only emerges during execution.

Case management is a management approach to support
the modeling, execution and analysis of KiPs [20]. Often
case models expressed in a certain case management lan-
guage, such as CMMN, are used to represent the possible
executions of a case, i.e., an instance of a case model. It
stresses the variability and looseness by under-specifying the
control flow between the case activities, so that the knowl-
edge worker can control the order of activities individually
for a specific case [14]. In general, we differentiate in this
work between three different case management paradigms
depending on their main notion to realize the variability and
looseness:

1. Constraint-oriented In these languages, the variability
and looseness is mainly realized by focusing on con-
straints between case activities, such as the declare
language [24] or DCR (Dynamic Condition Response)
graphs [29]. In essence, knowledge workers are allowed
to do everything as long as they comply with the existing
rules and constraints.

2. Data-oriented These languages focus on the data objects
which are processed in a case [30], the so-called case
objects. Variability and looseness is achieved in such
approaches by splitting the process definition in life cycle
definitions for the individual objects and a model defin-
ing their interactions. At runtime, case objects can be
created and updated flexibly whereby the life cycle defini-
tions need to be followed. Furthermore, allowed creations
and updates might be further restricted by the interaction
model. An example is PHILharmonic Flows [17], where
the micro-processes describe the detailed activities and
relations allowed on the involved data objects and macro-
processes specify how the micro-processes can interact
with each other.

3. Stage-oriented Knowledge-intensive processes are sub-
divided into stages or fragments, which can then be
dynamically executed based on the needs and exper-
tize of a knowledge worker. An activity here can read
and change multiple case objects. Modeling languages
for stage-oriented case management are the Guard Stage
Milestone Model (GSM) [16], Case Management Model
and Notation(CMMN) [23] and Fragment-based Case
Management (fCM) [14].

In contrast to the constraint and data-oriented case man-
agement languages, stage-oriented languages have more
concepts to be handled by a knowledge worker in case of an
exception, such as activities, stages and case objects. There-
fore, we think that knowledge worker might have a higher
need for a structured exception handling approach in order
to handle the different concepts. Thus, in this research work,
we focus on stage-oriented case management languages.

2.3 Related work

Exception handling in structured processes to handle unfore-
seen errors immediately has been widely researched and
analyzed, resulting in the well-known exception handling
patterns [27].

In addition to support adaptability [26] which is essen-
tial for exception handling, a structured elicitation of change
patterns for business process execution systems by Weber
et al. [32] provides a broad range on how a specific pro-
cess case can be adapted by domain experts, e.g., by adding
or deleting process fragments. However, case studies have
shown that the use of change patterns for more complex

123



942 K. Andree et al.

adaptions requires a high skill cap of the process designer
[33]. Similarly, Zimmermann and Döhrig [34] provide adap-
tation patterns for BPMN, where the exception handling
patterns [27] are considered as well. How they realize the
exception handling patterns as BPMN adaptation patterns
is not discussed in detail. Recovery measures in case of
exception has been researched for BPEL (Business Process
Execution Language), an XML-based language to define the
execution of structured processes. Fahland and Reisig [7]
provide for BPEL an execution semantics to handle excep-
tions. Therefore, process scopes are defined in which certain
errors are relevant and can be handled by a so-called fault
handler. The fault handler is waiting for exceptions, and if
one occurs, it stops the execution in the scope and executes an
exception handling activity. Thiswork has also influenced the
execution handling in BPMN, where error boundary events
at an activity or subprocess can catch errors, interrupt the
execution and can trigger a flow to handle the error [22]. In
contrast to this work, it provides a concept for predictable
exceptions that are pre-specified in a fault handler.

For exception handling during runtime in case manage-
ment, adaptability is a key factor but still an open topic [12].
Hybrid process modeling notations that combine imperative
with declarative process modeling can also provide support
for knowledge-intensive processes. A structured overview of
those is given by Andaloussi et al. [2]. Although many lan-
guages aim at adaptability during the process execution, a
systematic exception handling approach is not supported.

Next, wewant to present existing exception handling tech-
niques for the different case management paradigms:
Constraint-oriented. Constraint-oriented languages, such as
DECLARE [24], provide constraints as a way to restrict the
case execution. This provides the knowledge worker a lot
of freedom to handle predictable and unpredictable excep-
tion during the case execution. Thus, no specific approach
exists so far to support exception handling in constraint-based
approaches.
Object-oriented. For Philharmonic flows, Andrews et al. [4]
provide a technical concept for the case engine to support
ad-hoc changes on the life cycles of case objects. It allows
the user to adapt a case to unknown exceptions but the user
has to initiate it on its own and no holistic support for han-
dling unknown exceptions is given. Amore automatic-driven
exception handling technique for object-oriented case man-
agement is provided by Sid et al. [28]. The authors use AI
planning to support the execution of knowledge-intensive
processes by providing the case worker a guidance on how
to execute a case. In case of an exception that is defined as
an external event, which requires changes on data attributes,
a re-planning is initiated. Thus, exceptions in this work [28]
can be directly mapped to changes on specific case objects.
We consider unknown exceptions as a more general concept

where a concrete mapping to concrete options of exception
handling is not directly given.
Stage-oriented. Steinau et al. [30] show in their framework
for data-centric approaches that GSM does not support for
ad-hoc changes and error handling. In contrast, in fCM [14],
new fragments can be added during runtime which support a
kind of exception handling. Knowledge workers have to rely
on their experience for handling an exception and have to
make sure that the case model is still valid when they add a
fragment. Fahland and Woith [8] propose a flexible process
execution system based on small Petri nets fragments, called
Oclets that can be dynamically combined at runtime, and
additional Oclets can be defined to handle predictable excep-
tions. Furthermore, unpredictable exceptions can be handled
by adapting the case model while running, which are also
verified [9]. Still, a systematization about the possibilities
for handling an exception is not yet given.

3 Motivation and requirements

This section motivates the need for a structured framework
for case management languages that handles exceptions
caught during runtime. We first introduce a knowledge-
intensive process in Sect. 3.1—the organization of a course—
for explaining the three different modeling techniques for
stage-oriented case management: GSM, CMMN, and fCM,
and its already existing exception handling methods includ-
ing their limitations in Sect. 3.2. The use case as well as
the models were developed in collaboration with two knowl-
edge workers who are working in this field. Based on this,
requirements for an effective and structured exception han-
dling framework are deduced in Sect. 3.3

3.1 Motivating scenario

To organize a university course, the knowledge worker—
the professor and/or the teaching assistant (TA)—have to
decide on each step the most appropriate execution path to
deliver a successful course. A course exists in different for-
mats, e.g., with graded exercises andwithout, andmight have
to be adapted to different parameters (e.g., holidays during
the semester, previous knowledge of the students, etc.). In the
given process, the knowledge worker has to work on three
main fields, namely the course, the exercise, and the exam,
which are represented as stages in CMMN. In order to have
a successful and insightful course in the upcoming semester,
the knowledge worker can plan the course. This includes fig-
uring out the amount of occurrences of the course depending
on the holidays during the semester, as well as the maximum
allowed amount of students in the course. Only based on
this planning, the knowledge worker can prepare the course

123



An exception handling framework for case management 943

Table 2 Overview of
exceptions that might occur
when organizing a university
course and are not modeled

Exception Exception type General handling strategy

Corona regulations prohibit
presence events

Activity failure complete change of course format
(presence to online), use of
prerecorded material

Overbooking of the lecture hall Resource allocation Request new room and
reschedule/complete loss of
course

Student gets sick, no exam can be
handed out

Resource allocation Get illness validation document
and schedule a catch-up date

Students have questions after or
outside of the course

External trigger Unstructured solution: answer
questions directly/structured
solution: offer a scheduled time
for Q&A

content (slides, learning material, etc.), or book the needed
rooms to hold the lectures/exercises/exam. For each of the
planned dates, the knowledge worker then holds the lecture.
Optionally, in addition to the lectures, sessions can be held
thatmay include hand-on-sessions to deepen the engagement
of the students with a certain topic.

Complementary to the lectures, the knowledgeworker can
decide on handing out exercises and even grade them. How-
ever, as the workload for one person is high, tutors are often
hired to help with exercises and grading, if necessary.

Finally, an examination has to be held to grade students.
The exam has to be prepared, e.g., by booking a room for a
written exam. After the exam was prepared, it will be even-
tually conducted and then graded.

Identified in collaborationwithTAs,Table 2 shows a selec-
tion of possible major exceptions, which can occur in this
scenario and would not be captured in the case model. The
assignment of the exceptions to the different exception types
was approved by the TAs. Similarly, the handling strategies
described are the methods that are also used in reality.

3.2 Stage-oriented casemanagement languages

GSM.TheGuard-Stage-Milestone (GSM) language [16]was
created for Business Artifacts [21] with focus on the high-
level data—data artifacts—that are handled during a case. A
GSMmodel consists of four major components: the informa-
tion model, the stages, the milestones, and the guards. The
information model defines the data artifact and the allowed
operations on them which is expressed in a lifecycle model,
which in turn can use stages, milestones, and guards for the
definition. Stages are mainly used to structure the process.
They split the process into logical parts that have a mean-
ingful impact on the business artifact. An atomic stage is
defined as a stage that does not contain any other stages.
From a semantic point of view, we can treat atomic stages
the same as an activity in other modeling languages, e.g.,
fCM or CMMN. Milestones are a concept used to define the

outcome of a successful stage. Therefore, they describe the
goal that should be fulfilled by the stage. This also means a
stage can have their milestone fulfilled even if not all con-
tained stages reached their milestones. Lastly, guards are
used to enable stages. As soon as their guard condition has
fulfilled, a stage can be executed. Usually, stages have no
inherent order for their execution, except for the hierarchi-
cal order. By using guards and milestones, the modeler can
however force a more controlled execution order. An exam-
ple of an application of the GSM models is shown in Fig. 1.
As there should be an order between the stages/activities
“Prepare exam” and “Conduct exam,” the guard condition of
“Conduct exam” is equal to the milestone of “Plan exam.”

