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Abstract
Enterprise modeling deals with the increasing complexity of processes and systems by operationalizing model content and
by linking complementary models and languages, thus amplifying the model value beyond mere comprehensible pictures.
To enable this amplification and turn models into computer-processable structures, a comprehensive formalization is needed.
This paper presents the formalism MetaMorph based on typed first-order logic and provides a perspective on the potential
and benefits of formalization that arise for a variety of research issues in conceptual modeling.MetaMorph defines modeling
languages as formal languages with a signature Σ—comprising object types, relation types, and attributes through types and
function symbols—and a set of constraints. Four case studies are included to show the effectiveness of this approach. Applying
the MetaMorph formalism to the next level in the hierarchy of models, we create M2FOL, a formal modeling language
for metamodels. We show that M2FOL is self-describing and therefore complete the formalization of the full four-layer
metamodeling stack.On the basis of our generic formalismapplicable to arbitrarymodeling languages,we examine four current
research topics—modeling with power types, language interleaving & consistency, operations on models, and automatic
translation of formalizations to platform-specific code—and how to approach them with the MetaMorph formalism. This
shows that the rich knowledge stack on formal languages in logic offers new tools for old problems.

Keywords Conceptual modeling · Metamodeling · Modeling language · Formal language · Predicate logic

1 Introduction

Enterprise modeling has proven instrumental in facing the
challenges of increasing complexity and interdependences
of processes and systems in the modern world. Research
on enterprise modeling has yielded some highly specialized
tools with value-adding mechanisms like information query-
ing, simulation, and transformation [6,27,59]. The nature of
models has evolved from a visual representation of informa-
tion to an exploitable knowledge structure [12].Nevertheless,
the European enterprise modeling community experiences
that the potential of enterprise modeling is currently not fully
utilized in practice and modeling is employed only by a lim-
ited group of experts. Therefore, in [59] a research agenda is

Communicated by Dominik Bork and Janis Grabis.

B Victoria Döller
victoria.doeller@univie.ac.at

1 Research Group Knowledge Engineering, Faculty of
Computer Science, University of Vienna, Vienna, Austria

formulated to establish “modeling for the masses” (MftM)
and broadcast its benefits also to non-experts.

1.1 A need for formalization

To amplify the value of models as exploitable knowledge
structures, we need to employ the capacities of machines.
Models have to be implemented on a computer to opera-
tionalize their content beyond comprehensible pictures on a
sheet of paper. Therefore, theymust be expressed in a precise
and unambiguousway.Amachine-readable representation of
amodel in turn benefits froman elaborated formal foundation
that offers means for model analysis, interoperability, and a
sound basis for diverse mechanisms, as mentioned above.

Furthermore, also the utilization of modeling by non-
experts as aspired to by the MftM movement implicitly
benefits from a solid formal foundation. Although the ini-
tiators of the MftM movement mention that the formality of
a model representation possibly hampers understandability,
we argue that it is an implied need of several listed challenges
and visions of conceptual modeling, respectively.
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MftM requires the following:

1) Concerning the stakeholder dimension of challenges in
enterprise modeling research [59, p. 234], the MftM ini-
tiators list computers as stakeholders. While the assump-
tion that computers have interests on their own might
be disputable, they indeed play an important role in the
exploitation of model content and are model consumers
and producers. This implies that models have to be for-
malized to make them computer-processable because
computers donot understand semi-formal or unstructured
models and language specifications [7].

2) The vision of models being not autotelic but being a
means to the operationalization of information [59, p.
229] calls for value-adding functionality beyond mere
graphics like analysis, reasoning, verification & valida-
tion, model transformation or simulation, functionality
that preferably should become an integral part of a mod-
eling language. This requires a specification of the syntax
and operations that is formulated ideally implementation-
independently and computer-understandably, i.e., for-
malized.

3) The vision of local modeling practices that are globally
integrative [59, p. 229] calls for a common founda-
tion and theory of models and modeling languages to
enable the linking and merging of models in different
domains with different semantics [32]. This vision of
a global integrability especially points to the need for
a generic, language-crossing foundation, a requirement
going beyond a single language. This means that the
need for formalization is not necessarily grounded in the
language itself, whichmay be successful without formal-
ization. It is the integrability in the big picture of models
expressedwith varyingmodeling languages, the reusabil-
ity, and interoperability that brings about this need.

At the same time, MftM argues that overly formal mod-
eling practices may hamper the understandability of models.
We claim that this is not necessarily the case because a for-
malized model representation is an alternative way to denote
the situation depicted in a graphical model representation
with different merits. While the graphical representation is
suitable to be consumed by humans, the formal represen-
tation resides in the background, offering opportunities for
further exploitation.

The above requirements go even beyond a formalism
in the sense of a precise and unambiguous specification.
They reveal a need for a foundational formal structure
complying with the inherent characteristics of conceptual
modeling. This structuremust comprise the relevant concepts
of languages and provide an integrative foundation open for
affiliation of any progression in conceptual modeling, may
it be advanced concepts or sophisticated functionality. Only

a formal foundation complying with the characteristics of
conceptual modeling provides means for this mature inte-
grability.

This is all the more essential in the light of the emer-
gent importance of domain-specific modeling languages
(DSMLs) [25] as well as increasing agility in the advance-
ment and extension of established languages and methods
[36]. The lack of a common way for formalizing DSMLs
leads to divergent or lacking formal foundations limiting the
opportunities to compare or link models. Frequently the big
standards are extended for a specific domain, e.g., the exten-
sion of i* with security concepts constituting the modeling
language Secure Tropos [50]. Therefore a common way of
specifying the base languages as well as the extensions or
modules is required. A silo-like formalization of the big
standards is not sufficient as divergent base concepts of mod-
els and different underlying formal structures can impede a
mutual interconnection and integration.

Another important building block for advancing the sci-
ence of conceptual modeling is an exact and commonly
applied method for specifying the metamodels of modeling
languages. A survey conducted by Bork et al. showed that
the specification documents of the standardized languages
like UML and ArchiMate diverge in the concepts they con-
sider as well as in the techniques they use to specify their
visual metamodels [9]. Examples from recent scientific pub-
lications indicate that also in research on domain-specific
languages, no common practice of metamodel specification
is in use. Several contributions specify metamodels with
UML class diagrams, declaring object types as classes and
relation types as classes or named association arrows, e.g.,
[35,46,57,60,62]. Others simply define the object and rela-
tion types with box-and-line models devoid of an underlying
language and rely on the intuitive understanding of the reader,
e.g., [45,55]. This shows that although metamodels are mod-
els themselves and therefore subject of interest for enterprise
modeling research no language for metamodels has been
established yet. Nevertheless, when a language has to be
implemented or executed, a precise and unambiguous def-
inition of the metamodel is crucial [7].

1.2 Goal and requirements

According to the AMME framework of agile modeling
method engineering shown in Fig. 1, the phase of formal-
ization is pivotal in the lifecycle of a modeling language.
Yet, there is no common procedure of how to formalize arbi-
trarymodeling languages. Existing formalization approaches
often restrict to a concrete application, domain or lan-
guage, thereby limiting the reusability in other domains and
languages. As the AMME lifecycle is meant as a generic pro-
cedure model for generating arbitrary modeling languages
and methods, we need a formalism applicable to any domain
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Fig. 1 The AMME lifecycle for
agile modeling method
engineering adapted from [36]

and language an engineer might come up with. The work at
hand intends to close this gap and aims at building a bridge
between theDesign phase of collecting the relevant concepts
and the Develop phase of transferring the final design to a
metamodeling platform in the AMME lifecycle. Such a for-
malism must comply to the characteristics and structure of a
modeling language to offer the required integrability of lan-
guages. For this reason, we raise the question: What exactly
is a conceptual modeling language from a formal, structural
point of view?The aimof the presented approach is to resolve
this question step by step working toward an integrative for-
mal foundation.We summarize the concrete requirements for
the formalism as follows:

1) it has to be complete regarding the general building
blocks of a language, 2) it must comply with the linguis-
tic character of modeling languages, 3) it must be generic
in a way that it admits the formalization of any language
developed according to the four-layer metamodeling stack,
an architecture often used in practice nowadays [1,11], and
4) it must provide an integrative formal foundation offering
canonical tools for the advancements in conceptual modeling
research.

In the work at hand, we present the generic and integrative
formalismMetaMorph and demonstrate that in accordance
with the requirements constituted above we can answer the
question from above about the structural nature of modeling
languages as follows: modeling languages can be defined as
formal languages in the sense of logic. This means they com-
prise a signatureΣ for the syntax and a set of constraints, for
which we use first-order predicate logic. This paper extends
our prior work [21] published at the PoEM 2020 conference
about the definition of modeling languages, where we con-
cretely stated how the core concepts of these languages can be
expressed in logical terms. Predicate logic provides the con-
struct of aΣ-structure, i.e., an interpretation of the signature,
which is the canonical correspondent to the model conform-
ing to ametamodel. Applying theMetaMorph formalism to
themeta-language level results in M2FOL, a formalmodeling
language for metamodels. With M2FOL, we are capable of
modeling the syntax of a language to be specified, to be more
precise, the signature of the language according to the defi-

nition. The paper at hand extends the presented definition of
formal modeling languages as well as the language M2FOL
with the concept of multi-value attributes. We furthermore
exemplify the potential and benefits inherent to the proposed
formalism on a diverse range of research topics and demon-
strate the opportunities this integrative foundation offers.

The rest of this paper is structured as follows: In Sect. 2,
we give an overview of related work on formalization of
metamodels and modeling languages. In Sect. 3, we intro-
duce the MetaMorph formalism comprising the definition
of formal modeling languages and models and concretize
how the basic concepts of a language—object and rela-
tion types, attributes, specialization, and constraints—can
be expressed in logical terms. We then use this definition
in Sect. 4 to create M2FOL—a formal modeling language
for metamodels—and outline its self-describing character.
Given a metamodel specified with M2FOL we show how
to algorithmically deduce the signature of the correspond-
ing modeling language. After that we give in Sect. 5 an
outlook to the potential and benefits of formal modeling lan-
guages. We present some ongoing research and approaches
on modeling with power types, on how to interleave mod-
eling languages, formally include operations on models into
the language specification, and on the use of the formalization
as a single point of specification processable by machines. In
Sect. 6, we discuss the formalism with respect to the formu-
lated goals and requirements and outline the agenda of the
empirical evaluation that is currently being conducted.

2 Background and related work

2.1 Formalism vs. formal syntax

We begin by discussing the distinction between a formal-
ism and a formal way of specifying a language. A formalism
always gives rise to a formal specification. The converse,
however, is not true. This can be compared to the concept
of a graph and the unique and precise way of specifying
a graph with an adjacent matrix. Each graph can be repre-
sented as a matrix, but a matrix per se does not provide the
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semantics of graph theory. The same applies to specifica-
tion techniques merely offering a formal syntax to describe
modeling languages. These techniques provide a unique way
of specification but lack the structure and semantics of the
underlying components of conceptual modeling. A formal
syntax may offer an expression for specifying the specializa-
tion of object types. Nevertheless, the expression does not
accomplish the inherent semantics, i.e., the transfer of fea-
tures of the supertype to the subtype. This behavior must
be added to the syntax system by hand, although a suitable
underlying structurewould entail concepts for specialization.
For this simple case, basic set theory would suffice to cap-
ture specialization via sets and containment automatically,
extending functions defined on the superset to all subsets.

