
Software and Systems Modeling (2022) 21:587–621
https://doi.org/10.1007/s10270-022-00973-7

THEME SECT ION PAPER

Domain object hierarchies inducingmulti-level models

Bernd Neumayr1 ·Michael Schrefl1

Received: 25 May 2020 / Revised: 30 November 2021 / Accepted: 3 January 2022 / Published online: 11 March 2022
© The Author(s) 2022

Abstract
Conceptual modeling of domain object hierarchies, such as product hierarchies or organization hierarchies, is difficult due
to the intricate nature of nonphysical domain objects organized in such hierarchies. Modeling domain object hierarchies as
part-whole hierarchies covers their hierarchical structure, yet to capture their meaning, part-whole hierarchies have to be
combined with specialization and multi-level instantiation. To this end we introduce the deep domain object (DDO) multi-
level modeling pattern and approach. With the DDO approach, subclasses and metaclasses are induced by and integrated with
the part-whole hierarchy. The approach is aligned with the multi-level theory (MLT) and formalized by a metamodel and a set
of deductive rules implemented in F-Logic. The proof-of-concept prototype is used for automated application of the pattern
and for querying induced multi-level models.

Keywords Conceptual modeling · Multi-level modeling · Metamodeling · Part-whole · Generalization · Abstraction ·
Concretization

1 Introduction

Conceptual modeling is the activity of formalizing some
aspects of the physical and social world around us for pur-
poses of understanding and communication [26,33], typically
in the context of information systems development. With
regard to databases, conceptual modeling aims at ‘capturing
the meaning of a database’ [26] independent of its logical
and physical implementation.

Beforewe discuss the aims and contributions of this paper,
let us first explain and illustrate our notion of domain object
hierarchy. While the approach to modeling domain object
hierarchies investigated in this paper is applicable to struc-
tural conceptual modeling in general, it is particularly geared
towards the conceptual modeling of enterprise databases
underlying enterprise information systems, such as ERP and
CRM systems.

Enterprise information systems deal, to a large extent,with
social worlds where many of the domain objects, i.e., the
relevant entities from the world represented in the enterprise

Communicated by Adrian Rutle and Manuel Wimmer.

B Bernd Neumayr
bernd.neumayr@jku.at

1 Johannes Kepler University Linz, Linz, Austria

database, are nonphysical objects [13], like sales divisions or
product categories.

Domain objects may be organized in hierarchies where
domain objects at higher levels not only but also act as
abstractions of their subordinate objects. For example, sales
employees, sales outlets, and sales divisions are organized
in a sales organization hierarchy with a sales division also
acting as abstraction of its subordinate sales employees and
sales outlets. Likewise, product individuals, product models
and product categories are arranged in a product hierarchy,
with a product category also acting as abstraction of its sub-
ordinate product models and product individuals.

To make these abstraction roles of domain objects more
tangible, we say a higher-level domain object induces a
class for each subordinate level. Figure 1b shows the classes
together with their extensions induced in this way by the
product hierarchy of Fig. 1a. For example, a higher level
domain object such as Car at level Category induces classes
such as CarModel and CarIndividual, which have
the sets of subordinate domain objects at levels Model and
Individual, respectively, as extensions.

With these induced classes and their extensions, the
instance-of (set membership) and subclass-of (subset) rela-
tionships, which are implicit in the domain object hierarchy,
become tangible. For example, VolvoV50 is instance of
induced class CarModel, i.e., it is member of the exten-
sion of CarModel. The latter, in turn, is a subclass of class

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00973-7&domain=pdf
http://orcid.org/0000-0003-1551-172X

588 B. Neumayr, M. Schrefl

(a)

(c)

(b)
(d)

Fig. 1 A sample domain object hierarchy inducing classes and metaclasses

ProductModel, that is, its extension is a subset of the
extension of ProductModel.

Let us now turn to the metaclasses implicit in a domain
object hierarchy.As illustrated in Fig. 1d, induced classes can
be collected into metaclasses with regard to the level of their
instances and with regard to the class of the domain object
by which they are induced. For example, classes CarModel
and PhoneModel have instances at level Model and are
each induced by a member of class ProductCategory.
Hence, they can be collected into an induced metaclass
ProductModelClassByCategory.

What we aim for in this paper is a conceptual modeling
approach for representing such hierarchies. The approach
should make explicit the induced classes and metaclasses so
that themodeler can use them for specialization and informa-
tion aggregation. We are especially interested in supporting
the following modeling challenges: (1) specialization along
the hierarchy, e.g., product models have a list price, car
models additionally have a maximum speed. (2) Regulating
specialization along the hierarchy, e.g., every product model
is associated with a sales employee acting as product man-
ager. By linking a product category to a sales division, the

range of property product manager is refined to employees
of that sales division. (3) Information aggregation along the
hierarchy, e.g., currently, the average list price of car models
is e 21,034.

Based on an initial representation of domain object
hierarchies as part-whole hierarchies in UML with levels
represented as classes and domain objects as instances of
these classes, see Fig. 1c, the paper makes the following
contributions: (1) the deep domain object (DDO) pattern is
a multi-level modeling pattern for extending domain object
hierarchieswhich aremodeled as part-whole hierarchieswith
induced subclasses and induced metaclasses. The DDO pat-
tern is related to ‘promotionwith base classes’ [24], a solution
to the type-object pattern, and is aligned with the multi-level
theory (MLT) [8]. (2) The DDO approach is a multi-level
modeling approach based on the automatic and recursive
application of the DDO pattern together with mechanisms
for specialization based on induced subclasses, regulating
specialization based on induced metaclasses, and aggregated
information provided with classes and metaclasses. (3) A
proof-of-concept prototype in F-Logic which can be used to

123

Domain object hierarchies inducing multi-level models 589

query the induced multi-level model and which is available
open-source.

In this paper we introduce the DDO approach on top of
a simplified multi-level modeling language. The main sim-
plification is that all properties are single-valued, mandatory
and uni-directional. While the DDO pattern is independent
of these simplifications, they facilitate an in-depth discus-
sion of specialization, regulating specialization, as well as
information aggregation along the hierarchy, without getting
drowned by the complexities of optional, multi-valued, or
bi-directional properties.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces a running example consisting of several
domain object hierarchies modeled as part-whole hierar-
chies. Section 3 extends the running example with modeling
challenges together with a baseline solution in UML. Sec-
tion 4 discusses relevant aspects of MLT and Dual Deep
Modeling (DDM) [30], which provided the starting point
for the development of the DDO approach. Section 5 intro-
duces a set of deductive rules for deriving a multi-level
model from a part-whole hierarchy by, in principle, recur-
sive application of the DDO pattern. Section 6 demonstrates
the use of deep domain objects for solving the modeling
challenges. Section 7 discusses the realization of the DDO
approach in F-Logic and demonstrates its use for querying
the induced multi-level model, with the complete code pro-
vided in Appendix A together with the fully-worked running
example in Appendix B. Sect. 8 gives an overview of related
work. Section 9 concludes the paper.

2 Starting Point: Domain Object Hierarchies
modeled as Part-Whole Hierarchies

In this sectionwedescribe and exemplify the two-levelmodel
that serves as core of the running example throughout the
paper.
Global two-level model. The starting point for conceptual
modelingwith domain object hierarchies is a two-levelmodel
(depicted in Fig. 2) comprising a schema level (as UML
class diagram) and an instance level (as UML object dia-
gram). The modeler has already identified three domain
object hierarchies, the Product hierarchy, the Sales organisa-
tion hierarchy, and the Engine hierarchy, marked with blue,
green, and red background, respectively.

Note that there may be classes in the global model that are
not part of a domain object hierarchy, for example the class
Customer.
Domain object hierarchy schema. At the schema level, a
domain object hierarchy gets a name and comprises a set of
classes that represent the levels of the hierarchy. Each class in
a domain object hierarchy gets a level name which is unique
within the hierarchy. The set of classes (and hence levels)

in a domain object hierarchy is arranged in a path (e.g., the
Product hierarchy), a tree (e.g., the Sales hierarchy), or a for-
est (no example given) by aggregation relationships. When
we say a class or level is under another class or level, respec-
tively, we refer to the transitive closure of the aggregation
relationships.

For example, the Sales domain object hierarchy com-
prises classes SalesDivision, SalesEmployee, and
SalesOutlet which represent hierarchy levels Division,
Employee, and Outlet, respectively. These classes are con-
nected by aggregation relationships expressing that each
sales outlet and each sales employee belongs to exactly one
sales division. SalesEmployee and SalesOutlet are
under SalesDivision.

The Product domain object hierarchy comprises classes
ProductCategory, ProductModel, and
ProductIndividual which represent hierarchy levels
Category, Model, and Individual. These classes are con-
nected by aggregation relationships expressing that each
product individual belongs to some product model which in
turn belongs to some product category. Product
Individual is under ProductModel and under
ProductCategory, ProductModel is under
Product Category.
Properties. A class specifies the schema of its member
objects by a set of properties. Each property has as range
a class or a simple datatype. For simplicity’s sake we only
consider properties that are uni-directional, mandatory and
functional.

For example, the class ProductCategory defines
a property vatRate with range Number and property
salesDivision with range SalesDivision. Class
ProductModel defines properties vatRate and list
Price with range Number and property
productMgr with range SalesEmployee. Class
ProductIndividual defines properties vatRate and
soldPrice with range Number, property soldTo with
range Customer, and property soldAt with range
SalesOutlet.
Domain object hierarchy instance. At the instance level, a
domain object hierarchy is represented by a part-whole hier-
archy obeying the hierarchy schema. Every domain object
has at most one parent object in the part-whole hierarchy.
A domain object o is descendant of domain object o′ if o is
modeled as a direct or indirect part of o′. A domain object
o is at level k if o is an instance of class c which represents
level k.

For example, domain object Car is the parent of domain
objects VolvoV50 and Porsche911. VolvoV50 is
the parent of Ada’sCar and MyCar. VolvoV50 and
Porsche911 are the descendants of Car at level Model
and Ada’sCar, MyCar, and Mia’sCar are the descen-
dants of Car at level Individual.

123

590 B. Neumayr, M. Schrefl

Fig. 2 Sample domain object hierarchies modeled as part-whole hier-
archies in UML. The modeler identifies and gives names to domain
object hierarchies by annotating them in the class diagram, classes that

are part of a domain object hierarchy get a level name which is unique
within their hierarchy. For illustration purposes, also the object diagram
is annotated with hierarchy and level names

Domain objects assign a value to each property introduced
with their class, obeying the property’s range. For exam-
ple, individual product MyCar of productmodelVolvoV50
was sold for e 26.000 at sales outlet BikesCarsLinz to
customer Peter with a VAT rate of 20%. Product model
VolvoV50 of product category Car has a list price of
e 30.000, a VAT rate of 20% and has sales employee

MsWhite as product manager. Product category Car has a
VAT rate of 20% and is distributed by the Vehicles sales
division. Sales outlet BikesCarsLinz and sales employee
MsWhite both belong to the Vehicles sales division.

123

Domain object hierarchies inducing multi-level models 591

3 Modeling challenges: specialization and
information aggregation along the
hierarchy

In this section we break down the three modeling challenges
associated with domain object hierarchies into specific mod-
eling tasks. Preliminary modeling solutions in UML (with
extensions) are provided as baseline for the qualitative eval-
uation of the DDO approach.

3.1 Desiderata

Before we introduce the modeling challenges let us discuss
desiderata for modeling solutions.

– Non-disruptive: modeling domain object hierarchies as
part-whole hierarchies of physical and mainly nonphys-
ical objects is a pragmatic modeling choice reflecting
how such hierarchies are often represented in enterprise
databases. Modeling solutions should be non-disruptive
in that they should not require the replacement of the
existing conceptual model but act as an add-on to the
part-whole hierarchy.

– Conceptual clarity: a domain object in a domain object
hierarchy not only represents itself but also acts as an
abstraction of its descendants at various levels. Concep-
tual clarity can be reached by clearly indicating with a
property whether it describes (i) the domain object as
such, (ii) commonalities of descendants at a particular
level, or (iii) aggregated information about the set of
descendants at a particular level.

– Compactness (modularity, cf. [29] and scoping): All
model elements that are introduced with a domain object
to describe the domain object itself or to characterize its
descendants at various levels should be tied together and
it should be possible to use and update them as a self-
contained part of the model without interfering with the
rest of the model.

– Factoring out commonalities: amodeling solution should
factor out commonalities asmuch as possible to avoid the
manual duplication of the same modeling information
with various model elements. The modeler should not be
forced tomodel by hand additional classes and additional
dependencies that redundantly represent the hierarchical
relationships in the domain object hierarchy. Themodeler
should, for example, not be forced to introduce the same
aggregated property multiple times.

– Avoid custom constraints: modeling challenges should
not be solved by custom constraints in natural language,
OCL, or similar, but by applying adequate modeling
constructs which serve much better the purposes of
conceptual modeling, namely understanding and com-

munication, and are less error-prone in development and
maintenance.

3.2 Specialization along the hierarchy

When adding a new domain object, e.g., a new product cat-
egory, it should be possible to specialize the schema for
descendant domain objects at various hierarchy levels. We
will, first, describe the modeling tasks and exemplify them
for product category Car in the running example. We will
then present a preliminary solution in UML and then discuss
the quality of the solution with regard to the desiderata (see
Sect. 3.1).

The to-be supported modeling tasks are:

C1.1 Range refinement Themodeler should be able to refine
for the descendants of a domain object o at level k
the range of a property p to descendants of a domain
object o′ at level k′, e.g.:

– For car models, i.e., descendants of Car at level
Model, the range of productMgr is refined to
descendants of sales division Vehicles at level
Employee.

– For car individuals, i.e., descendants of Car at
level Individual, the range of soldAt is refined to
descendants of sales organisationVehicles at level
Outlet.

C1.2 Extending the schema The modeler should be able to
extend the schema of descendants of a domain object
o at level k by introducing additional properties and
specify as range a class from the global model, or the
set of descendants of a domain object o′ at level k′, or
a simple datatype, e.g.:

– Descendants of Car at level Model have an addi-
tional property engineType with range Engine
Type (from the Engine hierarchy).