Routine exception can be captured as additional stages in
a GSM model. Knowledge workers can use stages to define
optional handling strategies in case of an exception speci-
fied as entry condition. For minor and major unpredictable
exceptions, no support exist.
CMMN. Case Management Model and Notation (CMMN)
[23] is historically based on the concepts provided by the
GSM language. The case model shown in Fig. 2 does not
include a predefined order of the activities. It is completely
up to the knowledge workers to define the process path
during runtime. Therefore, stages, stage entry conditions
(guards), and stage exit conditions (milestones) are concepts
also contained in CMMN. In the scenario of organizing a
university course explained above, three stages can be iden-
tified, one for each building block: the course, the exam,
and the exercise. They are similar to the ones in the GSM
model. In contrast to GSM, entry and exit conditions (called
Sentries) are linked to activities or milestones. This means,
for example, that the activity Prepare course content can
only be executed when the activity Plan course has been
completed. Milestones are “achievable target[s], defined to
enable evaluation of progress of the Case” [23]. For example,
an important milestone in the university course organization
process is reached, when all exams are graded. CMMNoffers
the concept of discretionary and non-discretionary activities.

123



944 K. Andree et al.

Fig. 1 Process of organizing a university course captured as GSM model

If an activity is discretionary, knowledgeworkers are allowed
to include or skip the activity in the execution path since it
is not an essential part of most of the cases but could be
important for special ones. They are modeled with a dotted
line, e.g., Seek tutors. Non-discretionary activities need to
be always executed. Moreover, CMMN enables knowledge
workers to directly terminate activities or entire stages [23],
i.e., to immediately stop the execution of activities/stages. If
a stage instance is terminated, all included activities, mile-
stones, and stages have to terminate too.

CMMN does not provide explicit modeling elements,
such as known from BPMN, for exception handling for rou-
tine exceptions. However, discretionary tasks can be used
to define optional handling strategies in case of an excep-
tion. Knowledge workers can add them during runtime to the
case model. Similarly, milestones can be used as a form of
exception handling. For example, themilestone that students
have questions after a lecture was conducted. This means the
case worker would need to hold lecture-additional session to

Fig. 2 CMMN diagram of a university course organization process

123



An exception handling framework for case management 945

Fig. 3 Process of organizing a university course captured as fCM model with exam[graded] as termination condition

address and answer them. Nevertheless, these strategies do
not cover minor and major exceptions.
fCM. Fragment-based Case Management (fCM) offers a
hybrid variant for case modeling with having static parts that
are executed in a specific order and can be flexible combined
at runtime. It is an actively researched case management lan-
guage [10,13,15] with a prototypical case engine [11] and
an application to real-world [25]. A case in fCM consists
of several fragments, each of them having an entry condi-
tion: either they are enabled at any time (e.g., Fragment 2 in
Fig. 3b), or enabled if certain data conditions are fulfilled
(e.g., Fragment 3 in Fig. 3c is only enabled if the course
content is [planned]), or when a certain external event has
occurred (e.g., Fragment 1 is enabled fourweeks before exam
period, cf. Fig. 3a). Each fragment is a smaller imperative
process model; for this, fCM reuses a subset of the BPMN
notation [22]. Activities and fragments are connected by
data objects and their states as entry and exit conditions. If
an activity is executed, a change of the data object takes place,
i.e., a transaction in the database and thus a state change on
the knowledge object. Allowed state transitions are defined

in the so-calledObject Life Cycle (OLC) provided as a state-
transition diagram that defines how a case object evolves
during runtime. FCM offers knowledge workers the possi-
bility to decide which fragments are executed at runtime.
Enabled fragments with no or a fulfilled data condition are
enabled but do not need to be executed, only started frag-
ments by an external event. For example, fragment 3 can be
ignored if no exercises are planned. A case is terminated
by the knowledge worker if the goal condition is fulfilled.
The case goal in fCM is specified as a number of data states
which need to be reached. However, this is not tied to the
completed execution of the fragment which is responsible
for the transition to the target state.

To handle routine exceptions, it is possible to add bound-
ary events to certain activities as known from BPMN. It is
also possible to model fragments with a start event that is
triggered by a predictable event. For exception handling at
runtime, new fragments can be added which support minor
and major exceptions [14]. It is also possible to re-execute
fragments. However, these strategies are limited by the fact
that it is not allowed to modify OLCs. Knowledge workers

123



946 K. Andree et al.

have to rely on their experience for handling an exception
and have to make sure that the case model including OLCs
are still valid when they add a fragment. Structured support
for exception handling is not yet supported.

3.3 Requirements

Due to the support of variability and looseness of the pre-
sented casemanagement languages, a handling of predictable
exceptions can be already specified at design time. However,
due to the associated increased complexity of the model, this
strategy is often omitted. In this case, knowledge workers
are responsible for handling the exceptions on their own.
Also for handling unpredictable exceptions, which cannot
be modeled either, knowledge workers have to react ad-hoc.
While there are ways to handle exceptions, such as adding
fragments during runtime in fCM, thesemethods are unstruc-
tured and place high demands on knowledge workers in
terms of experience and expertize. There is no procedure for
effective and structured exception handling for unpredictable
(major) exceptions which is why we aim at a framework that
provides structured exception handling for these exceptions.
This framework defines handling strategieswhich enable fur-
ther correct process execution. In this work, we focus on high
coverage of exceptions instead of usefulness for knowledge
workers.

The requirements for such an exception handling frame-
workderive from thegeneral characteristics ofKiPs [5,12,20]
as well as from the above discussion of the stage-oriented
case management languages. Each requirement listed below
applies to both KiPs and case management in general. If a
requirement needs to be defined more precisely due to the
characteristics of a specific case management language, this
is indicated by a subcategory and the abbreviation of the lan-
guage1.

R1 Case Data Case knowledge has to be kept up-to-
date [5]. If data are incorrect due to an exception, this
must be detected and corrected [28]. Especially in fCM,
object life cycles have to be followed. In case of chang-
ing a data object, the execution of fragments must still be
possible.
R2 Case Goal Reaching the case goal has highest pri-
ority [5]. Exception handling strategies should not
terminate the process if it is still possible to ensure
achievement of the business goal. For example, in case
of the university process, if in-present lectures are not
possible due to the pandemic, it should be still possible
to finish the course and grade the exams.

1 E.g., R3.1 (fCM) means that requirement 3 has to be defined in more
detail for fragment-based case management.

R3 Exception Handling on Global Case Level Excep-
tions can affect the entire case. In addition to exception
handling for the activity that triggered the exception, the
suggested strategymust also consider case-related effects
and provide methods for them.

R3.1 (fCM) Fragments Exception handling has to
provide a handling for the fragment in which the
exception was triggered as well as for following frag-
ments. For example, in case of the university process,
if in-present lectures are not possible due to pan-
demic, a complete change of the course style might
be required which influences the Course fragment.
R3.2 (GSM & CMMN) Stages Exception handling
has to provide a handling for the stage in which the
exceptionwas triggered. Similar to the example given
in R3.1, the Course stage needs to be handled.

R4 Recovery Measurements Exception handling must be
able to offer various recovery measures [30], such as
rollback in execution or compensation of the exception
effects, without endangering further process execution.
R5 Flexibility Exception handling strategies should not
limit the flexibility of knowledge workers in their case
execution [5,20]. This means that the knowledge worker
should have several option to handle the case and con-
tinue the case execution.
R6 Structured Support Exception handling strategies
should be defined in a uniform structure that is gener-
ally applicable [12]. For the same exception in a specific
state, the proposed handling methods should be repro-
ducible.

For the realization of the exception handling framework,
we decided to use a pattern-based approach as introduced by
Russell et al. [27] which is presented in the next section with
its capabilities and limitations with regard to case manage-
ment.

4 Foundation on exception handling
patterns and their limitations

This section explains the general structure of the patterns
for workflow systems introduced by Russell et al. [27]. The
proposed exception handling strategy consists of a tuple
structure with three different components that form the
pattern:

1. Handling of the activity which provoked the exception
(activity level);

2. Handling of the following activities of the whole case
(process case level); and

123



An exception handling framework for case management 947

Fig. 4 Life cycle of an activity and forced transition of exception handling from [27]

3. Recovery measures which are needed to remove the
effects.

In the following, each component of the framework is
explained in more detail. Finally its limitations with regard
to case management are discussed.

4.1 Activity level

The handling of the activity, which caught the exception, is
summarized by the first part of the pattern. It describes a state
transition, which depends on the state of the activity when
the exception is caught.

In general, business process activities can adopt differ-
ent states, from the initial offering until final termination as
shown in Fig. 4. Each activity can change its state via state
transitions represented as solid arrows for those being exe-
cuted in the workflow system, and as dashed arrows, which
are deliberately enforced from the outside as exception han-
dling. For example, a state of an activity can change from
started to failed in two different ways, the natural one (fail)
or the enforced one (force-fail). Next, we want to briefly
introduce the structure for the exception handling patterns
on the activity level with the focus on exceptions that occur
while the related activities are in state started2.

If an exception occurs in an activity state, in this case
started, the activity can be moved to any state according to
the life cycle. Each possibility is identified in the pattern with
a three-letter abbreviation, e.g., SFF. These identifiers can be
found in Fig. 4 within the brackets. The three letter abbrevi-
ation is read in two parts. While the first letter represents the
state of the activity in which the exception occurred, the two
other letters define the state towhich the activity is transferred
as part of the exception handling. Consider the example SFF.
An exception occurred in the activity state S = started and

2 An overview of all possible state transitions can be found in [27].

is handled by a state transition of the activity to failed via a
FF = force-fail (cf. Fig. 4).