Our principal segregation of a formalism and a formal syn-
tax distinguishes our goal from existing approaches like the
meta-object facility (MOF) standard [14]. The MOF offers
a concrete syntax or notation system for specifying model-
ing languages but no inherent theory and methods for the
concepts to be described. Its specification is presented in an
exhaustive natural language document without the intention
to give a foundational structural theory. For this reason, it
indeed fosters a common and generic way of specifying arbi-
trary metamodels (Req. 3) but lacks the benefits of a proper
formalism. In Sect. 5, we will give an outlook to the potential
of deploying a suitable formalism instead of a mere notation
system, which will unveil the advantage of our formalism
over the notation system of MOF.

Unlike the MOF standard, the language Z has a powerful
mathematical foundation based on set theory and first-order
logic and was designed for the formal specification of sys-
tems [54,61]. Z comprises several concepts,which are similar
to elements in conceptual modeling, e.g., a schema in Z is
similar to an object type in conceptual modeling. Neverthe-
less, the concepts differ heavily in their semantics. Schemata
provide broad functionality, which is irrelevant for object
types, while the aspect of the concrete model, the instance
of a language, is not in the scope of a specification written
in Z. Therefore, using Z for defining modeling languages
requires hacking the semantics of concepts in Z. For this rea-
son, Z does not fulfill the second postulated requirement, as
it does not adequately reflect the characteristics of model-
ing languages and there is no obvious way how to create a
modeling language specification with it.

In current research, the notion of formal languages in
the sense of mathematical logic as underlying structure for
modeling languages has been receiving increasing attention,
as both comprise an alphabet or vocabulary and well-
formedness rules [18,28,53,56,63]. Of course, not every
formal language is a modeling language, but modeling lan-
guages form a subclass of all formal languages. In this paper,
we want to concretize and work out this class of formal

modeling languages and establish it as an integrative formal
foundation of conceptual modeling.

2.2 Formalisms for concrete modeling languages

According to theCharacterizingConceptualModel Research
(CCMR) framework [19] we are interested in contributions
located in the dimension Formalize working on the level of
Conceptual Modeling Languages and Metamodeling Lan-
guages. In this respect, we want to delineate our approach
from the various attempts addressing the formalization of
a specific modeling language. These attempts mostly aim
at supporting a specific purpose or functionality and do
not provide means to define arbitrary metamodels and lan-
guages. An example is the OSM-logic using typed predicate
logic for object-oriented systems modeling with a focus on
time-dependent system behavior [17]. Another example is
the SAVE method for simulating IoT systems using the δ-
calculus [16]. These specific formalizations may offer ideas
suitable for being generalized to a generic approach but
will not be comprehensively discussed here. However, as
soon as there is a common practice of formally defining the
ubiquitous concepts of modeling languages, these specific
approaches can be constructed as reusable extensions and
modules and be of value in a broader field of application.

2.3 Formalisms for ontologies and concept spaces

For a systematic positioning of our approach, we use the
triptych allegory proposed by Mayr and Thalheim [47].
They define conceptual modeling as tripartite consisting
of three dimensions: an encyclopedic dimension for cod-
ifying the individual cognitive concepts and notion in a
commonly accepted encyclopedic structure like an ontology
or concept space, a language dimension for the definition
of language terms and valid expressions, and a concep-
tual modeling dimension in between as a link between term
and encyclopedic structure. We are mainly interested in a
formalization of the language dimension and acknowledge
that in the encyclopedic dimension there also exist various
attempts to formalization, like the KL-ONE family [10] and
Description Logic [3]. Also, the formal systemof a conceptu-
alization of domains as basis for truthful modeling languages
proposed by Guizzardi [29] has to be located in the ency-
clopedic dimension and has therefore to be distinguished
from our goal. In this theory of ontologically-driven concep-
tual modeling fruitful for the objective of a domain-faithful
grounding for modeling languages, the language dimension
is an a-posteriori concept implicitly obtained from ontologi-
cal considerations.
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2.4 Formalisms for languages

When focusing on formalizations in the language dimension,
the existing approaches can be categorized according to the
underlying theory they use, which is mostly graph theory,
set theory, or logic. All three of them offer concepts for the
concrete structural behavior of the elements to be described.
In the following we present examples illustrating the short-
comings of the former two and argue why logic provides the
most canonical approach.

In the domain-specific language KM3 presented by
Jouault andBezivin [34]models are defined as directedmulti-
graphs conforming to another model, the metamodel, itself
a graph. Using this formalism, the authors define a self-
describing metametamodel and deduce a domain-specific
language to specify metamodels. This approach puts an
emphasis on the graph-like box-and-line structure of models
rather than on the linguistic aspects and has a narrow focus
on software structure specification.

A system based on set theory is the formalization of Ecore
and EMOF proposed by Burger [13, 2.3.2] which uses the
formal description of concepts from the OCL specification
[51, A.1]. Set theory comprises very basic concepts describ-
ing structures, only admitting the subsumption of elements
in sets and set hierarchies. It holds no further information
about the semantics of the elements.

Also, the FDMM formalism introduced by Fill et al. [24]
addressing conceptual modeling domains in a wider vari-
ety uses set theory to specify metamodels and models. The
authors explicitly aim at a formalization of metamodels real-
ized with the metamodeling platform ADOxx [5] and do not
claim to be applicable for platform-independent specifica-
tions.

Neither graph theory, basis of KM3, nor set theory, basis
of FDMM and the MOF formalization by Burger, do justice
to the linguistic character of modeling languages and pro-
vide canonical concepts for the definition of a set of terms
and for instantiation, an essential characteristic of model-
ing languages. Therefore the technique and semantics of this
conformance of a model to its metamodel has to be con-
structed ad-hoc and lacks the beneficial knowledge stack of
established theories dealing with linguistic structures.

2.5 Formalisms based on logic

Formal languages as defined inmathematical logic inherently
comprise the concept of instantiation as interpretation of the
signature in logical terms, and they provide a rich knowledge
base about their properties. Therefore, in current research,
the notion of modeling languages as formal languages in the
sense of mathematical logic is receiving increasing attention
[18,28,53,56,63].

In their investigation of formal foundations of domain-
specific languages, Jackson and Sztipanovits [33] introduce
term algebras to handle models . They indeed treat model-
ing languages as formal languages with a signature and an
alphabet. Nevertheless, they mostly abandon the notion of
conceptual modeling in the formalism. A model is defined
as a set of terms without explicating the equivalents of its
constituents, i.e., objects, relations, and attributes. Without a
procedure to define object and relation types, the approach
lacks the instantiation relation between elements in the meta-
model and the model that is characteristic for modeling
languages.

Telos [40] builds on the premise that the concepts of enti-
ties and relations are omitted and replaced by propositions
constituting the knowledge base. The choice of typed first-
order logic for the formalization of these propositions is
natural and explained in great detail in [41]. Knowledge in
Telos is represented solely as a set of sentences in the for-
mal language. In our approach, on the other hand, we do
not adopt the transformation of models into propositions but
rather directly deal with the ubiquitous concepts of objects
and relations and an instantiation hierarchy between models
and metamodels. This leads to a different view on models. In
Telos, a model is constituted by FOL statements, whereas in
our approach these FOL statements are used as constraints
restricting valid expressions using the proposed signature.

In his work on the theory of conceptual models, Thal-
heim [63] describes modeling languages as being based on
a signature Σ comprising a set of postulates, i.e., sentences
expressed with elements of Σ . Models are defined as lan-
guage structures satisfying the postulates, which canonically
corresponds to the concept of instantiation of a metamodel.
We go one step further and concretely point out how to cap-
ture the core concepts of a modeling language in a signature
Σ to unify the method of formalizing a language. This then
enables us to investigate the class of formal modeling lan-
guages, compare formalized languages, reuse components
and develop generic methods for language fusion, model
transformation, etc., independent of a concrete language.

In summary, the literature review suggests that the struc-
ture of modeling languages, including their linguistic char-
acter, can be grounded in the concepts of formal languages.
Therefore, in the work at hand, we propose a formal defini-
tion of modeling languages in which we concretely specify
the modeling concepts and their formal equivalent in logical
terms with the prospect of successive elaboration.

We adopt the four-layer metamodeling stack architecture
that is widely used in practice nowadays [1,11]. Even though
it is often seen as insufficient for those modeling situations
that motivated the multi-level modeling approach [26], we
agree with the argument in [47] that a language offering
means to model an intension/extension relation (extension
denominating the elements characterized by their intension
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concept, akin to the instantiation relation [15]) allows to
model elements of different levels. Such a relation type tack-
les some of the core characteristics of multi-level modeling.
A possibility of realizing this intension/extension relation is
the employment of the power type pattern. We will use this
idea in Sect. 5 to demonstrate how easily the MetaMorph
approach can be extended to encompass additional, advanced
tools in conceptual modeling.

3 The METAMORPH formalism: defining
formal modeling languages

The intended definition shall serve as a cornerstone for a
common way of formalizing modeling languages, thereby
becoming comparable, reusable, and modularizable. A for-
mal definition for modeling languages in general enables an
investigation of common features of the resulting subclass of
formal languages as well as a sound mathematical founda-
tion for their functionality. We build on a survey conducted
by Kern et al. [38] on common concepts in the meta2models
of six established metamodeling platforms. The definition
below incorporates all concepts identified in at least half
of the investigated platforms. These are object types, rela-
tion types (binary), attributes (multi-value), inheritance (for
object types), and a constraint language. In accordance with
the state of the art in conceptual modeling research, we
replaced the term inheritance used in [38] with special-
ization, a more accurate notion for this dependency. Other
concepts identified in [38] which are not yet included in
MetaMorph are roles, ports, specialization of relations, n-
ary relations, and models in the sense of model types.

These concepts mainly coincide with the core concepts
introduced for conceptual modeling of information systems
byOlivé [53].Additional conceptsmentioned inOlivé’swork
which are of high interest but not yet included in our approach
are derived types and generic relation types. The concept of
power types also mentioned in [53] will be used to demon-
strate the ease of extending the MetaMorph formalism in
Sect. 5.

3.1 A definition based on predicate logic

The MetaMorph formalism builds on typed (also called
sorted) predicate logic. Themathematical basics canbe found
in textbooks on logic or mathematics for computer science,
e.g., [23,48]. Some remarks on notation: To ease the differ-
entiation between language and model-level, we use capital
letters for the symbols of the language and lowercase letters
for the elements of the model.