– Car individuals, i.e., product individuals of category
Car, are associated with an individual engine which
is of a certain engine type.

C1.3 Shared values The modeler should be able to specify
for a property p a value v that is shared by all descen-
dants of a domain object o at level k, e.g.:

– The VAT rate of all car models is 20%.
– The VAT rate of all car individuals is 20%.

Preliminary solution. Our preliminary solution (Fig. 3) uses
UML with derived classes [14] and shared property values.
Derived classes are marked with / and the derivation condi-
tion is given in natural language. Shared values, i.e., property

123

592 B. Neumayr, M. Schrefl

Fig. 3 Preliminary and partial solution to Modeling Challenge 1
(Specialization along the Hierarchy) and Challenge 2 (Regulating Spe-
cialization): specialization along the hierarchy is facilitated by derived
classes like CarModel and VehiclesOutlet. As a work-around

to regulated specialization, the to-be modeled regulations are expressed
as custom constraints as far as possible. The labels C1.1–C2.3 refer to
the to-be supported modeling tasks

values that are fixed by a class for everymember of that class,
are marked with {shared}.

The specializations regarding descendants of product cat-
egory Car at levels Model and Individual are modeled
with derived classes CarModel and CarIndividual.
Derived class CarModel is modeled as a subclass of
ProductModel, itsmembers are themembers of Product
Modelwhich belong to product categoryCar. Derived class
CarIndividual is modeled as a subclass of Product
Individual, its members are the members of Product
Individualwhich belong to product category Car (indi-
rectly via a member of CarModel). Both, CarModel and
CarIndividual, define 20% as shared value for their
vatRate property.

Derived classes VehiclesEmployee and Vehicles
Outlet represent the descendants of sales division
Vehicles at levels Employee and Outlet, respectively.
ClassCarModel refines the rangeof propertyproductMgr
toVehiclesEmployee. ClassCarIndividual refines
the range of property soldAt to VehiclesOutlet.
Assessment of preliminary solution We will now discuss the
quality of the preliminary modeling solution with regard to

the desiderata (seeSect. 3.1). Thepreliminary solution isnon-
disruptive (+) since the original conceptual model remains
intact.Conceptual clarity (+) is reached bymodeling proper-
ties that characterize descendants at a particular level with a
derived class. Compactness (−) is weak since the derived
classes introduced with domain object Car are not tied
together with the domain object and only upon inspection of
the classes’ derivation rules it becomes clear that they belong
to domain object Car. With regard to factoring out com-
monalities (∼), the modeling information that Car is under
Product is manually duplicated as specialization between
CarModel and ProductModel and CarIndividual
and ProductIndividual. The solution does not avoid
custom constraints (−) since the derivation rules for derived
classes are encoded manually.

3.3 Regulating specialization along the hierarchy

The second challenge is to let the modeler govern special-
ization at a more generic level. Schema refinements can be
modeled separately for each sub-hierarchy as above, but with
domain object hierarchies in enterprise information systems

123

Domain object hierarchies inducing multi-level models 593

it comes natural that these refinements often follow common
constraints and rules for every sub-hierarchy. We will, first,
describe the modeling tasks and exemplify them along the
running example. For the preliminary and only partial solu-
tion we will make heavy use of custom constraints on top
of the UML class diagram (see Fig. 3) and we will assess
the preliminary solution with regard to the desiderata (see
Sect. 3.1).

The to-be supported modeling tasks are:

C2.1 The modeler should be able to specify that certain
range refinements for property p of domain objects
at level k must be made with every domain object at
some level k′ (where k is under k′), e.g.:

– A product individual cannot be sold at an arbitrary
sales outlet but only at sales outlets that belong to
a particular sales division. Such a refinement (i.e.,
restricting the range of property soldAt) must be
made with every product category.

C2.2 The modeler should be able to ‘automate’ the range
refinement of property p for objects at level k based
on the value of a property p′ of domain objects at level
k′ (where k is under k′).

– The productmanager responsible for a productmodel
must be from the sales division which distributes the
product category the product model belongs to.

C2.3 Themodeler should be able to specify that the value of
property p of domain objects at level k is propagated
as shared value of a property p′ to descendant objects
at level k′, e.g.,

– The VAT rate of a product model is the same as the
VAT rate of the product category the product model
belongs to.

– The VAT rate of a product individual, likewise, is
the same as the VAT rate of the product category the
product individual indirectly belongs to.

C2.4 Themodeler should be able to specify such regulations
also only for sub-hierarchies, e.g.,

– The type of an individual car’s engine must corre-
spond to the engine type associated with that car’s
car model.

Partial preliminary solution. In our preliminary solution (see
Fig. 3) we found no way to model the obligation to refine a
property to a certain level (see C2.1). All other modeling
tasks could only be solved by custom constraints (expressed
in natural language) attached to the properties.
Assessment of preliminary solution. The major shortcoming
is obviously that the solution does not at all avoid custom

constraints (−). The solution is non-disruptive (+). It comes,
arguably, with conceptual clarity (+) because custom con-
straints are attached to the affected model elements. The
solution does not care about compactness (−). There are no
shortcomingswith regard to factoring out commonalities (+)
as there is no need to duplicate model information.

3.4 Information aggregation along the hierarchy

The third challenge is to model the aggregated information
that should be providedwith domain objects about its descen-
dant objects at various hierarchy levels.Wewill first describe
which aggregated information should be provided with the
domain objects in the Product hierarchy. As a preliminary
solution, we will model the aggregated properties in UML
as derived properties. We will then assess this preliminary
solution based on the desiderata (see Sect. 3.1).

The to-be supported modeling tasks are:

C3.1 The modeler should be able to specify an aggregated
property p that provides aggregated information about
property p′ of domain objects at some level k and
should provide values for aggregated property p with
domain objects above level k.

– The sold price of product individuals should be aggre-
gated to average sold price. This aggregated property
should be available with every domain object in the
Product hierarchy that is above the individual level.

– The list price of product models should be aggregated
to average list price. This aggregated property should
be available with every domain object in the Product
hierarchy that is above the model level.

C3.2 It should be possible to define multi-step aggrega-
tions, i.e., aggregated properties that are calculated
from aggregated properties, e.g.,

– The average sold price per product model should be
further aggregated to a minimum average sold price
per model and this aggregated property should be
available with every domain object in the Product
hierarchy that is above the model level.

C3.3 Aggregated information should be provided also for
the domain object hierarchy as a whole.

– Values for the three aggregated properties should be
available for the Product hierarchy as a whole.

Preliminary solution. In our preliminary solution (see Fig. 4),
we introduce a singleton class ProductHierarchy the
instance of which represents the overall product hierarchy.
We model ‘average sold price’ multiple times as derived
property avgSoldPrice with classes ProductModel,

123

594 B. Neumayr, M. Schrefl

Fig. 4 Preliminary solution to Modeling Challenge 3 (Information aggregation along the hierarchy): aggregated properties are modeled as derived
properties, the root of the hierarchy is represented by a singleton class

ProductCategory, and ProductHierarchy. Like-
wise, we model ‘average list price’ and ‘minimum average
sold price per model’ multiple times as derived properties
avgListPrice and minAvgSoldPricePerModel
with classes ProductCategory and Product
Hierarchy. The result of the information aggregation
along the hierarchy (together with the asserted values for
sold price and list price) is shown in the object diagram of
Fig. 4.
Assessment of preliminary solution. The solution does not
factor out commonalities (−) but models aggregated proper-
ties like avgSoldPrice multiple times with the different
classes. It does not come with conceptual clarity (−) since
the model does not get across with aggregated information
from which set of objects it is calculated (one would have to
inspect the derivation rule which we have not modeled). The
solution is non-disruptive (+) since the solution only adds
to the existing model and comes with a high degree of Com-
pactness (+), and there is no need for custom constraints (+).

4 Towardsmulti-level modeling of domain
object hierarchies

In this section we discuss how tomodel aspects of the sample
domain object hierarchy using existing multi-level model-
ing techniques, namely Carvalho et al.’s Multi-Level Theory

(MLT) [8] and our previous work on Dual Deep Modeling
(DDM) [30]. These two MLM approaches serve as starting
point for our further considerations.

4.1 MLT-basedmodeling of domain object
hierarchies

Domain object hierarchies modeled as part-whole hierar-
chies come with a uniform treatment of physical objects
like MyCar and more class-like nonphysical objects such
as product model VolvoV50. Instead of regarding the
latter as classes we treated them as nonphysical objects
that have a one-to-one correspondence with a class, e.g.,
VolvoV50Individual. With MLT one typically takes
another approach and represents by VolvoV50 both the
product model VolvoV50 and the class VolvoV50
Individual of physical cars of product model VolvoV50.
In this subsection let us model the Product hierarchy accord-
ingly (see Fig. 5 for an UML-like representation).

Domain objects at the lowest level (e.g., product individual
MyCar) are simple objects. Domain objects at higher lev-
els, such as product model VolvoV50 and product category
Car, are modeled as first-order classes. Non-bottom levels
of the product hierarchy are modeled as 2nd-order classes
ProductModel and ProductCategory. The bottom
level of the product hierarchy (represented in Fig. 2 by class
ProductIndividual) is represented as first-order class

123

Domain object hierarchies inducing multi-level models 595

Fig. 5 A product hierarchy modeled in UML style extended with level-
crossing dependencies from Carvalho et al.’s multi-level theory [8].
Multiple objects/classes having a dependency with the same target are

collected into a group with the dependency only shown once for the
group, e.g., MyCar and Ada’sCar are both instances of VolvoV50

Product—this adjustment in naming is tomake themodels
conformant to the naming conventions applied in the exam-
ples found in the literature on MLT.

The hierarchy of domain objects that are not at the bottom
level is represented as a subclass hierarchy. For example,
VolvoV50 is a subclass of Car, which is a subclass of
Product, which makes VolvoV50 also a (indirect) sub-
class of Product. As an instance of class VolvoV50,
MyCar is also amember of classCar and of classProduct.

Higher-order classes are also organized in subclass hier-
archies. Second-order classes ProductCategory and
ProductModel are sub-classes of ProductClass with
Car being an instance of ProductCategory and, hence,
a member of ProductClass.

Now let us use MLT to specify in more detail the kinds
of second-order and higher-order classes in our multi-level
model.

The first kind of metaclass we are interested in is the
power type as introduced by Cardelli [7] and incorporated
into MLT. The power type of a class (which is the power
type’s base class) has all subclasses of that class, including
that class, as members. For example, in Fig. 5, metaclass

ProductClass is the power type of class Product. All
sub-classes of Product, including Product are members
of ProductClass.

The second kind of metaclass relevant to the multi-level
modeling of domain object hierarchies is the kind of power
type introduced by Odell [31]. We limit the use of Odell’s
power types to what in MLT [8] is referred to as disjoint and
complete categorization, or partitioning. Note, the restric-
tion to disjoint and complete categorization is because we
assume every domain object at a lower level in a domain
object hierarchy to belong to exactly one domain object at
the next higher level. We refer to this kind of metaclass not
as power type but to as partitioning metaclass, or simply as
metaclass, since in our approach all metaclasses, apart from
Cardelli’s power types are partitioning metaclasses.

A partitioning metaclass always comes together with a
partitioned class, also referred to as base class. Everymember
of the partitioning metaclass is a (direct or indirect) subclass
of its base class and every member of the partitioned class is
member of exactly onemember of the partitioningmetaclass.
For example, themetaclassProductModelpartitions class
Product. Itsmembers, such asVolvoV50, are sub-classes

123

596 B. Neumayr, M. Schrefl

of Product. Every member of partitioned class Product
is member of exactly one member of ProductModel, for
example, MyCar is member of VolvoV50.

Also relevant to the multi-level modeling of domain
object hierarchies is the notion of subordination between
metaclasses, as introduced with MLT [8]. If a metaclass is
subordinate to another metaclass, then every member of the
former is subclass of somemember of the latter. For example,
the metaclass ProductModel is subordinate to metaclass
ProductCategory. Every member of ProductModel
is sub-class of one member of ProductCategory, for
example, VolvoV50 is subclass of Car.
Discussion. The modeling of higher-level domain objects,
such as VolvoV50 and Car, as classes seems very nat-
ural. The same is true for the modeling of classes, such
as ProductModel and ProductCategory, as meta-
classes. Onemay argue, that the change in semantics from the
original model better reflects the ontological nature of things
and avoids accidental complexity [4]. Yet, other authors
[11] argue quite the opposite, namely that concepts like
VolvoV50 are, first and foremost, objects.

What we aim for with the DDO pattern and approach is
broader applicability of multi-level modeling without sacri-
ficing conceptual clarity. What motivates our research in this
direction is the observation that many domain object hier-
archies, like the Sales organisation hierarchy in our running
example, are of a very different nature, cannot be adequately
modeled using the multi-level modeling style exemplified in
this section, yet also induce subclasses and metaclasses. The
following example also illustrates this observation:Adomain
object hierarchy of geographical entities, e.g., Innsbruck is
a city in Tyrol, and Tyrol is a state in Austria, induce multi-
level models, e.g., Innsbruck is a member of class ‘Tyrolean
city’ which in turn is a subclass of ‘Austrian city’ as well as
a member of metaclass ‘Austrian city class by state’.

Our intuition here is that all these different domain object
hierarchies are different kinds of part-whole hierarchies and
that the modeling of part-whole comes prior to the modeling
of subclasses and partitioning metaclasses. This is related to
Partridge et al’s work [32] which is driven by Kit Fine’s the-
ory of part [12]. Fine “takes a very liberal notion of part”
[32] with subset and set-membership as kinds of part-whole.
With sets considered as wholes, Fine argues for “taking
both its members and its subsets to be parts”. Also, our
distinction between modeled domain objects and induced
classes and metaclasses relates well to the works of Par-
tridge et al. and Fine. They distinguish a basis domain, a
constructor domain, and a constructed domain (cf. Table 1
in [32]). We consider domain objects and their arrangement
in a domain object hierarchy as given, as ‘basis domain’,
and the induced classes and metaclasses as ‘constructed
domain’.