4.2 Case level

The second part of the pattern for handling exceptions in a
business process engine addresses the best strategy for han-
dling the case and all subsequent activities after the activity
that triggered the exception. Since a process instance con-
sists of multiple activities connected by input and output
conditions, the effects of exceptions have an impact on these
constraints concerning the execution of following activities.
There are three possibilities for handling an exception on the
case level:

1. Continue Current Case (CWC)—Every activity follow-
ing will be executed, the process instance still exists. The
activity handling has to be done in such a way, that fur-
ther activities can be triggered, e.g., because a resource
is now available.

2. Remove Current Case (RCC)—Either a selection or all
of the activities are removed from the runtime database,
i.e., selected activities cannot be executed anymore.

3. Remove All Cases (RAC)—All process instances of the
same process model are removed from the runtime
database, i.e., all cases interrupt in their execution and
cannot be executed anymore. This strategy handles the
worst case of exceptions affecting all process instances
of a model. It can cause a change in modeling. Such han-
dling becomes necessary, for example, when laws change
or in case of a pandemic.

4.3 Recoverymeasurements

The last part of each pattern deals with recovery. Recov-
ery describes the action performed in order to remove any

123



948 K. Andree et al.

aftereffects of an exception to ensure the possibility of still
achieving the business goal. Three methods can be used [27]:

1. Do nothing (NIL)
2. Rollback (RBK)—The effects of the exception are

reversed, i.e., the state of the process instance is reset to
a previous process state shortly before the time at which
the exception occurred.

3. Compensate (COM)—The damage caused by the excep-
tion that has occurred will be compensated.

For example, the pattern SFF-CWC-COM can therefore
be interpreted as a strategy that transfers the activity, of
which the exception occurred, into the status failed (SFF).
The process instance as well as the following activities are
continued in execution without making any special changes
(CWC). Any damage that the exception caused is compen-
sated (COM).

4.4 Limitations

If an exception occurs in a knowledge-intensive process,
(1) the activity during which the exception occurred, and
(2) the case are affected similar to traditional processes
(RequirementR3). For exception handling, (3) recoverymea-

surements are required in addition to handle possible effects
and consequences of the exception (Requirement R4). These
three levels covered by the original exception handling pat-
terns [27] are also relevant for case management. However,
case management languages differ from traditional business
process languages, such as BPMN in being strongly data-
driven and more flexible in their execution. Thus, not all
requirements introduced in Sect. 3 are already covered by
the exception handling patterns [27]. For each requirement,
Table 3 provides the current support and a brief reason why
it is already covered, why it is only moderately covered, or
not covered at all.

Even though R3 is included in its general definition, it is
not possible to directly apply the handling strategy Continue
Current Case (CWC) to fCM. It is not defined whether the
activitieswithin the fragment containing the activity that trig-
gered the exception should continue in execution or whether
the activities in other, subsequent fragments have to continue.
For example, if the knowledge worker decides to not include
exercises at all because no tutors (exception is triggered by
activity Seek Tutors) can be found, all activities of Fragment
3 (cf. Fig. 3) do not continue. Nevertheless, the course takes
place in the next semester, i.e., Fragment 1 and 2 continue.
The same scenario also occurs in GSM and CMMN. Here,
the strategy does not distinguish between activities within

Table 3 Overview of requirements already covered by the exception handling patterns of Russell et al. [27]

Requirement Covered Explanation

R1 Data – No definition of how to deal with state transitions of data
objects. Traditional business process systems are not as
data-driven as KiPs. The exception handling patterns do
not deal with state transitions of data objects.

R2 Goal + Except for RAC, it is still possible to achieve the goal since
the exception handling patterns do not include termination
as a handling strategy.

R3 Exception Handling on Global Case Level +/– The exception handling patterns provide a handling for the
activity that triggered the exception as well as for the case.
However, they have to be re-defined in the context of the
specific case management language.

R3.1 (fCM) Fragments – Not included since the exception handling patterns were
designed for traditional business process systems.

R3.2 (CMMN) Stages – Not included since the exception handling patterns were
designed for traditional business process systems.

R4 Recovery Measurements + /– Exception handling patterns provide three recovery
measurements. However, they have to be re-defined in the
context of the specific case management languages.

R5 Flexibility + It is often the case that there are more possible strategies in
handling an exception. Knowledge worker are still flexible
in their decisions.

R6 Structured Support + The pattern-based approach provides a general structure by
defining different tuple elements.

123



An exception handling framework for case management 949

the stage where the exception was triggered and the activi-
ties of other stages (including the outermost stage) that are
not initially affected by the exception. Therefore, we need to
extend them to provide methods handling affected fragments
and stages (R3.1 and R3.2).

Recovery measurements (R4) have to be revisited for case
management. The high involvement of data objects causes
additional challenges in performing a rollback and compen-
sation. Rolling back in the process execution must be done in
accordance with state transitions of the related data objects.
It is, for example, more difficult to perform a restart on an
activity because the entry conditions might be not met since
the data object has already been updated (R1).

In summary, the discussed limitations of the exception
handling patterns of Russell et al. [27] show that the frame-
work is applicable to casemanagement approaches, but needs
to be extended in certain aspects.

5 Exception handling framework for case
management

This section presents the exception handling framework for
case management languages in detail. First the extension to
Russel et al. [27] is introduced in Sect. 5.1. A classification
of the patterns by exception types is provided in Sect. 5.2.
In Sect. 5.3, we provide a functional design of an exception
service for a case management system.

5.1 Extension of the exception handling patterns

This section explains the general structure of the exception
handling patterns for case management shown in Fig. 5 and
explains the required extensions to the framework of Russell
et al. [27].

For the proposed framework for exception handling in
case management, we adopt the general structure of the
exception handling patterns in terms of the element-wise rep-
resentation of a pattern defining exception handling on differ-
ent levels [27]. However, the case management approaches
fCM, GSM, and CMMN include special concepts: Frag-
ments/stages are essential flexibility concepts which group a
set of activities that are available if certain conditions hold
true but do not have to be executed necessarily to reach the
case goal. Consider this in the context of exception handling:
An exception is always caught by an activity. Depending on
the case management language, the activity is either part of a
fragment (fCM) or stage (GSM/CMMN). Therefore, excep-
tions can lead to the inability of a fragment/stage to start or
they can impede the successful execution of a fragment/stage.
Whereas the handling of the activity is covered by the first
tuple element and following activities outside the fragment
or stage are covered by the third tuple element, a new tuple
element is required that defines the exception handling for
succeeding activities within the fragment/stage, in which the
exception has been observed. Therefore, an additional com-
ponent, the fragment/stage level, needs to be added to the
three tuple elements of the original patterns. Overall, we
make following changes for the exception handling frame-
work for case management:
1. Redefinition of handling at activity level:Adapt the meth-

ods according to the different life cycle of activities in the
context of case management.

2. Newdefinitionof handlingat fragment/stage level: Include
the handling of activities and any recovery measurements
needed to resolve an exception within a fragment/stage.

3. Redefinition of handling at case level:Cover the handling
for fragments/stages of the case that do not contain the
activity which caught the exception. We keep the three
possible handling strategies CWC, RCC, and RAC.

4. Redefinition of recovery measurements: Any measure-
ment defined by this component only refers to the case

Fig. 5 Structure of exception handling patterns for case management

123



950 K. Andree et al.

Table 4 Demands for extensions of case management languages

GSM & CMMN fCM

Knowledge workers are allowed to change the discretionary attribute
of activities

Fragments can be removed from the runtime database, i.e., set to a
read-only state

Knowledge workers are allowed to add completely new tasks to the
plan model

Knowledge worker can terminate fragments

Knowledge workers can force an activity to each state defined in
Sect. 5.1.1

Knowledge worker manually change OLCs during runtime

Knowledge worker can force an activity to each state as defined in
Sect. 5.1.1

level, i.e., to fragments/stages that do not contain the activ-
ity which triggered the exception. Methods defined by
Russell et al. [27] are kept.

Thus, the exception handling for case management is
definedby four levels: (1)ActivityLevel, (2) Fragment/Stage
Level, (3) Case Level, and (4) Recovery Measurements on
Case Level. In order to ensure applicability of the methods of
the framework presented here in the respective approaches,
we work with several assumptions regarding rights and capa-
bilities of knowledge workers, which are not yet supported
by the respective approaches. We, therefore, have to define
several demands on the case management approaches sum-
marized in Table 4.

In the following subsections, the notation and logic of
each level are explained. Moreover, we show how the orig-
inal patterns can be applied and implemented into the case
management languages CMMN, GSM, and fCM.

5.1.1 Activity level

The activity level defines the handling of the activity that
has caught the exception. It is based on the associated life
cycle of activities. For casemanagement, we introduce a new,
adapted life cycle for case activities as shown in Fig. 6. It
summarizes the possible states and state transitions of activ-
ities in fCM, GSM, and CMMN in a simplified and adapted
form and allows amore general exception handling approach
for case management applications3. Although the life cycle
shows strong similarities to the life cycle defined in Fig. 4,
there are significant differences to exception handling for
case management.

Figure 6 differentiates in three types of arrows: (1) Solid
lines representing automatic state transitions, which are pro-
vided by the system, (2) slightly dotted lines representing
state transitions because of known exceptions and decisions

3 The naming of the states in white boxes are semantically identical
with the states of Fig. 4. Since the naming of the state shown here is
more common in case management, we decided to use them for the case
activity life cycle.

taken by knowledge workers, and (3) dashed lines repre-
senting state transitions an activity can be forced to due
to exception handling on activity level. The state enabled
(including the disabling function) allows for retrieving an
enabled activity without doing a re-allocation. Furthermore,
case management applications distinguish between the final
states completed and terminated [23]. Activities in the termi-
nated state can either have been executed successfully, and
thus, fulfill the exit criterion, but they can also have been
stopped in their execution by a knowledge worker. In con-
trast, activities only can be in the completed state if and only
if thework of the activity has been conducted. This way it can
be distinguished whether the work of the activity has been
done (completed) orwhether the exit criteria has already been
reached (terminated).

