
Software and Systems Modeling (2022) 21:2133–2169
https://doi.org/10.1007/s10270-021-00958-y

THEME SECT ION PAPER

Requirements document relations

A reuse perspective on traceability through standards

Katharina Großer1 · Volker Riediger1 · Jan Jürjens1,2

Received: 18 November 2020 / Revised: 8 October 2021 / Accepted: 22 November 2021 / Published online: 25 January 2022
© The Author(s) 2022

Abstract
Relations between requirements are part of nearly every requirements engineering approach. Yet, relations of views, such
as requirements documents, are scarcely considered. This is remarkable as requirements documents and their structure are
a key factor in requirements reuse, which is still challenging. Explicit formalized relations between documents can help to
ensure consistency, improve completeness, and facilitate review activities in general. For example, this is relevant in space
engineering, where many challenges related to complex document dependencies occur: 1. Several contractors contribute to a
project. 2. Requirements from standards have to be applied in several projects. 3. Requirements from previous phases have to
be reused. We exploit the concept of “layered traceability”, explicitly considering documents as views on sets of individual
requirements and specific traceability relations on and between all of these representation layers. Different types of relations
and their dependencies are investigated with a special focus on requirement reuse through standards and formalized in an
Object-Role Modelling (ORM) conceptual model. Automated analyses of requirement graphs based on this model are able
to reveal document inconsistencies. We show examples of such queries in Neo4J/Cypher for the EagleEye case study. This
work aims to be a step toward a better support to handle highly complex requirement document dependencies in large projects
with a special focus on requirements reuse and to enable automated quality checks on dependent documents to facilitate
requirements reviews.

Keywords Requirement document relations · Requirement reuse · Standards · Space engineering requirements · ECSS ·
Traceability

Communicated by J. Araujo, A. Moreira, G. Mussbacher, and P.
Sánchez.

B Katharina Großer
grosser@uni-koblenz.de

Volker Riediger
riediger@uni-koblenz.de

Jan Jürjens
juerjens@uni-koblenz.de
http://jan.jurjens.de/

1 Institute for Software Technology (IST), University of
Koblenz-Landau, Universitätsstraße 1, Koblenz 56070,
Germany

2 Fraunhofer Institute for Software and Systems Engineering
(ISST), Dortmund, Germany

1 Introduction

Relations between individual requirements have been descri-
bed intensively in past research and are part of nearly every
requirements engineering approach, although in practice
their purpose—which is very important for beneficial use
[1,2]—often remains implicit or undocumented. Goodrum et
al. [3], e.g., quote the usage of the vague term “links”. There
appears to be a lack of common understanding or agreement
on the semantics of reoccurring relation types and the set
of relations to be used. Also, there is still little support of
specific relationships in common requirements engineering
tools [4], even though there exists a need for high-end trace-
ability [5], e.g., in highly standardized and safety critical
embedded systems domains, such as automotive, defense, or
aerospace. Relations between requirements views, such as
documents, are also rarely considered. Gotel and Finkelstein
[6] showed that there exist different relations on different

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00958-y&domain=pdf
http://orcid.org/0000-0003-4532-0270
https://orcid.org/0000-0003-1461-7442
https://orcid.org/0000-0002-8938-0470

2134 K. Großer et al.

levels of representation granularity, which interact for com-
posite artifacts, such as documents.While they demonstrated
this for stakeholder contribution relations, this layered struc-
ture is not addressed for other relation types and even still
rarely reflected at all in common tools.

Thismight be due to the fact that views are not fixed hierar-
chical structures but aggregate parts of different elements in
new contexts, which also allows to partially derive them auto-
matically from the requirement model. However, these initial
views are altered or complemented by additional information
when used, as already described by Leite et al. [7–9]. These
alterations are part of the socio-technical nature of views as a
human interface to the requirement model. Thus, the content,
structure, and relations of views express semantics beyond
the requirement model, what makes them traceable objects
on their own. Some approaches inversely use existing docu-
ments to derive models from them, for example Ramesh and
Jarke [5]. Here, documents are mostly treated as sources to
justify requirements objects, again without further relations
on their own.There existmanymeta-models for requirements
[5,10–12], and document structures [13,14] (and also tem-
plates and guidelines for both [15–19]) but to our knowledge
no combined meta-model covering requirements, document
views, and interrelated relations of both. This is remarkable,
as requirement documents and their structure are a key fac-
tor in requirement reuse [20]. Re-occurring structures, e.g.,
sections provided by document templates or information on
project characteristics, provide abstraction. Standards or ref-
erence specifications are designed to be reused, making this
explicit. Such abstractions guide the selection and special-
ization [21] of appropriate reusable documents. Yet, there is
a lack of structured processes for integration. Requirement
reuse in the past has received relatively little attention [22],
although requirements from similar domains for similar tasks
aremore likely to be similar than the components implement-
ing them [23]. Research and industry increasingly discover
this potential [22]. Explicit formalized relations betweendoc-
uments can help to ensure consistency, improve complete-
ness, and facilitate reviews especially in, but not restricted to,
the context of reuse. Interacting requirements are a common
source for errors [24] andmanual analysis is time-consuming
and costly [25]. In addition, there is a need for clearly defined
relationships to foster more formal methods, e.g., in the rela-
tion between requirements and goals [26] and with respect
to a broad use of the term traceability [3]. To address this,
the following research questions are investigated:

RQ-I Which types of relations are relevant for require-
ment reuse from documents?

RQ-II How can requirements reuse from documents be
formalized into a structured process that supports
integration?

Fig. 1 Bridging requirements meta-model and document meta-model

The goal is to handle highly complex requirement doc-
ument dependencies better in large projects to facilitate
reviews and structured reuse by enabling automated quality
checks on these dependent documents. Figure 1 illustrates
that these research questions aim at the bridge between
requirements meta-models (the properties, relations, and
quality rules of requirements) and requirements document
meta-models (the structure and properties of specification
documents and, by relating it to specific topics, requirements
elicitation and domain knowledge acquisition techniques).
This is one major part of the overall integration of differ-
ent ontology or meta-model types to support requirements
engineering as identified by Castañeda et al. [20], which we
address with our T-Reqs framework.

To achieve this, as depicted in steps (A) and (B) of Fig. 2,
we collected knowledge in the respective areas from expert
interviews, general literature, and guidelines in requirements
engineering, as well as analysis of specification documents
from different space engineering projects, among them the
EagleEye earth observation reference mission. Resulting
from an ontological analysis guided through the research
questions RQ-I & RQ-II, we define a conceptual model (C).
It provides a reference frame to define dependent relations
on different layers, but special focus lays on its applicability
to the different document reuse scenarios observed in space
engineering, in particular the application of standards. The
steps of a case study conducted with an excerpt from Eagle-
Eye are depicted in green in the lower right half of Fig. 2.
Data extracted semi-automated from the original EagleEye
PDF documents (D) are used to populate an instance of the
conceptualmodel implemented inNeo4J (E). The graph con-
tains a requirement model of EagleEye and its related ECSS
standards as well as model representations of their document
views analogous to the original PDFs. Graph queries demon-
strate how quality constraints of the conceptual model can be

123

Requirements document relations 2135

Fig. 2 Process to define model and conduct case study

checked and issues in dependencies to reused documents can
be identified (F).

Section 2 distinguishes the work presented in this paper
from some related approaches and in Sect. 3 we introduce
a motivating running example from space engineering—the
EagleEye satellite. Section 4 gives an overview on different
types of requirements relations and general background on
traceability and document-based reuse. While Sects. 5 and 6
present the conceptual model, the case study is described in
Sect. 7. Finally, Sect. 8 summarizes the conclusions.

2 Related work

Already early tracing tools as presented by Pinheiro [27] sup-
port evolution and treat requirements and relations among
them as objects. The approach does consider the situation
that relations between different entities can depend on each
other (and thus considers the kind of higher-order relation we
aim at), but does not differentiate between the presentation
and observation levels at doing so and does not pre-define
such dependent relations. Similarly, this is treated in the
approach of Schwarz et al. [12], which is based on graph
technologies, as we also use them in our case study. The
reference model of Ramesh and Jarke [5] differentiates doc-
uments as sources, but without trace relations among them.
Building on these general reference models, we addition-
ally include this type of traceability relation. Our refined
reference model furthermore addresses specific dependen-
cies between requirement documents and reused standards.
Goknil et al. [28,29] use a formal requirements notation and
typed relations to enable consistency checking between the
links and inference of new relations. While this is in general
the type of inter-dependencies, we are looking at, Goknil et
al. do not consider documents or requirements sets as trace-
able entities on their own, and thus not the interdependencies
between links on different layers. Furthermore, the approach

depends on its formal notation of requirements. This enables
inference of additional dependencies between requirements
based on their content. Yet, formal notations put additional
burdens on the requirements engineers and constitute a lan-
guage barrier, which hinders stakeholder involvement and
is not always applicable. We consider requirements as black
box in our approach to enable support formultiple representa-
tions. Derivation rules for specific traceability relation types
based on some notation can be combined with our frame-
work, to assert those relations automatically. For example,
Samer et al. [30] propose a method to automatically identify
dependencies between textual requirements.

Maletic et al. [13] define document relations that connect
fine-grained entities within software documents. The pur-
poses of those relations are mainly document conformance
and consistency. They build links between structural parts of
documents such as paragraphs or sections, e.g., to define con-
formance or agreement relations between sections inmultiple
translations of a document. However, they do not consider
requirements or other content as model elements outside of
these documents. Espinoza et al. [14] present an approach
that combines trace information and a traceability meta-
schema to define trace types with document models. Yet,
they do not provide specific definitions of inter-dependencies
of relation types and do not address different representa-
tion layers and their dependencies. Gotel and Finkelstein [6]
explicitly describe these layers. However, they only exam-
ine in detail the impact to contribution relations and do not
explicitly distinguish between model and view.

Requirements reuse is, i.a., addressed in current research
on Product Line Engineering. For example, Abbas [31] or
Reinhartz-Berger and Kemelman [32] present approaches to
identify reusable requirements within the software product
line requirements from customer requirements for individ-
ual products. Reusable documents as we consider them, e.g.,
standards, already define the reusable requirements. How-
ever, approaches like these could help standardization bodies
or initiatives on generic specifications to specify or extend
their catalogues or to determine from initial product require-
ments which domain standards should be made applicable.
Goldin et al. [33] present a practical approach to require-
ments reuse, based on comparison between products of a
product family and identification of reusable components.
However, they do not consider generic reusable requirement
sets and standards or automated rules to evaluate consistency
and conformance. Naish and Zhao [34] propose a general-
ized framework to support the organization of requirements
patterns for reuse. Their focus is on organization of reusable
information, which would be applicable, e.g., to the struc-
ture of a standard database and the selection of applicable
standards. Contrarily, our approach focuses on how to apply
reusable requirements to the new project. The framework
of Naish and Zhao could support the first steps of tailoring

123

2136 K. Großer et al.

guiding the selection of standards, which we assume to be
finished for our approach.

We look at compliance to reused higher-level require-
ments, e.g., from standards, in the sense of correct integration
with the other project requirements at different levels of
abstraction. The work of Siena et al. [35,36] and Zeni et
al. [37] spuds in one step earlier to elicit this kind of
requirements from sources, such as laws and norms, and to
ensure compliance through their intentional alignment with
these sources. Guo et al. [38] aim with their approach at
automated tracing between requirements documents and reg-
ulatory codes. Regulatory codes for them can be higher-level
requirements, laws—or standards, as we consider them in
our approach. Yet, the conformance analysis of Guo et al. is
based on general untyped trace links expressing assumably
rationalization or refinement. Furthermore, standards con-
cerned with “how to write requirements” are not considered
explicitly, as opposed to our approach, where we introduce
the concept of meta-requirements. Guo et al. treat individual
regulatory codes as documents that need to be addressed in
the project requirements. However, the containment struc-
ture of whole documents and different link types on different
representation layers are not considered. The focus is on
automated trace retrieval by semantic similarity supported
by term matching. We did not consider this aspect of ana-
lyzing the requirements content in our work, but focused
on the conceptual model to type and relate the traces. Sim-
ilar to Guo et al., Wang et al. [39] present an approach for
automatic trace retrieval fromhigher-level requirements. Yet,
they focus on vertical1 relationships among requirements
on the same abstraction level, which should be reflected on
the next horizontal level of requirements. They differenti-
ate several sub-types of dependency to link requirements
on one level. After an automated tracing of higher-level
requirements to lower level requirements, similar to Guo et
al., the dependency links are used to retrieve correspond-
ing links between the lower level requirements. The main
goal is not conformance analysis, but to enable better secu-
rity testing by preservation of dependencies. However, the
authors claim that the approach could support compliance
analysis, too. Relations are established between individual
requirements, documents or sets are not explicitly reflected
as representation layers with links on their own. Further-
more, the conformance or refinement links between the levels
do not consider meta-requirements either. Yet, the rules to
shift vertical relations during horizontal refinement should be
considered in future extension of our work addressing more
general refinement relations. Especially temporal, causal, or
resource dependencies among requirements also influence

1 vertical means here at the same level of abstraction. This notion can
be misleading depended on how the levels are presented (top-down or
left to right). Hence, it is not used in the remainder of this paper.