Currently, we only consider domain object hierarchies
where a domain object always belongs to exactly one domain
object at the next higher level. That is why we are only
interested in partitioning metaclasses and can avoid multiple
inheritance. A partial lifting of these constraints, which will
make relevant MLT’s remaining cross-level relations (cat-
egorizes, disjointly categorizes, completely categorizes), is
left to future work.

4.2 Higher-order partitioningmetaclasses

What seems particular relevant to the multi-level modeling
of domain object hierarchies are higher-order partitioning
metaclasses. Higher levels of a domain object hierarchy not
only partition the domain object hierarchy’s bottom level
but also intermediate levels.With intermediate levels already
being represented as second-order classes, this gives rise to
3rd-order classes. This can be applied recursively: a domain
object hierarchy’s n-th level (from the bottom) can be rep-
resented as 2nd . . . nth-order classes, each partitioning a
1st . . . (n − 1)th-order class.

For example, level Category of the domain object hierar-
chy not only partitions the set of product individuals but also
the set of product models.With the latter represented by 2nd-
order class ProductModel, we introduce a 3rd-order class
ProductModelClassByCategory which partitions it
(see Fig. 6) into sub-classes CarModel and PhoneModel.
Discussion. So far we have discussed the representation
of domain object hierarchies with classes and meta-classes
applying some of the constructs of MLT, namely power
type, partitioning, and subordination. As already evident
with these small examples the modeling of domain object
hierarchies using these constructs is elaborate and results in
well understandable but verbose models. A major drawback
is that a single domain object (e.g., product category Car)
and a single hierarchical relationship (e.g., Car belongs to
Product) have to be represented by multiple classes and
relationships, respectively, in the multi-level model.

This observation led us to the conviction that large parts of
multi-level models with precise semantics need not be mod-
eledmanually but can be derived fromabstraction hierarchies
modeled as part-whole hierarchies that do not, as such, come
with precise semantics.

One possible limitation of our view on domain object
hierarchies is that we treat all hierarchical relationships
in a domain object hierarchy the same and distinguish
between subset and set membership only with respect to
induced classes. This can make the application of the DDO
approach unnecessarily heavyweight, since potentially irrel-
evant classes and metaclasses, as well as their subclass-of
and instance-of relationships, are also made explicit.

123

Domain object hierarchies inducing multi-level models 597

Fig. 6 A fragment from the product hierarchy with higher-order partitioning duplicating hierarchical relationships at different classification levels

4.3 Multi-level modeling with named levels in DDM

Now let us revisit our previous work on Dual Deep Model-
ing (DDM) [30]. DDM facilitates more compact multi-level
models, yet lacks the conceptual clarity of MLT.

The core construct of the DDM approach is the DDM
clabject. DDM clabjects are connected by properties with
dual potencies, a source potency and a target potency. The
source and target potencies of a property indicate the number
of instantiation steps at the source and, respectively, target
end of the property to reach an ultimate instance of the prop-
erty. Properties in DDM can have inverse properties, can be
arranged in specialization hierarchies, may be multi-valued
and can be further characterized by multi-level cardinality
constraints. Although DDM’s powerful and flexible property
mechanism will guide our future work to develop a fully-
fledged property mechanism in DDO, it is clearly beyond
the scope of this paper.

What we are interested in this paper is DDM’s use of
named levels which go back to our work on M-Objects [28].

In Fig. 7 (left part), a product hierarchy is represented
by DDM clabject Product with levels Category, Model,

and Individual, where Individual is under Model is under
Category. Third-order clabject Product is instantiated by
a second-order clabject Car at level Category which in turn
is instantiated by a first-order clabject VolvoV50 at level
Model which in turn is instantiated by a clabject MyCar at
level Individual.

What led us to the DDO approach was the realization that
a DDMclabject actually represents a nested structure of local
classes of ascending order (illustrated by Fig. 7), induced as
follows.

Going back upwards the instantiation hierarchy we say,
now more precisely, MyCar is an instance of VolvoV50
Individual, the Individual class local to car model
VolvoV50. VolvoV50 is an instance of CarModel, the
Model class local to product category Car; and Car is an
instance of ProductCategory, the Category class local
to root object Product.

Now, turning to the classification of induced classes
along the hierarchy, we say VolvoV50Individual is an
instance of CarIndividualClassByModel, the Indi-
vidual metaclass local to CarModel. Class CarModel

123

598 B. Neumayr, M. Schrefl

Fig. 7 Left: product hierarchy modeled with deep instantiation and
named levels as promoted with the DDM approach [30]. Note, in DDM
there is no distinction between domain object hierarchy levels and
classification levels. Right: The product hierarchy modeled with local
meta∗-classes, the basic idea underlying Dual Deep Modeling [30] (not
elaborated as such in [30]). Local meta∗-classes get a compound name

reflecting their nesting and are shown with their order or potency. Dif-
ferent shades of grey represent the different classification levels of the
multi-level model. Nesting of rounded rectangles represents local to
relationships, e.g., first-order class CarModel is local to object Car,
and 2nd-order class CarIndividualClassByModel is local to
class CarModel and is indirectly local to object Car

is an instance of ProductModelClassByCategory,
which is theModelmetaclass local toProductCategory.

Finally, turning to the classification of induced meta-
classes,we can say thatmetaclassCarIndividualClass
ByModel is an instance of ProductIndividual
MetaclassByModelByCategory, which is the Indi-
vidualmeta-meta class local to metaclass ProductModel
ClassByCategory.

Summarizing, the instantiation of aDDMclabject of order
n by a clabject of order n − 1 can be regarded as n closely
coupled instantiations at different levels of classification.
Discussion. The clear picture of the meaning of DDM clab-
jects we have painted here, fits perfectly with our intuition
behind DDM. However, DDM’s highly flexible and power-
ful propertymechanism including support for skipping levels
when instantiating properties may obscure this clear picture.

In order to more clearly convey the meaning of induced
multi-level models, we will, in this paper, employ a highly
simplified and more strict property mechanism, only con-
sidering single-valued, uni-directional properties without
support for skipping levels.

Another shortcoming of DDM is the lack of support
to address superclasses induced along the hierarchy, for
example, generalizing VolvoV50Individual to super-
class CarIndividual, which in turn generalizes to
superclass ProductIndividual . This shortcoming is
mitigated by DDM’s powerful and flexible property mech-
anism, not discussed here in detail, which allows to use
higher-order classes as superclasses, for example metaclass

CarIndividualClassByModel can be used in many
regards like it was a superclass CarIndividual, what
further diminishes conceptual clarity.

As a major addition in comparison to DDM, the DDO
approach will make all the induced superclasses (at various
classification levels) directly addressable by themodeler. The
explicit representation of induced superclasses adds to the
modeling power and improves conceptual clarity.

Furthermore, DDM’s reliance on numeric potencies lim-
its its use to the modeling of domain object hierarchies
the levels of which are in a total order. By getting rid of
numeric potencies and instead fully relying on level names,
the DDO approach can also support the multi-level modeling
of domain object hierarchies the levels of which are only in
a partial order, such as the Sales organisation hierarchy. The
use of level names would also facilitate the introduction of
intermediate levels in sub-hierarchies (not discussed in this
paper) as featured by the M-Objects [28] approach.

5 From part-whole tomulti-level hierarchy

In this section we first introduce the deep domain object
(DDO) pattern for representing classes and metaclasses
induced by a domain object hierarchy. TheDDOapproach to
multi-level modeling has at its core the automatic and recur-
sive application of the DDO pattern, which wewill formalize
in this section by a set of deductive rules.Whenworkingwith
the DDO approach, the modeler does not have to care about

123

Domain object hierarchies inducing multi-level models 599

Fig. 8 The DDO pattern: a domain object hierarchy with two
levels modeled as part-whole hierarchy (left) induces a multi-
level model (right) comprising local classes, a metaclass, and
their subclass-of, direct-instance-of (iof), and partitions dependen-
cies. The rounded rectangles with grey background show the nest-
ing structure of local classes, e.g., class ProductCategory

is local to domain object Product, and of metaclasses, e.g,
metaclass ProductModelClassByCategory is local to class
ProductCategory. The shade of grey indicates the nesting depth
which corresponds to the order of the classes, also referred to as classi-
fication level

Fig. 9 Metamodel of domain object hierarchy modeled as part-whole hierarchy (left). Metamodel of domain object hierarchy as inducedmulti-level
model (right).Note that the given associations andmultiplicitiesmodel direct relationships/dependencies andnot their transitive or reflexive-transitive
closures

induced subclasses and metaclasses, yet can use them when
needed.

The approach is illustrated along our running example.
Figure 8 exemplifies the DDO pattern with a small fragment
of the product hierarchy. Figure 9 shows the metamodel of
domain object hierarchies modeled as part-whole hierarchies
and of domain object hierarchies with induced classes and
metaclasses. Figures 10 and 11 exemplify the application of
the pattern for a fragment of the Product hierarchy (a domain
object hierarchy with three levels in a total order) and of
the Sales organisation hierarchy (a domain object hierarchy
where the levels form a tree and not a path).

For the deductive rules we applyminimal Herbrandmodel
semantics and the closed-world assumption for negation as
in Datalog¬ (cf. [19]) plus existentially quantified rule heads

for creating new model elements. Rules are being invoked
alternating and recursively until a fixpoint is reached and a
minimal Herbrand model found (in our case representing the
induced multi-level model).

In this section we focus on deriving the multi-level struc-
tures and multi-level dependencies induced by part-whole
hierarchies. With the DDO approach we further assume that
every (induced) class has a power type which has the class
and all its direct and indirect subclasses as members. Since
this is not specific to the DDO approach we refrain from
providing formalization of power types and do not show
them in the multi-level models except when used for mod-
eling aggregated properties. A complete realization of the
approach (including power types) and of the running exam-

123

600 B. Neumayr, M. Schrefl

Fig. 10 The DDO pattern applied on the Product hierarchy with its
three levels which are arranged in a total order. In comparison to Fig. 8,
the additional Individual level gives rise to additional classes, meta-
classes, a meta-metaclass, and a subordinate-to dependency between

metaclasses. Note, the partitions and subordinateTo depen-
dencies are not an essential part of the induced multi-level model yet
clarify its semantics in terms of MLT [8]

Fig. 11 The DDO pattern applied on the Sales organisation hierarchy with its tree-like schema (levels Outlet and Employee are directly under
level Division)

123

Domain object hierarchies inducing multi-level models 601

ple is provided in F-Logic (see Appendix) which also serves
as proof-of-concept implementation (see also Sect. 7).

5.1 The DDO pattern

Let usfirst introduce in simple terms theDeepDomainObject
pattern (DDO pattern) for representing domain object hier-
archies and their induced classes and metaclasses. The DDO
pattern is a multi-level modeling pattern that builds on ‘pro-
motion with base classes’ [24], a solution to the type-object
pattern, and makes use of metaclasses and cross-level depen-
dencies in accordance with the multi-level theory (MLT) [8].

A key principle of the DDO pattern is that induced classes
aremodeled local to the domain object bywhich it is induced.
In thisway, theDDOpattern fulfills the compactness desider-
atum of Sect. 3.1.

We will introduce the DDO pattern for a domain object
hierarchy fragment with only two levels, each with only
one domain object. At the schema level the hierarchy,
e.g., Product, is modeled by a component class, e.g.,
ProductModel, associated via aggregation relationship
to a composite class, e.g., ProductCategory, and at
the instance level by a component object, e.g., VolvoV50,
linked via aggregation to a composite object, e.g., Car. The
result of applying the pattern is shown in the right part of
Fig. 8. The DDO pattern consists of:

1. Root object: a domain object hierarchy as a whole is rep-
resented by a root domain object. In this way, the domain
object hierarchy, as well as its sub-hierarchies, are each
uniformly represented by a domain object. The classes
representing the schema of the hierarchy are modeled
local to the hierarchy’s root object.
For example, the Product hierarchy is represented by root
domain object Product. Composite object Car is mod-
eled as part of Product. Classes ProductCategory
and ProductModel are modeled as local to Product.

2. Induced subclasses: with every composite object, i.e.,
every instance of the composite class, the modeler intro-
duces, local to the composite object, a subclass of the
component class. The induced subclass can then be used
for specializing the schema.
For example, with the product category Car the mod-
eler introduces the class CarModel as the subclass of
ProductModel local to Car. This is akin to ‘promo-
tion with base classes’ [24], a solution to the type-object
pattern, but additionally with a cross-level local-to depen-
dency.

3. Induced metaclasses: the modeler further introduces,
local to the composite class, a metaclass which partitions
(as in MLT [8]) the component class. When instantiating
the composite class, also the partitioning metaclass gets
instantiated, namely by the subclass of the component

class. The induced metaclass can be used by the modeler
to regulate the specialization of the component class with
regard to composite objects.
For example, when instantiating ProductCategory
by Car, metaclass ProductModelClassBy
Category, which is local to ProductCategory
and partitions ProductModel, gets instantiated by
CarModel.

Applying the DDO pattern by hand is cumbersome and not
feasible for all but very small domain object hierarchies. In
the following we will formalize the pattern’s automatic and
recursive application.

5.2 Preparing the domain object hierarchy

The first step is to prepare the part-whole hierarchies for
uniform treatment of (the roots of) hierarchies and sub-
hierarchies as domain objects. Every hierarchy is treated as
a domain object that represents the whole hierarchy and acts
as root of the hierarchy [rule (A1)]. Then all domain objects
at a top-most level of the hierarchy are assigned as parts
of that root object (A2). Domain objects are annotated with
the hierarchy level represented by their class (A3) and are
assigned to classification level 0, i.e., their order is 0 (A4).
For example (see Fig. 10), domain object hierarchy Product
becomes domain object Product at level Root representing
the whole product hierarchy with product category Car as
part. Domain objects like Car are annotated with their level,
e.g., Category, and are associated with classification level 0.