An activity is set to failed if a routine exception occurs,
which is caught by a boundary event in fCM, for example,
and triggers an alternative path. In contrast, the state sus-
pend can be reached when a knowledge worker suspends
an activity or when an unknown exception occurs. Reasons
for intentionally suspending activities can be, for example,
a known exception that includes as treatment a best prac-
tice that knowledge workers perform from their experiences
and is not yet defined as a routine exception, since the lat-
ter would cause a state transition to failed. In case of an
unknown exception, however, the related activity is immedi-
ately set to state suspend, i.e., it is automatically halted in its
execution (instead by a knowledge worker). The handling at
activity-level, therefore, always starts with an activity being
suspended in contrast to Russell et al.’s definition [27].

Defining exception handling independently of the activity
state inwhich the exceptionwas caught reduces the complex-
ity of the frameworkwith respect to the possible activity-level
strategies. Exception handling according toRussell et al. [27]
either goes back in the life cycle or leads to immediate termi-
nation of the activity. Transitions to running states that were
not reached before the exception occurred can only be real-
ized through automatic state transitions (solid lines). This
results in 15 different treatment strategies for an activity. We
reduce these strategies to almost half by allowing knowledge

123



An exception handling framework for case management 951

Fig. 6 Life cycle for activities in case models

Table 5 Exception handling methods at the activity level, if the activity
is in the state suspended

Exception Handling at Activity Level

suspended make available (SMV)

suspended force-start (SFS)

suspended force-enable (SFE)

suspended force-allocate (SFA)

suspended force-fail (SFF)

suspended force-complete (SFC)

suspended force-terminate (SFT)

workers to force any state shown in the life cycle of Fig. 6.
This has the advantage of allowing states to be skipped,which
can contribute to more efficient process execution, and gives
knowledge workers more flexibility in handling exceptions.
For example, an activity that has caught an exception in state
allocated can be transitioned directly to state active, rather
than re-allocating the activity and waiting for the automated
state transitions enable and start.

Dashed lines shown in Fig. 6 represent the states an activ-
ity can be forced to. In the framework, these transitions are
abbreviated using the three letter abbreviation as shown in
Table 5. While the first letter describes the initial state, the
last two letters define the state into which the activity is
forced.

5.1.2 Fragment/Stage level

The second tuple element describes the exception handling
on fragment/stage level dealing with all following activities
within a fragment/stage after the exception was triggered.
Applicable methods are presented in this section.

In general, there are four different options to handle an
exception on fragment/stage level:

1. Termination (TER)—A fragment/stage is directly termi-
nated by knowledge workers. All components within the
fragment/stage, e.g., tasks, milestones, are set automati-
cally to state terminated.

2. Continuation (CON)—All following activities of the
fragment/stage can be further executed.

3. Failure (FAI)—All following activities within the frag-
ment/stage are set to state failed, i.e., the entire frag-
ment/stage is set to a read-only state.

4. Rollback (RBK)—This strategy refers to the recovery
measurement RBK on case level, i.e., the resetting of the
process state through state changes of knowledge objects
and at least two activities. The only difference is, that a
rollback on fragment/stage level is performed within the
fragment/stage.

These strategies are derived from the handling at activ-
ity level explained in Sect. 5.1.1 and recovery measurements
introduced by Russell et al. [27]. The specific method, how-

123



952 K. Andree et al.

Table 6 Relation between exception handling at activity level and frag-
ment/stage level

Fragment/Stage Level

Activity Level TER CON FAI RBK

SMV x

SFS x

SFE x x

SFA x

SFF (x) x x

SFC x

SFT x x x

ever, directly depends on the handling on activity level.
Table 6 provides an overview of what methods are applicable
for a given activity handling.

Termination (TER) allows re-execution of fragments/
stages. It is only triggered by forcing an activity to state
terminated (SFT) because termination of a fragment/stage
automatically terminates all contained activities. However,
such a handling is only defined for CMMN [23] which is the
reason why we need to extend this possibility to GSM and
fCM.

In contrast, failure (FAI) forbids re-execution of frag-
ments/stages, i.e., reuse is not possible. Therefore, FAI
cannot be combined with a handling that includes further
execution of the fragment/stage. It is only triggered by forc-
ing an activity to state failed (SFF).

Making an activity available again (SMV), forcing it to
start (SFS), force-allocate it (SFA), and forcing it to com-
pletion (SFC) directly aim to complete the fragment/stage.
Therefore, all of these strategies can only be combined with
a continuation (CON) on fragment/stage level because they
enable the execution of following activities and thus enforce
the continuation of the fragment/stage instead of aiming at
a rollback (RBK). Whereas the first four strategies aim at a
re-execution of the activity that triggered the exception, SFC
ensures on the process level that the compensation on the
part of the knowledge worker is handled correctly even if
the activity itself was not executed as intended. If an activity
is set to failed (SFF), i.e., no entry criteria is met that may
be needed for other activities in the fragment/stage, CON
can only be applied if and only if the activity is marked as
optional. We define an activity as optional if it is a discre-
tionary task (CMMN) or if it is part of an XOR gateway path
(fCM) meaning that there exists an alternative path that can
be executed, e.g., by performing a rollback (RBK).

Forcing an activity to state failed (SFF) in combination
with a rollback (RBK) on fragment/stage level means that the
framework recommends to roll back the process a few steps

within the fragment, but not to execute the activity marked
as failed when the process is executed again.

A force-enable (SFE) allows both continuation (CON) and
rollback (RBK) since it does not define if the activity that
caught the exception has to be directly executed or at a later
point of time, i.e., after performing a rollback. Similarly, a
force-terminate (SFF) on activity level enables a continuation
(CON) as well as a rollback (RBK) since other activities of
the fragment/stage can still be executed.

5.1.3 Case level

Case level handling is important to mitigate the possible
effects of an exception on the entire case. Strategies acting on
case level affect all subsequent fragments or stages, i.e., frag-
ment/stages in which the exception was not caught. Three
strategies are available for this purpose: Continue Current
Case (CWC), Remove Current Case (RCC), i.e., the current
case instance, and Remove all Cases (RAC) [27].

In this paper, we work with the life cycle for cases shown
in Fig. 7. It originates from CMMN [23] but is also valid
for fCM and GSM. Besides an active state, it distinguishes
between four end states from which the case can be re-
activated: completed, terminated, failed and suspended. Only
the state closed is final. The state transitions for cases in fCM
and GSM are also included in this life cycle. The fragment-
based language allows the termination of case instances after
the fulfillment of the exit condition (terminated), and thus
a removal from the runtime database (closed). GSM also
defines an active and a fulfilled state, which leads to the
termination of a case, similar to fCM. The states added by
CMMN do not interfere with the handling for the other lan-
guages, because each method can be implemented without
them [3].

When an exception is triggered, the case is always set
automatically to state failed until knowledgeworkers start the
exception handling. The proposed framework aims at provid-
ing an exception handling that re-activates a case to continue
its execution in order to close it via the state completedmean-
ing that all milestones, stages/fragments, and task instances
are completed or terminated without any active (executing)
activities. Using the exception handling patterns, knowledge
workers get an idea of whether they can use the existing
fragments/stages for exception handling or define new frag-
ments/stages in order to not have to terminate the case. In the
following, we explain how the strategies for handling fol-
lowing activities can be implemented based on the case life
cycle shown in Fig. 7:
Continue the current case (CWC).Continuationof the current
case ensures the execution of following fragments/stages.
There are two possibilities when CWC is applicable: (1)
Completion of the activity does not directly affect entry or
exit criteria of fragments/stages being relevant for achieving

123



An exception handling framework for case management 953

Fig. 7 Lifecycle of cases in
CMMN [23] and also applicable
to fCM and GSM

Table 7 Relation between exception handling at fragment/stage level
and case level

Case Level

Fragment/Stage Level CWC RCC RAC

TER x x x

CON x x

FAI x x x

RBK x x

the business goal, e.g., the activity is discretionary or part of
an optional fragment. (2) Relevant fragments/stages depend
on the completion of the activity, but further execution can be
ensured via recovery measurements. CWC is applicable for
each handling method on activity and fragment/stage level
(see Table 7). The fragment/stage strategies CON and RBK
imply that the fragment/stage containing the activity that
caught the exception can continue to execute successfully.
Thus, a continuation of the case is guaranteed. A combina-
tion with TER and FAI is possible no matter whether the
fragment/stage, in which the exception occurred, is optional
(e.g., indicated by a discretionary activity in CMMN), or fun-
damental for further execution. However, the latter requires
recoverymeasurements in the fourth tuple in order to guaran-
tee CWC. After exception handling, the case is re-activated
and set back to state active.
Removing the current case (RCC). RCC enables knowledge
workers tomodify the current case instance at themodel level
by adding new modeling elements to the case, and remov-
ing existing ones. This results in a change at the execution
level, as new process paths can be defined while the case as
a whole continues to exist. To keep state transitions of the
data objects up-to-date, recovery measurements are required

(cf. R1). After removing a selection of activities, a case can
then be reactivated to fulfill requirement R2. The strategy is
applicable for all handling methods (cf. Table 7).
Consider the example of the exception that Corona regula-
tions prohibit presence events (cf. Table 2). The knowledge
worker decides to hold lectures online and record the ses-
sions. Thus, written consent must first be obtained from each
student to record the lecture. However, neither such an activ-
ity nor the new conditions for the activity “Hold Lecture”
exist. RCC would suggest to remove the activity “Hold Lec-
ture,” replace it by an online version of it, and add a new
activity to ensure the consent from the students.
The strategy requires knowledgeworkers to be able to select a
set of activities and fragments, and remove them from the cur-
rent case, i.e., set them to read-only, and be able to model and
add new activities and fragments to the case at runtime. It is
also possible to select all fragments/stages and remove them
from the runtime database [27], because the case instance
may be no longer relevant or applicable.
In fCM, it is neither possible to remove single activities nor
fragments at runtime. Because it is only allowed to add new
modeled fragments to the case, fCM needs to be extended
in terms of functionality and knowledge workers’ rights (cf.
Table 4). CMMN allows knowledge workers to terminate
activities at any point of time during execution. They can add
additional activities and remove existing ones by changing
their state to terminated, i.e., remove them from the run-
time database. Nonetheless, knowledge workers must have
the right to add additional activities that are not defined in the
plan model (cf. Table 4). Similar to CMMN, GSM does not
allow the case worker to change the model during runtime,
thus limiting the exception handling capabilities. Therefore,
this would also require an extension of case workers’ per-
missions.