Fig. 3 Elemental customer–supplier chain [43]

conformance to higher-level requirements. Also Renault et
al. [40] mention that dependencies among generic require-
ments from pattern catalogues can be propagated to the
solutions requirements specification to improve traceability
or facilitate elicitation. Automated trace retrieval techniques
such as presented by Guo et al., Wang et al., and Samer et
al. [30], or conflict detection by Ramadan et al. [41] could
be combined with our approach in future work. Our concep-
tual model provides the rules to check, which requirements
should be related to ensure compliance and infer additional
relations, while automated analysis can retrieve the actual
relations existent.We do not distinguish in ourmodel, if trace
links are asserted manually or by some automated approach.

3 Running example: EagleEye

We use a motivating running example from the space engi-
neering domain. The focus of this paper is thereby on
European space engineering. Yet, insights are expected to be
generalizable to other comparable business domains. Space
engineering is well suited as a demonstration domain for
requirements engineering. As an embedded systems domain,
the requirements have to deal with complex dependen-
cies between several subsystems and the macro-system [9]
with functions distributed over software and hardware com-
ponents [42]. Furthermore, major projects always involve
several cooperating industry and agency partners. They are
organized hierarchically in the so-called customer-supplier
chain [43]. Typically, a customer provides a set of interrelated
requirements documents to several (potential) suppliers, i.e.,

123

Requirements document relations 2137

technical, management, engineering, and product assurance
requirements [44]. Actors at intermediate levels of the hier-
archy are both supplier and customer.2 Figure 3 shows the
elemental customer-supplier chain. To handle this complex-
ity, there is a strong need for standardization [46]. The
European Cooperation for Space Standardization (ECSS3)
is a standardization body providing a comprehensive system
of standards for the European space industry. ECSS provides
rules and guidelines for organized reuse of their standards
called “tailoring” [43].

The European Space Agency (ESA4) introduced Eagle-
Eye as a virtual earth observation reference mission that is
never meant to fly. EagleEye serves as a reference case study
to test and demonstrate systems and software engineering
approaches [47,48]. The satellite carries only one payload—
a simple camera taking images of our planet’s surface from
low earth orbit. The mission is prepared in the same way as
usual missions and therefore represents a realistic example.
The specification is expected to suffer from the same draw-
backs like real missions, potentially even more as it is, as a
virtual case study, prepared with low budget and low priority.
Additionally, some examples are taken from the EUCLID5

mission. Its development approach is claimed to be “the first
attempt to apply an MBSE approach at mission level for a
major science project under development in ESA” [42].

A simplified excerpt of the EagleEye document structure
is used to investigate document and requirements dependen-
cies. Figure 4 shows the main requirements documents and
applicable ECSS standards used. The excerpt covers four
levels of abstraction from the on-board software perspec-
tive, named after the typical document types found: Mission
Requirement Document (MRD), System Requirement Doc-
ument (SRD), the software system level called Software
System Specification or Software Requirements Baseline,
and the Software Technical Specifications, each with dif-
ferent sets of requirements depicted as linked boxes and
associated documents containing these. Those sets colored
in white have already undergone a consolidation activ-
ity. The links to the not yet consolidated sets, colored in
grey, are broken, e.g., respective documents still link to

2 Other than in the similar concept of prosumer in “industry 4.0” [45],
the shared roles within the customer-supplier network are business-to-
business relations and not explicitly considering end-consumers.
3 The European Cooperation for Space Standardization is an initiative
of different European space agencies and the Eurospace association to
develop standards for use in all European space activities (http://ecss.
nl, visited on 11/05/2019).
4 The European Space Agency is an inter-governmental organization
of 22 European member states dedicated to the exploration of space.
(www.esa.int, visited on 11/05/2019).
5 EUCLID “is a space-based optical/near-infrared survey mission
designed to investigate the nature of dark energy, dark matter, and grav-
ity by observing their signatures on the geometry of the Universe” [42]
(http://sci.esa.int/euclid/, visited on 11/05/2019).

old versions of other documents, as the outdated Mission
Requirements Document (MRD) [49]. We use for the exam-
ples in this paper mainly the Mission and System Require-
ments Document (MSRD) [50] the Software Requirements
Specification (SRS) [51], Software Specification (SWS)
[52], and the Central Software Requirements (CSWR) [53].
The non-consolidated sub-tree for Data Handling Software
System Requirements (SSR) and Interface Control Doc-
uments (ICDs) is not addressed in detail. Furthermore,
the presented requirements documents are linked to sev-
eral ECSS standards: E-60A [54], E-ST-60-10C [55], and
E-ST-60-20C [56]—all on control engineering—E-ST-40B
Part 1&2 [57,58], as software engineering standards, E-
ST-50-13C [59], E-50-04A [60], and E-70-41A [61]—all
concerned with telecommand and communication protocols.

4 Background

According to Gotel and Finkelstein [62]

Requirements traceability refers to the ability to describe
and follow the life of a requirement, in both a forwards
and backwards direction [...]

Traceability of a requirement back to its origin is also
called pre-RS traceability, while the forward direction to its
implementation in design and code is also called post-RS
traceability, where RS stands for requirements specification
[62]. Similarly, the ISO/IEC/IEEE Systems and software
engineering - Vocabulary [63] defines requirements trace-
ability as

the identification and documentation of the derivation
path (upward) and allocation/flow-down path (down-
ward) of requirements in the requirements hierarchy.
and “[a] discernable association between a requirement
and related requirements, implementations, and verifi-
cations.”

These definitions already cover different aspects of trace-
ability. Yet, they spare any detail about what other “discern-
able associations” and their application might be. Different
stakeholders are interested in different types of relations,
thus the interpretation of their semantics depends on theses
stakeholders [2] and the intended use. To enable automated
analysis and to provide hints of possible problems to require-
ments engineers, the quality and reliability of the relations
have to be as high as possible. According to Pinheiro [27],
“the use of formality increases traceability efficiency”. A for-
mal mapping between formally described objects can enable
automatic derivation of relationships, enhancing the func-
tional aspects of traceability [27].

123

http://ecss.nl/
http://www.esa.int
http://sci.esa.int/euclid/
http://ecss.nl
http://ecss.nl
www.esa.int
http://sci.esa.int/euclid/

2138 K. Großer et al.

Software Technical
Specification

Software System
Specification / Software
Requirements Baseline

System Requirement
Document

Mission Requirement
Document MRD

SRD

SRS SWS
Data

Handling
SSR

CSWR Milbus Spacelink TMTC Onboard
Parameter

E-ST-60-10CE-60A E-ST-60-20CE-ST-40CE-ST-50-13C E-ST-70-41CE-ST-50-04A

MRD
(old)

MSRD

Standards

CSWR
+TSP (old)

• Derivation (implicit)
• Requirement Document
• Standard Document
• Document (outdated)

Fig. 4 Documents of the EagleEye example (excerpt)

Whilst the specific purpose and semantics of the relations
is important for their beneficial usage, the respective rep-
resentation in industrial application is shallow and remains
often implicit. This has already been acknowledged at the
turn of the millennium by Gotel and Finkelstein [64] and
Dick [1], but has not changed since, as assessed, e.g., by
Goodrum et al. [3] for respective tool support and Mavin et
al. [26] for the use of goal-oriented approaches.

4.1 Traceability relation types

Many approaches define relation types,mostly as part of their
specific meta-model, e.g., [5,10,11,14,29,42,65–67], or [12],
but despite similarities there is no common terminology or
semantics, as already criticized by Espinoza et al. [14,68]
and listed as traceability challenge by Winkler and Pilgrim
[69]. Spanoudakis and Zisman [2] identify commonalities
and describe eight main relation types, complemented by
Espinoza et al. [14] with two additional from Letelier [66],
namely:

1. Dependency,
2. Generalization/Refinement,
3. Evolution,
4. Satisfaction,
5. Overlap,
6. Conflicting,
7. Rationalization,
8. Contribution,
9. Validation, and

10. Verification.

In the following exemplary those types, which we later
explicitly use in our model and case study excerpts, are
shortly described with examples from EagleEye.6

Generalization/Refinement Comprises the aggregation
of composite elements and the representation of logical
entities at different levels of abstraction [2].7 It implies
dependency.

This opens a wide range of possible interpretations.While
formal approaches as KAOS [11,65] provide a clear defini-
tion of refinement within their context, in practice there is
often no common interpretation [26]. According to Salay et
al. [70], the following three types of refinement can be iso-
lated:

1. To enlarge scope by adding new concepts.
2. To detail by adding more facts/constraints, but with the

same concepts.
3. To specialize, where concepts are broken down to sub-

types that are more specialized.

Example The SRD requirement EE-MR-0350 “[...] shall
account for the following sensors: Star tracker, Three-axis
gyros, Sun sensors, Magnetometers, GPS” [50] is detailed
by the SWS requirement ATB-SR-EO-0580 “[...] shall have
the following sensors: 2 Star trackers, 2 Three-axis gyros,
2 Sun Sensor, 2 Magnetometers, 2 GPS” [52]. The level of
detail increases by quantifying the sensors.

6 Examples are manually identified. Currently, only untyped traceabil-
ity tables are recorded for a sub-set of the documents.
7 Can be identified top-down as well as bottom-up [11].

123

Requirements document relations 2139

Satisfaction An element e1 satisfies an element e2, if
e1 meets the expectation, needs, and desires of e2; or if
e1 complies with a condition represented by e2 [2].

Requirements are satisfied, e.g., by design or implemen-
tation artifacts, if their conditions hold for the given artifact.
Furthermore, a requirement can contribute to the satisfaction
of (higher level) requirements or goals [2].8 The full propaga-
tion of satisfaction depends on the type of refinement relation
between these requirements [71]:9 10

a) If a requirement r1 is satisfied, then its specialized
requirements {r1, . . . , rn} should also be satisfied. How-
ever, satisfying a specialized requirement ri ∈{r2, . . . , rn}
does not mean that the requirement r1 from which it was
specialized is also satisfied.

b) For detailing, the converse holds. If a requirement r1
details some requirement r2, satisfying r1 implies sat-
isfying of the original requirement r2.

Example Take the example from refinement above: If
the SWS [52] requirement ATB-SR-EO-0580 is satisfied,
the SRD [50] requirement EE-MR-0350 is also satisfied.
Whereas it alone does not fully satisfy the following SRD
requirement EE-MR-0370 “The AOCS subsystem shall
account for redundancy of some hardware component to
avoid critical and/or catastrophic consequences for the mis-
sion.” [50], as there might be other hardware components
besides the sensors that need to be redundant.

Conflict Signifies conflicts between two elements e1
and e2 [2].

Example The redundant layout of certain sensors in Sys-
tem requirement EE-MR-0370 [50] (see above) could be in
conflictwith requirementEE-MR-0110 [50] limiting the total
mass of the satellite to 250kg.

Rationalization Represent and maintain the rationale
behind the creation and evolution of elements, and deci-
sions at different levels of detail [2].

Example The EagleEye requirements documents do not
provide any rationales, although this is strongly recom-
mended. For ESA’s EUCLID mission in contrast, justifica-
tions for each requirement are mandatory [42]. Justifications
are mainly explanatory texts.

8 Can also be negative for conflicting requirements [10].
9 Pinheiro andGoguen [71] refer to a) asderivation andb) as refinement.
10 KAOS [11] defines a refinement conjunction as complete, if the sat-
isfaction of all contributing goals/requirements implies the satisfaction
of the refined goal. This is always true for b) and a special case of a).

4.2 Requirement document relations

To answer the research question RQ-I “Which types of rela-
tions are relevant for requirement reuse from documents?”, it
is necessary to move from individual requirements relations
to requirement sets and documents. We consider documents
as kinds of views

“An excerpt from an artifact, containing only those
parts one is currently interested in. A view can abstract
or aggregate parts of the artifact. [72]”

In our modeling context, as for Bruneliere et al. [73], “it is
an instance of a particular view-type and consists of a set of
elements coming from one or more [...] models. It is eventu-
ally complementedwith some new interconnections between
them and additional data that are manually entered and/or
computed automatically.” A view-type is a meta-model that
determines the types of elements that can appear in a view
[73].