Definition 1 A (formal) modeling language L consists of a
typed signature Σ = {S,F ,R, C} and a set C of sentences
in L for the constraints, where:

– S is a set of types, which can be further divided into three
disjoint subsets SO , SR , and SD for object types, relation
types and data types;

– the type set SO is strictly partially ordered with order
relation<O⊆ SO ×SO to indicate the specialization
relation between the corresponding object types;

– the type set SD can contain simple types T for value
domains of single-value attributes, or product types
T′ = T1×T2×· · ·×Tn and unions thereof for value
domains of n-ary multi-value attributes (n > 1),
where the ith value is of type Ti ∈ SD ∪ SO ∪ SR ;

– F is a set of typed function symbols such that:

– for each relation typeR inSR there exist two function
symbols FR

s and FR
t with domain type R ∈ SR and

codomain type Os, Ot ∈ SO assigning the source
and target object types to a relation;

– for each single-value attribute A of an object or rela-
tion type T there exists a function symbol FA with
domain type T and codomain type a simple type in
SD or an element in SO or SR assigning the simple
data type or referenced object type or relation type to
the attribute;

– for each multi-value attribute A of an object or rela-
tion type T there exists a function symbol FA with
domain type T and codomain type a product type in
SD or unions thereof;

– R is a set of typed relation symbols;
– C is a set of typed constants to specify the possible values
ci of a simple type T ∈ SD of the attributes;

– the set C is a set of sentences in L constraining the pos-
sible models, also called the postulates of the language.

This definition explicates the formalization of the essen-
tial modeling concepts of a language, i.e., object types and
specialization, binary directed relation types and single- or
multi-value attributes. Note that the definition does not pro-
hibit the existence of additional symbols in the signature, so
broader concepts like n-ary relation types can optionally be
included and are topic of further investigation. Also, struc-
tures beyond the visual elements of a model can be included,
e.g., paths as transitive relations or substructures comprising
several elements.

We want to point out that relation types are defined on
the same level as object types, not subordinate to them. This
highlights their significance for a model beyond mere arrows
and allows for defining attributes of relations, multiple rela-
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tions of the same type between the same two objects, as well
as for specialization of relation types.

Specialization of object types O1 <O O2 means, that
all elements of the subtype O1 are indeed elements of the
supertype O2. Therefore, the elements of O1 also belong to
the domain of an attribute function FA : O2 → T for an
attribute A possessed by O2. This implies that elements of
type O1 also possess this attribute and that attributes inher-
ited from the supertype cannot be altered for the subtype.
Furthermore, the specialization relation <O is defined as a
strict partial order and therefore allows for multiple super-
types for a subtype.

With the data types and constants, we can define attribute
domains like integers via specifying a type calledN and con-
stant symbols 1,2,3, …in C of type N for the numbers, or
enumeration lists like a person’s gender via specifying a type
called gender and constant symbolsmale, female, and else in
C. The elements of the simple or product types of SD are typ-
ically not visible in graphical models. They are exclusively
used for specifying attribute domains.

Note that if we assume the set of constants for attribute
domains to be finite, models are always finite because by
construction they contain only finitelymany objects and rela-
tions.

Definition 2 A model M of a language L with typed signa-
ture Σ = {S,F ,R, C} is an L-structure conforming to the
language constraints C, i.e.,M consists of

– a universe U of typed elements respecting the type hier-
archy, that is

– for each T in S there exists a set UT ⊆ U and U =⋃
T∈S UT;

– all sets UT for T ∈ SO ∪ SR have to be pairwise
disjoint except for sets UO1 and UO2 with O1, O2 ∈
SO where O1 <O O2. In this case UO1 must be a
subset of UO2 , i.e., UO1 ⊆ UO2 ;

– all sets UT with T = T1 × T2 × · · · × Tn a product
type in SD consist of tuples (x1, x2, . . . xn) ∈ UT1 ×
UT2 × · · · × UTn ;

– an interpretation of the function symbols in L, i.e., for
each function symbol F ∈ F with domain typeT1×. . .×
Tn and codomain typeT a function f : UT1×. . .×UTn →
UT;

– an interpretation of the relation symbols inL, i.e., for each
relation symbol R ∈ R with domain type T1 × . . . × Tm

a relation r ⊆ UT1 × . . . × UTm ;
– for each simple type T ∈ SD and constant C ∈ C of type

T an interpretation c ∈ UT;
– for each constraint φ in C the model M satisfies φ, i.e.,
M |� φ.

Fig. 2 Notation excerpt of the CoChaCo method [37]

Fig. 3 A metamodel of Petri Nets

This definition of models as language structures goes beyond
a visualization and considers models as knowledge struc-
tures as described in [12]. Thereby, we overcome several
shortcomings of graphical representations, like the missing
depiction of attributes and their domains in models or the
visual mixing of the metarelation specialization with the def-
inition of relation types in metamodels.

3.2 Running example Petri Nets

We will now illustrate the definition on the example of
the Petri Net modeling language. For the visualization of
the metamodel, we use the notation of CoChaCo, a method
to support the creative process of modeling method design
[37]. This method comprises concrete syntax for most of
the concepts listed in Definition 1 with a slightly different
naming, see Fig. 2.

Example 1 The Petri Net modeling language PN
The Petri Net metamodel depicted in Fig. 3 comprises three
object typesNode (No),Place (Pl), andTransition (Tr) con-
stitutingSO . TherebyPlace andTransition specializeNode,
i.e.,Place <O Node andTransition <O Node. Furthermore,
the language comprises only one relation typeArc element of
SR . For the attribute Tokens of object type Place, we need
a type N0 with the usual addition +N0 : N0 × N0 → N0

and order relation <N0⊆ N0 × N0, i.e., the set of all tuples
(x, y) in N0 × N0 where x < y. Additionally, we specify
constants in C = {0, 1, 2, . . .} all of type N0. The set S of
types is then the union S = SO ∪ SR ∪ SD={Node, Place,
Transition, Arc, N0}. For the relation type Arc, we have
to specify the source and target object types by introducing
two function symbols FArc

s and FArc
t both with domain Arc

and codomain Node. For the attribute Tokens, we introduce
a function symbol FTokens with domain Place and codomain
N0 assigning each place instance a number of tokens.
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Fig. 4 A Petri Net model depicting a simple barber shop scenario

The signature of PN looks as follows:

Σ = {S,F ,R, C}, S = SO ∪ SR ∪ SD (1)

SO = {Node, Place, Transition}, (2)

Place <O Node, Transition <O Node (3)

SR = {Arc}, (4)

SD = {N0}, (5)

F = {FArc
s : Arc → Node, FArc

t : Arc → Node,

FTokens : Place → N0,+N0 : N0 × N0 → N0}, (6)

R = {<N0⊆ N0 × N0}, (7)

C = {0, 1, 2, . . .}, all of type N0. (8)

Finally, we have to define the constraints of the language.
These rules are not contained in a graphical metamodel. In
existing specifications, they are mainly specified with nat-
ural language or OCL. In the predicative formalization of
MetaMorph constraints are an integral part of the language.
Following four sentences written in the alphabet of PN
ensure Node to be abstract, i.e., any element in Node lies
either in Place or in Transition (9), as well as the alternation
of types of the elements connected by an arc (10, 11) and the
prohibition of multiple arcs between the same two elements
(12). For ease of readability,we abuse the notation∀x ∈ T for
x being of type T instead of using the type specific quantifier
∀Tx .

∀x ∈ No ∃y ∈ Pl, z ∈ Tr (x = y ∨ x = z) (9)

�x, y ∈ Pl, u ∈ Arc

(FArc
s (u) = x ∧ FArc

t (u) = y) (10)

�x, y ∈ Tr, u ∈ Arc

(FArc
s (u) = x ∧ FArc

t (u) = y) (11)

∀u, v ∈ Arc ((FArc
s (u) = FArc

s (v) ∧
FArc
t (u) = FArc

t (v)) �⇒ u = v) (12)

Example 2 A Petri Net model
A Petri Net model depicting a simple barber shop scenario
is shown in Fig. 4. Its formalization, i.e., the corresponding
PN -structure, looks as follows: The universe of places UP

contains three elements UP= {w(ait),
b(usy), i(dle)}. The universe of transitions UT comprises
three elements UT={e(nter), s(erve), d(one)}. Six arc ele-
ments exist in UA = {a1, a2, a3, a4, a5, a6} with source
and target f Arc

s (a1) = e, f Arc
t (a1) = w, f Arc

s (a2) = w,
f Arc
t (a2) = s, f Arc

s (a3) = s, f Arc
t (a3) = b, f Arc

s (a4) = b,
f Arc
t (a4) = d, f Arc

s (a5) = d,
f Arc
t (a5) = i, f Arc

s (a6) = i, and f Arc
t (a6) = s. For

the attribute type and values, the natural numbers N0 are
included in the model, UN0 = {0, 1, 2, . . .}. The instantia-
tion of the attribute Tokens looks as follows: f Tokens(w) = 2,
f Tokens(b) = 0 and f Tokens(i) = 1. The interpretations of
the function and relation symbols +N0 : N0 ×N0 → N0 and
<N0⊆ N0 × N0 are defined according to the usual addition
and order relation on natural numbers. We can easily check
that the formalized model satisfies all postulates (9)–(12) of
the language PN .

Notice that the formalized model representation in Exam-
ple 2 and the graphical model representation in Fig. 4 show
the same thing. They are merely alternative ways of describ-
ing a system but with different merits. Whereas the graphical
model representation is easy and fast to comprehend, the for-
malmodel representation is precise and complete, as attribute
values are often not legible from a pictorial model. This
can be compared to the different representation forms of a
graph—once as a graphical depiction and once as an adjacent
matrix.

4 M2FOL: metamodel 2 first-order logic a
formal modeling language for metamodels

Metamodels aremodels themselves expressed in ametamod-
eling language. We propose a formal modeling language in
the sense ofDefinition 1 formetamodels calledM2FOL, i.e., a
metamodeling language to be exact. This language is capable
of describing precisely the concepts explicated in Defini-
tion 1. In general, meta2models of metamodeling languages
are supposed to be self-describing, which results in a four-
layer metamodeling stack as depicted in Fig. 5.Wewill show
that the metamodel of M2FOL, a meta2model by nature, also
partakes of this property.

4.1 Definition of M2FOL

We stick to the notational convention of capital letters for
elements on the language-level and lowercase letters for
elements on the model-level. To indicate the metalevel of
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Fig. 5 The four-layer metamodeling stack based on [43]

M2FOL and metamodels, we use the typewriter font for meta
symbols and elements. For ease of readability, we write
F : X → Y when F is a function with domain type X
and codomain type Y . Nevertheless, the instantiation is then
a function f : UX → UY defined on universes of typed
elements. To be consistent in the naming of the symbols in
M2FOL we distinguish between an attribute type on meta-
level and an attribute as the concrete assignment of a value
to an element on model-level.

With M2FOL, we want to model object types and special-
ization relations between them, relation types connected to
their from and to object types, attribute types and their data
types, and possible data. According to Definition 1, all the
bold concepts constitute a type in SO in M2FOL, whereas all
italic concepts make up a type in SR in M2FOL. The types
specialization, from, and to furthermore require assignment
functions for source and target specification. Data types and
data are necessary for defining attribute domains and their
values, e.g., the domainN0...10 and values {0, 1, 2, . . . , 9, 10}
or an enumeration list domain gender with values male,
female, else. Attribute types need the assignment of owning
type and value domain.