123



954 K. Andree et al.

Remove all Cases (RAC). The RAC strategy is used only in
exceptional cases endangering the achievement of the busi-
ness goal, e.g., when laws change or a pandemic occurs. It
is an escalation of the strategy RCC. Instead of a selection
of activities or fragments/stages, all cases are removed from
the runtime database. This is done via a state transition of
the case from failed to closed. No more activities can be
executed and the data objects are set to a read-only status.
Additionally the case is marked as failed. Thus, RAC han-
dles the most fatal exceptions that cannot be handled during
runtime. The strategy can be implemented in all case man-
agement languages but is only applicable if the handling on
fragment/stage level leads either to termination (TER) or fail-
ure (FAI) of the fragment/stage (cf. Table 7). Other strategies
do not imply a closing of the case via state failed.

5.1.4 Recovery measurements

Recovery is important to handle or even remove the effects of
an exception that has occurred. The concrete recovery mea-
surement is defined in the fourth tuple element of a pattern.
It does not cover the recovery for activities inside the frag-
ment or stage in which the exception was triggered but for
other fragments/stages included in the casemodel. In general,
there are three strategies for recovery measures: compensa-
tion, rollback, or do nothing [27]. All of these strategies are
applied in combination with the activity and case level and is
implemented in different ways depending on the respective
case management approach. FCM works with fragments as
the flexibility component and can be added or removed dur-
ing runtime. GSM and CMMN work with single activities.
Compensation (COM). Compensation can require three dif-
ferent activities on the part of the knowledge worker in the
context of case management: (1) add flexibility components,
(2) remove flexibility components, and (3) modify knowl-
edge. The recovery measurement may be a combination of
these three options, or it may include only one. We delib-
erately refrain from specifying the exact possibilities in the
framework in order not to restrict knowledge workers in their
flexibility on the one hand and to reduce complexity on the
other hand. Similar to case handling strategyRCC,weneed to
make demands on knowledge worker’s rights that are not yet
present in case management languages: Adding and remov-
ing flexibility components. The possibility of knowledge
modification (3) includes in fCM the manipulation of OLCs.
This means knowledge workers must be authorized to adjust
and change the OLC during runtime. However, state tran-
sitions of knowledge objects are not as specifically defined
in GSM and CMMN as in fCM. They implement knowl-
edge modification by the following state transitions: update,
replace and delete [23]. Nonetheless, this possibilityis only

needed in GSM and CMMN if the execution of activities
fails because of the content of the knowledge object or its
existence.
Rollback (RBK). A rollback resets the process execution to
a previous process state. In the context of a recovery on the
case level, it implies the re-execution of a completed frag-
ment/stage. However, this requires that entry conditions of
the related fragment/stage are fulfilled in order to enable both
data flow and control flow. This can be enabled by allowing
that the knowledge workers can change objects states regard-
less of their current data values, or by storing a snapshot for
each previous process state to which the knowledge worker
can go back. While in the first version, the data are over-
written, in the second one, the data are rewritten. A rollback
can also include the modeling of new flexibility components
which are added to the case. It is also possible to remove
a set of activities before performing a rollback. Although
these combinations refer to compensation techniques intro-
duced before, we do not specify them in the pattern. We want
to put the rollback strategy in the focus of the pattern and
give knowledge workers the flexibility to decide on their one
how to perform it (cf. Requirement R5). Nonetheless, there
are different techniques concerning how GSM, CMMN, and
fCM implement a rollback we want to mention. In fCM a
rollback can be performed by resetting the process to one the
snapshots taken at the execution start of each fragment. How-
ever, it is important to control the flow of data. Data objects
change their states as execution progresses and can therefore
endanger a successful rollback. For this reason, the action of
rollback always implies a change in the states of data objects.
GSM and CMMN offer the concept of milestones which can
be used to perform a rollback. Nevertheless, rolling back the
process to amilestone could be a large step back in execution,
since milestones can complete large process sections.
Do nothing (NIL). If the exception does not have any serious
consequences, in most cases no recovery action is needed
(NIL). It is up to the case workers if they want to add new
tasks or remove ones. The framework does not recommend
any recoverymeasurements in terms of compensation or roll-
back.

In general, compensation techniques such as adding a frag-
ment or an activity can always be performed during runtime
but it is not always part of exception handling. Table 8 pro-
vides an overview of the relation between the handling on
case and fragment/stage level and the recoverymeasurements
that are applied on case level.

Consider the handling strategies CON and RBK at frag-
ment/stage level. Then, case handlingmethods can be applied
as follows: If the case continues in its execution (CWC), no
recovery is needed (NIL) since any effects are already han-
dled within the fragment/stage. A combination with RCC
allows knowledge workers to, for example, add fragments
during runtime. This might be useful for exceptions affecting

123



An exception handling framework for case management 955

Table 8 Relation between
exception handling at
fragment/stage level, case level,
and recovery

CWC RCC RAC Case Level

TER CON FAI RBK TER CON FAI RBK FAI TER Fragment/Stage Level

COM x x x x x x x x Recovery

RBK x x x x Measurements

NIL x x x x

Table 9 Classification of patterns by Exception Type

Activity Failure Deadline Expires Failure in Resource Allocation External Trigger Constraint Violation

SFS-CON-CWC-NIL SFS-CON-CWC-NIL SFA-CON-CWC-NIL SFS-CON-CWC-NIL SFS-CON-CWC-NIL

SFC-CON-CWC-NIL SFS-CON-RCC-NIL SMV-CON-CWC-NIL SFS-CON-RCC-COM SFS-CON-RCC-COM

SFF-CON-CWC-NIL SFA-CON-CWC-NIL SMV-RBK-CWC-NIL SFF-CON-CWC-NIL SFF-CON-CWC-NIL

SFF-FAI-CWC-NIL SMV-CON-CWC-NIL SFF-CON-CWC-NIL SFF-FAI-CWC-COM SFF-FAI-CWC-COM

SFF-FAI-CWC-COM SMV-RBK-CWC-NIL SFF-FAI-CWC-COM SFF-FAI-RCC-COM SFF-FAI-RCC-COM

SFF-RBK-CWC-NIL SFF-CON-CWC-NIL SFF-FAI-RCC-COM SFF-FAI-RCC-RBK SFF-FAI-RCC-RBK

SFT-TER-CWC-COM SFF-FAI-CWC-COM SFF-FAI-RCC-RBK SFF-FAI-RAC-COM SFF-FAI-RAC-COM

SFT-TER-CWC-NIL SFF-FAI-RCC-COM SFF-FAI-RAC-COM SFC-CON-CWC-NIL SFC-CON-CWC-NIL

SFT-TER-RCC-COM SFF-FAI-RCC-RBK SFC-CON-CWC-NIL SFT-CON-CWC-NIL SFT-CON-CWC-NIL

SFT-TER-RCC-RBK SFF-FAI-RAC-COM SFT-CON-CWC-NIL SFT-TER-CWC-COM SFT-TER-CWC-COM

SFT-TER-RAC-COM SFC-CON-CWC-NIL SFT-TER-CWC-COM SFT-TER-CWC-NIL SFT-TER-CWC-NIL

SFT-RBK-CWC-NIL SFC-CON-RCC-COM SFT-TER-CWC-NIL SFT-TER-RCC-COM SFT-TER-RCC-COM

SFT-CON-CWC-NIL SFT-TER-CWC-NIL SFT-TER-RCC-COM SFT-TER-RCC-RBK SFT-TER-RCC-RBK

SFT-TER-RCC-COM SFT-TER-RCC-RBK SFT-TER-RAC-COM SFT-TER-RAC-COM

SFT-TER-RCC-RBK SFT-TER-RAC-COM SFT-RBK-CWC-NIL SFT-RBK-CWC-NIL

SFT-TER-RAC-COM SFT-RBK-CWC-NIL

SFT-RBK-CWC-NIL

SFT-TER-CWC-COM

only other fragments/stages of the case. Therefore, compen-
sation (COM) is needed. RAC, however, cannot be applied
if CON and RBK is suggested at fragment/stage level.

In contrast, the strategies termination (TER) and fail-
ure (FAI) at fragment/stage level can be combined with
all three methods on case level. CWC suggests the con-
tinuation of fragments/stages of the case not containing the
activity that have triggered the exception. In this case, recov-
ery measurements may be useful but are not required. For
example, if the fragment/stage that was terminated or set to
failed was marked as optional, recovery is often not needed
(NIL). However, if the fragment/stage containing the activity
that have triggered the exception is fundamental for process
execution, recovery in formof compensation (COM)or a roll-
back (RBK) are possible. As explained above, RCC requires
recovery measurements. Therefore, it is not possible to com-
bine RCC with NIL but with COM and RBK. Removing
the entire case (RAC) is only possible in combination with
a compensation technique (COM) to fulfill requirement R2
(goal achievement). Knowledge workers must find a solution
for that exceptional case of handling.