View-types for requirements can be, for example, a use
case diagram, dependency graph, or specification docu-
ment—“[a] piece of written, printed, or electronic matter
that provides information or evidence or that serves as an
official record [74].” In this sense, we do not exclusively
focus on classical text documents like PDF or Word/Writer
files, as we use them exemplary from EagleEye, but also
structured, mainly textual, representations as can be found in
industrial requirements engineering tools, e.g., LiveDocs in
Polarion11, Visure Requirements12 documents, or modules
in DoorsNG13. Such document views are directly connected
to the underlying requirement model, thus more flexible and
more suitable for fully integrated model-based development
approaches.

Like every view, each document or section within a doc-
ument is a representation of a specific subject matter from
the perspective of a given viewpoint [73]. According to the
International Requirements Engineering Board (IREB) [72]:

“A certain perspective on the requirements of a system.
Typical viewpoints are perspectives that a stakeholder
or stakeholder group has [...] there can also be topical
viewpoints such as a security viewpoint.”14

11 By Siemens (https://polarion.plm.automation.siemens.com, visited
on 10/05/2021).
12 By Visure (https://visuresolutions.com/requirements-engineering,
visited on 10/05/2021).
13 By IBM(https://www.ibm.com/products/requirements-management,
visited on 10/05/2021).
14 Note that this definition is somewhat different from the definition
of an architectural viewpoint as defined in ISO/IEC/IEEE 42010:2011
[75] and that there exist different appropriations of the terms viewpoint
andperspective,which lead to different non-disjoint categories of views.
For more details see, e.g., Silva and Leite [7].

123

https://polarion.plm.automation.siemens.com/
https://visuresolutions.com/requirements-engineering/
https://www.ibm.com/products/requirements-management
https://polarion.plm.automation.siemens.com/
https://visuresolutions.com/requirements-engineering/
https://www.ibm.com/products/requirements-management

2140 K. Großer et al.

Complementary, Bruneliere et al. [73] see it as

“the description of a combination, partitioning, and/or
restriction of concerns from which systems can be
observed.” It governs the view-type definition.

According to ISO/IEC/IEEE 42010:2011 [75], “[t]here
are two aspects to a viewpoint: the concerns it frames for
stakeholders and the conventions it establishes on views.”

Example The Interface Control Document (ICD) on
Telemetry and Telecommand (TMTC) [76], part of the
EagleEye specification, is a specific view on the EagleEye
requirements. It is driven by the stakeholder perspective
of satellite operations. Only those requirements relevant
to define the interface to control the satellite and down-
load telemetry data (e.g., housekeeping) are aggregated. The
viewpoint implies a specific terminology aswell as document
style and format. For example, requirements have the form
of packet layouts and service-type selections.

Dependent on the model type, different views and their
dependencies can be automatically generated from a source
model. Leite et al. [7,9] and Lamsweerde [11] demonstrate
this for requirements. For example, theTMTCdocument [76]
could be generated from a requirement database where the
set of TMTC relevant requirements is marked as such, or
from a model of relevant service-types and packet layouts.

In practice, however, we observe a “documents first”
approach [69,77]. The document centered attitude is one
of the barriers to adopt formal approaches in requirements
engineering. To meet practitioners’ needs better and to lower
these barriers, the importance of views, such as documents,
and their relations has to be taken into account. For example,
Document Requirements Lists (DRLs) [44] definewhich doc-
uments are required by the time of specific review activities
or project stages.Document Requirement Definitions (DRDs)
[43] or other forms of document templates define the struc-
ture and content domains of specifications and thereby guide
the requirements definition—they “structure the thinking”.
Such predefined categories can serve as checklists to guide
the elicitation. In doing so, different kinds of requirements
should be contained in different documents or document
sections, as recommended by ISO/IEC/IEEE 29148 [19] or
ECSS-M-ST-10 [44,78]. These different documents form
an overall combined specification and contractual agree-
ment [43]. However, the relationships between these parts
are important for completeness and consistency checks. Fur-
thermore, Gotel and Finkelstein [6] show, how relations on
different representation layers of composite artifacts influ-
ence each other. In addition, Winkler and Pilgrim [69]
acknowledge that “development artifacts exist in very dif-
ferent forms of representation, and that prior to recording
fine[-]grained traceability links, it should be recorded how
artifacts themselves are created, evolved, and transformed at
a macro-level”.

From EagleEye there are two types of document rela-
tions known:15 So-called applicable documents (AD) “form
part”16 of the referencing document while reference docu-
ments (RD) “amplify or clarify its contents” [50,52]. While
RDs have an informative character in terms of comments
or justifications, ADs have a more binding character. Still,
the given definitions are very vague. These relation types are
similar to the adopting and referencing relations defined by
Gotel and Finkelstein [64].

The documents from the EagleEye case study show an
inconsistent usage of RD and AD relations, as can be seen
in comparing Figs. 5 and 6. For example, the Central Soft-
ware Requirements (CSWR) use an RD link to indicate
refinement from the more abstract Mission and System
Requirements (MSRD), while the Software Systems level
documents (SWS and SRS) use an AD link for the same pur-
pose. The same can be observed for the links to the ECSS
standards, although we assume all of them should be appli-
cable17 here. The AD link between the Software System
Specification (SWS) and the Software Requirements Speci-
fication (SRS) is bidirectional, as both mutually list the other
as applicable document. As we do not see such mutual links
between other documents, the meaning remains obscure.
The CSWR completely ignores this next higher level and
solely reference the MSRD. We assume that such incon-
sistent usage, as also observed in other projects, is caused
by a lack of common understanding—shared semantics—
between different involved organizations. This increases the
complexity of the documentation and restrains tangibility of
the overall dependencies. It makes the specification process
error-prone and demands for time consuming consolidation
activities. If documents evolve, these problems become even
more serious as the change impact remains unclear in the
same way.

The document relations as such are not expressive enough
to clarify all of these dependencies. For example, standards
have to be tailored when applied, what affects the contained
requirements and their relation to the requirements in the
project document. Thus, conformance can only be checked
on individual requirement level, but depends on the docu-
ment links. Gotel and Finkelstein [64], too, notice that “[...]
more detailed semantics have implications for selective trace-
ability[. Yet], consensus was found difficult to establish at
that level [...]”. If at all, most approaches only consider
the relation types, introduced in Sect. 4.1, between individ-

15 In the PDFs, references are explicitly listed in tables.
16 The ECSS Glossary of Terms [79] defines an Applicable Document
as a “document that contains provisions which, through reference in the
source document, constitute additional provisions of the source docu-
ment.”
17 In some projects, explicitly normative document links are introduced
to denote applicable standards.

123

Requirements document relations 2141

Software Technical
Specification

Software System
Specification / Software
Requirements Baseline

System Requirement
Document

Mission Requirement
Document MRD

SRD

SWS

CSWR

SRS
Data

Handling
SSR

Milbus Spacelink TMTC Onboard
Parameter

E-ST-60-10C
E-60A

E-ST-60-20C

MRD
(old)

MSRD

CSWR
+TSP (old)

• Derivation (implicit)
• Reference Document
• Requirement Document
• Standard Document
• Document (outdated)

E-ST-40B
P 1&2

Fig. 5 Reference document relations of EagleEye (excerpt)

Software Technical
Specification

Software System
Specification / Software
Requirements Baseline

System Requirement
Document

Mission Requirement
Document MRD

SRD

SWS

CSWR

SRS
Data

Handling
SSR

Milbus Spacelink TMTC Onboard
Parameter

E-ST-60-10C
E-60A

E-ST-60-20C

E-ST-40B
P 1&2

E-ST-50-13C E-ST-70-41CE-ST-50-04A

MRD
(old)

MSRD

CSWR
+TSP (old)

• Derivation (implicit)
• Applicable Document
• Requirement Document
• Standard Document
• Document (outdated)

Fig. 6 Applicable document relations of EagleEye (excerpt)

ual requirements. Yet, they can also appear between sets of
requirements or requirements documents.

Example The different requirements documents on dif-
ferent levels of abstraction along different project phases,
as shown for EagleEye in Figs. 5 and 6, refine each other.
For example, the Software Requirements Specification (SRS)
[51] and Software Specification (SWS) [52] refine the Mis-
sion and System Requirements Document (MSRD) [50].
While inside the MSRD the System Requirements refine
the Mission Requirements. SWS and SRS both follow the

guidelines given by E-ST-40B Part 1&2 [57,58] and there-
fore satisfy this document. Currently, such relations are not
recorded on document level within EagleEye.

4.3 Document reuse

Reuse is becoming an integral part of product development
[21], e.g., through product line engineering [32,80] or stan-
dardization. Besides achieving more cost-effective design
and development by a cut-down on development resources

123

2142 K. Großer et al.

Fig. 7 Requirement document reuse scenarios

and time [33], reuse is expected to lead to improved qual-
ity and safety by applying proven requirements and methods
[43]. Yet, reused requirements have to be carefully checked
for consistency with the new context—thus, correct integra-
tion [21]. To solve conflicts, developers rely on backward
traceability to get to the sources of requirements [3]. To sup-
port this, we need to know RQ-I “Which types of relations
are relevant for requirement reuse from documents?” Fig. 7
shows three cases of document-based requirement reuse we
identified from analyzing several space engineering projects.

4.3.1 Clone specification

An extensive type of reuse is to clone a complete specifica-
tion document from a similar previous project. Though some
provisions in standard procedures might prohibit such prac-
tice, this seems to be rather commonplace in the real world
[22,33,40,81]. Reasons to do so are manifold. In the first
instance, cloning existing documents instead of compiling
new ones from scratch saves a lot of time in setting up the
new project [33]. Additionally, for example, well-established
requirements and lessons learned are automatically conveyed
to the actual project, although they are not intentionally gen-
eralized.

Yet, it can lead to serious problems. For example, the
findings about the reasons for the disastrous Ariane 5 fail-
ure of 1996 [82] indicate that a proven specification and
design were reused without taking into account all relevant
conditions of the new mission that differed from the prior
ones. It is a common problem that previous requirements are
“highly depend[e]nt on the context of their project and on
the engineers that created them” [40]. Of course, copying
the documents is always only the first step. Identifiers and
links to other documents have to be created or updated. The
resulting document requires time-consuming consolidation
and reviews to make sure that no leftovers from the source
introduce problems or inconsistencies. Also new boundary
conditions introduced by the changed context might have an
impact on the specification. Thus, the specialized parts need
to be adapted and integrated to the new project. Given that
cloning is considered a viable reuse approach, the indispens-
able consolidation should be supported, e.g., by automated
checks for consistency. This is considered the most complex,
because less formalized, of the three reuse cases.

4.3.2 Apply standard

Standards are a well-known method to provide requirements
for a specific application domain in a reusable way, as can
be seen in EagleEye. They aim to facilitate clear and unam-
biguous communication between all stakeholders, and are
suitable for reference or quotation in legally binding docu-
ments, as they are clearly identified by their released versions.
Furthermore, they are expected to reduce risk and to guar-
antee interoperability and interface compatibility [43]. A
standardization body of high reputation presupposed, stan-
dards are considered to provide requirements of high quality.

TheECSS standards [43] impose functional requirements,
but also contain management requirements describing what
has to be covered by the project specification from the view-
point of the specific engineering domain, and which form
these requirements have to take. Furthermore, they contain
Document Requirement Definitions (DRDs) which define the
structure of the respective specification documents. Depen-
dent on project characteristics such as cost, schedule, and
technical drivers, identified risks, and the covered techni-
cal domain, applicable standards are selected. Requirements
from standards have to be tailored for the specific project.
Tailoringmeans, for example, to decide for each requirement
if it is applicable for the project or not and whether it has to
be modified—thus, specialization of the abstract document.
We describe this in more detail in Sect. 6. In ECSS, this
process is formalized to some extend and therefore suits as a
reference case to support reuse by formalized relation depen-
dencies.We build our approach on this and research different
approaches how to integrate these requirements with other
project requirements, as described in Sect. 6.3. Standards can
be seen as an approach to reuse requirements based on pat-
terns, like described byPalomares et al. [22],where thewhole
set of standards constitutes a pattern catalogue. Currently a
new ECSS requirements management system (E-RMS) [83]
is under development18 to enhance accessibility of this cata-
logue in the future.

4.3.3 Generic specification

The goal of initiatives as, e.g., SAVOIR19 is to provide a
predefined set of reusable generic specifications. As stan-
dards, such documents contain collections of requirements
usually applicable in a specific domain. They, too, are
designed to standardize and therefore increase interoper-
ability and reduce complexity. Thus, the focus lies on

18 The E-RMS project was officially kick-offed in October 2018
(https://indico.esa.int/event/263, visited on 16/11/2020).
19 “Space AVionics Open Interface aRchitecture is an initiative to
improve the way that the European Space community builds avionics
sub-systems.” (http://savoir.estec.esa.int, visited on 11/05/2021)

123

http://savoir.estec.esa.int/
https://indico.esa.int/event/263/
http://savoir.estec.esa.int/

Requirements document relations 2143

providing predefined building blocks to increase efficiency,
cost-effectiveness and flexibility [84], while standards rather
aim at providing guidelines instead of concrete components.