Definition 3 The metalanguage M2FOL is a modeling lan-
guage with signatureΣ = {S,F ,R, C}with the set of types
split in S = SO ∪ SR ∪ SD , where:

– SO consists of the types O(bject) T(ype), R(elation)
T(ype), A(ttribute) T(ype), D(ata) T(ype), and D(ata), fur-
thermore two supertypes: ORT(ype), and
DORT(ype): SO = {OT,RT,AT,DT,D,ORT,DORT};

– The typesOT, and RT, specializeORT, the typesORT,
and DT specialize DORT: OT <O ORT, RT <O ORT,
ORT <O DORT, DT <O DORT;

– SR consists of the types Spec(ialization), Fr(om), and
To: SR = {Spec,Fr,To};

– SD contains product types DORTn for all n > 1 as well
as a type TDORT for the union of all DORTn : TDORT =
⋃

i DORT
i ;

– the set of function symbols consists of following ele-
ments:

– two symbols FSpec
s and FSpec

t assigning source and
target to Spec-typed relations: FSpecs : Spec →
OT, FSpec

t : Spec → OT;
– two symbolsFFrs andFFrt assigning source and target
to Fr-typed relations: FFrs : Fr → RT, FFrt : Fr →
OT;

– two symbolsFTos andFTot assigning source and target
to To-typed relations: FTos : To → RT, FTot : To →
OT;

– two symbols Fval and Ft ype assigning to an attribute
type its value domain and the object or relation type
it belongs to. The value assignment can be a refer-
ence or a n-valued type in DORTn : Fval : AT →
⋃

i DORT
i , Ft ype : AT → ORT;

– a symbol FDT to assign a data type to a data element:
FDT : D → DT;

– R consists of a symbol <OT transitively extending the
specialization relation given by Spec to a strict partial
order on the set of object typesR = {<OT ⊆ OT × OT}.

We formulate the postulates of the language. For brevity,
we use the abbreviation xry for relation r of type T, x being
FT
s (r) and y being FT

t (r).
The following constraints ensure <OT being the transitive

closure of Spec under the assumption that all universes are
finite:

∀x, y ∈ OT, u ∈ Spec (xuy �⇒ x <OT y) (13)

∀x, y ∈ OT ∃z ∈ OT, u ∈ Spec (x <OT y �⇒
xuy ∨ (xuz ∧ z <OT y)) (14)

We furthermore require <OT to be a strict partial order, i.e.,
<OT is transitive, irreflexive and antisymmetric. The absence
of cyclic specialization and self-specialization follows from
the properties of <OT.

The following constraints ensure the existence andunique-
ness of To and Fr objects of a relation (15–17), and the
abstractness of the types ORT and DORT (18–19):

∀x ∈ RT ∃y, z ∈ OT, u ∈ Fr, v ∈ To (xuy ∧ xvz) (15)

�u, v ∈ Fr (FFrs (u) = FFrs (v) ∧ u = v) (16)
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Table 1 Algorithm to deduce a formal modeling language signature from its M2FOL metamodel specification

M2FOL (meta)model to language-signature Mapping Application to the Petri Net
metamodel

1. Each metamodel element o in the set UOT defines an
object type O of the language. The specialization
relation <OT⊆ UOT ×UOT must be adopted to the types

o ∈ UOT � O ∈ SO ,

<OT�<O

node ∈ UOT � Node ∈ SO ,

place ∈ UOT � Place ∈ SO ,

trans ∈ UOT � Trans ∈ SO

2. Each metamodel element r in the set URT defines a
relation type R of the language

r ∈ URT � R ∈ SR arc ∈ URT � Arc ∈ SR

3. For each relation type r ∈ URT, there exist an element s
of type From and an element t of type To and both
relation elements have as source element r,
fFr
s (s) = r,fFr

s (t) = r. The assignment
fTo
t (s) = os indicates the source object type of R,

fTo
t (t) = ot indicates the target object type of R

r,s,os � FR
s : R → Os ;

r,t,ot � FRt : R → Ot

arc,fFrt (a_from) = n �
FArc
s : Arc → Node;

arc,fTo
t (a_to) = n � FArc

t :
Arc → Node

4. Each metamodel element dt in UDT defines a data type
DT of the language. Each metamodel element d in UD

with fDT(d) = dt becomes a constant symbol Cd in C
of type DT

dt ∈ UDT � DT ∈ SD ;
d ∈ UD � Cd ∈ C

N ∈ UDT � N ∈ SDT ;
i ∈ UD,fDT (i) = N � i ∈ C of
type N

5. Each metamodel element a in the set UAT defines a
function symbol Fa of the language. The object or
relation type that a belongs to, i.e., the domain of Fa,
is given by the assignment
ft ype(a) = tt y ∈ UOT ∪ URT, its value range, i.e.,
codomain, by
fval(a) = (tv1 , . . . ,tvn ) ∈ (UOT ∪ URT ∪ UDT)n

a,tt y,tv̄ � Fa : Tty → Tv̄ tok,ft ype(tok) = place,

fval(tok) = N �
FTokens : Place → N

6. The constraints of the language have to be added
manually, because this information is not determined
by the metamodel

�u, v ∈ To (FTos (u) = FTo
s (v) ∧ u = v) (17)

∀x ∈ ORT ∃y ∈ OT, z ∈ RT(x = y ∨ x = z) (18)

∀x ∈ DORT ∃y ∈ ORT, z ∈ DT(x = y ∨ x = z) (19)

4.2 Running example Petri Nets

With this language, we now can transfer the graphical meta-
model of Fig. 3 to a formal M2FOL-model.

Example 3 The Petri Net metamodel MPN

The universe of object types UOT comprises three elements:
n(ode), p(lace), and tr(ansition). The universe of relation
typesURT contains one element a(rc). One element tok(ens)
is contained in the universe of attribute types UAT. The
universe USpec contains the specialization relations p_n
between p and n as well as tr_n between tr and n.
UFr contains the relation a_from of the source element
assignment to the relation type a. UTo contains the rela-
tion a_to of the target element assignment to the relation
type a. For these four elements, the corresponding source
and target elements have to be assigned: fSpecs (p_n) = p,
fSpect (p_n) = n, fSpecs (tr_n) = tr, fSpect (tr_n) = n,
fFrs (a_from) = a, fFrt (a_from) = n, fTos (a_to) = a,
fTot (a_to) = n. From Spec the transitive order relation
<OT is deduced:<OT= {(p,n), (tr,n)}. Furthermore, there
are data values {0, 1, 2, . . .} in UD all of type N0 ∈ UDT,

fDT (i) = N0 ∀i ∈ UD. These are needed for the value
domain of the attribute type tok, an attribute assigned to
p: ft ype(tok) = p, fval(tok) = N0. In short, this can be
written as follows:

UOT = {n(ode), p(lace), tr(ansi tion)}, (20)

URT = {a(rc)}, UAT = {tok(en)}, (21)

USpec = {p_n,tr_n}, (22)

UFr = {a_from}, UTo = {a_to}, (23)

UDT = {N0}, UD = {0, 1, 2, . . .}, (24)

UORT = {n,p,tr,a},UDORT = {n,p,tr,a, N0} (25)

<OT= {(p,n), (tr,n)} (26)

fSpecs (p_n) = p,fSpec
t (p_n) = n, (27)

fSpecs (tr_n) = tr,fSpec
t (tr_n) = n, (28)

fFrs (a_from) = a,fFr
t (a_from) = n, (29)

fTos (a_to) = a,fTo
t (a_to) = n, (30)

ft ype(tok) = p,fval(tok) = N0, (31)

fDT (i) = N0 ∀i ∈ UD (32)

This formal metamodel MPN conforms to all constraints
(13)–(19) and describes the formal languagePN introduced
in Example 1. Their subordination prompts a generic proce-
dure on how to deduce the latter from the former. In Table 1,
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Fig. 6 The metamodel of
M2FOL (notation see Fig. 2)

we present this procedure as an algorithm. In the right col-
umn, the algorithm is exemplified on the metamodel of Petri
Nets. Compare the result to Example 1.

4.3 Meta-perspective on M2FOL

Finally, we formalize the metamodel of M2FOL as M2FOL
model. The graphical metamodel is depicted in Fig. 6.

Example 4 Metamodel of M2FOL
The M2FOL metamodel contains seven objects of type
OT={o(bject)t(ype), r(elation)t(ype), a(ttribute)t(ype),
d(ata)t(ype), d(ata), ort(ype), dort(ype)}, three objects
of type RT={spec, fr(om), to}, three objects of type
AT= {val(ue)_dom(ain), ass(igned)_to, ass(igned)_
d(ata)t(ype), many objects of type DT = {dorti∀i ,⋃

i (dort)i } (not visible in the graphical metamodel), four
relations of type Spec={ot < ort,rt < ort,ort <

dort,dt < dort}, three relations of type From=
{source_spec, source_to, source_fr}, as well
as three relations in To={target_spec, target_to,
target_fr}, furthermore 26 assignments of source and
target objects, attribute owning types and attribute value
types.

f T os (target_spec) = spec, (33)

f T ot (target_spec) = ot, (34)

f Frs (source_spec) = spec, (35)

f Frt (source_spec) = ot, (36)

f T os (target_fr) = fr, (37)

f T ot (target_fr) = ot, (38)

f Frs (source_fr) = fr, (39)

f Frt (source_fr) = rt, (40)

f T os (target_to) = to, (41)

f T ot (target_to) = ot, (42)

f Frs (source_to) = to, (43)

f Frt (source_to) = rt, (44)

f Specs (ot < ort) = ot, (45)

f Spect (ot < ort) = ort, (46)

f Specs (rt < ort) = rt, (47)

f Spect (rt < ort) = ort, (48)

f Specs (ort < dort) = ort, (49)

f Spect (ort < dort) = dort, (50)

f Specs (dt < dort) = dt, (51)

f Spect (dt < dort) = dort, (52)

ftype(ass_dt) = d, fval(ass_dt) = dt (53)

ftype(ass_to) = at, fval(ass_to) = ort, (54)

ftype(val_dom) = at, (55)

fval(val_dom) =
⋃

i

(dort)i (56)

On the one hand, the construct above is itself a model
expressed in the language M2FOL. On the other hand,
this metamodel defines M2FOL as a meta2model. With the
algorithm presented above, we deduce Definition 3 from
Example 4. So we conclude that the proposed modeling lan-
guage M2FOL for metamodels is self-describing and thereby
complete the formalization of the four-layer metamodeling
stack.

4.4 Pinpointing the approach in the language
definition hierarchy

In Fig. 7, the language definition hierarchy andmodel hier-
archy adapted fromMayr andThalheim [47] are depicted.We
use this hierarchy to pinpoint the definitions and examples
presented so far and illustrate the big picture of the approach
with all its interdependencies. Definitions and examples of
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Fig. 7 Definitions and examples of the presented approach are pinpointed (orange rounded rectangles) in the big picture of the language definition
hierarchy and model hierarchy outlined in [47]

the paper at hand are inserted as orange rounded rectangles
in the figure to disclose their role in the language definition
hierarchy. Note that in Fig. 7 there is an explicit distinction
between the actual model and the language construct repre-
senting themodel, e.g., themodeling language representation
of a model or the metamodeling language representation of a
metamodel. Although models, metamodels, metametamod-
els, etc., belong to different levels in the model hierarchy,
their language representations reside on the same level in the
language definition hierarchy, namely on the language usage
level as they are model representations defined by means of
a modeling language. On this level, we find the Petri Nets
model representation from Example 2 and the representation
of the Petri Netsmetamodel fromExample 3. Themetamodel
of M2FOL fromExample 4 is an example of ameta2modeling
language representation.