5.2 Classification of patterns

According to the allowed combinations between case level,
fragment/stage level and the recovery measures introduced
before, there are many possibilities to map patterns to a given
exception type. However, not every pattern can be applied to
each exception type. Table 9 provides an overview of the sup-
port by the exception handling patterns per exception type. It
is derived from the mapping of the exception patterns intro-
duced by Russell et al. [27].

5.3 Functional design of an exception service

Our framework offers the possibility to provide structured
support for knowledge workers in case of major exceptions
in the case execution. In the following, we describe the func-
tional design of an exception service in a case management
system supporting the case execution with the help of an
example exception shown in the mock-up in Fig. 8.

The exception service including a UI needs to have (a) a
notification function to alert knowledgeworkers immediately

123



956 K. Andree et al.

Fig. 8 Mock-up of UI showing
occurrence of activity failure

whenever an exception occurs, (b) a function to select the
exception type, (c) an overview of all possible pattern for
that exception type with their costs and consequences, (d) a
modeling and configuration space to design new fragments
or modify existing ones, (e) a simulation option to verify the
changes of the process model and (f) a compiling option to
integrate the changes to the process model.

If an exception occurs, we assume that the knowledge
worker categorizes it into one of the available exception types
(or it is done automatically with the help of natural language
processing techniques, etc.). Based on the exception type,
the corresponding exception handling patterns are identified
with the help of Table 9. The patterns are then provided to the
knowledge worker in the user interface. For example, Fig. 8
shows a mock-up for the situation when an exception occurs
during the activity execution of Hold Lecture (cf. motivat-
ing example in Sect. 3). The knowledge worker has already
chosen the exception type Activity Failure. At the bottom, all
possible strategies for handling the exception suggested by
the framework are listed. A short headline explains the core
idea of the suggested handling, but more information is pro-
vided for further explanation. In this example, the framework
suggests a rollback within the fragment/stage.

Having the pattern overview, the knowledge worker can
walk though them and decide on a handling strategy. In our
example, the knowledge worker would apply the suggested
strategy by forcing the activity to the state terminated and
perform a rollback by going back, for example, to activ-
ity Prepare Course Content in order to record videos for
an online course (SFT-RBK-CWC-COM). The pattern also
reminds him or her to have a look at other fragments/stages
that might be affected (SFT-RBK-CWC-COM).

Once a pattern is selected, the necessary state transitions
of the activity and the actions at the case and fragment/stage
level can be automatically performed by the exception

service in interaction with the case management system. The
knowledge workers do not have to handle them manually,
e.g., ensuring a valid rollback. Nevertheless, compensation
methods and the extent of the rollback are selected by the
knowledge worker.

6 Evaluation

In this section, we want to present a first evaluation of
our approach to check the coverage of our exception han-
dling framework.We analyzed two real-world scenarios with
the help of knowledge workers involved in these scenarios:
(1) the preparation and execution of a university course as
introduced in Sect. 3 and (2) a project planning process.
Project planning includes capacity planning, determination
of a project team, and setting up a IT project plan before
the kick-off of a project. First, our elicitation procedure is
explained. Then, the results are presented and discussed with
the first use case being explained in detail.

6.1 Procedure

For the evaluation of coverage, we interviewed knowledge
workers to ask them about their experiencewithmajor excep-
tions and how they usually handle them.

For the first use case, we interviewed two teaching assis-
tants (TAs) who were involved in the organizations of
different courses at the same university. The second scenario
was discussed with one knowledge worker that is involved
in the project planning process.

We followed in both use cases the following procedure: In
the first interview session, we identified the case model that
were also validated with the knowledge workers. In a sec-
ond interview session, the exceptions and typical handling

123



An exception handling framework for case management 957

strategies were elicited. Afterwards, we matched exception
and handling strategy to possible patterns (according to
Table 9) and discussed in the group of co-authors whether
they were reasonable in terms of content and handling. The
mapping of a pattern to a handling of the knowledge worker
is initially based on the type of exception. Table 9 shows the
subset of all patterns which are applicable for the respec-
tive exception type. Based on the exception handling of the
knowledge worker, it is then interpreted what the handling
means for the individual activity, for the fragment/stage and
for the case. Types of activities and fragment/stages (optional
or relevant) have to be taken into account. In general, three
approaches are possible to map a pattern to a handling strat-
egy defined by knowledge workers: (1) start with the activity
which caught the exception, (2) start with the fragment/stage

containing this activity, and (3) start with the handling on
case level. These approaches simplify the mapping by spec-
ifying a beginning of the exception handling. Strategies for
the other levels can then be derived from that.

6.2 Results

Conduct a University Course. For the first use case, the uni-
versity course organization and execution, twelve exceptions
and their typical handling strategies were identified; all of
them could be successfully assigned to a pattern. Further-
more, it was possible to map each exception to at least one
activity that could trigger it. Table 10 shows an overview
of the exceptions mentioned during interviews, their clas-
sification into an exception type and a suitable pattern. In

Table 10 Example manual mapping of real world exceptions to corresponding exception handling pattern for the Conduct a University Course use
case

Activity Exception (Type) Handling by Knowledge Worker Patterns

Hold Lecture (1a) Corona regulations prohibit
presence events (Activity Failure)

Complete change of style of course
(present to online), use of
prerecorded material

SFT-RBK-CWC-NIL

(1b) Students have questions after
or outside of the course

Unstructured solution: directly
answer questions

SFS-CON-RCC-COM

(External Trigger) Structured solution: offer a
scheduled time for Q&A

SFS-CON-RCC-COM

(1c) Overbooking of the lecture
hall

Cancel course SFF-FAI-RCC-COM

(Resource Allocation) Request new room and possibly
reschedule

SFT-RBK-CWC-NIL

(1d) Errors in course material
(External Trigger)

Fix errors and send updated
version of slide to students

SFS-RBK-CWC-NIL

(1e) Fire alarm (Activity Failure) Leave building and wait for further
instructions, continue lecture if
possible

SFE-CON-CWC-NIL

Conduct Exercise (2a) Tutor gets sick (Resource
Allocation)

Find replacement person and date SFS-CON-CWC-NIL

(2b) Technical error of projector Get technical support SFT-CON-RCC-COM

(Resource Allocation) Switch to mobile projector if
available

SFS-CON-CWC-NIL

Seek Tutors (3a) End of semester and not
enough tutors

Allow larger tutor groups SFC-CON-CWC-NIL

found (Deadline expires) No graded exercises SFF-CON-CWC-NIL

Grade Exam (4a) Unexpected answers in exam
(Activity Failure)

Find objective measure for grading SFS-CON-CWC-NIL

Conduct Exam (5a) Cheating on exam (Constraint
Violation)

Look for evidence and decide
whether student fails or pass the
exam

SFS-CON-RCC-COM

(5b) Student gets sick, no exam
can be handed out (Resource
Allocation)

Get illness validation document
and schedule a catch-up date

SFS-CON-RCC-COM

Plan course (5c) No person for guest lecture is
found

Find replacement lecturer SMV-RBK-CWC-NIL

(Resource Allocation) (5d) Cancel guest lecture SFT-CON-CWC-NIL

123



958 K. Andree et al.

the following, we will explain the mapping of the handling
strategies for three above described approaches for several
examples in detail.
(1) Start with activity.Whennot enough tutors could be found
as originally planned and the course has already started,
the activity Seek Tutors (see Table 10 Exception 3a)) can-
not be terminated since its exit condition (enough tutors
found) is not fulfilled. Knowledge workers then suggest sev-
eral handling options for the exception: allow larger groups
of exercises, i.e., more students per tutor than originally
intended, or change to non-graded exercises.
If larger groups are formed, the task of theSeekTutors activity
can be considered as completed because knowledge workers
compensate the workload by increasing the number of stu-
dents per tutor. Therefore, a force-complete (SFC) at activity
level fits best the knowledge workers’ strategy. According
to Table 6, the fragment/stage “Exercise” then continues in
its execution (CON). The handling of knowledge workers
implies that the case also continues in execution (CWC) and
no further recovery is required (NIL). The pattern SFC-CON-
CWC-NIL thus fits the appropriate handling strategy.
If one decides not to grade the exercises, the tutor searchmay
become obsolete and is therefore set to state failed (SFF).
Only this state ensures that no related fragments/stages and
activities, e.g., tutor payment, are enabled. Since the activity
Seek Tutors is optional, the fragment/stage can continue in
its execution (CON) as well as the case (CWC). Recovery
is not required (NIL). This results in the pattern SFF-CON-
CWC-NIL.
(2) Start with fragment/stage. Corona regulations prohibit
in-person lectures, and the activity Hold Lecture catches an
exception of type Activity Failure (see Table 10 Exception
1a)). Appropriate handling suggests a complete restructur-
ing of the lecture style. This means that originally planned
lectures have to be re-prepared in terms of venue and setting,
i.e., activityOrganize Venue has to be re-executed. However,
the content does not change. Thus, we interpret the handling
of the knowledge worker as a rollback within the fragment
(RBK as second pattern element). According to Table 6, the
exception handling at activity level enforces the state transi-
tion of the activity Hold Lecture into failed, terminated, or
enabled. The state enabled is inappropriate here because the
activity is not enabled until there is a venue. The transition to
failed means that “no subsequent work items are triggered”
[27]. However, since the activity is essential for further exe-
cution, i.e., it is neither part of optional fragment nor marked
as discretionary, it is forced to state terminated and can thus
be executed again at a given time (SFT as first pattern ele-
ment). All other fragments/stages are still executed and the
case is continued (CON as third pattern element). There are
no additional recovery actions on case level (NIL as fourth