In contrast to requirements from standards, these generic
requirements are already phrased in the same style as project
requirements, but have to be instantiated for a specific project.
Yet, this specialization process has strong similarities with
the tailoring process for standards, as these requirements
also have to be assessed for applicability and potentially
necessary modifications. Furthermore, generic requirements
more likely contain placeholders that have to be assigned
with specific values during specialization. As standards, the
generic documents can reference other documents introduc-
ing additional dependencies, e.g., to standards. Similar to
ECSS standards, SAVOIR requirements can also be seen as a
pattern based approach to reuse requirements [22].With their
placeholders and product oriented writing style they resem-
ble even more closely the patterns as presented by Renault et
al. [40]. As the general dependencies are similar to the tai-
loring of ECSS standards, we plan in future work to extend
our formalized description to match to SAVOIR, too. The
SAVOIR reference requirements are not yet used for Eagle-
Eye, but different generic specifications could be applied to
the SRD and SRS.

5 A document-aware traceability model

In the following, the T-Reqs traceability model is presented.
It addresses in particular the challenges introduced by RQ-I
& RQ-II and is developed based on Ontological Analysis of
documents from space projects, ECSS standards, and known
traceabilitymodels, e.g., byRamesh and Jarke [5] or Schwarz
et al. [12], as well as interviews with experts (steps A–C in
Fig. 2). The Conceptual Schema Design Procedure (CSDP)
[85, p. 13] is used together with the Object-Role Modelling
(ORM) [86,87] conceptual modeling language. ORM com-
prises a graphical notation and the controlled natural English
Formal ORM Language (FORML). The graphical notation
captures the main language features, merely derivations and
a few constraints can only be expressed textually. Addition-
ally, FORML is used to verbalize the semantics. We use this
in the remainder of the paper to explain our model. In ORM,
ObjectTypes are related via predicates in which they play
a specific role, constrained by logic expressions—together
this constitutes a Fact-Type. Instances of object types popu-
late themodel. A very brief overviewof basicORMgraphical
elements is given in “Appendix 1”.

5.1 Traceability relations

The excerpt from our conceptual model depicted in Fig. 8
shows the objectified ternary fact type “TraceableEntity1

Fig. 8 Typed traceability relation

Fig. 9 Traceable entities

relates toTraceableEntity2 via TraceabilityRelationType20”.
For example,TraceableEntityRequirementATB-SR-EO-0580
relates to TraceableEntity RequirementEE-MR-0350 via
TraceabilityRelationTypeDetailing for the two requirements
from the refinement example in Sect. 4.1. The objectifica-
tion as TraceabilityRelation, similar to the respective class
by Schwarz et al. [12], allows to attach further attributes to
relation instances, e.g., meta-data necessary for trace man-
agement. Such relation instances have a direction as indicated
by [source] and [target] roles. This source-to-target direc-
tion is not necessarily equivalent to the forward or backward
direction as described above from [62] , but depends on the
relation type definition. However, navigation is possible in
both directions.

Specific TraceabilityRelationTypes have to be carefully
specified, as they may have dependencies to different entities
and even other relations. The types listed in Sect. 4.1 consti-
tute an extensible seed population, whereas custom types are
mostly subtypes of these. In the following examples of type
specifications are providedbypopulating the so-calledTrace-
ability Relationship Type Template (TRTT)21, introduced by
Schwarz et al. [88].

5.2 Traceable entities

Within the T-Reqs traceability model, any development
artifact that can be identified through a Universally Unique

20 The ! marks the object type as independent, meaning instances not
necessarily have to play a role in some fact type.
21 Espinoza et al. [14] define a similar Traceability Meta Type.

123

2144 K. Großer et al.

Fig. 10 Model views and their traceability

Identifier (UUID)22 can be traced as a TraceableEntity.23 Fig-
ure 9 shows that View and ModelEntity are both modeled as
sub-types of TraceableEntity, whilemost tracing approaches
only consider themodel side. The integration ofmeta-models
is illustrated in Fig. 10. View-types andmeta-model elements
are linked together in the T-Reqs traceability model to enable
the tracing of macro level view artifacts together with fine-
grainedmodel tracing. In the followingmodels and views and
their relation in this context are introduced in more detail.

5.2.1 Model entities

A ModelEntity is some model or any element part of such.
It describes some subject matter24 [73]—e.g., a real world
object, development artifact, system or component under
development, or related processes. The language or formal-
ism used is defined by the model’s meta-model. Models are
the core artifacts in Model-Based Software/System Develop-
ment (MBSD). Tracing within models or between different
models is widely used for quality analysis. For example, to
analyze security and privacy, Mouratidis and Jürjens [90]
or Ahmadian et al. [91] trace requirements to design mod-
els while Peldszus et al. [92] trace design models to code.
Although the T-Reqs traceability model is generally extensi-
ble for different kinds of models, the work presented here is
focused on requirement models.

22 A Universally Unique Identifier (UUID) is a 128-bit identifier num-
ber specified in [89]. As they are generated locally and not by a central
authority, it is possible that duplicates exist, but the probability is close
enough to zero to be negligible.
23 Thus, alsoTraceabilityRelations can be traced for tracemanagement,
although, we do not address this explicitly.
24 The term system used by Bruneliere et al. [73] can be misleading, as
there exist different context sensitive definitions of what a system shall
be, especially in embedded systems engineering [33]—e.g., macro-
system vs. sub-system [9]. A specification can comprise requirements
not directly concerned with “the system” or its sub-systems. Therefore,
the more generic subject matter is used.

Fig. 11 Requirement entities with examples of properties

Fig. 12 Example excerpt of requirement model

Figure 11 shows the conceptual model excerpt that defines
a RequirementEntity as a ModelEntity and some relevant
parts of the requirement meta-model used. Here, the compos-
ite pattern [93] is employed to express hierarchical structures
in sets of requirements, similar as in the trace model by
Schwarz et al. [12]. Thereby requirements can be grouped
in RequirementSets on different levels. It is possible that
some RequirementEntity is contained in more than one
RequirementSet25, to prevent the “tyranny of the dominant
decomposition” [94].

Furthermore, requirements and sets have specific attribu-
tes, such as, exemplary depicted in Fig. 11, an ID, a Title
or potentially Notes. Each requirement should belong to
at least one RequirementCategory and requirements inside
a RequirementSet that is of a specific category should
also be of that category, as expressed through the deontic
subset constraints . Further attributes, such as wording
and verification method, are part of the detailed require-
ment meta-model, but omitted in Fig. 11 for conciseness.

25 Yet, no RequirementEntity may cycle back to itself. ()

123

Requirements document relations 2145

Fig. 13 Models can be represented by views

Model-specific interconnections establish traceability rela-
tions among model entities.

Example Figure 12 illustrates an excerpt of a require-
ment model noted as UML object diagram [95] covering the
example from above with EagleEye requirements ATB-SR-
EO-0580 and EE-MR-0350.

5.2.2 Views

Following Bruneliere et al. [73], a model can be “used in
and referenced from a given view”,26 as illustrated in green
in the middle of Fig. 10. Depending on the corresponding
viewpoint and defined view-type, a view can possibly gather
elements coming from one or more models. The view-type
defines which elements can appear in a view, thus its meta-
model. It therefore references elements from the model’s
meta-model, as illustrated in blue on top of Fig. 10. Fig-
ure 13 depicts the respective conceptual model excerpt: It
is obligatory that each View represents some ModelEn-
tity that describes exactly one SubjectMatter. Each View
is defined by exactly one Viewpoint. It is possible that
some View represents more than one ModelEntity and
that some ModelEntity is represented bymore than one
View [7,73]. Elementsmaybe part of themodel entity’smeta-
model or may be specifically defined for the view-type [73].
For example, it is possibly complemented with view-specific
interconnections between the model elements and additional
data that are manually entered and/or computed automat-
ically, as defined by the viewpoint [7,73]. View-types are
defined sub-types of View. A given view-type can be rele-
vant for several viewpoints, and usually a Viewpoint defines
more than one View of potentially different view-types.
The viewpoint is explicitly included in our conceptualmodel,
as depicted in Fig. 13, to be able to relate views sharing the
same such. However, so far, our tracing approach exploits
only view-type definitions and viewpoint definitions are thus
not elaborated. Possible extensions in this direction could
potentially be based on guidelines for architectural viewpoint
definitions [75].

Generally, the dependencies presented here are applicable
for any type of view. Yet, we focus on document views, to
address RQ-II “How can requirements reuse from documents

26 There exist different other appropriations of the terms view, view-
point, and perspective, c.f. Sect. 4.2 or [7].

be formalized into a structured process that supports integra-
tion?” In particular, we investigate in Sect. 6 reuse processes
for standards, which are usually provided in document form.
As described in Sect. 4.2, this is not limited to classical docu-
ment formats, but also interactive document like views, e.g.,
in requirements engineering tools or wikis [96]. Within the
T-Reqs conceptual model, documents are regarded as views
on (sets of) requirements. Some views can be composed of
sub-views, e.g., documents can consist of chapters, sections,
and paragraphs, or can contain diagrams. Following again
the composite pattern [93], for each View, exactly one of
the followingholds: that View is some Container or that
View is some ViewElement. It is possible that some Con-
tainer contains more than one View and—to break “the
tyranny of the dominant decomposition” [7,94]—that some
View is contained inmore thanoneContainer.Document
is a sub-type of Container. Specialized document types, as
described by Document Requirement Definitions (DRDs)27

or standards, form further (custom) sub-types of Document.
Standardization manuals, as ECSS-D-00-01C [98] for ECSS
or the ESA Standardization Manual [99], define commonal-
ities of standards and by that part of those viewpoints and
view-types. Such container view-types consist of specific
sub-view-types like requirement paragraphs.

Example Figure 14 shows an excerpt of the EagleEye Soft-
ware Specification (SWS) [52] representing the requirement
ATB-SR-EO-0580 from the example above. The paragraph
in this document is a view on this requirement. While the
graphical model representation shown in Fig. 12 also gives
some view on the used requirements model, it is not adequate
for all requirements engineering viewpoints. For example,
the textual representation in Fig. 14 is more accessible for
non-technical stakeholders. Besides the textual listing of the
requirement’s attribute values of ID, title, wording,28 and
verification method, on the bottom there is also a represen-
tation of some of its relations and related requirements. Yet,
in this specific view, there is no representation of the rela-
tion type. Related other requirements are only represented by
their ID. The same requirements are represented in detail in
another view—the Mission and System Requirements Doc-

27 For example, in ECSS-E-ST-40C [97].
28 Depending on the underlying base model, this wording can also be
interpreted as a set of five requirements—one for each bullet point—
which are aggregated in this view.

123

2146 K. Großer et al.

Fig. 14 Example excerpt of requirement document

ument (MSRD) [50]. The requirement ATB-SR-EO-0580
is listed together with other requirements under the sec-
tion heading “Sensors”. This grouping may imply a related
requirement set in the model, as we assumed for our case
study presented in Sect. 7.

Grouping of model entities represented in a view not
necessarily has to, but often reflects sets within the model.
However, it may be only one among several non-disjoint
set affiliations of the involved model entities or views may
aggregate in a way only relevant in the specific view context.
In particular, each view inherently displays some ordering,
while this might not be identical to the ordering within the
models data structure or not even relevant to model seman-
tics.

Views are treated in theT-Reqs traceabilitymodel as “first-
class citizen” with relations on their own. This is important,
as views carry additional information through the way they
aggregate or complement model elements. Furthermore, as
workflow artifacts views constitute points of reference for
involved stakeholders. As illustrated in Fig. 10, the trace-
ability model integrates view-types andmeta-models to trace
among model entities as well as views and enable typed rela-
tions among all these entities.

Views can be manually designed or automatically derived
from the model, as demonstrated among others by Silva and
Leite [7].We do not distinguish that explicitly, as we focus on
the traceability of views after they came to existence. There-
fore, we partly exploit the same relations between model and
view elements, necessary for view generation or transforma-
tion, but also include explicit relations between views. For
example, refinement, as explained in more detail in the next
section.