Note, we use predicate instanceOf for the asserted
instance-of relation, e.g., VolvoV50: ProductModel is
represented as instanceOf(VolvoV50,ProductModel),
and use predicate iof for the direct instance of rela-
tion which takes into account induced sub-classes, e.g.,
iof(VolvoV50,CarModel).

∀h : Hierarchy(h)
⇒ DomainObject(h) ∧ level(h, Root). (A1)

∀o, h, c : instanceOf(o, c) ∧ localTo(c, h)

∧ (�c′ : partOfSchema(c, c′)) ⇒ partOf(o, h) (A2)

∀o, c, k : instanceOf(o, c) ∧ level(c, k)

⇒ level(o, k) (A3)

∀o : DomainObject(o) ⇒ order(o, 0) (A4)

5.3 Derivingmulti-level instantiation hierarchies

In the following we define the rules that derive multi-level
instantiation hierarchies of local classes.

Given is a domain object o which is part of domain object
o′ and modeled as instance of class c which represents level

123

602 B. Neumayr, M. Schrefl

k. Then domain object o is direct instance of (iof) the class c′
local to o′ which also represents level k. For example, prod-
uct category Car is part of domain object Product and
modeled as instance of ProductCategory which repre-
sents level Category. Now, since ProductCategory is
local to Product, it follows that Car is a direct instance of
ProductCateogry.

∀o, o′, c, c′, k : partOf(o, o′) ∧ instanceOf(o, c)

∧ level(c, k) ∧ localTo(c′, o′) ∧ level(c′, k)
⇒ iof(o, c′)

(A5)

Given is an object o which is a direct instance of (iof)
class c which has class c′ representing level k as direct or
indirect part (partOfSchema+ represents the transitive clo-
sure of partOfSchema). Then a new class c′′ local to o
and representing level k comes into existence. For exam-
ple, Car is a direct instance of ProductCateogrywhich
has classes ProductModel, representing levelModel, and
ProductIndividual, representing level Individual, as
direct or indirect parts. This induces local class CarModel,
representing levelModel for the subhierarchy rooted in Car,
and class CarIndividual, representing level Individual
for the subhierarchy rooted in Car. For the mechanism to
generate names of local classes and metaclasses see the F-
Logic implementation in the Appendix.

∀o, c, c′, k : iof(o, c)∧partOfSchema+(c′, c)∧ level(c′, k)
⇒ ∃newc′′ : localTo(c′′, o) ∧ level(c′′, k)

(A6)

By alternating recursive invocation, rules (A6) and (A5)
produce first-order classes local to domain objects further
down the hierarchy, such as VolvoV50Individual local
to domain object VolvoV50.

Next we define the rules to derive local metaclasses.
Consider a class c that has class c′ representing level
k as direct or indirect part and the order of c is lower
than a constant maxOrder (which can be set by the mod-
eler). Then a new metaclass c′′, local to class c and
representing level k, comes into existence. For exam-
ple, the class CarModel has CarIndividual as part
which represents level Individual. This induces metaclass
CarIndividualClassByModel, which represents
level Individual local to class CarModel. Further meta-
classes induced in this way are ProductModelClassBy
Category,ProductIndividualClassByCategory,
ProductIndividualClassByModel, and finally 3rd
order classProductIndividualMetaclassByModel-
ByCategory.

∀c, c′, k, i : partOfSchema+(c′, c) ∧ level(c′, k)
∧ order(c, i) ∧ i < maxOrder

⇒ ∃newc′′ : localTo(c′′, c) ∧ level(c′′, k)
(A7)

With local metaclasses derived we also need to derive
the instance of (iof) relationships between classes and meta-
classes. Consider a metaclass m representing level k local
to class c, and a class c′ also representing level k local
to o which is an instance of c. Now we can derive that
c′ is an instance of m. Consider, for example, the meta-
classProductIndividualClassByCategorywhich
is local to class ProductCategory which has Car as an
instance, and classCarIndividualwhich is local toCar.
We can derive that CarIndividual is a direct instance of
ProductIndividualClassByCategory.

∀m, c, k, o, c′ : localTo(m, c) ∧ level(m, k)

∧ iof(o, c) ∧ localTo(c′, o) ∧ level(c′, k)
⇒ iof(c′,m)

(A8)

The order of a local class is the increment of the order of
the object the class is local to.

∀c, o, i : localTo(c, o)∧order(o, i) ⇒ order(c, i+1) (A9)

The part-whole hierarchy modeled under a class is prop-
agated to metaclasses local to that class. Consider class
c′′ which is above classes c and c′ in the part-whole hier-
archy. When class c is directly under class c′ then this
direct part-whole relationship is propagated to metaclasses
local to c′′. According to (A10), when class c which repre-
sents level k is a direct part of c′ which represents level k′
and both are direct or indirect parts of c′′ and metaclasses
m, representing level k, and m′, representing level k′, are
local to c′′, then m is part of m′. For example, Product-
Individual is directly under ProductModel and both
are under ProductCategory, thusmetaclassProduct-
IndividualClassByCategoryhas adirect part-whole
relationshipwithProductModelClassByCategory at
classification level 2.

∀c, c′, c′′, k, k′,m,m′ : partOfSchema+(c, c′′)
∧ partOfSchema+(c′, c′′) ∧ partOfSchema(c, c′)
∧ level(c, k) ∧ level(c′, k′)
∧ localTo(m, c′′) ∧ level(m, k)

∧ localTo(m′, c′′) ∧ level(m′, k′)
⇒ partOfSchema(m,m′).

(A10)

The part-whole hierarchy modeled with metaclasses is
propagated to their instances. According to (A11), when
classes c and c′ are local to the same object o, and c is instance

123

Domain object hierarchies inducing multi-level models 603

of metaclass m, and c′ is instance of metaclass m′, and m is
part of m′, then c is derived to be part of c′.

∀o, c, c′,m,m′ : localTo(c, o) ∧ localTo(c′, o)
∧ iof(c,m) ∧ iof(c′,m′) ∧ partOfSchema(m,m′)
⇒ partOfSchema(c, c′)

(A11)

5.4 Deriving generalization hierarchies

With the multi-level instantiation hierarchies of local classes
in place we can now derive subclass-of relationships at all
classification levels. We only show how to derive direct sub-
classOf relationships. From there one can easily derive the
reflexive-transitive closure which is often used instead of
only considering direct subclass-of relationships.

A first-order class local to a domain object is subclass of
the class that is local to the domain object’s parent and repre-
sents the same level. According to (A12)when domain object
o is part of domain objecto′ ando has a local class c represent-
ing level k and o′ has a local class c′ representing level k, then
c is a subclass of c′. For example, VolvoV50 is part of prod-
uct category Car. Its local class VolvoV50Individual
which represents level Individual in the subhierarchy rooted
in VolvoV50 is a subclass of CarIndividual which
represents level Individual for the subhierarchy rooted in
Car.

∀o, o′, c, c′, k : partOf(o, o′)
∧ localTo(c, o) ∧ level(c, k)

∧ localTo(c′, o′) ∧ level(c′, k)
⇒ subclassOf(c, c′)

(A12)

According to (A13) when c is a subclass of c′ and c has
a local metaclass m representing level k and c′ has a local
metaclassm′ representing level k, thenm is a subclass ofm′.
This applies also to classes of higher orders. For example,
CarModel is a subclass of ProductModel, its localmeta-
classes for level Individual, namely CarIndividual-
ClassByModel andProductIndividualClassBy-
Model are, hence, in a subclassOf relationship.

∀c, c′,m,m′, k : subclassOf(c, c′)
∧ localTo(m, c) ∧ level(m, k)

∧ localTo(m′, c′) ∧ level(m′, k)
⇒ subclassOf(m,m′)

(A13)

Finally, themembers of a class c (of any order) are defined
as the instances of that class together with instances of direct
or indirect subclasses of c.

5.5 Aligning DDOwithMLT

To illustrate the semantics of multi-level models induced by
domain object hierarchies in terms of the multi-level theory
MLT [8] we now define the derivation of partition and sub-
ordinate to relationships. This is for informative purposes
and does not add to the semantics of the approach. The
partitions and subordinateTo relations for the run-
ning example are shown in Fig. 10.

An induced fact partitions(m, c) says that metaclass m
partitions class c, i.e., every instance of m is a subclass of
c, and, further, every member of c is member of exactly one
instance of m. An induced fact subordinateTo(m,m′) says
that metaclassm is subordinate tom′ which means that every
instance of m is subclass of some instance of m′.

According to (A14), when a class c representing level k
is local to a domain object o and another class c′, also local
to o, has a local metaclass m also representing level k, then
m partitions c. In this case, c is also referred to as the base
class of m.

∀c, k, o, c′,m : level(c, k) ∧ localTo(c, o)

∧ localTo(c′, o) ∧ localTo(m, c′)
∧ level(m, k) ⇒ partitions(m, c)

(A14)

(A14) only derives metaclasses that partition first-order
classes. Higher-order partitioning metaclasses are derived
according to (A15) as follows. When a metaclass m parti-
tions a class c and both have local metaclasses m′ and m′′,
respectively, which both represent level k, then m′ partitions
m′′.

∀m, c,m′,m′′, k : partitions(m, c)

∧ localTo(m′,m) ∧ level(m′, k)
∧ localTo(m′′, c) ∧ level(m′′, k)
⇒ partitions(m′,m′′)

(A15)

The subordinateTo relationship, according to MLT [8],
is a relationship between partitioning metaclasses with the
same base class. When a partitioning metaclass is subordi-
nate to another partitioning metaclass then every instance of
the former is a subclass of some instance of the latter. Now
let us define how subordinateTo relationships are induced
from domain object hierarchies. According to (A16), when
a domain object o has two local classes c and c′ with c being
directly under c′ in the part-whole hierarchy schema, and
c and c′ have both a local metaclass, m and m′, respec-
tively, which both represent level k, then m is subordinate
to m′.

123

604 B. Neumayr, M. Schrefl

∀o, c, c′,m,m, k : localTo(c, o) ∧ localTo(c′, o)
∧ localTo(m, c) ∧ level(m, k)

∧ localTo(m′, c′) ∧ level(m′, k)
∧ partOfSchema(c, c′) ⇒ subordinateTo(m,m′)

(A16)

Similar to (A14) above, (A16) only applies to metaclasses
partitioning first-order classes. Subordination among higher-
order classes is derived according to (A17) as follows. When
a metaclass m is subordinate to metaclass m′ and both have
local metaclasses m′′ and m′′′, respectively, which both rep-
resent level k, then m′′ partitions m′′′.

∀m,m′,m′′,m′′′, k : subordinateTo(m,m′)
∧ localTo(m′′,m) ∧ level(m′′, k)
∧ localTo(m′′′,m′) ∧ level(m′′′, k)
⇒ subordinateTo(m′′,m′′′)

(A17)

5.6 Discussion

Let us briefly assess the induced multi-level model with
regard to the desiderata of Sect. 3.1. The approach is non-
disruptive (+) as the part-whole hierarchy remains intact and
the multi-level structures act as add-on. Conceptual clar-
ity (+) is facilitated by decomposing domain objects into
their different facets. Compactness (+) is reached through
the nesting of induced classes and metaclasses with domain
objects acting as roots of localTo-hierarchies. The central
part-whole hierarchy factors out commonalities (+) among
themultiple generalization andmulti-level instantiation hier-
archies. Avoiding custom constraints (+) is facilitated by
having fine-grained classes and metaclasses readily avail-
able which spares the modeler from writing derivation rules
by hand.

6 Modeling with deep domain objects

In this section we introduce and exemplify modeling with
deep domain objects along the modeling challenges set out
in Sect. 3.

A deep domain object is a domain object together with
an aggregated and schematic description of its descendant
domain objects together with regulations that govern how
the schema is to be specialized along the hierarchy. Every
domain object (apart from objects at the bottom level) has an
induced multi-level schema characterizing the sub-hierarchy
rooted in that domain object.

In the simple case of a domain object hierarchy with a
totally ordered set of levels, a deep domain object is similar to
aDDMclabject butwith thevarious class/superclass/metaclass

facets of the DDM clabject now represented explicitly by
classes andmetaclasses ‘nested’ inside the domain object and
with support for providing aggregated informationwith these
local meta* classes. These local classes and metaclasses are
induced automatically, together with the multi-level depen-
dencies connecting classes which are local to the same object
and the dependencies connecting classes local to objects that
are in a direct hierarchical relationship in the domain object
hierarchy. Furthermore, by encapsulating local classes and
metaclasses in deep domain objects, we retain one of the
promises of dual deep modeling, namely to avoid the clut-
tering of models with a myriad of classes and metaclasses.

6.1 Solving challenge 1: specialization along the
hierarchy

In this subsection we explain how the modeling tasks pre-
sented in Sect. 3.2 are solved with deep domain objects (see
Fig. 12).
C1.1 Range refinements. Induced local classes facilitate the
refinement of the range of a property p for the descendants
of a domain object o at level k to descendants of a domain
object o′ at level k′.

For example, with local class CarModel the range of
property productMgr is refined to local class Vehicles
Employee, that is, product models of product categoryCar
may have as product manager only employees of sales divi-
sion Vehicles.

With local class CarIndividual the range of property
soldAt is refined to local class VehiclesOutlet, that
is, individual cars may only be sold at sales outlets of the
Vehicles sales division.
C1.2 Extending the schema.With local classes themodeler is
able to extend the schema of descendants of a domain object
at a particular level by introducing additional properties.

For example, with local class CarModel the modeler
extends the schemawith an additional propertyengineType
with range EngineType (from the Engine hierarchy).
With local class CarIndividual an additional property
engine with range EngineIndividual is introduced.
C1.3 Shared values.With local classes the modeler may also
specify a shared value for a property of descendant objects
at a certain level.