pattern element). Thus, the pattern SFT-RBK-CON-NIL
exactly covers the handling strategyof the knowledgeworker.
This mapping strategy also applies to the exception of over-
booking of the lecture hall (see Table 10 Exception 1c)). It is
a wrong resource allocation and causes the canceling of the
course meaning that the fragment/stage “Course” cannot be
executed anymore. Moreover, the fragment/stage should not
trigger any other fragments/stages in the case since the course
does not take place anymore. Therefore, the right exception
handling on fragment/stage level is failure (FAI). Accord-
ingly, the activity Hold Lecture is set to state failed, and the
case is removed from the runtime database (RCC). Compen-
sation (COM) is required if, for example, tutors were already
employed. This results in the pattern SFF-FAI-RCC-COM.
3) Start with case level. Consider the exception of students
having questions after or outside of the course (see Table 10
Exception 1b)). It is caught by the activity Hold Lecture
and from type External Trigger. Two handling strategies are
suggested by knowledge workers: directly answer upcoming
questions, or the offer of a scheduled Q&A session.
We interpret the first option as providing a forumwhere ques-
tions can be asked enabling lecturers as well as tutors to
respond directly. Since setting up a forum is not yet con-
sidered in the model, this strategy requires a change in the
case (RCC). This can be done, for example, by adding a new
fragment/stage. Modification of the case in this context nei-
ther affects the fragment/stage containing the activity which
caught the exception nor the activity itself. Therefore, the
fragment/stage continues in execution (CON) and the activity
Hold Lecture is forced to state started meaning that it contin-
ues in its execution. Compensation on case level (COM) is
required as defined in Table 8. The pattern SFS-CON-RCC-
COM thus realizes the handling by knowledge workers.
Offering a scheduled time for Q&A also requires additional
activities to organize a venue. The handling strategy RCC
on case level allows to add further elements to the process
model at runtime, and thus, fits best the appropriate han-
dling. Similar to the handling above, the activityHoldLecture
can continue in its execution and is therefore forced back to
state started. The fragment/stage also continues in execution
(CON). This results in the pattern SFS-CON-RCC-COM.
Project Planning Process. For the second use case, we were
able to identify seven exceptions in collaboration with the
knowledge worker. The handling strategies of the knowledge
workers canbe coveredby thepatterns (cf. Table 11).Manyof
the listed exceptions, e.g., absencedue to illness or the request
for re-prioritization, can occur at any time and can therefore
be assigned to several activities. Thus, the activities listed
in Table 11 are only examples. Moreover, it is important to
note that the methods used by the knowledge workers mostly
involve collaboration with other process participants.

123



An exception handling framework for case management 959

Table 11 Example manual mapping of real world exceptions to corresponding exception handling pattern for the Project Planning Process use
case

Activity Exception (Type) Handling by Knowledge Worker Patterns

Internal Kick-off (1a) Employees absent due to
illness (Resource Allocation)

Find someone who is available SFA-CON-CWC-NIL

(1b) Customer changes period of
project (External Trigger)

Redefine capacity planning and
determine new project team

SFT-RBK-CWC-NIL

Preselect Project Team (2a) Employees absent due to
parental leave (Resource
Allocation)

Find replacement person and date SFA-CON-CWC-NIL

(2b) Staff shortage due to missing
or already utilized competences
(Resource Allocation)

Office department books freelancer SFT-CON-RCC-COM

Set up Project Plan (3a) New project order with high
priority (External Trigger)

Direct reprioritization of projects SFT-TER-RCC-RBK

Determine Project Manager (4a) Project manager declines to
participate in project (Activity
Failure)

Team manager checks whether
refusal is granted

SFF-TER-RCC-COM

Determine Project Team (5a) Project team member declines
to participate in the project
(Activity Failure)

Team manager checks whether
refusal is granted

SFF-TER-RCC-COM

6.3 Discussion

Our first observation is that even though the interviewees
agreed on the case model as being complete, a multitude
of exceptions could be found, which are not covered in the
case model. This supports our assumption that an additional
exception handling support is necessary.

During our post-processing step, we were able to map
all exceptions and their handling to at least one pattern of
our framework. As mentioned in our results section, we only
provided an example of a matching pattern to a concrete
exception handling proposed by the interviewers. An exam-
ple is the larger groups exception handling, that was matched
to the pattern SFC-CON-CWC-NIL.Here,we argued that the
task Seek Tutors can be considered as completed, as the goal
of the original task was fulfilled. However, depending on the
semantic or a concrete implementation, the task Seek Tutors
might also be considered as terminated, which would mean
the first pattern could also been the force-termination SFT.
Thismeans the pattern belonging to a concrete exception han-
dling is unambiguous and can thus adapt to the unique nature
of a process and its semantics/implementation. Therefore, we
can conclude that our framework is able to represent a realis-
tic and reasonable approach to identify andpropose exception
handling measures that can support knowledge workers.

In comparison with our patterns, the handling strategies
of the knowledge workers are concrete for both use cases.
The presented framework of this research work does not
define exactly how an exception has to be handled in terms
of concrete specifications, e.g., how compensation has to be
executed exactly. Furthermore, it does not include any aspect

of collaboration or delegation of exception handling. Some
exceptions of the second use case, e.g., staff shortage, are not
handled by the knowledge workers who execute the activity
but by other process participants. Although, a more precise
specification and the introduction of a more detailed set of
ruleswould better support individual processes, itwould limit
the general applicability of the patterns. Deciding on the spe-
cific handling should be the responsibility of the knowledge
workers since we do not limit the flexibility of knowledge
workers in the case execution (cf. R5).

The presented exception handling patterns provide knowl-
edgeworkers a structural way of handling strategies ensuring
further process execution by specifying relation of differ-
ent levels that have to be considered. For instance, in the
above pattern SFC-CON-CWC-NIL, which is used to handle
the exception “Not enough tutors found” by allowing larger
groups of exercises, the activity Seek Tutors is set to status
completed. This enables the fragment or stage to continue in
its execution. A manual termination of the fragment/stage,
for example, would require a manual completion or termina-
tion of all following activities and knowledge worker would
have to manage the workload on their own. To avoid unnec-
essarily costly alternative options, the framework specifies
rules, so that knowledge workers are made aware how to
handle which level; a highly relevant support especially for
more complex case models.

Finally, we want to discuss the threats of validity for the
evaluation results. As we interviewed only a representative
set of knowledge workers for the two use cases, the set of
provided exceptions might not be complete for the use cases,
but they provide a representative relevant set, for which we

123



960 K. Andree et al.

could check the coverage. Furthermore, themapping from the
handling strategy of the knowledge worker to a pattern could
be influenced by bias. We tried to mitigate this subjectivity
by discussing each mapping within the group of authors.

7 Conclusion

In this work, we presented a framework for exception han-
dling that canbe applied to casemanagement. The framework
is based on existing work on exception handling for strictly
structured business processes. We adapted the existing work
for case management. In order to ensure a broad application
to different case management notations, we analyzed three
different modeling languages. We generalized their charac-
teristics in one exception handling framework, which was
then used on a real-world business process by interviewing
knowledge workers. In contrast to the original three elements
activity-level, case-level, recovery, we added a fourth layer
to cover the additional fragment/stage introduced by case
management approaches, resulting in four elements activity-
level, fragment/stage-level, case-level, recovery.Whereas the
first three elements describe the nature of the exception and
its influence on the corresponding levels, the last element
describes the nature of the recovery measure. An alternative
solution would be to integrate the last element into the third
element, the case-level as both the exception and its recov-
ery measure operate on the case-level. We decided for the
separation of these two elements, similar to [27], because we
think that a clear separation of the recovery and exception
description has its advantages in the application.

Resulting from the evaluation, we can conclude that our
framework covers all observable exceptions and their han-
dling. It could be observed that the patterns do not give
concrete actions on how to handle exceptions but a source
of inspiration and a frame supporting the knowledge worker
in applying the exception handling in such a way that no
problem occurs in the execution of a case and its elements.
Currently, we only conducted our evaluation on two cases
and checked the coverage of the patterns. In future, we plan
to extend this to other cases to better generalize and also to
check the usefulness of the patterns in a real-world use case
with knowledge workers.

In the current framework, knowledge workers still have
some manual work: on the one hand, they have to select the
exception type for getting the exception handling possibili-
ties, and on the other hand, they have to select themost useful
handling pattern from multiple possibilities for the occurred
exception. The wide range of patterns provides knowledge
worker flexibility and freedom in specifying how to handle
an exception; still, however, the high number of choices also
increases the complexity. In future,wewant tomore automat-
ically support the classification of the exception types and the

selection of the most useful patterns for a certain situation
with the help of machine learning techniques, e.g., learn-
ing from historic data. Additionally, the framework focuses
on stage-oriented case management languages; in future, its
applicability to constraint-oriented case management, such
as DCR graphs [29], and object-oriented case management,
such as Philharmonic Flow [17] could be assessed.