5.3 Levels of abstraction

According to Li et al. [77], current requirements engineering
tools, as DOORS, pay little attention to requirement refine-
ment. Requirements can be of different abstraction or level

of detail [77,100], as it is implied by a chain of refinement
relations. As these levels are blurred, there exist different
categorizations, e.g., [100–102]. More levels that are more
detailed can be elicitedwithin the development teamor by the
supplier. Thereby, the specification tree depends on the busi-
ness agreement structure [44], leading to very divers results.
The T-Reqs model abstracts from such concrete view levels
and focuses on the reoccurring relationship between two con-
secutive levels, as seen in Fig. 3. Here, the customer pushes
the higher-level Project Requirements Document (PRD) to
the supplier.29 The corresponding Implementation Docu-
ment (ID) contains a refined set of requirements that is the
basis of the business agreement. The TRTT in Table 1 sum-
marizes this relation also depicted in Fig. 15. This does
not include refinement through evolution of documents. To
ensure consistency over several levels, it has to be made sure
that all necessary higher-level requirements are included in
the project-requirements Document and completely con-
sidered in the implementation Document. This includes
all relevant requirements the customer received from her/his
customer–the next higher-level implementation document,
or at least the parts relevant for the lower level. This can
be achieved through diverse refinements between require-
ment entities on these different levels. For example, Li et
al. [77] describe such more detailed refinement relations
and processes for their identification. Thus, the refinements
between individual requirements depend on the document
refinements. These inter-relations among artifacts of differ-
ent granularity are covered in the following section.

5.4 Representation layers

According toWinkler and Pilgrim [69], “it has to be acknowl-
edged that software development artifacts exist in very
different forms of representation, and that prior to record-
ing fine-grained traceability links, it should be recorded how
artifacts themselves are created, evolved, and transformed at
a macro level.” This is also true for requirements documents
as macro level representations of requirements, as already
described by Gotel and Finkelstein [6]. Figure 16 illustrates
this concept of “layered traceability”. The representation
layer hierarchy is orthogonal to the hierarchy established by
refinement relations, as described in Sect. 5.3 above.

There are relations, refinement among them, between arti-
facts on each layer of representation granularity. Figure 16
illustrates this with relations in different shades of green.
For example, views can be related to other views, illustrated
by documents D1 and D2 in Fig. 16. Besides document

29 Additional and more detailed contribution relations [6] can be
defined for the involved documents and all their parts. For example,
the customer should be a motivating principal for the implementation
document.

123

Requirements document relations 2147

Table 1 TRTT for the DocumentRefinement relation

Property Value

Name DocumentRefinement

Description Project-requirements Document
is refined by implementation Doc-
ument

Super-types Refinement

Meta-model fragment See Fig. 15

Attributes [customer] Agent and [supplier]
Agent, both mandatory

Constraints For each implementation
Document, at most one project-
requirements Document is
refined by that implemen-
tation Document. Relation is
acyclic and strongly intransitive :

Impact designators (not considered in this paper)

Examples EagleEye requirements documents
on the different levels presented in
Fig. 4, 5, and 6. DocumentRefine-
ment should be used instead of
applicable or reference document
links or implicit, immaterial refine-
ment

Fig. 15 Document refinement

refinements, as discussed in the previous section, relations
as discussed in Sect. 4.2 or any other view-type specific
relation type is possible. These relations describe the macro-
level dependencies of these artifacts without disclosure of the
details of representedmodel entities. Figures 4, 5, and 6 illus-
trate inter-document relations for EagleEye. In the sameway,
there can be relations between different more coarse grained
model entities, such as requirement sets, illustrated in Fig. 16
by RS3 and RS5 or RS1 and RS2. Finally, also fine-grained
model entities such as different requirements can be related

Fig. 16 Relations on different representation layers

among each other, as discussed in detail also with examples
from EagleEye in Sect. 4.1. In Fig. 16, this is illustrated by
R1 and R3 or R4 and R6. The hierarchical relations implied
by containment and representation, of either views or mod-
els, bridge between the layers. These are depicted in blue
in Fig. 16. Sub-views and nested sets can constitute addi-
tional intermediate layers, left out in the illustrating figure
for conciseness.

Different stakeholders work with representations of arti-
facts and relations of different granularity. For example, a
project manager needs to know that certain standards are
applied, but is at that time not interested in the individ-
ual requirements. By masking details, the complexity can
be reduced for such perspectives and specific views are
created—here, e.g., a specification tree. Although it is pos-
sible to define and visualize relations explicitly on all layers
independently, obviously they impose constraints on each
other. Gotel and Finkelstein [6] showed that for contribution
relations. Such constraints play a central role for consistent
integration of (reused) requirements documents. In the fol-
lowing, we give examples for different types of dependencies
between relations on different layers.

5.4.1 Derivation between layers

Some relations can be derived from relations that are reg-
istered on other layers. For example, conflicts between
requirements arise from their content. In the same way, two
requirement sets are in conflict with each other if their con-
tent, thus one or more of the contained requirements, are in
conflict. Similarly, two requirement documents are incon-
sistent with each other, if the requirements entities they
represent are in conflict.

TheTRTTof RequirementSetConflict inTable 2 shows in
constraint 2. the derivation rule for the semi-derived fact type
RequirementSet conflicts with RequirementSet, depicted
on the right in Fig. 17. The RequirementEntity is contained
in RequirementSet fact type used in this rule is depicted in
Fig. 11. It represents the transitive closure of the contain-

123

2148 K. Großer et al.

Fig. 17 Different types of conflict on different layers

Table 2 TRTT for the RequirementSetConflict relation

Property Value

Name RequirementSetConflict

Description A RequirementSetConflict links two
conflicting RequirementSets

Super-types Conflict

Meta-model
fragment

See Fig. 17

Attributes (not further considered here, i.a., state as
solved)

Constraints 1. Relation is symmetric and irreflexive :

2. Relation is semi-derived (+): either asserted
by a reviewer, or derived automatically
dependent on the given derivation rule:

Impact
designators

(not considered here)

Examples A set of security requirements in conflict with
a set of performance requirements, because
of a conflict between two individual
requirements from each set.

ment hierarchy. The last inclusive or derives the symmetric
counterparts, so the relation only needs to be asserted in
one direction. Conflicts between sets that do not arise from
conflicts between contained requirements, but from other
properties of the sets, can be asserted in addition to the rule,
as it is semi-derived (+). The derivation of ViewConflicts
works analogous.

5.4.2 Consistency between layers

Other types of relations require consistency between rela-
tions that are asserted on different layers. For example,
refinement. Similar to conflicts, refinement can be derived
from refinement relations between contained or represented
entities on lower layers. Yet, in contrast, relations asserted on
higher layers are not independent, but imply completeness
toward the refinement of contained entities, as described in
Sect. 5.3. There is a need to check, if the relations defined on
different layers are consistent with each other. As described
in Sect. 4.1, this depends on the type of refinement.

An example for refinement relations on different layers
from EagleEye: Before the requirements of the Software
Specification (SWS) [52] are actually written, it is already
defined that the SWS refines the Mission and System Spec-
ification (MSRD) [50], as currently indicated by listing the
MSRD as applicable document30 within the SWS [52]. In
Sect. 4.1, two examples for a refinement relation between
individual requirements are presented: The System Specifi-
cation requirement EE-MR-0350 is detailed by the Software
Specification requirement ATB-SR-EO-0580 and ATB-SR-
EO-0580 specializes the System Specification requirement
EE-MR-0370. The requirements are listed in a traceability
matrixmapping all requirements represented in the SWS [52]
with all from the MSRD [50]. However, it remains undocu-
mented for these explicit links within the original EagleEye
documents, as well on requirements level as on documents
level, of what type the relation is and if the combination of all
refinements between individual requirements is consistent or
complete toward the intended refinement between the doc-
uments. This type of analysis is targeted with the presented
approach.

5.4.3 Crossing layers

As illustrated in Fig. 16 by the orange dashed arrow between
R5 and D1, some relation types can cross the layer hierarchy
directly, not only implicitly by derivation. One of those is the
Satisfy relation,whereRequirementEntity canbe satisfiedby
a Document. For example, when the document follows the
requirements of a Document Requirement Definition (DRD).
ECSS-E-ST-10-06C [78] requires for Technical Require-
ments Specifications (TS) “The technical requirements shall
be grouped.” and “The specification shall be identifiable,
referable and related to a product or a system.”Agiven tech-
nical specificationDocument can satisfy these requirements.
In a similar way, the mere existence of another Document,
RequirementEntity or its properties can satisfy another
RequirementEntity, if the existence of specific content is

30 As discussed in Sect. 4.2, an explicit refines relation would be more
favorable from the point of view of traceability analysis.

123

Requirements document relations 2149

Fig. 18 ECSS tailoring process [43]

required, again, e.g., by DRDs or Documents Requirements
List (DRL). ECSS-E-ST-40B Part 1 [57] requires “ [..] all
software observability requirements to facilitate the software
integration shall be specified by the customer.” Thus, the
existence of “observability requirements” satisfies this. In the
following, the kind of requirements that expresses constraints
or properties to be satisfied by other requirements is called
meta-requirement and, if targeting views, view requirement
respectively.

6 Standard tailoring

We use the before introduced general concepts of our T-Reqs
traceability model to define a more specific reference model
to address RQ-II “How can requirements reuse from docu-
ments be formalized into a structured process that supports
integration?”. In particular, we concentrate on the applica-
tion of standards, as there already exist some processes and
guidelines, and dependencies are observed to be similar also
for generic specifications (c.f. Sect. 4.3). If a standard is appli-
cable to a project, it has to be specialized and integrated with
the project requirements. In case of ECSS [43] this process,

Fig. 19 Tailoring of ECSS-50-13C [59] for the EagleEye Central Soft-
ware Requirements (CSWR) [104]

depicted as BPMN [103] diagram in Fig. 18, is called tailor-
ing and consists of these main steps:31

1. The extent to which the standard is made applicable is
assessed against cost, schedule, and technical drivers, as
well as the identified risks and their mitigation strategies.
Each requirement is classified as: (Y) Applicable with-
out change, (M) Applicable with modification, or (N) Not
applicable (omitted).
References to other standards may imply iterated addi-
tional tailoring. (Steps 1–4 in Fig. 18)

2. When a deficiency is identified in the standard that is not
addressed by project specific requirements, it has to be
complemented. Therefore, new additional requirements
(A) are generated or adopted, preferably from a standard
of another standardization organization.

3. The requirements have to be reviewed and harmonized
to ensure the coherence and consistency of the overall set
of requirements before they are applied to the project.

4. The results of this process are documented in a so-called
ECSS Applicability Requirements Matrix (EARM),where
all requirements are listed with their classification, for
(M) and (A) with complete requirement wording and—
as well as for (N)—justification. Figure 19 shows the
EARM from the outdated version of EagleEye’s Cen-
tral Software Requirements (CSWR) [104] that tailors
ECSS-50-13C [59]. By referencing whole clauses, sev-
eral requirements are made applicable or omitted as a
set.

31 The ECSS tailoring process serves as an example. Other standard-
ization bodies may define slightly different processes to adapt their
standards or use other terminology. Yet, the main steps, as defined for
ECSS, of assessing the applicability and possibly necessary modifica-
tions, harmonization, and documentation are expected to be similar and
generally applicable.

123

2150 K. Großer et al.

Fig. 20 Tailoring requirements dependencies

6.1 Tailoring decision

With this process the reuse of requirements from standards
is somewhat formalized and their traceability established.
Figure 20 illustrates how this process leads to a new set of
requirements—the tailoring RST of the standard’s require-
ments RSS . RST depends on RSS as well as each of
the tailored requirements (RT 2−5) depends on its counter-
part standard requirement. These relations obviously differ
in semantics: Whereas (Y) dependencies lead to copies
or pointer objects, (M) dependencies link to new derived
requirements. (A) Dependencies can either be copies or
refinements and link to other sets.

Figure 21 depicts the respective conceptual model excerpt
for a Standard being applicable to some other requirements
Document. Table 3 summarizes the TRTT for the Standard-
Applicability relation linking the two documents, as depicted
in the upper center of the model excerpt. If some Standard is
involved in some StandardApplicability where some Tai-
loring belongs to that StandardApplicability then that
Standard is tailored by that Tailoring. As expressed by
the sub-set constraint. Each Tailoring is an instance of
RequirementSet. The deontic sub-set constraint on the
left checks, if all requirements contained in a tailoring are
justified backward by an explicit decision in the tailoring:

Constraint 1 (All Tailored Requirements Justified)

The involved TailoringDecisionAllocation and Tailore-
dRequirementJustification are thus sub-types of Ratio-
nalization, while StandardTailoring is a Refinement of
standards. The derived fact type is not tailored at the top of
Fig. 21 identifies StandardApplicabilitys without a tailoring
at all (post-RS). The derived fact type depicted at the bottom
can check the completeness of a Tailoringwith respect to the
Standard that is tailored:

Fig. 21 Standard tailoring

Fig. 22 Tailoring decision

Derivation 1 (Tailoring Completeness)

Completeness means here that all requirements from the
standard are addressed by a tailoring decision (post-RS).
The semantic correctness of the decisions and the complete-
ness with respect to potential deficiencies of the standard,
which make additional requirements necessary, cannot be
checked without additional context knowledge. Thus, only
some incompleteness can be detected. Completeness cannot
be asserted.