All these model representations are language constructs
defined by means of a language that is defined on the next
higher level, the language definition level. On this level, we
find representation grammars specifying the language syn-
tax. The model representation grammar for the Petri Nets
model mentioned above is the Petri Nets language definition
fromExample 1. Themetamodel representation grammar for
theM2FOLmodel mentioned above is theM2FOL language
definition from Definition 3.

Again the means to define these representation grammars
resides on the next higher level in the languagedefinitionhier-

archy, namely on the grammar definition level. The authors of
[47] name versions of EBNF as an example for elements on
this level. In the presented approach,weuse theMetaMorph
formalism for grammar definition comprising Definition 1
and Definition 2 precisely defining how to specify a model-
ing language or, in other words, a representation grammar.

As a metamodel defines a modeling language (see Fig. 5),
we present in Table 1 an algorithm to deduce themodel repre-
sentation grammar (located at the language definition level)
from a metamodeling language representation (located at
the language usage level). Therefore, the algorithm builds
a bridge between levels. It is depicted as an arrow in Fig. 7.

On the language usage level, we also find the metamodel
of the metamodeling language M2FOL (Example 4), there-
fore being a representation of a metametamodel. As this
representation was itself defined by means of M2FOL, this
shows that M2FOL is ametamodel representation grammar as
well as a metametamodel representation grammar and there-
fore suffices to complete the formalization of the four-layer
metamodeling stack.

5 Potential and benefits of formalized
conceptual modeling languages

In this section, we exemplify the integrability of Meta-
Morph and give an outlook to several research topics
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potentially benefiting from formalizing conceptual mod-
eling languages with the proposed formalism—these are
modeling with power types, language interleaving and con-
sistency, operations on models, and translators of platform-
independent formalizations to platform-specific code. For
this purpose, we make use of established concepts from for-
mal language theory. For reasons of brevity, we will not
discuss all topics in detail and will restrict to an extensive
elaboration only for the first two topics of interest.

5.1 Modeling with power types

Power types are an advanced tool in conceptual modeling
and address issues arising when modeling, e.g., biological
taxonomic relations like birds and bird species [53] or dogs
and breeds [31], issues that motivated the field of multi-level
modeling [26].Originally stemming from the object-oriented
programming domain [52],
power types are a means to describe an instantiation depen-
dency (also named classification) between elements in a
model. It is one of the most common techniques in multi-
level modeling [15].

To be precise, a type is the power type of another type, the
base type, if all its instances are specializations of the base
type [15]. Power types are based on themathematical concept
of a powerset [31]. Depending on the concrete requirements
on the elements of the power type—forming the full pow-
erset, a partition of the base set, disjoint subsets, etc.—the
realization of the power type concept shows slightly different
behavior [15]. In this outlook,we adopt themost general vari-
ant of the concept and allow arbitrary subsets of the powerset
to constitute the power type.

In the following, we will show that the concept of power
types can be canonically integrated into the proposed formal-
ism. With this extension MetaMorph allows for tackling
situations core to the multi-level modeling approach. This
proves the ease of extendingMetaMorphwith relevant con-
cepts from conceptual modeling and therefore underpins the
suitability of formal languages as underlying structural the-
ory. This extension shows again the capability of formalized
models to capture information that has no canonical counter-
part in the graphical representation of the model.

5.1.1 Extending METAMORPH with the power type
concept

The power type pattern defines a relation on the object types
of a language similar to the specialization relation. A type
P is a power type of another type B, the base type, if all
instances of P are sets of instances of B, i.e., in a model the
universe of elements UP is a subset of the powerset ℘(UB).
This dependency of object types induces a new binary rela-
tion ∈O⊆ SO × SO . Unlike the specialization relation <O

it is not an (strict partial) order relation, as it does not fulfill
transitivity, but it has to be anti-reflexive and circle-free.

The power type pattern allows for the assignment of new
attributes to categorized objects of its base type. This means
that an element b of the base type receives new features by
the membership in a concrete element p of the power type,
which is a set. Therefore, we define these attributes as triples
(b, p, val) between the element, its power type element, and
the actual value of the attribute. To realize this, we have to
prepare somedata types to enable the definition of an attribute
and its value domain on model-level because they are not
known at the language definition level. First, we need a set
Tall in SD containing all possible attribute values offered
by the language. The value domain of an added attribute is
then a set of elements in Tall , i.e., the value domain is an
element in the powerset ℘(Tall). We define the assignment
of this domain to a power type element p of type OP via a
function FOP : OP → ℘(Tall). Considering the attribute
value assignment to a base element b via a relation R �
(b, p, val), we do not know at the language definition level
the concrete domain val belongs to. Therefore, we define val
as an element in Tall . The requirement that val is contained
in the assigned attribute domain of p has to be ensured by a
constraint: val ∈ FOP (p).

In the following, we present the extended Definition 1,
where the new parts are italicized. Note that we only admit
a single new attribute per power type. The definition of arbi-
trary many attributes is possible by using the product type
⋃

i ℘(Tall)
i as codomain of FOP and

⋃
i (Tall)

i as third
component in R. We skip a detailed explanation of this more
generic case to limit the complexity of the definition for this
outline of potentials of the approach. We also allow only val-
ues already existing in the language definition for the attribute
domain.

Definition 4 (extending Definition 1) A (formal) modeling
language L including the concept of power types consists of
a typed signature Σ with Σ = {S,F ,R, C} and a set C of
sentences in L for the constraints, where:

– S is a set of types, which can be further divided into three
disjoint subsets SO , SR , and SD for object types, relation
types and data types;

– the type set SO is strictly partially ordered with order
relation<O⊆ SO ×SO to indicate the specialization
relation between the corresponding object types;

– the type set SO is furthermore structured by the anti-
reflexive and circle-free power type relation ∈O⊆
SO × SO to indicate instantiation between the base
type and its power type;

– the type set SD can contain simple types T for value
domains of single-value attributes, or product types
T′ = T1×T2×· · ·×Tn and unions thereof for value
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domains of n-ary multi-value attributes (n > 1),
where the ith value is of type Ti ∈ SD ∪ SO ∪ SR \
{Tall , ℘ (Tall)};

– the type set SD additionally contains a type Tall

and its powerset ℘(Tall) where Tall is the union of
all object types, relation types, simple and product
types Tall = ⋃

T∈S ′ T, with S ′ = SO ∪ SR ∪ SD \
{Tall , ℘ (Tall)};

– F is a set of typed function symbols such that:

– for each relation typeR inSR there exist two function
symbols FR

s and FR
t with domain type R ∈ SR and

codomain type Os, Ot ∈ SO assigning the source
and target object types to a relation;

– for each single-value attribute A of an object or rela-
tion type T there exists a function symbol FA with
domain type T and codomain type a simple type in
SD or an element in SO or SR assigning the simple
data type or referenced object type or relation type to
the attribute;

– for each multi-value attribute A of an object or rela-
tion type T there exists a function symbol FA with
domain type T and codomain type a product type in
SD and unions thereof;

– for each power type relation OB ∈O OP the set F
contains a function symbol FOP : OP → ℘(Tall)

assigning a set of possible values to the additional
attribute added to the power type on model-level;

– R is a set of typed relation symbols such that:

– for each power type relation OB ∈O OP the set R
contains a relation symbol ∈BP⊆ OB×OP to enable
the check of membership of base element and power
type element on model-level;

– for each power type relation OB ∈O OP the set R
contains a relation symbol RBP ⊆ OB × OP × Tall

assigning a value to the added attribute assigned to
an element in OB by its membership in OP ;

– R contains a relation symbol ∈val⊆ Tall × ℘(Tall)

with the usual containment semantics of elements and
sets;

– C is a set of typed constants to specify the possible values
ci of a simple type T ∈ SD of the attributes;

– the set C is a set of sentences in L constraining the pos-
sible models, also called the postulates of the language.
To ensure the proper behavior of the power type relation
we need several constraints for each pair of related types
OB base type and OP power type:

– A language comprising a power type relation
OB ∈O OP must ensure that a value is assigned
to the pair (b, p) of a base type element b and power
type element p iff b and p are in a power type rela-

tion:

∀b ∈ OB, p ∈ OP

(b ∈BP p ⇔ ∃x ∈ Tall ((b, p, x) ∈ RBP ) (57)

– To conform to the value domain of an additional
attribute induced by the power type relation
OB ∈O OP we furthermore need a constraint bind-
ing the type of the assigned value val ∈ Tall of the
relation symbol RBP ⊂ OB ×OP ×Tall to FOP (p):

∀x ∈ Tall , b ∈ OB, p ∈ OP

(((b, p, x) ∈ RBP ) �⇒ x ∈val FOP (p)) (58)

– The assigned value x ∈ Tall to the tuple of base type
element and power type element must be unique:

∀x, y ∈ Tall ((∃b ∈ OB, p ∈ OP

(((b, p, x) ∈ RBP ) ∧ ((b, p, y) ∈ RBP )))

�⇒ x = y) (59)

In the following, we present the extended Definition 2 of a
model, where the new parts are italicized:

Definition 5 (extending Definition 2) A model M of a lan-
guage L with typed signature Σ = {S,F ,R, C} including a
concept of power types is an L-structure conforming to the
language constraints C, i.e.,M consists of

– a universe U of typed elements respecting the type hier-
archy and power type relation, that is

– for each T in S there exists a set UT ⊆ U and U =⋃
T∈S UT;

– all sets UT for T ∈ SO ∪ SR have to be pairwise
disjoint except for sets UO1 and UO2 with O1, O2 ∈
SO where O1 <O O2. In this case UO1 must be a
subset of UO2 , i.e., UO1 ⊆ UO2 ;

– all sets UT with T = T1 × T2 × · · · × Tn a product
type in SD consist of tuples (x1, x2, . . . xn) ∈ UT1 ×
UT2 × · · · × UTn ;

– all elements UOP with OB, OP ∈ SO and OB ∈O

OP are sets of elements of UOB . This means that
UOP is a set of sets ⊆ UOB and therefore a subset of
the powerset ℘(UOB ).

– an interpretation of the function symbols in L, i.e., for
each function symbol F ∈ F with domain typeT1×. . .×
Tn and codomain typeT a function f : UT1×. . .×UTn →
UT;

– an interpretation of the relation symbols inL, i.e., for each
relation symbol R ∈ R with domain type T1 × . . . × Tm

a relation r ⊆ UT1 × . . . × UTm ;
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Fig. 8 Simplemetamodel of a customizable processmodeling language
(notation see Fig. 2)

– for each simple type T ∈ SD and constant C ∈ C of type
T an interpretation c ∈ UT;

– for each constraint φ in C the model M satisfies φ, i.e.,
M |� φ, in particularM satisfies the constraints for the
proper behavior ot the power types.