For example, with local class CarModel the modeler
specifies a shared value of 20% for property vatRate—
specifying that every car model has exactly that value for
property vatRate. With local class CarIndividual the
vatRate value of 20% is fixed for all individual cars.
Assessment of DDO solution to Challenge 1 Let us discuss
the quality of the DDO solution with regard to the desider-
ata (see Sect. 3.1). The solution is non-disruptive (+) since
the original conceptual model remains intact. Conceptual
clarity (+) is reached by modeling properties that charac-

123

Domain object hierarchies inducing multi-level models 605

Fig. 12 Solving Challenges 1 and 2 using the DDO approach. Prop-
erty statements inferred by metaschema statements are shown with ‘>’
and in italics. A property p’s metarange m is denoted as p : : m.
A propagate-as-shared-value assertion, denoted as p = {$p′}, specifies
the propagation of the p′ value of the domain object of themember class
as shared value of the member class’ property p. A propagate-as-range

assertion, denoted as p : {($p′,k)}, specifies the propagation of the
p′ value of the domain object of the member class as range (together
with level k) of the member class’ property p. Deep domain objects
only shown with the induced classes and metaclasses relevant for that
challenge

123

606 B. Neumayr, M. Schrefl

terize descendants at a particular levels with local classes.
Compactness (+) is reached since the specializations regard-
ing the sub-hierarchy rooted in domain object Car are all
modeled with model elements local to Car. With regard to
factoring out commonalities (+), the modeler is not forced to
represent the samemodeling information twice. The solution
does not come with custom constraints (+).

6.2 Solving challenge 2: regulating specialization
withmetaclasses

Domain object hierarchies typically have a rather homoge-
neous hierarchical structure across their sub-hierarchies. This
degree of homogeneity will typically also be reflected in the
schema refinements. Metaschema assertions can enforce a
certain degree of homogeneity and can also automate schema
refinements.

Before solving Challenge 2, let us have a closer look at the
meaning of local metaclasses from the perspective of domain
object hierarchies.

A metaclass, e.g., ProductIndividualClassBy-
Category represents a level, e.g., Individual, which we
refer to as its member-member level. The metaclass is local
to a class, e.g., ProductCategory, which, in turn, repre-
sents another level, e.g., Category, which we refer to as the
metaclass’ member level, and is local to a domain object,
e.g., Product. For a particular state of the database, a
metaclass represents a metaset, namely the set of descen-
dants of the domain object, e.g., Product, at the metaclass’
member-member level, e.g., Individual, groupedby themeta-
class’ member-level, e.g., Category. Its member classes are
induced subclasses local to domain objects at the metaclass’
member level.

The modeling tasks concerning regulating specialization
are solved with deep domain objects (see Fig. 12) as follows.
C2.1 Metarange. A metarange assertion specifies an obli-
gation for members (which are classes) of the metaclass to
refine the schema of a property to a certain hierarchy level.
The modeler is able to specify with a (local metaclass of
a) higher-level object a constraint that a certain refinement
should be done by all descendant domain objects at a certain
level (namely by local classes of descendant domain objects
at that level).

For example, the metaclass ProductIndividual-
ClassByCategory further definesSalesOutletClass-
ByDivision as metarange of its member-member prop-
erty soldAt, denoted as soldAt : : SalesOutlet
ClassByDivision, meaning that its member classes at
the Category level, e.g., CarIndividual must refine
the range of soldAt to outlets that belong to a particular
sales division.
C2.2 Propagate property value as range. A propagate-as-
range assertion tells members of the metaclass to use a

property value of the domain object they are local to, to refine
the range of another property.

Using propagate-as-range assertions the modeler can
generically specify the refinement of property ranges for
domain objects at lower levels (i.e., the metaclass’ member-
member level) by property values of domain objects at
intermediate levels (i.e., the metaclass’ member level).

For example, the metaclass ProductModelClass-
ByCategory has a propagate-as-range assertion for its
member-member property productMgr, denoted as
productMgr : {($salesDivision,Employee)},
defining that its member classes at the category level, such
as CarModel, take the value, e.g., Vehicles, of prop-
erty salesDivision of the product category, e.g., Car,
to refine the range of the property to employees of that sales
division, e.g. by local class VehiclesEmployee.
C2.3Propagate property value as shared value.Apropagate-
as-shared-value assertion tells members of the metaclass to
use a property value of the domain object they are local to,
to define a shared value for the metaclass’ member-member
property.

Using propagate-as-shared-value assertion the modeler
can generically define the propagation of property values
from domain objects at an intermediate level (i.e., the meta-
class’ member level) to domain objects at lower levels (i.e.,
the metaclass’ member-member level) as shared values.

For example, themetaclassProductModelClassBy-
Category has a propagate-as-shared-value assertion for its
member-member property vatRate, denoted as vatRate
= { $vatRate }, defining that its member classes, such
as CarModel, use the vatRate given with the product
category they are local to, e.g., Car, as shared value for
their member property vatRate. Metaclass Product-
IndividualClassByCategory has a similar asser-
tion, specifying the propagation of the vatRate to the
individual level.
C2.4Regulating specialization in sub-hierarchies.With local
metaclasses the modeler is able to specify such regulations
also only for sub-hierarchies.

For example, a propagate-as-range assertion given with
metaclassCarIndividualClassByModel specifies that
the engine type, e.g., VD4162T, given with a particular
car model, such as VolvoV50, is used to refine the range
for the individual class of that car model, e.g., in class
VolvoV50Individual the range for property engine
gets automatically refined to class VD4162TIndividual
(the class of individual engines of engine type VD4162T).
AssessmentNocustoms constraints (+) are necessary and the
solution is non-disruptive (+). Conceptual clarity (+) is high
because eachmetaschema assertion ismadewith amodel ele-
ment that specifically represents the two affected levels in a
domain object hierarchy or sub-hierarchy. Compactness (+)
is reached since the metaschema assertions are made with

123

Domain object hierarchies inducing multi-level models 607

metaclasses which are tied together with a domain object.
The solution avoids custom constraints (+). Regarding fac-
toring out commonalities (+), there is no need tomodel some
information twice.

6.3 Solving challenge 3: aggregated information

In the DDO approach, every class has associated its power
type. A class’ power type is used to define properties that are
to be instantiated by the class and also by the class’ direct
and indirect subclasses, which are all, by definition,members
of the power type. Note, in the DDO approach we currently
only have use for one layer of power types, that is why there
are no power types of power types.

To solve modeling challenge 3 the modeler defines (see
Fig. 13) aggregated properties avgListPrice, avgSold
Price, and minAvgSoldPricePerModel, with the
power types of ProductModel,ProductIndividual,
andProductIndividualClassByModel, respectively.

By using the power type of a class representing a certain
level (e.g.,Model) for the definition of aggregated properties,
the modeler makes sure that the aggregated information is
available with domain objects above that level without the
need to define the aggregated property multiple times.

Aggregated information is also available for the domain
object hierarchy as a whole.

The class with which the aggregated information is pro-
vided represents the set of objects fromwhich the aggregated
information is calculated. The metaclass with which a two-
step aggregated information is provided represents the set of
objects and its partitioning into a set of set of objects from
which the aggregated information is calculated.
C3.1 One-step aggregation. Simple aggregated informa-
tion, i.e., aggregated properties like avgSoldPrice and
avgListPrice are defined with a powertype of a first-
order local class and the aggregated vlaues are provided with
first-order local classes.
C3.2 Multi-step aggregation. Two-step aggregated informa-
tion (e.g., minAvgSoldPricePerModel) is provided
with second-order classes, and so forth (no example given
for three step aggregation).
C3.3 Aggregated information for the whole hierarchy. By
defining aggregated properties with a powertype of a class
that is local to a root object, the aggregated information is
calculated also for the hierarchy as a whole.
Assessment. No custom constraints (+) or complex queries
are necessary. Compactness (+) and conceptual clarity (+)
is reached since the aggregated information is provided with
the class or metaclass it describes which is also tied together
with the domain object. Concerning factoring out common-
alities (+), there is no need to define an aggregated property
multiple times.

7 Proof-of-concept prototype

The deductive rules introduced in Sect. 5 are realized
in F-Logic (see Appendix A) together with the formaliza-
tion/implementation of the complete DDO approach. The
prototype can be used to query induced multi-level models
and property values, including aggregated information and
shared values, and property ranges, including those propa-
gated from higher-level objects. This is demonstrated by the
query results shown in Figs. 14, 15, 16, and 17. One further
query result is provided in the appendix. Formating query
results in tabular form is implemented in a small Java pro-
gram which interacts with Flora-2 via command line.

In addition to the derivation of local classes and meta-
classes and their multi-level dependencies, the prototype
covers:

– Specialization along the hierarchywith range refinement,
schema extension and shared values.

– Regulating specializationwithmetaclasses bymetarange
assertions, propagate-as-range assertions, and propagate-
as-shared-value assertions for domain object hierarchies
as a whole and also for sub-hierarchies.

– Modeling aggregated properties with powertypes and
providing respective aggregated information with local
classes and metaclasses.

– Structural conformance checks.

Conformance checks are also realized as deductive rules
which fill predicate error/2, which can be queried for
violations of the structural conformance rules.

The functionality of the prototype is demonstrated with
the running example started in Sect. 2 and further developed
in Sect. 6. The fully worked example is given in Appendix B.

Note, in the F-Logic implementation we use custom prop-
ertiessubclassOf and iof instead of the built-in notation
usedbyF-Logic (‘::’ and ‘:’). This is to avoid anunintended
strong integration into F-Logic, since we do not conceive
the implementation as an add-on to F-Logic but rather only
as a validation of the approach. Nevertheless, to facilitate
preliminary integration with F-Logic’s built-in instantiation
and subclassing we have to consider them in the realization
of property range constraints. We further consider in the F-
Logic implementation that a class c′ in the formalizationmay
be a data type or a ‘normal’ class from the global schema or
a local class from some domain object hierarchy.

The proof-of-concept prototype comes with four aggre-
gation operators, namely SUM, MIN, MAX, and AVG (see
Appendix A). In the definition of the aggregated property in
the metaclass (typically a powertype), these operators take as
parameter a member property of their base class. The aggre-
gation operation is then evaluated with regard to an instance

123

608 B. Neumayr, M. Schrefl

Fig. 13 Solving Challenge 3
(aggregated information) using
power types of classes and of
metaclasses to define aggregated
properties

of the powertype, that is, with regard to a subclass of the base
class, and aggregates all members of that subclass.

Concerning performance we have conducted very prelim-
inary experiments on a HP EliteBook 850 G2 with Intel(R)
Core(TM) i7-5600U CPU with 2.60GH with two kernels
with 16 GB working memory and running Windows 10 Pro.
The time measurements are based on 10 consecutive runs
of a custom-made Java program that starts the Flora engine,
interacts with the Flora engine via command line, and which
transforms the query results to tabular format.

We have experimented with two variants. The first vari-
ant (see Appendix A.2) uses structured class IDs for local
classes and powertypes, e.g., k(k(Product,Model),
Individual). The second variant (see Appendix A.3)
generates class names as used throughout the paper, e.g.,
ProductIndividualClassByModel. With the first
variant, starting the Flora2 engine and loading the code takes
on average 0.66 sec, the evaluation of the five queries (as
shown in Figures 14–18) takes together on average 1.14 sec.

With the second variant, startup took on average 0.81 sec and
query evaluation on average 3.52 s.

8 Related work

In multi-level modeling, the clabject [1] allows meta-
modeling with arbitrarily many levels of instantiation. Deep
characterization allows a clabject to specify the schema of
members at arbitrarily deeper levels of instantiation, it can
specify attributes to be instantiated by its members or by the
members of its members, and so forth.

Telos [27] was one of the first approaches that allowed
meta-modeling with an unbounded number of instantiation
levels. In Telos, classes and properties are also objects, and
objects are instances of other objects. ConceptBase [17] is an
implementation of Telos based on the O-Telos [18] dialect.

VODAK [21] was one of the first systems to support
deep characterization, although limited to three levels of
instantiation. VODAK distinguishes three kinds of objects,

123

Domain object hierarchies inducing multi-level models 609

Fig. 14 Result of querying all classes in the multilevel model, together with, if existing, their direct superclass, and, if existing, their parent in the
part-whole hierarchy

Fig. 15 Result of querying all partitioning metaclasses in the multilevel model, together with the base class they are partitioning and, if existing,
the metaclass they are subordinate to

namely individual objects, classes, and metaclasses, as well
as types, which describe the schema of objects in terms of
structure and behaviour. An object has an own-type which
describes the object’s own schema. A class or metaclass fur-
ther has a member-type which describes the schema of its
members. A metaclass further has a member-member-type
which describes the schema of the members of its members,
realizing a limited form of deep characterization. An object
instantiates its own-type, which in turn is a specialization of

the member-type of the object’s class. The member-type of
a class is a specialization of the member-member-type of the
metaclass of the class. In this way, the relationship between
an object and its class encompasses instantiation and special-
ization.

Potency-baseddeep instantiation [2] goes beyondVODAK
by allowing to specify the schema of member objects at arbi-
trarily deeper levels of instantiation by assigning a potency
to properties.

123

610 B. Neumayr, M. Schrefl

Fig. 16 Result of querying property values (including aggregated prop-
erty values, aggregated fromdescendants at lower levels, and values that
were propagated as shared values from higher-level objects). By having
both the object to which the property value belongs directly as well as

the domain object towhich that object belongs, theDDOapproach com-
bines compactness and conceptual clarity. Note: different background
colors were added manually

123

Domain object hierarchies inducing multi-level models 611

Fig. 17 Result of querying property ranges (including property ranges
propagated according to range-propagation assertions). By having both
the class to which the property range belongs directly as well as the

domain object to which that class is local to, the DDO approach com-
bines compactness and conceptual clarity. Note: different background
colors and horizontal lines were added manually

The orthogonal classication architecture distinguishes
linguistic and ontological metamodeling [2,3]. Linguistic
metamodeling is about the modeling of elements of the
modeling language, e.g., Domain Class and Domain
Object, and their instantiation by model elements, e.g,
ProductModel and VolvoV50, respectively. Ontolog-
ical metamodeling is about modeling of individuals, classes
and metaclasses from the domain of interest and their
ontological instance-of relationships, e.g., VolvoV50 is
ontological instance of CarModel. In our approach, onto-
logical instantiation is divided into two parts, domain
object VolvoV50 is, rst, an instance of domain class
ProductModel representing level Model, and, second,
under domain object Car, so that it is nally an ontological
instance of CarModel.