A TailoringDecision justifies RequirementEntity if and
only if that TailoringDecisionmakes thatRequirementEn-
tity applicable (Y) or makes that modified Require-

123

Requirements document relations 2151

Table 3 TRTT for the StandardApplicability relation

Property Value

Name StandardApplicability

Description Standard is applicable to Docu-
ment

Super-types Dependency

Meta-model fragment See Fig. 21

Attributes Boolean is not tailored, Tailoring
(obligatory)

Constraints 1.

2.

Impact designators (not considered here)

Examples Links between requirements docu-
ments and standards in Figs. 5 and 6.
For example, ECSS-E-ST-50-13C
is applicable to the Central Soft-
ware Requirements document. The
related tailoring documentation in
Fig. 19.

mentEntity applicable (M) [...]32. If a requirement is omitted
(N), that TailoringDecision results to not applicable. Fig-

ure 22 shows the three different mandatory disjoint
options. Additional (A) requirements can either come from
other source requirements or be completely new. In this case
the decision tailorsno requirement, but onlymakes one appli-
cable. The two subset constraints ensure that this is not
possible for modifications or omissions. A decision can also
be asserted for a set of requirements, as also seen in the exam-
ple in Fig. 19. This is covered by the derived fact-type is
implicitly tailored by on top of Fig. 22. Each decision option
has its own constraints, which need to be enforced or checked
for consistency. For example, it is obligatory that for all
decisions other than (Y) that TailoringDecision is justified
by some Justification, as exemplary shown for modifica-
tions (M) in Fig. 23 through the deontic subset constraint

. Furthermore, a modified requirement always refines the
original requirement tailored from the standard to establish
backward traceability, expressed through the upper right
subset constraint. The second subset constraint on the left
ensures that the modified requirement is contained in the tai-
loring.

32 or makes some RequirementSet applicable that contains that
RequirementEntity

Fig. 23 Applicable with modifications (M)

Fig. 24 Tailoring decision documentation

Such checks toward justification and completeness of tai-
lored requirements enable automated analysis to support
requirement engineers during tailoring or in reviews. Defi-
ciencies can be reported without the necessity of manual
comparison of tailoring documentations such as shown in
Fig. 19 with the full list of requirements of the standard, in
this example ECSS-E-ST-50-13C [59].

Specific view-types can represent Tailoring and Tailor-
ingDecision, like the already mentioned ECSS Applicability
Requirements Matrix (EARM) with an example in Fig. 19.
We generalized this view-type to StandardApplicabilityMa-
trix in our model as depicted in Fig. 24. The representation of
an individual decision in a ProductSpecificTailoringRecord
is a sub-view within the matrix Container—e.g., a table row
in Fig. 19. The subset constraint ensures that the view con-
tainment structure is consistent with the model relations.

6.2 Tailoring recommendation

Some standards, ECSS-50-13C [59] among them, also pro-
vide a Tailoring Recommendation on how to tailor this
standard consistently. Figure 25 shows this for ECSS-50-
13C. It can be seen that the actual tailoring of this standard
as shown in Fig. 19 is inconsistent with this recommendation
for Clause 8.7.4.

123

2152 K. Großer et al.

Fig. 25 Tailoring recommendation for ECSS-50-13C [59]

Fig. 26 Tailoring recommendation

Figure 26 shows the conceptual model excerpt for a
TailoringRecommendation. There can be different recom-
mendations for a given RequirementEntity, dependent on
project properties, as, e.g., the SoftwareCriticalityCategory
for the ECSS-E-ST-40C [97]. Yet, only one per category,
enforced by the external uniqueness constraint . The
options—recommends applicable or is optional—aremod-
eled as exclusive unary fact types at the bottom right of
Fig. 26. In some domains, where standards define specific
process deliverables, a subset of recommends applicable
decisions permits electronic deliverable, dependent, e.g.,
on the criticality level. The upper part of Fig. 26 depicts
the representation of recommendations in TailoringRecom-
mendationRecord views and that these should be part of the
respective Standard document.

Figure 27 shows the specific conflict type TailoringRec-
ommendationViolationwe find for ECSS-50-13C in Eagle-
Eye, and which can be detected by the following derivation
rule:

Fig. 27 Tailoring recommendation violation

Derivation 2 (Tailoring Recommendation Violation)

[…or the same for implicit recommendations …].33

If a conflict with the recommendation is detected but the
deviation is intended, the decision should be justified by
some Justification .

More complex recommendations with dependencies or
exclusions among each other could be expressed by inte-
grated feature models [80]. Such dependencies are rarely
within ECSS standards, but occur, e.g., within SAVOIR spec-
ifications. We plan to extend our model to address this in the
future.

6.3 Integration to project

However, the ECSS tailoring as described above does not
define how to apply these tailored requirements to the project
requirements represented by the document that made the
standard applicable. Palomares et al. [22] claim that onemain
barrier for reuse by pattern application is that organizations
do not know how to incorporate this to their processes and
have difficulties adapting pattern output to the organization’s
requirements specification format.

To exploratory [105] find out about this part of the pro-
cess for ECSS tailoring we analyzed excerpts of space

33 Properties such as the Software Criticality Category are not consid-
ered to simplify the example.

123

Requirements document relations 2153

project specifications, e.g., from IXV,34 EUCLID,
EPS-SG/Metop-SG,35), and EagleEye. Additionally the first
author conducted semi-structured interviews [105,106] with
five Software Engineers and three System Engineers from
different projects and sections at ESA. The interviews took
place in face-to-face mode [107] and the following main
themes and follow-up questions [106] where used to guide
the interviews:

1. How does the typical structure for document abstraction
levels look like? (E.g., Specification Tree)

2. When does the tailoring take place?

(a) At project level? (at project initialization)
(b) Early selection of standards at system level or later

for subsystems?
(c) Is there a central harmonization step? (standards with

each other and/or project requirements)
(d) Are there different tailorings of the same standard for

different subsystems?

3. How is the tailored set related to theproject requirements?

(a) Unification? (standard requirements become part of
the project requirements)

(b) Does it remain implicit? (only in EARM)
(c) If explicit, refined requirements or clones?
(d) How are meta-requirements addressed?
(e) Are tailoring recommendations followed?
(f) Who checks conformance?

4. Is SAVOIR tailored similarly?

(a) How to deal with SAVOIR references to ECSS stan-
dards?

The answers of the interviewees are not statistically rep-
resentative due to the small sample. Yet, they showed, as
expected, a different use and perception of the tailoring pro-
cess.36 All variants we considered in our guiding questions
also appear in practice.

Standards are usually not tailored centrally for one project,
but “progressively tailored by each customer in the customer-
supplier chain to reflect the type and phase of the project
covered by the business agreement, as well as the scope of
the suppliers’ tasks [...].” [44]

34 www.esa.int/Our_Activities/Space_Transportation/IXV (visited on
11/05/2019).
35 https://www.eumetsat.int/our-satellites/metop-series (visited on
06/01/2021).
36 This not only motivates clear defined semantics covering different
use cases, as we aim at with our model, but additionally thorough train-
ing of the user community. In turn, such learning can profit from support
through modeled semantics, shown for security knowledge by Schnei-
der et al. [108].

Fig. 28 Tailoring dependencies to project requirements

Fig. 29 Conformance checks for tailoring

Dependent on the specific (sub-) domain and the style and
content of the standards relevant to it, different approaches
how to combine the tailored requirements with the project
requirements are common. The impact of the applicable
standard to the project strongly depends on the type of
requirement contained in the standard. Figure 28 extends
Fig. 20 to illustrate the different possible cases:

1. Functional and non-functional requirements directly con-
cerned with the product can be joined to a unified
set with the project specific requirements (RSPC) or
alternatively be refined by project requirements. For
example, ECSS-E-ST-60-20C [56] contains such func-
tional requirements.

2. ECSS standards also often contain meta-requirements
describing form or content of requirements that have to
be directly satisfied by the project requirements (RT 4 -
RP4). For example, in ECSS-E-ST-60-10C [55]: “In the
general case all probabilities shall be expressed as frac-
tions or as percentages.”

3. Project management related requirements (RSP M) that
have to be addressed in separate but related management
documents of the project (PMP), in case project require-
ments document (xRD) is a technical specification. For
example, the ECSS-E-ST-40 [97] contains mostly pro-
cess requirements standardizing the software engineering
processes. If a standard with management requirements
is made applicable to a management requirements doc-
ument, they become part of a unified set equivalent to
functional requirements for technical specifications.

123

https://www.esa.int/Our_Activities/Space_Transportation/IXV
https://www.eumetsat.int/website/home/Satellites/FutureSatellites/EUMETSATPolarSystemSecondGeneration/index.html
www.esa.int/Our_Activities/Space_Transportation/IXV
https://www.eumetsat.int/our-satellites/metop-series

2154 K. Großer et al.

Yet finally, the combined project and standards require-
ments have to be reviewed for consistency and completeness.
This conformance review is in many cases non-transparent,
especially to un-experienced engineers. This is because at
the current state most of these dependencies remain implicit
and requirements are not typed in this sense. In this context,
the explicit relations of these imported requirements to other
project requirements are of special interest to perform auto-
mated conformance, consistency, and completeness checks.
Figure 29 illustrates some possible constraints and rules to
check the conformance. For example, the deontic subset con-
straint on the right, which checks if meta-requirements are
post-RS satisfied by the respective requirements of the doc-
ument:

Constraint 2 (Meta-Requirements Satisfaction)

As we distinguish model from view, requirements that
describe properties of the view, e.g., document structure,
form a separate sub-type—ViewRequirement. Their satis-
faction can be checked with the subset constraint on the left.
It is to note that satisfaction means here the existence of a
respective traceability link, not how this link is established,
e.g., through a linked verification process [5], manually or
automated.

In combinationwith checks, if the remaining requirements
are represented in the project document, it can be evaluated
if a Document is not conform to Tailoring. The fact type is
depicted in Fig. 29 and is defined by the following derivation
rule:

Derivation 3 (Tailoring Conformance)

This check only determines non-conformance on docu-
ment level. However, to resolve conflicts and non-confor-
mances, users rely on more detailed fact types. For example,

to evaluate, which requirements are not reflected, which view
should satisfy which view requirement, or which project
requirements should satisfy which meta-requirements. The
derived fact type RequirementEntity misses to satisfy
MetaRequirement can be used to determine the individual
requirements violating the subset constraint defined in Con-
straint 2:

Derivation 4 (Unsatisfied Meta-Requirement)

This rule searches for the applicable meta-requirements
for the requirement categoryof an entity andfinds entities that
do not satisfy thosemeta-requirements. Analogously, offend-
ing views that should satisfy type-specific view requirements
can be identified.

Example ECSS-E-ST-60-10C [55] requires as “Elements
of a performance requirement” among other things a prob-
ability (confidence level) and “[t]he [statistical] interpreta-
tion of this probability”. While the EagleEye system require-
ment EE-MR-0255 [50] entitled as “AOCS Performance”
provides a probability, it lacks a statistical interpretation.

A tool supporting our framework should provide require-
ments engineers with backward information about which
meta- (or view-) requirements should be satisfied. Ideally,
such checkswould be executed as soon as an affected require-
ment or view is edited.

Other requirements, only implicitly part of the specifica-
tion through the tailoring, should automatically be included
in consistency and completeness checks. As expressed by
Derivation 5, those requirements should also be shown to the
engineers either by representing them directly or in a refined
form within the product specification.

Derivation 5 (Non-Represented Requirements)

123

Requirements document relations 2155

7 Case study

To evaluate the validity of our T-Reqs conceptual model and
demonstrate a proof of concept for the quality checks based
on it, we partially implement and populate it in a case study
[105].

State of the art requirements engineering tools, asDoorsNG,
Polarion, SE Suite,37 Visure Requirements, and others,
mostly provide the possibility to define custom data mod-
els and relation types. To implement our reference model,
as presented in Sect. 5 and 6, it can be adapted in one of
such tools. Yet, capabilities to define constraints and queries
for consistency checks are mostly limited and thus inten-
sive scripting and a thorough evaluation of tool limitations is
necessary. Furthermore, domain knowledge is necessary to
transform existing requirements and traceability information
to the suggested fine-grained representation. In the context
of the E-RMS project, ECSS is at the time of writing still
in the process to identify an appropriate tool candidate to
reform their standard requirements and related processes.
Thus, input data and an appropriate real-world tool environ-
ment are missing.

Therefore, we perform as a first step an evaluation with
a lightweight graph implementation. Graph representations
arewell suited to capture and retrieve traceability information
[12,109]. We used the data from the EagleEye specifications
specifications, as presented in Sect. 3, to build a trace graph
with the native graph database Neo4J38. Neo4J comes with
a graph database server that can be used via APIs in various
programming languages. We use the Cypher39 graph query
language to create and query a traceability graph and to show
that our constraints and derivations are suited to discover
deficiencies in tailoring of standards.