The power type relation is not per se visually represented just
as a usual relation type in SR is, but we can include a visual
counterpart by inducing a supplementary relation type in SR

corresponding to ∈BP via constraints, see Example 5.

5.1.2 Case study

The concept of power types inMetaMorph will be demon-
strated on a case study of a very simple customizable process
modeling language.

Example 5 Customizable process modeling language
In Fig. 8, we see the metamodel of a process modeling
language that allows for the creation of enterprise specific
process types to classify processes. The metamodel com-
prises two object types Process (P), and ProcessType (PT)
constituting SO . Thereby, ProcessType is a power type of
Process: Process ∈O ProcessType. The language does not
comprise specialization relations on its object types.Between
process elements we define a relation SequenceFlow (SF)
to represent the sequence of process steps. Furthermore,
we include a relation type InstanceOf (IO) element of SR

visualizing the power type relation. We include types N0

and Boolean and specify constants in C = {0, 1, 2, . . .} ∪
{true, f alse} of type N0 and Boolean, respectively. Fur-
thermore we include Tall = ⋃

T running over all T in
SD∪SO∪SR \{Tall , ℘ (Tall)} and its powerset℘(Tall). The
setS of types is then the unionS =SO ∪SR∪SD={Process,
ProcessType, SequenceFlow, InstanceOf, N0, Boolean,
Tall , ℘(Tall)}. For the relation types SequenceFlow and
InstanceOf, we have to specify the source and target object
types by introducing four function symbols FSF

s and FSF
t

both with domain SequenceFlow and codomain Process, as
well as F IO

s and F IO
t both with domain InstanceOf. The

codomain of F IO
s is Process and the codomain of F IO

t is

ProcessType. A process owns an attribute Duration with
function symbol FDur : Process → N0, assigning the
execution time in minutes to the process. The power type
relation between Process and ProcessType further requires
a function symbol FPT : ProcessType → ℘(Tall) to allow
the definition of a new attribute on model-level and a rela-
tion symbol RPT ⊆ Process × ProcessType × Tall for the
attribute value assignment. Also, two relation symbols to
check containment ∈val and ∈PPT are needed.

The signature of the language looks as follows:

Σ = {S,F ,R, C}, S = SO ∪ SR ∪ SD (60)

SO = {Process, ProcessType}, (61)

Process ∈O ProcessType (62)

SR = {InstanceOf, SequenceFlow}, (63)

SD = {N0, Boolean, Tall , ℘ (Tall)}, (64)

F = {F IO
s : InstanceOf → Process,

F IO
t : InstanceOf → ProcessType,

FSF
s : SequenceFlow → Process,

FSF
t : SequenceFlow → Process,

FPT : ProcessType → ℘(Tall),

FDur : Process → N0} (65)

R = {∈PPT⊆ Process × ProcessType,

∈val⊂ Tall × ℘(Tall),

RPT ⊆ Process × ProcessType × Tall}, (66)

C = {0, 1, 2, . . .},∪{true, f alse}
of type N0 and Boolean. (67)

We need several constraints to ensure the intended behav-
ior of the power type relation on ProcessType and Process.
For this simple example, we do not define any further con-
straints.

First of all, we bind the existence of the graphical
InstanceOf relation to the power type relation between Pro-
cessType and Process:

∀p ∈ P, pt ∈ PT (p ∈PPT pt ⇔
∃r ∈ IO F IO

s (r) = p ∧ F IO
t (r) = pt) (68)

For each process p that is element in the power type pt of
type ProcessType there must be a value x assigned to the
attribute added to p by pt :

∀p ∈ P, pt ∈ PT

(p ∈PPT pt ⇔ ∃x ∈ Tall ((p, pt, x) ∈ RPT) (69)
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Fig. 9 Example model of the customizable process language

The assigned value must be an element of the domain speci-
fied by FPT(pt):

∀x ∈ Tall , p ∈ P, pt ∈ PT

(((p, pt, x) ∈ RPT) �⇒ x ∈ FPT(pt)) (70)

The assigned value x ∈ Tall to the tuple (p, pt) must be
unique:

∀x, y ∈ Tall (∃p ∈ P, pt ∈ PT

(((p, pt, x) ∈ RPT) ∧ ((p, pt, y) ∈ RPT))

�⇒ x = y) (71)

We demonstrate the use of power types on model-level on
a simple process of a glass manufacturer representing the
last steps of the production process: from quality control
to shipping. For the notation we borrow the symbols of
BPMN for processes and sequence flows and extend it with a
dashed arrow for the InstanceOf relation and ovals for Pro-
cessType. The newly defined attributes are added via notes,
as this information usually has no place in a graphical model.

Example 6 A customized process of a glass manufacturer
In Fig. 9, we see the last few steps of the production pro-
cess of a glass manufacturer. The enterprise specific process
types are internal process (ipr) and process with external
dependencies (ped). The three depicted processes concern
the product quality control (qc), the shatterproof packag-
ing (sp), and the commission of delivery service (ds). The
process types are sets of processes, i.e., elements of the pow-
erset℘(Process) = {{}, {qc}, {sp}, {ds}, {qc, sp}, {qc, ds},
{sp, ds}, {qc, sp, ds}}. In this concrete case they are ipr =
{qc, sp}, and ped = {ds}. This containment, that is not visi-
ble in the model, is reflected in the (graphically represented)
relation type InstanceOf induced by constraint (68) of the
language. In this case this means that each listed process
instance is source of one relation ioqc, iosp, and iods of type
InstanceOf. Target of the first two elements ioqc, and iosp

is ipr, target of the third one iods is ped. For each power
type a new attribute is defined. Internal processes are clas-
sified according to whether they are data protection critical,

captured in aBoolean value.Processes with external depen-
dencies include an ID of the external partner involved. The
ID is a 4 digit number. The function FPT specifies these
value domains of the newly defined attributes: fPT(ipr) =
{true, f alse} and fPT(ped) = {1000, 1001, . . . , 9999}.
The concrete values assigned to the instances of the power
type ProcessType are then defined via the relation sym-
bol RPT: product quality control is not data protection
critical, (qc, ipr, f alse) ∈ RPT, and neither is shatter-
proof packaging, (sp, ipr, f alse) ∈ RPT. The partner ID
of the delivery service is 1001, (ds, ped, 1001) ∈ RPT.
These assignments fulfill the postulates for existence (69)
and uniqueness of the assigned value (71), as well as the
conformance to the assigned attribute domain fPT (70).

The processes are connected by two SequenceFlow rela-
tions flow1, and flow2 in the same order as appearing in the
list above. Furthermore, the duration of the processes is not
visible in the graphical model but specified in the formal
model via the function FDur: f Dur(qc) = 15, f Dur(sp) =
10, and f Dur(ds) = 5.

The complete, formalized model looks as follows:

UP = {product quality control (qc), (72)

shatterproof packaging (sp), (73)

commission of delivery service (ds)} (74)

UPT = {internal process (ipr), (75)

process with external dependencies (ped)} (76)

ipr={qc, sp}, ped={ds} (77)

UN0 = {0, 1, 2, . . .} (78)

UBoolean = {true, f alse} (79)

UIO = {ioqc, iosp, ioqc} (80)

f IO
s (ioqc) = qc, f IO

t (ioqc) = ipr, (81)

f IO
s (iosp) = sp, f IO

t (iosp) = ipr, (82)

f IO
s (iods) = ds, f IO

t (iods) = ped. (83)

USF = {flow1, flow2} (84)

f SF
s (flow1) = qc, f SF

t (flow1) = sp, (85)

f SF
s (flow2) = sp, f SF

t (flow2) = ds, (86)

f Dur(qc) = 15, f Dur(sp) = 10, f Dur(ds) = 5, (87)

fPT(ipr) = {true, f alse}, (88)

fPT(ped) = {1000, 1001, . . . , 9999}. (89)

RPT = {(qc, ipr, f alse),

(sp, ipr, f alse), (ds, ped, 1001)}, (90)

UTall = {qc, sp, ds, ipr, ped, ioqc, iosp, ioqc,

flow1, flow2, true, f alse, 0, 1, 2, . . .} (91)

The universe of U℘(Tall ) consists of all subsets of UTall .
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5.2 Language interleaving and consistency

Models are means to manage information in highly complex
systems in business modeling, in software engineering, and
many other fields. The solution to cope with complexity is
often seen in the distribution and fragmentation of informa-
tion between different models or views possibly in different
modeling languages, thereby raising the issue of keeping the
models consistent [2,39].

In the following, we demonstrate that language inter-
leaving and the definition of consistency constraints can
be easily realized in formalized conceptual modeling lan-
guages. Depending on the initial situation we can distinguish
top-down approaches, where a newly defined or existing lan-
guage is segmented in several sublanguages or views, and
bottom-up approaches, where existing languages are inter-
leaved and their metamodels are amalgamated and equipped
with additional constraints [49]. We will discuss the first
approachbriefly and exemplify the secondone in a case study.

5.2.1 Top-down approach

Expressed in our formalism the top-down approach
means to restrict the signature Σ of a given language L
to subsets Σ1 and Σ2 of the signature. When working in
one view, i.e., with a sublanguage L|Σi , we are restricted
only to the types appearing in Σi . Note that we also have
to remove relation types if their source or target object type
was excluded from the signature as well as for attribute types
if their source type or value type was excluded. All con-
straints considering unavailable types have to be removed.
Note also that the signatures Σi of the sublanguages do not
have to be disjoint. While restricting to a sublanguage L|Σi

and thereby restricting to a concrete view on a system under
study we are still interesting in the model as a whole. So we
assume that for each view ofL|Σi there exist correlatedmod-
els in the other views L|Σ j being dependent on each other.
Therefore,we need pairwise constraints between the possible
views always considering the signatures of the two relevant
languages. If the signatures are not disjoint, these constraints
contain bijections of elements with a common type to keep
the shared structure consistent.

5.2.2 Bottom-up approach

Expressed in our formalism the bottom-up approach means
to fusion the signatures of two given languages L1 and L2.
The interleaving of models and their language reaches from
simply referencing elements in other models to a highly
dependent content and structure of models in both directions.
There exist different techniques to link conceptual modeling
languages [2]. There are also different techniques in the field
of logic on how to combine formal languages, e.g., [4,44].

The presented attempt is based on the approach proposed in
[4].

Uniting two given languages L1 and L2 requires unit-
ing their signatures Σ1 and Σ2. When doing so, we have to
take care of types T and other symbols occurring in both
languages. To stay compatible with existing models we keep
coincident object typesT and rename them toT1 andT2. Fur-
thermore, we introduce new function symbols i : T1 → T2.
These functions are required to be bijective as we assume,
that we want to depict the same situation with both views,
i.e., sublanguages.