With regard to Kühne’s level cohesion and level segrega-
tion principles [22], classification levels in DDO hierarchies
are order-synchronized, yet the organization in classification
levels is second to the organization along domain object hier-
archies.

The DDO pattern is related to materialization [33] which
also combines instantiation and specialization. With mate-

rialization, a class of more concrete objects, e.g., Product-
Model, may be related to a class of more abstract objects,
e.g., ProductCategory. Each member, e.g., VolvoV50, of the
former materializes a member, e.g, Car, of the latter. Materi-
alization supports level-crossing property propagation.

The power type was introduced to conceptual modeling
by Odell [31] as a class whose members are subclasses
of another class.Power types were applied and evolved by
Gonzalez-Perez and Henderson-Sellers [15] and analyzed in
full detail by Carvalho et al. [8,10]. The partitions relation-
ship which underlies our approach is a specific form of a
power type relationship in the sense of Odell. Our notion of
power types was introduced by Cardelli [7] and revisited by
Carvalho et al. [8].

Some of the ideas underlying the current approach were
already implicitly realized in theM-Object approach [28] but
lacking the foundation in traditional object-oriented model-
ing and lacking the explicit induction of meta∗-classes. An
m-object, e.g., Car, has a set of totallyordered named levels,
e.g., Category, Model, and Individual. Each level of
an m-object implicitly defines a class with the top-level of an
m-object implicitly defining a singleton class with the mob-

123

612 B. Neumayr, M. Schrefl

ject itself as member. When a more concrete mobject, e.g.,
VolvoV50, concretizes amore abstract m-object, e.g.,Car,
then the classes implicitly defined by the levels of the more
concretem-object are specializations of the classes implicitly
defined by the levels of the more abstract m-object, and the
more concrete m-object is a member of the class implicitly
defined by the second-top level of themore abstractm-object.
Other than in theDDOapproach,m-objects are not related by
properties but bymulti-level relationships instantiates its top-
level class, i.e., its own-type. An m-object, e.g., Car, may
concretize anotherm-object, e.g.,Product. The concretiza-
tion relationship between m-objects has an instantiation and
specialization facet. The concretizing m-object instantiates
the concretized m-object’s second-level class and special-
izes the concretizedm-object’s other classes.M-relationships
relate m-objects at various levels.

The practical relevance of multi-level modeling was
demonstrated by examining the application of multilevel
modeling patterns in existing metamodels from different
domains [23]. We believe that our approach fundamentally
extends the practical relevance of multi-level modeling to
modeling scenarios where domain objects are organized in
part-of hierarchies (or similar) and where the goal is to refine
and extend the schema along that hierarchy.

There is an ongoing discussion about the advantages and
drawbacks of multi-level modeling with clabjects [5,11].
Various authors [9,34] argue that there is trade-off between
compactness (reduction of model size) and understandability
(semantic clarity). We claim that with our current approach
both goals, namely semantic clarity and reduction of model
size (of themodel presented to themodeler), are met, first, by
the approach’s foundation in MLT and, second, by inducing
multi-level structures and showing them only on demand.

Multilevel Coupled Model Transformations (MCMTs)
[25] are an expressive approach for specifying level-crossing
constraints. It remains to be analyzed how MCMTs can be
employed on top of our approach or as an extension to our
simple expressionmechanism. Balaban et al. [6] introduce an
executable multi-level modeling approach facilitating inter-
level constraints, rules, and queries.

The multi-level theory (MLT) [8–10] improves seman-
tic clarity through ontologically well-founded multi-level
modeling constructs aligned with Guizzardi’s Unified Foun-
dational Ontology UFO [16]. The DDO approach is aligned
in parts with MLT but does not support all cross-level struc-
tural relations identified in [8], in addition to power type of
and partioning, they also propose a more relaxed relation
called categorization which may be disjoint and/or com-
plete. The partitions relation (which is fundamental to our
approach) is a disjoint and complete categorization relation.
It remains open to further analysis how the classes in the
global model (which are classes without super-classes) relate

to the notion of substance sortals as discussed by Guizzardi
[16]).

Local object classes were proposed by Kappel and Schrefl
[20] as a means to represent local referential integrity. There,
a local object class ‘is a set of objects belonging exclusively to
some composite object”, and the “database is considered an
object itself” and “every object class is a local object class”.

9 Conclusion

In this paper we have introduced the DDO approach, which
may serve as the nucleus of multi-level modeling approaches
that build on traditionally modeled domain object hierar-
chies. We have defined and implemented the approach in
F-Logic/Flora-2. We have exemplified all constructs by a
fully worked example. We have assessed the approach with
regard to a set of desiderata together with a set of to-be sup-
portedmodeling tasks. Theproof-of-concept implementation
of the approach and the fully worked example in F-Logic are
provided in the Appendix and are made available as free soft-
ware.

With the prototype, we have shown the feasibility of the
approach and demonstrated its use for querying induced
multi-level models. Qualitative evaluation of the approach in
terms of usability and comprehensibility remains for future
work, as well as systematic performance studies. In future
work we will also explore the remaining design space for
a full-fledged DDO-based multi-level modeling approach,
especially regarding the multi-level modeling of properties
and associations.

Funding Open access funding provided by Johannes Kepler University
Linz.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Implementation of DDO in F-logic

The implementation of the DDO approach in F-Logic was
developed and tested with Flora-2/ErgoLite Reasoner 2.0
(Pyrus nivalis) of 2018-10-14. The prototype implemen-
tation is available as free software under https://github.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/bneumayr/DDO

Domain object hierarchies inducing multi-level models 613

com/bneumayr/DDO. The Flora-2/ErgoLite system is nec-
essary to run the prototype and is available at http://flora.
sourceforge.net/. The following code listing contains the
complete implementation of the formalization of DDO.

A.1 Rules for preparing the hierarchy
prepare.flr

1 // A1: The hierarchy is treated as domain object at the

generic Root level

2 ?o : DomainObject :-

3 ?o : Hierarchy .

4

5 ?o [level -> Root] :-

6 ?o : Hierarchy.

7

8 // A2: Domain objects at a top level of the part-whole

hierarchy are direct parts of root object

9 ?o [partOf -> ?h] :-

10 ?o [instanceOf -> ?c],

11 ?c [localTo -> ?h],

12 \naf exists (?c2)^(?c [partOfSchema ->?c2]).

13

14 // A3: Domain objects are annotated with their level

15 ?o [level -> ?k] :-

16 ?o [instanceOf -> ?c],

17 ?c [level -> ?k].

18

19 // A4: Domain objects have order 0

20 ?o [order -> 0] :-

21 ?o : DomainObject.

A.2 Rules for creating classes with structured IDs
class_creation_structures.flr

With regard to the naming of derived local classes and pow-
ertypes there are two variants, oneworkingwith Prolog struc-
tures as class IDs (e.g.,k(Car,Model),k(k(Car,Model),Individual)
andpow(k(k(Car,Model),Individual))), andone
creating class names (e.g.,CarModel,CarIndividualClassByModel
and PowertypeOfCarIndividualClassByModel)
(see A.3). In F-Logic, working with structured IDs is simpler
and faster in comparison to generating class names by string
concatenation.

1 // A6 Create first-order local classes

2 k(?o,?k) [localTo -> ?o, level -> ?k] :-

3 ?o [iof -> ?c],

4 ?[partOfSchemaT -> ?c, level -> ?k].

5

6 // A7 Create higher-order classes up to maxOrder

7 k(?c,?k) [localTo -> ?c, level -> ?k] :-

8 ?_c [partOfSchemaT -> ?c, level -> ?k] ,

9 ?c.order < config.maxOrder.

10

11 // Every local class (of any order) has a powertype

12 ?c [powertype -> pow(?c)] :-

13 ?c [localTo -> ?].

A.3 Alternative: rules for creating named classes
class_creation_names.flr

The following rules create local classes and powertypes with
names, e.g., CarModel and CarIndividual, as used
throughout the paper. These names are generated by string
concatenation which comes with performance overhead.
1 // Create first order local classes

2 ?new [localTo -> ?o, level -> ?k] :-

3 ?o [iof -> ?c],

4 ?[partOfSchemaT -> ?c, level -> ?k],

5 name (?o.localToDO , ?o.orderName , ?k, ?o.by,

?new).

6

7 // Create higher-order local classes up to maxOrder

8 ?new [localTo -> ?c, level -> ?k] :-

9 ?_c [partOfSchemaT -> ?c, level -> ?k],

10 ?c.order < config.maxOrder ,

11 name (?c.localToDO , ?c.orderName , ?k, ?c.by,

?new) .

12

13 // Every local class (of any order) has a powertype

14 ?c [powertype -> ?pow] :-

15 ?c [localTo -> ?],

16 \symbol[concat ([PowertypeOf ,?c]) -> ?pow

]@\basetype.

17

18 Create class name by string concatenation

19 name (?do, ?orderName , ?level , ?by, ?name) :-

20 \symbol[concat ([?do ,?level ,?orderName ,?by])

-> ?name]@\basetype.

21

22 Associate order numbers with Names

23 orderToName (0,’’).

24 orderToName(1,’Class ’).

25 orderToName(2,’Metaclass ’).

26 orderToName(3,’Metametaclass ’).

27 orderToName(4,’Metametametaclass ’).

28

29 Derive the order name for every object

30 ?o [orderName -> ?oName] :-

31 orderToName (?o.order ,?oName) .

32

33 Derive the partioned-by-Part of metaclass names

34 ?o [by -> ’’] :-

35 ?o : DomainObject .

36 ?c [by -> ?by] :-

37 ?o [l(?k) -> ?c],

38 ?o [by -> ?o_by],

39 \symbol[concat ([By ,?k,?o_by]) -> ?by

]@\basetype.

A.4 Rules in core.flr

Rules for deriving multi-level dependencies, propagating
properties, aggregating properties, and for checking confor-
mance.

123

https://github.com/bneumayr/DDO
http://flora.sourceforge.net/
http://flora.sourceforge.net/

614 B. Neumayr, M. Schrefl

1 // A5:

2 ?o [iof -> ?c1] :-

3 ?o[partOf ->?o1 , instanceOf ->?c],

4 ?c1 [level -> ?k, localTo -> ?o1],

5 ?c [level -> ?k].

6

7 // A8:

8 ?c1 [iof -> ?m] :-

9 ?c1 [localTo -> ?o, level -> ?k],

10 ?m [localTo -> ?c, level -> ?k],

11 ?o [iof -> ?c].

12

13 // A9:

14 ?c [order -> ?i] :-

15 ?c.localTo [order -> ?j],

16 ?i \is ?j + 1.

17

18 // A10:

19 ?m1 [partOfSchema -> ?m2] :-

20 ?m1 [localTo -> ?c, level -> ?k1],

21 ?m2 [localTo -> ?c, level -> ?k2],

22 ?c1 [localTo -> ?x, level -> ?k1],

23 ?c2 [localTo -> ?x, level -> ?k2],

24 ?c1[partOfSchemaT ->?c, partOfSchema -> ?c2],

25 ?c2 [partOfSchemaT -> ?c].

26

27 // A11:

28 ?c1 [partOfSchema -> ?c2] :-

29 ?m1 [partOfSchema -> ?m2],

30 ?c1 [iof -> ?m1] , ?c2 [iof ->?m2],

31 ?c1 [localTo -> ?x], ?c2 [localTo -> ?x].

32

33 // --------- DIRECT SUBCLASS-OF ---------

34

35 // A12:

36 ?c1 [subclassOf -> ?c2] :-

37 ?o1 [partOf -> ?o2],

38 ?c1 [localTo -> ?o1 , level -> ?k],

39 ?c2 [localTo -> ?o2 , level -> ?k].

40

41 // A13:

42 ?m1 [subclassOf -> ?m2] :-

43 ?m1 [localTo -> ?c1 , level -> ?k],

44 ?m2 [localTo -> ?c2 , level -> ?k],

45 ?c1 [subclassOf -> ?c2].

46

47 // ---------- MLT ------------

48

49 // A14:

50 ?m [partitions -> ?c] :-

51 ?o : DomainObject ,

52 ?c [localTo -> ?o, level ->?k],

53 ?c2 [localTo -> ?o],

54 ?m [localTo -> ?c2, level -> ?k].

55

56 // A15:

57 ?m1 [partitions -> ?m2] :-

58 ?m1 [localTo -> ?m, level -> ?k],

59 ?m2 [localTo -> ?c, level -> ?k],

60 ?m [partitions -> ?c].

61

62 // A16:

63 ?m1 [subordinateTo -> ?m2] :-

64 ?o : DomainObject ,

65 ?c1 [localTo -> ?o, partOfSchema -> ?c2],

66 ?m1 [localTo -> ?c1 , level -> ?k],

67 ?m2 [localTo -> ?c2 , level -> ?k].

68

69 // A17:

70 ?x [subordinateTo -> ?y] :-

71 ?m [subordinateTo -> ?m2],

72 ?x [localTo -> ?m, level -> ?k],

73 ?y [localTo -> ?m2, level -> ?k].

74

75 //FURTHER RULES NOT DISCUSSED IN DETAIL IN THE PAPER

76

77 // Classes can be adressed via methods of the object they

are local to, e.g., Car.l(Model).l(Individual)

returns CarIndividualClassByModel

78 ?o [l(?k) -> ?c] :-

79 ?c [localTo -> ?o, level -> ?k].

80

81 ?pow [order -> ?i] :-

82 ?[powertype -> ?pow , order -> ?j],

83 ?i \is ?j + 1.

84

85 // Derive transitive closure of partOfSchema

86 ?c1 [partOfSchemaT -> ?c3] :-

87 ?c1 [partOfSchema -> ?c2] ,

88 ?c2 [partOfSchemaT -> ?c3] .

89

90 ?c1 [partOfSchemaT -> ?c2] :-

91 ?c1 [partOfSchema -> ?c2].