In the following, we explain first the simplified implemen-
tation schema and representation of constraints we adopted
for Neo4J to implement parts of our conceptual model rele-
vant to the tailoring process analyzed in the case study. Then,
we describe how we extracted data from the original Eagle-
Eye specification specification documents in PDF format to
populate this graph, introduced as steps (D) and (E) in Fig. 2.
Next, we present the selected quality checks implemented as
Cypher graph queries and their application to the case study
data—step (F). Finally, we discuss the results and threats to
validity.

37 TRC https://www.reusecompany.com/systems-engineering-suite,
visited on 05/20/2021.
38 https://neo4j.com/, visited on 10/25/2020
39 https://neo4j.com/developer/cypher/, visited on 11/11/2020.

7.1 Graph schema

The graph model of Neo4J is a labeled property graph with
binary relations. There is no explicit graph schema. Instead,
the schema emerges from the existing nodes, relations, and
properties in the graph. Neo4J imposes no restrictions on the
labels of relations or linked nodes. This approach is very
flexible since new information can be added at any time
to an already existing graph. On the other hand, without
knowledge about the various node types and the relation
types that connect the nodes, meaningful and efficient query-
ing is impossible. The typical approach to query previously
unknown graphs is to perform a manual graph exploration
or schema reconstruction based on samples of the data. In
our approach, coming from a formalized conceptual model
in ORM, this step can be skipped since we know exactly
what is related and how. However, the expressiveness of
ORM schemas substantially exceeds that of schemas for
labeled property graphs. Hence, it is necessary to derive an
implementation schema. This step would also be necessary
to create a custom data model for an existing requirements
engineering tool. Since the foundations of ORM were laid
in the data-engineering domain, transformation from ORM
into relational database schemas are available. Yet, in imple-
mentations on hand, derived and semi-derived facts andmost
constraints are not automatically transformed at all. To our
knowledge, only first premature work exists on mapping of
an ORM schema to graph databases, e.g., [110] or [111]. Our
manually derived implementation schema for the traceability
graph in this case study is explained in the following sections.
We also realize some exemplary derivation rules by manu-
ally translating them into equivalent Cypher queries. These
queries only depend on the schema, not on the data of our
case study and are thus project independent.

To improve processing performance and to make the
graphs easier to understand, we do not map all ORM schema
elements, but only incorporate those that contribute to answer
the user’s questions. We concentrate on those parts of the
ORM model that relate to the tailoring process. The schema
is divided in three sections: document structure as the view
part, requirement model, and tailoring model. Figures 30,
31, and 32 show a simplified UML representation of these.
We use UML classes to denote nodes and associations to
denote directed relations. The class names and the associ-
ation names resemble the object types and fact types of the
ORM schema. Attributes are omitted to improve understand-
ability.40 The names are used as node and relation labels in
the graph. Since labeled property graphs do not support gen-
eralization, the generalization hierarchy had to be flattened,
and relations that encounter super-types in the ORM schema
had to be copied to all non-abstract sub-types.

40 The complete schema can be obtained at [112].

123

https://neo4j.com/
https://neo4j.com/developer/cypher/
https://www.reusecompany.com/systems-engineering-suite
https://neo4j.com/
https://neo4j.com/developer/cypher/

2156 K. Großer et al.

Fig. 30 Graph schema for the document structure

Fig. 31 Graph schema for the requirement model (green parts)

ADocument, as shown in Fig. 30, consists of chapters and
paragraphs. The ordered CONTAINS relation allows for arbi-
trary nesting and is used to represent the sequence of chapters
and paragraphs in a document. Requirements are represented
in RequirementParagraph while other content is stored in
InformativeParagraphs. The two document types used are
ECSSStandard and TechnicalSpecification. There are three
high-level document trace links: REFERENCES, APPLIES_TO,
and REFINES. The first is a simple reference; the second
denotes stricter semantics to include the requirements of the
applicable document into the referrer document, depending
on a tailoring decision. ApplicableDocument is modeled as
a node type since it has further relations to a tailoring. Doc-
uments on more detailed abstraction levels connect to their
parents by REFINES relations.

In the requirement model in Fig. 31, the RequirementSet
and Requirement forma directed acyclic sub-graph structure
of nested sets by means of the INCLUDES relation.41 REPRE-

41 Unlike CONTAINS, INCLUDES is not ordered.

Tailoring

TailoringDecision

BELONGS_TO

MAKES_APPLICABLE

TAILORS

RECOMMENDS

INCLUDES

MAKES_APPLICABLE

TAILORS

RECOMMENDS

INCLUDES

PROVIDES

TailoringRecommendation

Requirement

RequirementSet

ApplicableDocument

ADDED
MODIFIED
NO
YES

<<enum>>
DecisionType

Fig. 32 Graph schema for the tailoring model (yellow parts)

SENTS relations link both to the document structure. REFINES
is an example of trace links between individual requirements.
More trace link types can be added as needed. The textual
content of requirements is stored in Wording nodes.

Finally, Fig. 32 shows how tailoring of standards is
addressed in the graph. The relevant concepts are defined and
explained in Sect. 6. A Tailoring TAILORS a standard and is
a RequirementSet that consists of the tailored requirements.
Since a standard usually is applied to many specifications,
each tailoring BELONGS_TO one or more ApplicableDocu-
ment. Each tailoring PROVIDES a set of TailoringDecisions.
Depending on the decision type, the source requirementsmay
be copied (decision: YES), skipped (NO), or refined (MODI-
FIED). Another option is to add new requirements that could
be incorporated into a future release of a standard. Addition-
ally, some standards comewith TailoringRecommendations
that recommend whether a requirement set is intended to be
incorporated to dependent documents, or if it is optional. All
requirement entities influenced by a tailoring decision are
linked by MAKES_APPLICABLE relations.

7.2 Constraints

Constraints in the implementation are intended to prevent
inconsistent or corrupted data on a technical level. Con-
straints should be enforced by the underlying technology.
For example, the relation types connecting nodes should be
restricted to match the implementation schema. The schema-
less approach in Neo4J contradicts such restrictions. Thus,
it is the responsibility of the tooling to care for consistent
data. Alternatively, user-defined triggers could be installed
to check for violations before changes are committed to the
database.We omit triggers, since in the case study, automated
extractors create the graphs (see Sect. 7.3) and subsequently
they are used mostly in read-only mode. Uniqueness of iden-

123

Requirements document relations 2157

tifiers can be checked and enforced automatically in Neo4J
by defining uniqueness constraints on properties for specific
node labels.42

Derived facts as presented in Sect. 5.4.3 can be used to
describe a softer type of constraint. We use them do deter-
mine quality issues that can be reported to users. Graph
queries with their ability to traverse nodes by matching a
path description allow for a straightforward realization.

7.3 The EagleEye graph

To build the traceability graph for EagleEye, we automati-
cally extract the document structure and requirements from
ECSS and EagleEye documents. Of course, scanning tex-
tual documents to create the requirements model is not the
intended approach. Instead, in an ideal setting, the documents
would be created from the model and editors would provide
editable views, where writing requirements simultaneously
creates or modifies the view and model elements.

In this case study, only the public PDF versions of doc-
uments are used. For EagleEye, other formats were not
available at the time.They are created byvarious stakeholders
without using a requirements engineering tool. The plain text
of the PDFs is extracted with the Apache PDFBox43 library
and processed line by line by an importer tool that creates the
graph elements. In total, 20 ECSS standards and 4 technical
specifications are scanned. The resulting graph has 17.476
nodes and 23.507 edges and contains 4.132 requirements.

7.3.1 Detection of the document structure

The importer extracts the document structure, i.e., chapter
headings, nesting of chapters, and requirements paragraphs.
For example, the following plain text fragment from ECSS-
E-ST-60-20C [56] has to be processed:

4.1.3 Star tracking
4.1.3.1 Inputs
a. The minimum set of inputs to be supplied in
order to initialize the Star Tracking shall be:
1. the initial star position;
2. the angular rate;
3. validity date.
b. For aided tracking, data specified in
4.1.3.1a shall be supplied regularly by the
spacecraft, at an update rate and accuracy
agreed by the customer.
c. The unit of all inputs shall be indicated.

It contains a chapter heading “Star tracking”, a nested
chapter “Inputs”, and three requirements starting with lower

42 We found no way to enforce uniqueness of an attribute for all nodes.
For example, a uuid attribute should be globally unique, not only within
a subset with common labels.
43 https://pdfbox.apache.org, visited on 11/11/2020.

case letters a, b, and c. To find chapter headings in the plain
text of a document, we use regular expressions. For exam-
ple, the chapter headings of ECSS standards are found using
Regular Expression 1.

Regular Expression 1 (ECSS chapter heading)

ˆ(
(Annex\s+([A-Z])(\s*(\([a-z]+\))?)) |
([A-Z](\.\d+)+) |
([<]?\d+(\.\d+)*[>]?)

)\s*
([ˆ.;:-]*)$

In this regular expression, the first three parts match
the numbering variants of a chapter, while the last line
matches the heading text. The first numbering variant
matches the main heading of an annex, like Annex C
(informative). The second variant deals with the hier-
archical numbering inside an annex. An example plain text is
C.8.2 Star tracker. Lastly, the third variant matches
hierarchical numbering of chapters in the main sections of a
standard. If a line of the plain textmatches the regular expres-
sion, this indicates a potential chapter or paragraph heading.

The regular expressions are constructed after manual
inspection of some of the documents, running a test scan,
and then refining the expressions. However, even after refine-
ment, we observed many false positive matches. To sort out
those false positives, we used the following checks for each
document:

a) A manually created list of pages to be ignored by the
importer. For example, some pages contain tables with
text matching the chapter heading expression, but not
being a heading.

b) A manually created list of chapter numbers that can
contain requirements. Only those chapters are analyzed
for requirements. ECSS standards as well as techni-
cal specifications follow a common document structure.
For example, in ECSS standards, requirements can only
occur in Chapter 4ff, and in the annex.

c) A heuristic telling if a chapter number is a viable succes-
sor of the previously detected chapter number.

Regular Expression 2 (ECSS requirement heading)

ˆ([a-z])\.\s+(.*)$

The Regular Expression 2 is used to detect and extract the
heading and the first part of the wording of a requirement. If
the plain text matches the expression, and the match occurs
inside a requirements chapter, the corresponding view and
model nodes are created.

Similar regular expressions and the same heuristics were
used to import the technical specifications of EagleEye. We

123

https://pdfbox.apache.org/
https://pdfbox.apache.org

2158 K. Großer et al.

are aware of the fact that this approach is only a preliminary
step, and that the importers are one-time software.

7.3.2 Creating the view andmodel nodes

Documents, RequirementSets, and Requirements are iden-
tified by a unique user ID. In case of the standards, it
corresponds to the chapter and section numbering. For
the technical specifications of EagleEye, requirements have
unique identifiers that can be used. To avoid name clashes,
the document ID is added as a prefix.

Graph nodes and edges are created by executing Cypher
queries via the Neo4J Java API. For each document, the
importer creates a top-level ECSSStandard or Technical-
Specification node as root of the CONTAINS hierarchy by
executing Query 1. On the model side, a corresponding top-
level RequirementSet is used as root of the INCLUDES hier-
archy. Additionally, REPRESENTS edges are created between
each document and its top-level RequirementSet. Query
variables ($), e.g., $title, are set by the importer before
execution.

Query 1 (Creation of an ECSSStandard node)

CREATE (d :ECSSStandard {
uuid: $docUuid,
userId: $userId,
title: $title,
filename: $filename})

-[:REPRESENTS]-> (rs :RequirementSet {
uuid: $rsUuid,
userId: $userId,
title: $title})

Requirements are grouped in RequirementSets. They
form a tree created according to the chapter nesting. As
explained in Sect. 5.2.2, the one-to-one mapping of chapters
to sets is not the sole possible or favored set hierarchy.Yet, it is
the only one automatically derivablewithout additional infor-
mation on requirements content and classification. Besides,
tailoring recommendations can refer to chapters. Hence, it
makes sense to create a set per chapter to provide target nodes
for the recommendation and decision relations. Query 2 cre-
ates the respective nodes and edges and links the newly
created Chapter and RequirementSet nodes to their parents
in the CONTAINS and INCLUDES hierarchy.

Query 2 (Creation of a Chapter node)

MATCH
(n {uuid: $parentUuid}),
(rsp :RequirementSet {uuid: $rsParentUuid})

CREATE (n)
-[:CONTAINS {index: $index}]-> (c :Chapter {

uuid: $chapterUuid,
userId: $userId,
title: $title,
pageNumber: $pageNumber})

-[:REPRESENTS]-> (rs :RequirementSet {
uuid: $rsUuid,
userId:
$userId, title: $title})

<-[:INCLUDES]- (rsp)

A similar query is used to create Requirement nodes and
to link them to their parent sets. Since informative text in the
documents is not relevant for the analyses of this case study,
the importer currently does not create InformativeParagraph
nodes.