For coincident relation types, we presume an accordance
of source and target object typeOs andOt . Therefore, besides
a duplication of the relation typeRwealso request the assign-
ment functions FR

s and FR
t to be duplicated: FR1

s : R1 →
Os1 and FR2

s : R2 → Os2, thereby Os1 and Os2 being the
renamed duplication of Os . Analogously we have to proceed
with FR

t . We need constraints ensuring the coincidence of
assigned values:

∀r ∈ R1 iOs1(F
R1
s (r)) = FR2

s (iR1(r)) (92)

∀r ∈ R1 iOt1(F
R1
t (r)) = FR2

t (iR1(r)) (93)

Besides assignment functions FR
s and FR

t we do not require
accordance of attribute functions of object or relation types.
This is to allow for the identification of same types appearing
in different languages on different levels of detail. If coin-
cident object or relation types also share attributes A, this
means FA : T → T′ has coincident domain and codomain
in both languages, we need an additional constraint to ensure
the accordance of assigned attribute value:

∀x ∈ T iT′( f a1 (x)) = f a2 (iT(x)). (94)

Coinciding data types T are also duplicated to T1 and T2

and connected via a bijection i : T1 → T2. For product
types T = T1 × T2 × · · · × Tn coincidence means, that all
participating types Ti coincide in both languages.

With this union of types the main part of the new language
L̄ is fixed. Also, the specialization relations do not change
and stay separated for both initial languages. All other sig-
nature elements not corresponding or belonging to an object
type, relation type, or attribute, i.e., having no correspon-
dence to a modeling concept, e.g., order relations, have to be
considered situational from case to case. The constraints C
are extended with the requirement that the mappings of the
coinciding types i : T1 → T2 are bijective, as well as the
constraints on source and target assignment functions and
attribute functions defined above. Existing constraints have
to adopt the changes in symbol naming.

The power of language interleavingwith formal languages
lies in the ease of enriching the fusion of signatures with
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added symbols and constraints tying the models together.
To create new references between different views, we may
introduce new attributes A with FA : Tdom → Tval , where
attributed type Tdom and value domain Tval might stem
from different initial languages. Newly defined constraints
can be used to keep different views consistent. To define the
attributes and constraints as required we might also have to
introduce new product types in SD and additional function
and relation symbols in F and R, respectively.

If we allow views to be overlapping but not necessarily
congruent, the mapping between two types T1 and T2 needs
to be a partial function that is injective. This has several con-
sequences for the newly defined signature, e.g., the constraint
for coincident attributes has to be defined more carefully, as
the mappings are not necessarily defined for each element.

This procedure of duplicating coinciding types, based
on the ε-connection approach presented in [4] is promis-
ing because it allows for convenient handling of coincident
types. By the duplication, we can prevent issues of diver-
gent attributes of the same types and we have the possibility
to resolve forced inconsistencies that might be induced by
a join of coincident types. This is based on the full control
over the degree of congruence of the types and other symbols
by defining adequate constraints, e.g., for bijection, or less
strictly defined for partial overlapping, for one-way attribute
transfer, etc. Nevertheless, constraints on duplicated types
can cause the set of valid models to shrink or even to cause
unsatisfiability if the languages are per se not compatible.

5.2.3 Case study

We will demonstrate the procedure of interleaving on a
case study of UML class diagrams and sequence diagrams.
First, we have to formalize the initial languages CD of class
diagrams and SD of sequence diagrams. For an easier com-
prehension, the considered signatures restrict to a subset of
the original UML concepts relevant for the connection of the
two languages, see Fig. 10.

Example 7 The UML class diagram language CD
For our purpose, it suffices to consider in the signature ΣCD
only one object type Class (Cl) and one relation type Asso-
ciation (As) connecting classes. Besides the plain data types
Visibility (V) and SimpleType (ST), class diagrams also
provide the construct of attributes and operations of classes
exhibiting a complex structure themselves. We define a data
type called Attribute (At) which is a tuple of an element of
type Visibility and the value of the attribute, i.e., an object
of ComplexType (CT) = SimpleType ∪ Class. Further-
more we need a data type Operation (Op) which is a tuple
of an element of type Visibility, a return type element in
CT, and arbitrary many parameters of type CT. For these
parameters, we use the union of all product types (CT)i .

For reasons of brevity we skip the explicit definition of all
intermediate product types in the signature and just refer to
⋃

i (CT)i . As classes can have several (distinct) attributes
and operations, the model attributes C(lass)At(tributes) and
C(lass)Op(erations) point to the powersets of types ℘(AT)

and ℘(OP).
The signature of CD looks as follows:

ΣCD = {S,F ,R, C},S = SO ∪ SR ∪ SD (95)

SO = {Class}, (96)

SR = {Association}, (97)

SD = {Visibility, SimpleType,

ComplexType = ST ∪ Cl,

Attribute = V × CT, ℘ (At),

Operation = V ×
⋃

i

(CT)i × CT, ℘ (Op)}, (98)

F = {FAs
s : As → Cl, FAs

t : As → Cl,

FCAt : Cl → ℘(At), FCOp : Cl → ℘(Op)} (99)

R = {}, (100)

C = {+,−,∼, String, I nteger , Real, Boolean} (101)

Thereby, +,−,∼ are of type Visibility and String, Integer,
Real, and Boolean are of type SimpleType.

We do not need any postulates on the language CD.

Example 8 The UML sequence diagram language SD
Also in this example we restrict to the simplified case of
having only one object type Lifeline (Ll) and two relation
types Message (Msg) and Replymessage (Rmsg) both con-
necting lifelines. The temporal sequence ofmessages usually
captured in the graphical order of arrows is defined in the
attribute Sendtime (MSt and RSt) with value domain N0

assigning a point in time to the messages and replymessages.
To be able to compare sendtimes we need the usual order
relation <time⊆ N0 × N0 and the usual addition function
+timein the signature:

ΣSD = {S,F ,R, C},S = SO ∪ SR ∪ SD (102)

SO = {Lifeline}, (103)

SR = {Message, Replymessage}, (104)

SD = {N0}, (105)

F = {FMSt : Msg → N0, F
RSt : Rmsg → N0,

FMsg
s : Msg → Ll, FMsg

t : Msg → Ll,

FRmsg
s : Rmsg → Ll, FRmsg

t : Rmsg → Ll

+time : N0 × N0 → N0} (106)

R = {<time⊆ N0 × N0}, (107)

C = {0, 1, 2, . . .} of type N0 (108)
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Fig. 10 Simplified metamodels of the UML class diagram (a) and sequence diagrams (b) (notation see Fig. 2)

To ensure a reasonable temporal flow of messages, we
need two language constraints:

∀x, y ∈ Msg (FMSt(x) <time FMSt(y) ∨
FMSt(y) <time FMSt(x)) ∨ x = y (109)

∀x ∈ Rmsg, ∃y ∈ Msg

(FMSt(y) +time 1 = FRSt(x)) (110)

Equation (109) restricts diagrams to be sequential, so no two
messages are sent at the same time. Equation (110) forces
the message flow to be synchronous.

Example 9 The interleaved modeling language CD � SD
In the case of UML class diagrams and sequence diagrams
we do not have to take care of identical types. We define
several new attributes to bind lifelines in a sequence diagram
to the classes in the corresponding class diagram: a refer-
ence L(ife)l(ine)Cl(as), a reference Cal(led)Op(eration) of
a message, and a reference Re(turn)Ty(pe) of a replymes-
sage.

FLlCl : Lifeline → Class (111)

FCalOp : Message → Operation (112)

FReTy : Replymessage → ComplexType (113)

These references of course require some new constraints. To
formulate these we need a new relation symbol ∈Op between
operations and sets thereof and a new function symbol Fpr

projecting an element of type Operation to its returntype,
i.e., the last value of the tuple.

∈Op⊆ Operation × ℘(Operation), (114)

Fpr : Operation → ComplexType (115)

∀x = (x1, . . . , xn) ∈ Operation Fpr (x) = xn (116)

With these symbols, we can define the additional con-
straints:

∀x ∈ Msg

(FCalOp(x) ∈Op FCOp(FLlCl(FMsg
t (x)))) (117)

∀x ∈ Rmsg ∃y ∈ Msg(FMSt(y) +time 1 = FRSt(x) ∧
FReTy(x) = Fpr (F

CalOp(y))) (118)

Equation (117) ensures that a message can only call opera-
tions of the addressed class. Equation (118) guarantees that
each replymessage follows a message and the returntype is
exactly the returntype of the called operation.

The complete language CD � SD looks as follows:

ΣCD�SD = {S,F ,R, C},S = SO ∪ SR ∪ SD (119)

SO = {Class, Lifeline}, (120)

SR = {Association, Message,

Replymessage}, (121)

SD = {Visibility, SimpleType, ComplexType,

Attribute, Operation, ℘ (At), ℘ (Op), N0}
(122)

F = {FAs
s : As → Cl, FAs

t : As → Cl,

FCAt : Cl → ℘(At), FCOp : Cl → ℘(Op),

FMsg
s : Msg → Ll, FMsg

t : Msg → Ll,

FRmsg
s : Rmsg → Ll, FRmsg

t : Rmsg → Ll,

FMSt : Msg → N0, F
RSt : Rmsg → N0,

FLlCl : Lifeline → Class

FCalOp : Message → Operation

FReTy : Replymessage → ComplexType

Fpr : Operation → ComplexType

+time : N0 × N0 → N0} (123)

R = {<time⊆ N0 × N0,∈Op⊆ Op × ℘(Op)} (124)
C = {+,−,∼, String, I nteger , Real, Boolean,

0, 1, 2, . . .} (125)

With the newly generated language each model contains all
information of both views, the structural view of class dia-
grams as well as the procedural view of sequence diagrams.
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Of course, when viewing the model we only consider the
model restricted to a sublanguage, CD or SD, but in the
background all elements of both reside in the “supermodel.”
This means all information is captured in the model at all
points in time and at the same time kept consistent due to
the newly introduced constraints. This conforms to the idea
of the single underlying model as proposed by Burger et al.
[49].

5.3 Operations onmodels

Model functionality is a crucial point to amplify the value
of models beyond mere pictures [6]. One of the most promi-
nent examples is the firing mechanism on Petri Nets [58].
Also, many domain-specific languages gain in value by the
offered model operations. For example, model operations
in the sense of model to model transformations play a cru-
cial role in model-driven software engineering [11, Chap. 8].
Nevertheless, operations on models are often out of scope or
simply ignored in formalizations. An exception is the the-
ory of graph grammars and graph transformations [30]. This
approach is based on the principle of finding and replacing
patterns in labeled graphs with other patterns. As we chose
a fundamentally different underlying structural theory con-
forming to the linguistic character of modeling languages,
we approach operations on models using a notion of models
beyond box and line constructs. This shortcoming of graph
grammars manifests itself in the lack of a canonical cor-
respondent in graphs for model attributes and their change
operations.

Formalisms based on logic are often critiqued for not
being able to capture the operational syntax of modeling lan-
guages. We argue that this is not an inevitable inability of
these approaches and show some ideas on how operations on
models can also be supported by concepts from logic.

5.3.1 Structural events and domain events

We adopt the notion of Olivé [53, Chap. 11] who defines
domain events, i.e., semantically and syntactically admis-
sible operations on models, by decomposing them into the
smallest possible changes in a model, the so called structural
events. Domain events therefore always map valid models
to other valid models conforming to the language postulates,
while structural events can invalidate a model and cause a
violation of the postulates.