92

93 // Go to root of localTo-nesting structure

94 ?o [localToDO -> ?o] :-

95 ?o : DomainObject .

96

97 ?c [localToDO -> ?do] :-

98 ?x [localToDO -> ?do],

99 ?c [localTo -> ?x].

100

101 // subclassOfRT: recursive transitive closure of

subclassOf

102 ?c [subclassOfRT -> ?c] :-

103 ?c.order > 0.

104

105 ?c1 [subclassOfRT -> ?c2] :-

106 ?c1.subclassOfRT [subclassOfRT -> ?c2].

107

108 ?c1 [subclassOfRT -> ?c2] :-

109 ?c1 [subclassOf -> ?c2] .

110

111 // Powertypes are included in subclassOfRT

112 ?m1 [subclassOfRT -> ?m2] :-

113 (?c1 [powertype -> ?m1] ;

114 ?m1 [partitions -> ?c1]),

115 ?c1 [subclassOfRT -> ?c2],

116 ?c2 [powertype -> ?m2].

117

118 // Class Membership

119 ?o [memberOf -> ?c] :-

120 ?o.iof [subclassOfRT -> ?c].

121

123

Domain object hierarchies inducing multi-level models 615

122 // Powertype Membership

123 ?c [memberOf -> ?pow] :-

124 ?c2 [powertype -> ?pow],

125 ?c [subclassOfRT -> ?c2] .

126

127 // propagateAsSharedValue induces shared property values

128 ?c [shared (?p) -> ?v] :-

129 ?m [propagateAsSharedValue (?p) -> ?p2],

130 ?c [memberOf -> ?m , localToDO -> ?o],

131 ?o [value (?p2) -> ?v].

132

133 // propagateAsRange induces range refinements

134 ?c [range(?p) -> ?range] :-

135 ?m [propagateAsRange (?p) -> c(?p2 ,?k)],

136 ?c [memberOf -> ?m, localToDO -> ?o],

137 ?o [value (?p2) -> ?o2],

138 ?range [localTo -> ?o2, level -> ?k].

139

140 // A shared value becomes a property value with every

member

141 ?o [value(?p) -> ?v] :-

142 ?c [shared (?p) -> ?v],

143 ?o [memberOf -> ?c] .

144

145 // Calculate aggregated information

146 ?c [value(?p) -> ?v] :-

147 ?m [aggregate (?p) -> ?exp],

148 ?c [memberOf -> ?m],

149 eval(?c,?exp ,?v).

150

151 eval(?ctx , sum(?p), ?y) :- ?y \is

152 sum{?v|?_x [memberOf ->?ctx ,value(?p) ->?v]}.

153

154 eval(?ctx , avg(?p), ?y) :- ?y \is

155 avg{?v|?_x[memberOf ->?ctx ,value(?p)->?v]}.

156

157 eval(?ctx , max(?p), ?y) :- ?y \is

158 max{?v|?_x[memberOf ->?ctx ,value(?p)->?v]}.

159

160 eval(?ctx , min(?p), ?y) :- ?y \is

161 min{?v|?_x[memberOf ->?ctx ,value(?p)->?v]}.

162

163 //------- CONFORMANCE CHECKS -------

164

165 // A class can only be modeled as part of a class if both

are local to the same object

166 error(partOfIsLocal ,[?c1 ,?c2]) :-

167 ?c1[partOfSchema -> ?c2],

168 \naf exists (?o)^(

169 ?c1 [localTo -> ?o], ?c2 [localTo -> ?o]).

170

171 // A class can only be local to one object

172 error(localToIsFunctional ,[?c]) :-

173 ?c [localTo -> ?o1],

174 ?c [localTo -> ?o2],

175 ?o1 != ?o2.

176

177 // The schema of the part-whole hierarchy forms a forest

178 error(partOfFormsForest ,[?c]) :-

179 ?c[partOfSchema -> {?c1 ,?c2}],

180 \naf (

181 ?c1[partOfSchema ->?c2];

182 ?c2[partOfSchema ->?c1];

183 ?c1 = ?c2).

184

185 // A class cannot be associated with multiple levels

186 error(levelIsFunctional ,[?c]) :-

187 ?c [level -> ?k1, level -> ?k2],

188 ?k1 != ?k2.

189

190 // Level names are unique for the classes local to the

same object

191 error(levelUniqueLocally ,[?c,?c1 ,?o,?k]) :-

192 {?c,?c1} [localTo -> ?o, level -> ?k],

193 ?c != ?c1 .

194

195 // A class cannot have multiple orders

196 error(orderIsFunctional ,[?o]) :-

197 ?o [order -> {?i1 , ?i2}], ?i1 != ?i2.

198

199 // An object cannot be direct part of multiple objects

200 error(partOfIsFunctional ,[?o]) :-

201 ?o [partOf -> {?o1, ?o2}], ?o1 != ?o2.

202

203 // An object can only be direct instance of one class

204 error(iofIsFunctional ,[?o]) :-

205 ?o [iof -> {?c1, ?c2}], ?c1 != ?c2.

206

207 // Classes that are modeled as part of another class

cannot have direct instances

208 error(nonrootIofTopClass ,[?o,?o1]) :-

209 ?o [partOf -> ?o1, iof ->?c],

210 ?c [partOfSchema -> ?_c2] .

211

212 // A refined range must be a subclassRT of the original

range

213 error(propRangeSpec ,[?c1 ,?c2 ,?p,?c3 ,?c4]) :-

214 ?c1 [subclassOfRT -> ?c2],

215 ?c1 [range (?p) -> ?c3],

216 ?c2 [range (?p) -> ?c4],

217 \naf (?c3 [subclassOfRT -> ?c4] ;

218 ?c3 = ?c4 ; ?c3 :: ?c4).

219

220 // A refined metarange must be subclassRT of the original

metarange

221 error(metarangeSpec ,[?p,?m1 ,?m2 ,?m3 ,?m4]) :-

222 ?m1 [subclassOfRT -> ?m2],

223 ?m1 [metarange (?p) -> ?m3],

224 ?m2 [metarange (?p) -> ?m4],

225 \naf (?m3 [subclassOfRT -> ?m4]).

226

227 // If a class defines a range for a property, then the

property must be instantiated by all member objects

228 error(rangeNotInstantiated ,[?o,?c,?p,?c2]) :-

229 ?o [memberOf -> ?c],

230 ?c [range (?p) -> ?c2],

231 \naf exists (?v)^(

232 ?o[value(?p) -> ?v] ,

233 ((\+ isnumber {?v}, ?v [memberOf -> ?c2

]) ; ?v : ?c2)

234).

235

236 // If a metaclass defines a metarange for a property, then

all its member classes must define a range for that

property

237 error(metarangeNotInst ,[?c,?m,?p, ?m2]) :-

123

616 B. Neumayr, M. Schrefl

238 ?c [memberOf -> ?m],

239 ?m [metarange (?p) -> ?m2],

240 \naf exists (?c2)^(?c [range(?p) -> ?c2],

241 ?c2 [memberOf -> ?m2]).

242

243 // Shared values must also conform to the property’s range

244 error(sharedValueRange ,[?c1 ,?c2 ,?p,?c3]) :-

245 ?c1 [subclassOfRT -> ?c2],

246 ?c2 [range (?p) -> ?c3],

247 ?c1 [shared (?p) -> ?v],

248 \naf ((\+ isnumber {?v}, ?v [memberOf ->

?c3]) ; ?v : ?c3) .

249

250 // Metarange-assertions must be consistent along

subordination hierarchies

251 error(consistentMetarangeSubord ,[?m1 ,?m2 ,?p]) :-

252 ?m1 [metarange (?p) -> ?m3,

253 subordinateTo -> ?m2],

254 ?m2 [metarange (?p) -> ?m4],

255 \naf (?m3 [subordinateTo -> ?m4]) .

256

257 // A metarange-assertion must be consistent with property

range given with partitioned class

258 error(propertyPartitioning , [?c,?m,?p]) :-

259 ?m [partitions -> ?c,

260 metarange (?p) -> ?m2],

261 ?c[range(?p) -> ?c2],

262 \naf (?m2 [partitions -> ?c2]) .

B Fully worked example in F-logic

In the example we use dot-notation to refer to local classes
and powertypes. In this way the example facts can be exe-
cuted with class names as well as with structured class IDs.

1 // --------- the SALES organisation hierarchy ------------

2 Sales : Hierarchy .

3

4 SalesDivision : Class [

5 localTo -> Sales ,

6 level -> Division

7].

8

9 SalesEmployee : Class [

10 localTo -> Sales ,

11 level -> Employee ,

12 partOfSchema -> SalesDivision

13].

14

15 SalesOutlet : Class [

16 localTo -> Sales ,

17 level -> Outlet ,

18 partOfSchema -> SalesDivision

19].

20

21 Vehicles : DomainObject [

22 instanceOf -> SalesDivision

23].

24

25 Electronics : DomainObject [

26 instanceOf -> SalesDivision

27].

28

29 MrWhite : DomainObject [

30 partOf -> Vehicles ,

31 instanceOf -> SalesEmployee

32].

33

34 MsJones : DomainObject [

35 partOf -> Vehicles ,

36 instanceOf -> SalesEmployee

37].

38

39 CarStoreVienna : DomainObject [

40 partOf -> Vehicles ,

41 instanceOf -> SalesOutlet

42].

43

44 BikesCarsLinz : DomainObject [

45 partOf -> Vehicles ,

46 instanceOf -> SalesOutlet

47].

48

49 MsBlack : DomainObject [

50 partOf -> Electronics ,

51 instanceOf -> SalesEmployee

52].

53

54 MsMuller : DomainObject [

55 partOf -> Electronics ,

56 instanceOf -> SalesEmployee

57].

58

59 EStoreVienna : DomainObject [

60 partOf -> Electronics ,

61 instanceOf -> SalesOutlet

62].

123

Domain object hierarchies inducing multi-level models 617

63

64 // --------- the PRODUCT hierarchy ------------

65 Product : Hierarchy .

66

67 ProductCategory : Class [

68 localTo -> Product ,

69 level -> Category ,

70 range(vatRate) -> \number ,

71 range(distributedBy) -> SalesDivision

72].

73

74 ProductModel : Class [

75 localTo -> Product ,

76 level -> Model ,

77 partOfSchema -> ProductCategory ,

78 range(productMgr) -> SalesEmployee ,

79 range(listPrice) -> \number ,

80 range(vatRate) -> \number

81].

82

83 ProductIndividual [

84 localTo -> Product ,

85 level -> Individual ,

86 partOfSchema -> ProductModel ,

87 range(soldPrice) -> \number ,

88 range(soldAt) -> SalesOutlet ,

89 range(soldTo) -> Customer ,

90 range(vatRate) -> \number

91].

92

93 ProductCategory.l(Model) [

94 propagateAsRange(productMgr)

95 -> c(distributedBy , Employee),

96 propagateAsSharedValue(vatRate) -> vatRate

97].

98

99 ProductCategory.l(Individual) [

100 propagateAsRange(soldAt)

101 -> c(distributedBy , Outlet),

102 propagateAsSharedValue(vatRate)

103 -> vatRate

104].

105

106 ProductModel.powertype [

107 aggregate(avgListPrice) -> avg(listPrice)

108].

109

110 ProductIndividual.powertype [

111 aggregate(avgSoldPrice) -> avg(soldPrice)

112].

113

114 ProductModel.l(Individual).powertype [

115 aggregate(maxAvgSoldPricePerModel)

116 -> max(avgSoldPrice)

117].

118

119 ProductCategory .(Individual).powertype [

120 aggregate(maxAvgSoldPricePerCategory) ->

max(avgSoldPrice)

121].

122

123 Car : DomainObject [

124 instanceOf -> ProductCategory ,

125 value(distributedBy) -> Vehicles ,

126 value(vatRate) -> 0.2

127] .

128

129 Car.l(Model) [

130 range(engineType) -> Engine.l(Type) ,

131 range(topSpeed) -> \number

132].

133

134 Car.l(Individual) [

135 range(engine) -> Engine.l(Individual),

136 range(maxSpeed) -> \number

137].

138

139 Car.l(Model).l(Individual) [

140 metarange(engine) ->

Engine.l(Type).l(Individual) ,

141 propagateAsSharedValue(maxSpeed) -> topSpeed ,

142 propagateAsRange(engine) -> c(engineType ,

Individual)

143].

144

145 Phone : DomainObject [

146 instanceOf -> ProductCategory ,

147 value(distributedBy) -> Electronics ,

148 value(vatRate) -> 0.16

149] .

150

151 V50 : DomainObject [

152 instanceOf -> ProductModel ,

153 partOf -> Car ,

154

155 value(engineType) -> Vd4162T ,

156 value(productMgr) -> MrWhite ,

157 value(topSpeed) -> 190 ,

158 value(listPrice) -> 30000

159].

160

161 P911 : DomainObject [

162 instanceOf -> ProductModel ,

163 partOf -> Car ,

164

165 value(engineType) -> P3LTwinTurbo ,

166 value(productMgr) -> MsJones ,

167 value(topSpeed) -> 250 ,

168 value(listPrice) -> 120125

169].

170

171 IPhone6 : DomainObject [

172 instanceOf -> ProductModel ,

173 partOf -> Phone ,

174

175 value(productMgr) -> MsMuller ,

176 value(listPrice) -> 490

177].

178

179 MyCar : DomainObject [

180 instanceOf -> ProductIndividual ,

181 partOf -> V50 ,

123

618 B. Neumayr, M. Schrefl

182

183 value(soldPrice) -> 26000 ,

184 value(engine) -> Vd4162T_1 ,

185 value(soldAt) -> BikesCarsLinz ,

186 value(soldTo) -> Me

187].

188

189 AdasCar : DomainObject [

190 instanceOf -> ProductIndividual ,

191 partOf -> V50 ,

192

193 value(soldPrice) -> 27000 ,

194 value(engine) -> Vd4162T_2 ,

195 value(soldAt) -> CarStoreVienna ,

196 value(soldTo) -> Ada

197].