All in all this work presents a novel framework, which
adapts exception handling patterns for case management the
first time. Moreover, this is a first step to support knowledge
workers in handling exception appropriate while managing
a case by offering abstract handling strategies and giving
automatic support in keeping a case in a valid execution state.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Agostini, A., De Michelis, G.: Improving Flexibility of Workflow
Management Systems, pp. 218–234. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000)

2. Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.:
On the declarative paradigm in hybrid business process represen-
tations: a conceptual framework and a systematic literature study.
Inf. Syst. 91, 101505 (2020)

3. Andree, K., Ihde, S., Pufahl, L.: Exception handling in the context
of fragment-based case management. In: Enterprise Business-
Process and Information Systems Modeling, pp. 20–35. Springer,
New York (2020)

4. Andrews, K., Steinau, S., Reichert, M.: A tool for supporting
ad-hoc changes to object-aware processes. In: 2018 IEEE 22nd
International Enterprise Distributed Object Computing Workshop
(EDOCW), pp. 220–223. IEEE (2018)

5. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive pro-
cesses: characteristics, requirements and analysis of contemporary
approaches. J. Data Semant. 4(1), 29–57 (2015)

6. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamen-
tals of Business Process Management. Springer, New York (2018)

7. Fahland,D., Reisig,W.:ASM-based semantics forBPEL: the nega-
tive control flow. In: Abstract State Machines, pp. 131–152 (2005).
https://dblp.org/db/conf/asm/asm2005.html#FahlandR05

8. Fahland, D., Woith, H.: Towards process models for disaster
response. In: Business Process Management Workshops, BPM
2008 InternationalWorkshops,Milano, Italy, September 1-4, 2008.
Revised Papers, vol. 17, pp. 254–265. Springer (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://dblp.org/db/conf/asm/asm2005.html#FahlandR05


An exception handling framework for case management 961

9. Fahland, D.: From scenarios to components. Ph.D. thesis, Hum-
boldt University of Berlin (2010)

10. Gonzalez-Lopez, F., Pufahl, L.: A landscape for case models. In:
Reinhartz-Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.)
Enterprise, Business-Process and Information Systems Modeling,
pp. 87–102. Springer International Publishing, Cham (2019)

11. Haarmann, S., Podlesny, N.J., Hewelt, M., Meyer, A., Weske, M.:
Production casemanagement: a prototypical process engine to exe-
cute flexible business processes. BPM (2015)

12. Hauder, M., Pigat, S., Matthes, F.: Research challenges in adap-
tive case management: a literature review. In: 2014 IEEE 18th
International EnterpriseDistributedObject ComputingConference
Workshops and Demonstrations, pp. 98–107 (2014)

13. Hewelt, M., Pufahl, L.,Mandal, S. et al.: Toward a methodology for
case modeling. Softw. Syst. Model 19, 1367–1393 (2020). https://
doi.org/10.1007/s10270-019-00766-5

14. Hewelt, M., Weske, M.: A hybrid approach for flexible case mod-
eling and execution. In: International Conference on Business
Process Management, pp. 38–54. Springer (2016)

15. Holfter, A., Haarmann, S., Pufahl, L., Weske, M.: Checking com-
pliance in data-driven case management. In: Di Francescomarino,
C., Dijkman, R., Zdun, U. (eds.) Business Process Management
Workshops, pp. 400–411. Springer International Publishing, Cham
(2019)

16. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M.,
Heath, F.T., III., Hobson, S., Linehan, M., Maradugu, S., Nigam,
A., et al.: Business artifacts with guard-stage-milestone lifecy-
cles: managing artifact interactions with conditions and events. In:
DEBS 2011, pp. 51–62. ACM, New York (2011)

17. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a frame-
work for object-aware process management. J. Softw. Maint.
Evolut. Res. Pract. 23, 205–244 (2011)

18. Kurz,M., Fleischmann,A., Lederer,M., Huber, S.: Planning for the
unexpected: exception handling and bpm. In: Fischer, H., Schnee-
berger, J. (eds.) S-BPM ONE - Running Processes, pp. 123–149.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2013)

19. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in
workflow systems. Appl. Intell. 13, 125–147 (2000)

20. Marin, M.A., Hauder, M., Matthes, F.: Case management: an eval-
uation of existing approaches for knowledge-intensive processes.
In: BPM Workshops 2015, pp. 5–55. Springer, New York (2015)

21. Nigam, A., Caswell, N.S.: Business artifacts: an approach to oper-
ational specification. IBM Syst. J. 42(3), 428–445 (2003)

22. OMG: Notation BPMN Version 2.0. OMG Specification, pp. 22–
31. Object Management Group, Needham (2011)

23. OMG: Notation CMMN Version 1.0. OMG Specification. Object
Management Group, Needham (2014)

24. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: full
support for loosely-structured processes. In: 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference
(EDOC 2007), pp. 287–287. IEEE (2007)

25. Pufahl, L., Ihde, S., Glöckner, M., Franczyk, B., Paulus, B.,Weske,
M.: Countering congestion: a white-label platform for the last mile
parcel delivery. In: International Conference on Business Informa-
tion Systems. Springer, Cham, pp. 210–223 (2020)

26. Reichert, M., Weber, B.: Enabling Flexibility in Process-
Aware Information Systems: Challenges, Methods, Technologies.
Springer Science & Business Media, New York (2012)

27. Russell, N. C., Aalst, van der, W. M. P., Hofstede, ter, A. H.
M.: Workflow exception patterns. In: Dubois, E., Pohl, K. (Eds.),
Advanced Information Systems Engineering: 18th International
Conference, CAiSE 2006, Luxembourg, Luxembourg, June 5-9,
2006: Proceedings (pp. 288–302). (Lecture Notes in Computer
Science; vol. 4001). Springer (2006). https://doi.org/10.1007/
11767138_20

28. Sid, I., Reichert, M., Ghomari, A.R.: Enabling flexible task compo-
sitions, orders and granularities for knowledge-intensive business
processes. Enterp. Inf. Syst. 13(3), 376–423 (2019)

29. Slaats, T.,Mukkamala, R.R.,Hildebrandt, T.,Marquard,M.: Exfor-
matics declarative case management workflows as dcr graphs. In:
Business Process Management, pp. 339–354. Springer, New York
(2013)

30. Steinau, S., Marrella, A., Andrews, K., Leotta, F., Mecella, M.,
Reichert, M.: Dalec: a framework for the systematic evaluation of
data-centric approaches to process management software. Softw.
Syst. Model. 18(4), 2679–2716 (2019)

31. van der Aalst, W.M.P., Berens, P.J.S.: Beyond workflow manage-
ment: Product-driven case handling. In: Proceedings of the 2001
International ACM SIGGROUP Conference on Supporting Group
Work, GROUP ’01, p. 42–51. Association for Computing Machin-
ery, New York, NY, USA (2001)

32. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and
change support features - enhancing flexibility in process-aware
information systems. Data Knowl. Eng. 66(3), 438–466 (2008)

33. Weber, B., Pinggera, J., Torres, V., Reichert, M.: Change patterns
in use: a critical evaluation. In: Enterprise, Business-Process and
Information Systems Modeling, pp. 261–276. Springer, New York
(2013)

34. Zimmermann, B., Doehring, M.: Patterns for flexible bpmn work-
flows. In: Proceedings of the 16th European Conference on Pattern
Languages of Programs, pp. 1–9 (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Kerstin Andree is a master stu-
dent at the Hasso Plattner Insti-
tute, University of Potsdam, Ger-
many. During her studies, she
focuses on flexible business pro-
cesses, especially roles and respon-
sibilities, and exception handling
of case management approaches
at runtime. Currently, she is work-
ing on design-time support for
fragment-based case management.

Sven Ihde is a research assistant
at the Chair for Business Process
Technology at the Hasso Plattner
Institute, University of Potsdam,
Germany. His current research is
focused on increasing the robust-
ness and efficiency of business
process and their execution. This
includes the handling of exception
at runtime as well as the man-
agement of resources—especially
optimized resource allocations—
in organizations.

123

https://doi.org/10.1007/s10270-019-00766-5
https://doi.org/10.1007/s10270-019-00766-5
https://doi.org/10.1007/11767138_20
https://doi.org/10.1007/11767138_20


962 K. Andree et al.

Mathias Weske is chair of the
business process technology re-
search group at Hasso Plattner
Institute at the Digital Engineer-
ing Faculty, University of Pots-
dam, Germany. The research group
aims at addressing real-world prob-
lems in business process manage-
ment with formal approaches and
engineering useful prototypes. His
research focuses on the engineer-
ing of process oriented informa-
tion systems, process mining, and
event processing. The BPT re-
search group has a track record in

engineered prototypes with a significant impact on research and prac-
tice, including projects like Oryx and jBPT. He co-founded Signavio
and he is business angel at Synfioo. Dr. Weske is author of the first
textbook on business process management and he held the first mas-
sive open online course on the topic in 2013. With Matthias Kunze,
he published a textbook on behavioral models. He is on the Editorial
Board of Springer’s Computing journal, and he is a founding mem-
ber of the steering committee of the BPM conference series and, since
September 2017, chair of the steering committee.

Luise Pufahl is a postdoctoral
researcher in the Software and
Business Engineering group at TU
Berlin, Germany. Her current re-
search interests are flexible busi-
ness processes, process analysis,
and improvement, and resource
management in business processes
based on operations research, sim-
ulation, and machine learning tech-
niques. Application domains are
mainly health care and logistics.
Her publication record includes
more than 30 articles published
in peer- reviewed journals, confer-

ences and workshops, and she was in the winning teams of the last two
Business Process Intelligence Challenges in 2020 and 2019.

123


	An exception handling framework for case management
	Abstract
	1 Introduction
	2 Basics on exceptions and case management
	2.1 Exceptions: terms and definitions
	2.2 Knowledge-intensive processes
	2.3 Related work

	3 Motivation and requirements
	3.1 Motivating scenario
	3.2 Stage-oriented case management languages
	3.3 Requirements

	4 Foundation on exception handling patterns and their limitations
	4.1 Activity level
	4.2 Case level
	4.3 Recovery measurements
	4.4 Limitations

	5 Exception handling framework for case management
	5.1 Extension of the exception handling patterns
	5.1.1 Activity level
	5.1.2 Fragment/Stage level
	5.1.3 Case level
	5.1.4 Recovery measurements

	5.2 Classification of patterns
	5.3 Functional design of an exception service

	6 Evaluation
	6.1 Procedure
	6.2 Results
	6.3 Discussion

	7 Conclusion
	References