While Olivé only names deletion and insertion of objects
and relations as structural events, for our purpose in the
MetaMoprh formalismwe also have to consider the change
of attribute values as a third variant.

Each of these events requires a closer look at the precon-
ditions and consequences. A create event of an object type
T implies the need to set the values of all attributes of the

concrete object to an initial value, e.g., if we create a place in
a Petri Net, we have to initially set the tokens attribute, e.g.,
to 0. When deleting a concrete object obj of type T we also
have to delete the relations that start or end at obj andwe have
to reset all attributes of any other element pointing to obj .
This shows that already for compliancewith the foundational
definitions structural events often occur in groups.

Consider again model M of Example 2 of the Petri Net
model depicting a barber shop. A valid domain event is the
firing of the transition Serve. This event is the concatenation
of the three structural events of changing the attribute values:
first the value of the tokens attribute of element Busy is set to
1, the tokens attribute of Idle is set to 0, and the tokens attribute
of Wait is set to 1. None of these structural events alone is
semantically valid, but together they form a semantically and
syntactically admissible operation. This also shows that there
are many structural events (we can set the attribute tokens of
each place to any number we like) but much less domain
events.

Concatenations of domain events form sequences of valid
models

M0 �→ M1 �→ M2 �→ · · · .

In PetriNets, for example, thefiring of a transition is a domain
event. Therefore these sequences are of special interest as
they reveal inaccessible states and final markings in a net
when starting from a concrete model. This is closely related
to the concept of marking graphs in Petri Nets [58, Sec. 2.8].

Another point to be considered are pre- and postcondi-
tions of domain events. To capture these in a generic way we
can use concepts from temporal logic [42]. With the logical
operators from temporal logic we are able to formulate pos-
tulates considering both states of a model, before and after
the application of a domain event, and define dependencies
between both.

With a formalism that is means to capture transforma-
tion of models—be it in imperative style with structural and
domain events or in a declarative style with pre- and postcon-
ditions or both mixed—mechanisms and algorithms become
an integral part of the specification of a modeling language.
Shifting the ascertainment of functionality from the imple-
mentation level to the design level this functionality can be
specified uniquely and rigorously and becomes independent
from the concrete software in use.

5.4 Translators

Another salient benefit of having an unambiguous and com-
plete formalization of a modeling language is that it can
serve as a single point of platform-independent specification,
thereby being precise enough to be automatically processed
by amachine.Of course, amodeling languagewithout a tech-
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nical tool supporting the creation and execution of models is
very much useless for the target audience. When implement-
ing a languagemany engineers havemade the experience that
available metamodeling platforms differ heavily in available
concepts and functionality and thereby impose more or less
severe restrictions on the final product [38]. So the imple-
mentation forces the engineer to think in the frame of the
used platform and to modify the language to fit the given
meta2model and available model processing algorithms. A
further drawback of this current practice is the fact that each
effort of implementation is lost whenever the language has
to be transferred to another platform, may it be caused by
missing functionality for new language features or cessation
of platform support.

With the formalization of a language as stipulated by the
AMME lifecycle of modeling methods, we derive a sort
of platform-independent code and close the gap between
the specification document and the final implementation.
By using the proposed formalism the specification of the
main concepts is unified and therefore offers the possibil-
ity to be translated to any metamodeling platform. Thus,
the language specification stays on a platform-agnostic level
and the complexity of the platform-specificity can be out-
sourced to a platform-specific translator. The feasibility of
this endeavor has been shown by Visic et al. [64]. When plat-
forms change, only the translator has to be adapted but not the
platform-independent conceptualization of a language.

WhileVisic et al. stay at the level of translators of language
syntax, our attempt on the formalization of model operations
shown in Sect. 5.3 holds promise to be able to integrate an
automatic translation of the functionality of modeling lan-
guages. The decomposition of domain events into the three
types of structural events allows for an automatization of
translating the modeling language specification to a concrete
tool as most platforms offer methods for creating or deleting
elements or changing attributes.

6 Discussion

The conceptualmodeling formalism MetaMorph allows for
a precise definition of modeling languages. The formaliza-
tion of a modeling language with MetaMorph requires a
full declaration of any element possibly instantiated, i.e., any
symbol in the signature of the language. The formalization
process obliges the engineer to make explicit any concept
and possible instances or values of the language as well as
to unfold any constraint to prevent not permitted model con-
structs. Therefore, it results in a complete specification ready
for use.

The constraints formulated in first-order logic allow for
checking the correctness of a concrete model. For automa-
tion, also a model-checking software can be employed.

Correctness of the specification, on the other hand, can be
checked with model-finding software. These tools can help
to determine if the language is underconstrained or overcon-
strained by delivering unintended models or not delivering
intended models, respectively. Also, inconsistent specifica-
tions, i.e., specifications with unsatisfiable postulates, can be
detected with model-finders. The choice of domain concepts
is the task of the language engineer, and its correctness can of
course only be checked by a thorough evaluation by a domain
expert but not by a formalism.

To evaluate the MetaMorph formalism we recap the
requirements mentioned in Sect. 1.2: 1) The formalism has
to be complete regarding the general building blocks of a
language, 2) it must comply with the linguistic character of
modeling languages, 3) it must be generic in a way that it
admits the formalization of any language developed accord-
ing to the four-layer metamodeling stack, and 4) it must
provide an integrative formal foundation offering canonical
tools for the advancements in conceptual modeling research.

The proposed formalism comprises the core concepts con-
stituting a modeling language. These are chosen based on a
survey byKern et al. [38] and the concept discussion byOlivé
[53]. We restrict to the most common concepts, i.e., those
appearing in at least half of the surveyed metamodeling plat-
forms in [38]. In Sect. 3, we also list the concepts for future
integration. Regarding the first requirement, we conclude
that the proposed definition of a modeling language is not
yet complete but depicts the most relevant core. This is also
shown by the realizability of several case studies depicted in
this paper.

In current research, the notion of formal languages in
the sense of mathematical logic as underlying structure for
modeling languages has been receiving increasing attention
[18,28,53,56,63]. This supports our choice of using logic as
basis for the formalism and underpins the adherence to the
linguistic character of languages including the alphabet and
the instantiation relation. Additional affirmation is given by
the multitude of practical constructs and methods of formal
language theory and its straightforward applicability to cur-
rent research issues, which is exemplarily shown in Sect. 5.

The requirement for generic realizability of arbitrary
modeling languages developed according to the four-layer
metamodeling stack is satisfied, as, by construction,Meta-
Morph allows for the definition of exactly those concepts
constituting a language that are core to conceptual modeling
according to our literature review. A realization of the four
divergent use cases in this paper and several more use cases
conducted by the author furthermore backs this claim.

The integrability of the MetaMorph formalism is out-
lined in Sect. 5. There, we approach four diverse research
topics ranging from the integration of the advanced concept
of power types, over the interleaving of modeling languages,
to the formal definition ofmodel transformation. For all these
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topics, the formalism has canonical tools at hand. This is not
proof but a strong indication for MetaMorph being an eli-
gible formal foundation for conceptual modeling.

The empirical evaluation of feasibility and usability so far
has beenmainly conducted via the realization of prototypical
case studies of various domains. Four of them are shown in
this paper. Other cases guiding the advancement of the for-
malism are, for example, ER-diagrams starting in [20]. In the
light of language interleaving we formalized a (yet unpub-
lished) language for modeling smart cities [8] besides the
UML case study. To investigate the formalization of model
operations we formalized Petri Nets and ProVis, a tool for
math education providing sophisticated methods to process
statistical diagrams [22].

In parallel, a more outreaching empirical evaluation is
currently being conducted. Students in the business infor-
matics program were asked to participate in the evaluation
by attending an introductory lecture about MetaMorph and
to formalize their own metamodeling projects implemented
for the course Metamodeling part of the masters program.
After the formalization they filled in a questionnaire about
adequacy and usability of MetaMorph as well as their pre-
knowledge in modeling, metamodeling, and logic. The goal
of the evaluation is tomeasure the actual intuitivity of the for-
malism and satisfaction of language engineers. We are also
interested in the influence of pre-knowledge on the use of
the proposed formalism. Further questions to be answered are
howmuch effort it takes to formalize a small-sized language,
if the size and complexity of the language have an influence
on the experienced complexity when using the formalism
and if an introductory session is helpful or even required
to successfully apply MetaMorph. The evaluation of the
questionnaires considering the actual outcome of the stu-
dents’ formalizations (correctness, extent, …) is currently in
progress.

A proof of concept for the significance of the presented
formalism can be given by an implementation of translators
to at least two different metamodeling platforms, especially
if we are able to integrate a specification ofmodel operations.
Such a tool is currently under design.

7 Conclusion

In this paper, we presented the MetaMorph formalism
comprising a definition of modeling languages as formal lan-
guagesLwith a signatureΣ in the sense of logic. The concept
of a L-structure canonically corresponds to a model being
expressed with a modeling language and led us to the defini-
tion of models as L-structures. To illustrate the specification
of formalmodeling languageswedemonstrated the definition
on the Petri Nets modeling language. We applied the defini-
tion also on the meta-level and developed M2FOL—a formal

modeling language for metamodels. M2FOLmodels are pre-
cise and complete and therefore we were able to show how to
algorithmically derive a formal modeling language signature
from its metamodel. M2FOL is self-describing, which can be
seen by applying the algorithm to its own metamodel.

After the introduction of the formalism, we gave an out-
look to the potential and benefits of formalized modeling
languages using the approach at hand. We outlined the ease
of extensibility of the formalism by integrating the concept
of power types, thereby also building a bridge to multi-level
modeling approaches. To demonstrate the use of Meta-
Morph with power types, we realized a case study on a
customizable process modeling language.

Furthermore, we addressed the topic of language inter-
leaving and consistency. Established methods from formal
language theory provide methods to create an interleaved
formal language from existing ones. We illustrated the pro-
cess on a case study using UML class diagrams and sequence
diagrams.

Another topic with high potential for the automatization
of language implementation is the formalization of model
operations. We outlined how to break down algorithms on
models in the smallest possible building blocks able to be
formalized. This allows model operations to become an inte-
gral part of the formal language specification.

This formal specification—syntax as well as operations—
precise enough to be processed by a machine yet platform-
independent additionally allows us to develop platform-
specific translators, transferring the single source of language
specification to realizations on different platforms.

With this common approach to defining metamodels and
modeling languages, these languages become comparable,
reusable, and open tomodularization. To broaden the concep-
tual capabilities of our approach, we will further investigate
more subtle concepts to be integrated into the definition.
These are, for example, the concepts of mixins and exten-
ders for modular metamodels as proposed in [65], or the
further structural relations identified in [47] besides the inten-
sion/extension relation that was already realized with power
types. For a practical application of the language M2FOL,
a suitable tool for transforming graphical metamodels into
formal ones will be developed.

Finally, by using a sophisticated mathematical theory as
grounding for the definition of modeling languages we can
use this knowledge stack as a resource to further establish
a formal foundation for modeling languages. We can inves-
tigate the subclass of conceptual modeling languages in the
class of formal languages and approach old problems with
new tools.
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