198

199 MiasCar : DomainObject [

200 instanceOf -> ProductIndividual ,

201 partOf -> P911 ,

202

203 value(soldPrice) -> 119000 ,

204 value(engine) -> P3TT_1 ,

205 value(soldAt) -> BikesCarsLinz ,

206 value(soldTo) -> Mia

207].

208

209 MiasPhone : DomainObject [

210 instanceOf -> ProductIndividual ,

211 partOf -> IPhone6 ,

212

213 value(soldPrice) -> 439 ,

214 value(soldAt) -> EStoreVienna ,

215 value(soldTo) -> Mia

216] .

217

218 JoesPhone : DomainObject [

219 instanceOf -> ProductIndividual ,

220 partOf -> IPhone6 ,

221

222 value(soldPrice) -> 459 ,

223 value(soldAt) -> EStoreVienna ,

224 value(soldTo) -> Joe

225] .

226

227

228 // --------- the ENGINE hierarchy ------------

229

230 Engine : Hierarchy .

231

232 EngineType : Class [

233 localTo -> Engine ,

234 level -> Type

235] .

236

237 EngineIndividual : Class [

238 localTo -> Engine ,

239 level -> Individual ,

240 partOfSchema -> EngineType

241] .

242

243 Vd4162T : DomainObject [

244 instanceOf -> EngineType

245] .

246

247 Vd4162T_1 : DomainObject [

248 instanceOf -> EngineIndividual ,

249 partOf -> Vd4162T

250] .

251

252 Vd4162T_2 : DomainObject [

253 instanceOf -> EngineIndividual ,

254 partOf -> Vd4162T

255] .

256

257 P3LTwinTurbo : DomainObject [

258 instanceOf -> EngineType

259] .

260

261 P3TT_1 : DomainObject [

262 instanceOf -> EngineIndividual ,

263 partOf -> P3LTwinTurbo

264] .

265

266 // ----- objects not part of a hierarchy ------

267 Me : Customer.

268 Ada : Customer.

269 Mia : Customer.

270 Joe : Customer.

B.1 Running the example with structured class IDs
run_with_structures.flr

1 #include "prepare.flr"

2 #include "class_creation_structures.flr"

3 #include "core.flr"

4 #include "example.flr"

5

6 config [maxOrder -> 3].

B.2 Running the example with named class IDs
run_with_names.flr

2 #include "class_creation_names.flr"

3 #include "core.flr"

4 #include "example.flr"

5

6 config [maxOrder -> 3].

1 #include "prepare.flr"

B.3 Querying themulti-level model

Fig. 18 shows the result of querying all objects at all levels
in the multi-level model.

123

Domain object hierarchies inducing multi-level models 619

Fig. 18 Result of querying all objects in the multi-level model, ordered by their order and level in the domain object hierarchy, together with their
class (?iof) if present

123

620 B. Neumayr, M. Schrefl

References

1. Atkinson, C.: Meta-modeling for distributed object environments.
In: Proceedings of the 1st International Enterprise Distributed
Object Computing Conference. IEEE Computer Society (1997)

2. Atkinson, C., Kühne, T.: The Essence ofMultilevelMetamodeling.
In: Gogolla, M., Kobryn, C. (eds.) Proceedings of the 4th Interna-
tional Conference on the UML 2001, Toronto, Canada, LNCS, vol.
2185, pp. 19–33. Springer (2001)

3. Atkinson, C., Kühne, T.: Model-driven development: a metamod-
eling foundation. IEEE Softw. 20(5), 36–41 (2003)

4. Atkinson, C., Kühne, T.: Reducing accidental complexity in
domain models. Softw. Syst. Model. 7(3), 345–359 (2008). https://
doi.org/10.1007/s10270-007-0061-0

5. Atkinson, C., Kühne, T.: In defence of deep modelling. Inf. Softw.
Technol. 64, 36–51 (2015). https://doi.org/10.1016/j.infsof.2015.
03.010

6. Balaban, M., Khitron, I., Kifer, M., Maraee, A.: Formal executable
theory of multilevel modeling. In: Krogstie, J., Reijers, H.A. (eds.)
Advanced Information Systems Engineering—30th International
Conference, CAiSE 2018, Tallinn, Estonia, June 11–15, 2018,
Proceedings, Lecture Notes in Computer Science, vol. 10816,
pp. 391–406. Springer (2018). https://doi.org/10.1007/978-3-319-
91563-0_24

7. Cardelli, L.: Structural subtyping and the notion of power type. In:
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 70–79 (1988)

8. de Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory
for multi-level conceptual modeling. Softw. Syst. Model. 17(1),
205–231 (2018). https://doi.org/10.1007/s10270-016-0538-9

9. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.:
Extending the foundations of ontology-based conceptual modeling
with amulti-level theory. In: Johannesson, P., Lee,M., Liddle, S.W.,
Opdahl, A.L., López, O.P. (eds.) ER 2015, LNCS, vol. 9381, pp.
119–133. Springer (2015)

10. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.:
Multi-level ontology-based conceptual modeling. Data Knowl.
Eng. 109, 3–24 (2017)

11. Eriksson, O., Henderson-Sellers, B., Ågerfalk, P.J.: Ontological
and linguistic metamodelling revisited: a language use approach.
Inf. Soft. Technol. 55(12), 2099–2124 (2013)

12. Fine, K.: Towards a theory of part. J. Philos. 107(11), 559–589
(2010)

13. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening
WORDNET with DOLCE. AI Mag. 24(3), 13–24 (2003). https://
doi.org/10.1609/aimag.v24i3.1715

14. Gómez, C., Olivé, A.: Evolving derived entity types in conceptual
schemas in the UML. In: Konstantas, D., Léonard, M., Pigneur, Y.,
Patel, S. (eds.) Object-Oriented Information Systems, 9th Interna-
tional Conference, OOIS 2003, Geneva, Switzerland, September
2–5, 2003, Proceedings, Lecture Notes in Computer Science, vol.
2817, pp. 33–45. Springer (2003). https://doi.org/10.1007/978-3-
540-45242-3_5

15. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based
metamodelling framework. Softw. Syst.Model. 5(1), 72–90 (2006)

16. Guizzardi, G.: Ontological foundations for structural conceptual
models. Ph.D. Thesis, University of Twente, The Netherlands
(2005)

17. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.:
ConceptBase—a deductive object base for meta data management.
J. Intell. Inf. Syst. 4(2), 167–192 (1995)

18. Jeusfeld, M.A.: Complete list of O-Telos axioms (2005).
Online http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/
d1228997/O-Telos-Axioms.pdf

19. Jeusfeld, M.A., Almeida, J.P.A., Carvalho, V.A., Fonseca, C.M.,
Neumayr,B.:Deductive reconstructionofmlt∗ formulti-levelmod-
eling. In: Guerra, E., Iovino, L. (eds.) MODELS ’20: ACM/IEEE
23rd International Conference on Model Driven Engineering Lan-
guages and Systems, Virtual Event, Canada, 18–23 October, 2020,
Companion Proceedings, pp. 83:1–83:10.ACM(2020). https://doi.
org/10.1145/3417990.3421410

20. Kappel, G., Schrefl,M.: Local referential integrity. In: International
Conference on Conceptual Modeling, pp. 41–61. Springer (1992)

21. Klas, W., Schrefl, M.: Metaclasses and Their Application—Data
Model Tailoring and Database Integration. Springer (1995)

22. Kuehne, T.: A story of levels. In: MODELS Workshops, pp. 673–
682 (2018)

23. de Lara, J., Guerra, E., Cobos, R., Moreno-Llorena, J.: Extend-
ing deep meta-modelling for practical model-driven engineering.
Comput. J. 57(1), 36–58 (2014)

24. de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use
multilevel modelling. ACM Trans. Softw. Eng. Methodol. 24(2),
12:1-12:46 (2014)

25. Macías, F., Wolter, U., Rutle, A., Durán, F., Rodriguez-Echeverria,
R.: Multilevel coupled model transformations for precise and
reusable definition of model behaviour. J. Log. Algebr. Methods
Progr. 106, 167–195 (2019)

26. Mylopoulos, J.: Conceptual modelling and telos. In: Loucopoulos,
P., Zicari, R. (eds.) Conceptual Modelling, Databases, and CASE:
An Integrated View of Information System Development, pp. 49–
68. Wiley, USA (1992)

27. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos:
representing knowledge about information systems. ACM Trans.
Inf. Syst. 8(4), 325–362 (1990)

28. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling
with M-objects and M-relationships. In: Link, S., Kirchberg, M.
(eds.) APCCM, CRPIT, vol. 96, pp. 107–116. ACS, Wellington
(2009)

29. Neumayr, B., Schrefl, M., Thalheim, B.: Modeling techniques for
multi-level abstraction. In: Kaschek, R., Delcambre, L.M.L. (eds.)
The Evolution of Conceptual Modeling, LNCS, vol. 6520, pp. 68–
92. Springer (2008)

30. Neumayr, B., Schuetz, C.G., Jeusfeld,M.A., Schrefl,M.:Dual deep
modeling: multi-level modeling with dual potencies and its for-
malization in f-logic. Softw. Syst. Model. 17(1), 233–268 (2018).
https://doi.org/10.1007/s10270-016-0519-z

31. Odell, J.: Power types. JOOP 7(2), 8–12 (1994)
32. Partridge, C., de Cesare, S., Mitchell, A., Gailly, F., Khan, M.:

Developing an ontological sandbox: Investigatingmulti-levelmod-
elling’s possible metaphysical structures. In: L.B. et al. (ed.)
Proceedings of MODELS 2017 Satellite Event, CEUR Workshop
Proceedings, vol. 2019, pp. 226–234.CEUR-WS.org (2017). http://
ceur-ws.org/Vol-2019/multi_3.pdf

33. Pirotte, A., Zimányi, E., Massart, D., Yakusheva, T.: Materializa-
tion: a powerful and ubiquitous abstraction pattern. In: Bocca, J.B.,
Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 630–641. Morgan Kauf-
mann (1994)

34. Selway, M., Stumptner, M., Mayer, W., Jordan, A., Grossmann,
G., Schrefl, M.: A conceptual framework for large-scale ecosystem
interoperability. In: Johannesson, P., Lee,M., Liddle, S.W.,Opdahl,
A.L., López O.P. (eds.) ER 2015, LNCS, vol. 9381, pp. 287–301.
Springer (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1016/j.infsof.2015.03.010
https://doi.org/10.1016/j.infsof.2015.03.010
https://doi.org/10.1007/978-3-319-91563-0_24
https://doi.org/10.1007/978-3-319-91563-0_24
https://doi.org/10.1007/s10270-016-0538-9
https://doi.org/10.1609/aimag.v24i3.1715
https://doi.org/10.1609/aimag.v24i3.1715
https://doi.org/10.1007/978-3-540-45242-3_5
https://doi.org/10.1007/978-3-540-45242-3_5
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
https://doi.org/10.1145/3417990.3421410
https://doi.org/10.1145/3417990.3421410
https://doi.org/10.1007/s10270-016-0519-z
http://ceur-ws.org/Vol-2019/multi_3.pdf
http://ceur-ws.org/Vol-2019/multi_3.pdf

Domain object hierarchies inducing multi-level models 621

Bernd Neumayr is senior
researcher and lecturer at
Johannes Kepler University (JKU)
Linz, Austria. He received his
doctorate degree from JKU in
2010. In 2015/2016, he was a
visiting researcher at the Depart-
ment of Computer Science of the
University of Oxford. His main
research interests include intelli-
gent information systems for air
traffic management and multi-
level conceptual modeling.

Michael Schrefl received his Dipl.-
Ing. degree and his Doctorate
from Vienna University of Tech-
nology, Vienna, Austria, in 1983
and 1988, respectively. During
1983–1984, he studied at Vander-
bilt University, USA, as a Ful-
bright scholar. From 1985 to 1992,
he was with Vienna University of
Technology. During 1987–1988,
he was on leave at GMD IPSI,
Darmstadt, where he worked on
the integration of heterogeneous
databases. He was appointed Pro-
fessor of Information Systems at

Johannes Kepler University of Linz, Austria, in 1992, and Professor in
Computer and Information Science at University of South Australia in
1998. He currently leads the Department of Business Informatics-Data
and Knowledge Engineering at Johannes Kepler University of Linz,
with projects in data warehousing, workflow management, and web
engineering.

123

	Domain object hierarchies inducing multi-level models
	Abstract
	1 Introduction
	2 Starting Point: Domain Object Hierarchies modeled as Part-Whole Hierarchies
	3 Modeling challenges: specialization and information aggregation along the hierarchy
	3.1 Desiderata
	3.2 Specialization along the hierarchy
	3.3 Regulating specialization along the hierarchy
	3.4 Information aggregation along the hierarchy

	4 Towards multi-level modeling of domain object hierarchies
	4.1 MLT-based modeling of domain object hierarchies
	4.2 Higher-order partitioning metaclasses
	4.3 Multi-level modeling with named levels in DDM

	5 From part-whole to multi-level hierarchy
	5.1 The DDO pattern
	5.2 Preparing the domain object hierarchy
	5.3 Deriving multi-level instantiation hierarchies
	5.4 Deriving generalization hierarchies
	5.5 Aligning DDO with MLT
	5.6 Discussion

	6 Modeling with deep domain objects
	6.1 Solving challenge 1: specialization along the hierarchy
	6.2 Solving challenge 2: regulating specialization with metaclasses
	6.3 Solving challenge 3: aggregated information

	7 Proof-of-concept prototype
	8 Related work

	9 Conclusion
	A Implementation of DDO in F-logic
	A.1 Rules for preparing the hierarchy prepare.flr
	A.2 Rules for creating classes with structured IDs class_creation_structures.flr
	A.3 Alternative: rules for creating named classes class_creation_names.flr
	A.4 Rules in core.flr

	B Fully worked example in F-logic
	B.1 Running the example with structured class IDs run_with_structures.flr
	B.2 Running the example with named class IDs run_with_names.flr
	B.3 Querying the multi-level model

	References