Due to the heterogeneous formats and varying quality of
the available documents, trace information beyond contain-
ment and representation could not be extracted automatically.
Instead, the trace links are createdmanually by specifying the
source and target user id and the required relation type (c.f.
Sect. 4.2). We add around 40 nodes and 70 trace relations
to store the document dependencies and the tailoring data.
Relations between individual requirement, such as REFINES
(c.f. Sect. 4.1), are not considered. Such explicit links are
not present in the documents. Rather, trace information is
only given on a coarse granularity level by referencing whole
sections of standards. Even the few references to individ-
ual requirements found in the technical specifications cannot
be exploited because of missing trace type information and
unavailable referenced documents. Establishing correct trace
links manually furthermore would require understanding
the technical and scientific details of the space engineering
domain. Because of this missing information, only analysis
that do not rely on these relation types are implemented for
this case study.

Converting PDF documents to plain text is not an ideal
solution to populate a trace graph. This is because the PDF
format is meant to perfectly reproduce the layout of a docu-
ment, but not to represent the structure. The extractors have
to deal with many exceptions, as explained in the previous
section. We assume that better precision and more automa-
tion could be achievedwhen formalized sources, for example
DOORS databases44 would be available. Anyway, this step is
only necessary to transform the legacy data of the case study.
New projects using a tool that follows the reference model
would produce this data while editing the requirements.
Dependent on the tool capabilities, partially automated trace
retrieval can be supported.

7.4 Consistency and conformance checks

Wedemonstrate the applicability of our approach by showing
how theDerivation 2 for conflicting tailoring decisions (see p.
21) and the Derivation 5 for missing requirements (see p. 23)
can be computed with graph queries on the implementation
schema.

44 Porting of the EagleEye specifications toDOORSwas ongoingwhile
the work presented here was performed.

123

Requirements document relations 2159

7.4.1 Conflicting tailoring decisions

Derivation 2 uses the fact type tailors and the derived fact
type implicitly tailors45 that link tailoring decisions with
requirement entities.When the referenced entity is a Require-
mentSet that can include requirements and nested sets, those
nested entities are regarded as implicitly tailored by the deci-
sion.

Derivation 6 (Implicitly Tailors)

Hence, implicitly tailors is the transitive closure of the
INCLUDES relation, where entities46 that have an individual
tailoring decision are not part of the closure. Derivation 6 can
be computed47 by Cypher Query 3.

Query 3 (Implicitly Tailors)

MATCH (td1 :TailoringDecision)
-[:TAILORS]-> (re2 :RequirementSet)
-[:INCLUDES*1..]-> (re1: RequirementEntity)

WHERE NOT EXISTS {
MATCH (td2 :TailoringDecision)
WHERE ((td2) -[:TAILORS]-> (re1))

OR (EXISTS {
MATCH (td2) -[:TAILORS]-> (re3 :RequirementSet)

<-[:INCLUDES*1..]- (re2)
WHERE (re3) -[:INCLUDES]-> (re1)

})
}
RETURN td1, re1

The transitive closure is built by matching the INCLUDES
relation multiple times. The condition in the WHERE part
of the outer query prunes sub-graphs with individual tailor-
ing decisions. In the query, the “that is some …” parts of
the derivation rule do not appear since the type hierarchy is
flattened in the implementation schema. To compute Deriva-
tion 2, Query 3 would have to be incorporated as a sub-query.
This would result in a very complicated query. We “materi-
alize” the implicitly tailors facts by adding explicit relations

45 c.f. Fig. 22, p. 19.
46 including their descendants
47 Due to a bug in the Cypher engine, we actually use a less efficient
work-around. It is provided at [112].

between the nodes of the result set through preventive exe-
cution of this query.

Figure 33 shows an excerpt of our trace graph. At the top,
an ApplicableDocument (dark green) between an Eagle-
Eye specification and ECSS standard is shown. The chapter
structure (grey nodes with CONTAINS links) form a tree. The
leafs of the structural tree areRequirementChapters (purple)
that represent the Requirements (green) with theirWording
(orange).

The central yellow node represents the Tailoring with
some expanded TailoringDecision nodes. The bottom right
yellow decision node labeled with NO refers to a require-
ment set (dark blue) that does not include subsets while
the decision labeled with YES on the left tailors a set with
deeper nesting. The IMPLICITLY_TAILORS edges were added
to allow for simpler subsequent queries. In our example, 179
additional edges are created for a tailoring of one ECSS
standard. Of course, this overhead in space can be traded
for more complicated and less efficient queries. Depending
on the concrete graph size, document structure, and fre-
quency of violation detection, and target technology, such
optimizations could be omitted or deferred. Similarly, the Tai-
loringRecommendation propagates through the INCLUDES
relations. The implicitly affected nodes are linked by IMPLIC-
ITLY_RECOMMENDS edges.

These materialized shortcut edges make the detection of
violations very easy. Query 4 determines pairs of Tailor-
ingDecision and TailoringRecommendation nodes that are
in conflict with respect to the Derivation 2 on page 21.

Query 4 (Recommendation Violation)

MATCH (td :TailoringDecision {decision: ’NO’})
-[:TAILORS|IMPLICITLY_TAILORS]->
(:RequirementEntity)
<-[:RECOMMENDS|IMPLICITLY_RECOMMENDS]-
(tr :TailoringRecommendation { mandatory: true})

RETURN DISTINCT td, tr

The graph excerpt in Fig. 34 shows three tailoring recom-
mendations (red nodes). A true value in a recommendation
specifies that the requirements in the referenced set (blue
node) have to be applied, while false marks optional appli-
cation. Hence, the leftmost tailoring decision (yellow node)
labeled with YES as well as the rightmost one comply with
the respective recommendations. In contrast, the tailoring
decision labeled with NO excludes requirements that are
mandatory since the recommendation holds a true value.
Query 4 reports this conflict as a pair of the two conflict-
ing nodes. In the figure example, only the simplest situation
is depicted, where recommendation and decision refer to
the same set. Yet, this is the only case contained in the
EagleEye data. However, by considering possibly nested sets
and requirements, nested decisions, and nested recommen-

123

2160 K. Großer et al.

Fig. 33 Excerpt from EagleEye graph with implicit tailoring decisions

dations, the query is also capable to detect conflicts with a
more complex structure.

7.4.2 Missing tailorings

When a standard is applied to a specification document, it
needs to be tailored to determine the relevant requirement
set. The tailoring does not necessarily have to belong to this
document, but can also occur at a document further down the
refinement hierarchy of a specification document tree. Thus,
in complex specification trees, it is easy to miss a tailoring.
While experienced project engineers usually are aware of
the standard requirements that apply to a specification, miss-
ing explicit tailorings contradict completeness provisions, as
defined by ECSS. In the available EagleEye documents, we
encountered many applicable standard references without a
tailoring.48 In general, missing tailorings inhibit automatic

48 We assume that those applicable standards would be tailored by
more detailed documents on system or subsystem level, but such doc-
uments do not exist for the virtual mission. Furthermore, according to
our interviews (c.f. Sect. 6.3) it seems to be common to assume that an
experienced supplier “knows how to tailor these standards”.

computation of the complete effective requirement set of a
project and thus hamper automated and manual consistency
reviews. Derivation 7 for the fact type is not tailored49 can
be used to detect missing tailorings.

Derivation 7 (Applicable standard is not tailored)

The rule checks where a tailoring is missing on the level
where the standard is applied for the first time (first part of
the and) and that a tailoring cannot be found in any of the
refining documents. Since the rule is recursive (last line), it
traverses the transitive closure of the refines hierarchy. For

49 see Fig. 21 on p. 19 and Fig. 29 on p. 22.

123

Requirements document relations 2161

Fig. 34 Excerpt from EagleEye graph with tailoring recommendation violation

our traceability graph implementation, Query 5 computes
Derivation 7.

Query 5 (Applicable standard is not tailored)

MATCH (st :ECSSStandard)
-[:REFERRED_BY]-> (ad :ApplicableDocument)
-[:APPLIES_TO]-> (d1 :TechnicalSpecification)

WHERE NOT EXISTS {
MATCH (ad) <-[:BELONGS_TO]- (:Tailoring)

-[:TAILORS]-> (st)
}
AND NOT EXISTS {

MATCH (st) <-[:TAILORS]- (:Tailoring)
-[:BELONGS_TO]-> (ApplicableDocumet)
<-[:APPLIES_TO]- (:TechnicalSpecification)
-[:REFINES*1..]-> (d1)

}
RETURN ad

In this query, the nodes ad, d1, and st bind to any
applications of a standard. They refer to the variables
StandardApplicability1,Document1, and StandardofDeriva-
tion 7, respectively. The first condition of the WHERE part
checks the absence of a tailoring of st on the same level as
d1, while the second condition traverses the REFINES hierar-
chy. This second part checks that a tailoring of the standard
does also not occur on one of themore detailed levels. For our

case study, the query reports 7 out of 11 ApplicableStandard
trace relations without an explicit tailoring.

We have shown by two non-trivial examples how graph
queries can be used to compute derived facts of our ORM
schema. Matching and path traversal in graphs facilitates
efficient evaluation of such derived facts. By materializing
derived facts in additional edges, queries for derivations that
build on other derivations can be simplified. We did not mea-
sure evaluation times. For the graph size used in our case
study (around 40.000 nodes and edges), the resultswere com-
puted almost instantly with no observable delay. Practical
performance will strongly depend on the target requirements
engineering or traceability tool and its technology to imple-
ment such queries.

7.5 Discussion

The main goal of our approach is to support reviews and
conformance analysis within projects with dependent and
reused requirements documents such as standards. On one
hand, recall on identified dependencies shall be enhanced
by explicitly visualize otherwise overlooked dependencies
to individual requirements, e.g., within applicable standards.
On the other hand, we expect to reduce the effort for review-
ers by limiting the number of dependency candidates by

123

2162 K. Großer et al.

classification (meta-requirements) or reduce effort by classi-
fication of relation types [25,39]. To achieve this, a rich set
of traceability relation types and traceable entities is defined.
Pinheiro [27] notes on very rich sets of traces and traceable
objects that “the complexity of themodelmay impair the trac-
ing process”. To determine the necessary relevant entities,
dependencies and constraints in our detailed meta-model of
individual relations we analyzed several project documenta-
tions, ECSS standards and drafting rules for such standards
and verified our results in interviews and discussions with
domain experts. To evaluate the usefulness and effective-
ness of the approach, the approach has to be integrated into
requirements engineering processes and tools of the target
organizations. This would also enable to evaluate if model
complexity can be concealed by adequate tool support, i.a.,
through automated trace retrieval, or if it has a limited scala-
bility. Yet, the presented case study based on EagleEye only
represents a proof of concept. This is due to a lack of an
adequate tool environment, which covers ECSS standards as
well as project requirements with the right level of granular-
ity and several limitations of the dataset.

7.5.1 Threats to validity

Zogaan et al. [113] summarize possible threats to validity
for datasets used for traceability studies, covering different
aspects of internal validity, external validity, and reliability
[105]:

Artificial Answer-Set Although our data- and answer-set
is no Student Dataset, still it is an artificial example. A
ground truth answer-set only exists for small proof of con-
cept excerpts and other researchers may come to different
conclusions on how to classify requirements and dependen-
cies.

Real-World DataAlthoughEagleEye is an artificial exam-
ple with reduced complexity, it is to a certain degree
representative for industrial projects. It is developed with
industry involvement fromESAand several companies based
on previous projects and for the simulation some real soft-
ware deliverable is implemented. Furthermore, the standards
used are real domain standards applicable in all similar
European space engineering projects. However, due to con-
fidentiality and the sometimes classified nature of safety and
security critical missions, it is difficult to publish actual real-
world examples from this domain. Here, EagleEye fills the
gap for illustration and as a potential benchmark.

Limited Observations As only proof of concept examples
for one case study are implemented, only limited observa-
tions can be claimed. Yet, the interviews showed that the
dependencies and problems addressed in the case study occur
in real life projects.

Domain The background research and case study are
focused on only one domain. Yet, similar issues with stan-

dardized reuse and conformance can be observed in other
highly standardized, security, safety, and/or privacy sensi-
tive domains, such as aerospace, automotive, and healthcare
[38,39,101]. Yet, different types of requirements in other
domains can raise the need for additional dependencies to
be considered.

Size The small size of the dataset implemented in the case
study is one of the main threats to generalization. With only
few examples and no established ground truth, it is not pos-
sible to measure the effectiveness of the approach in terms
of precision and recall compared to manual reviews. In the
same way, usability can only be evaluated with a substan-
tially large enough—realistic—example andwith integration
to established tooling and workflows. However, previous
research that incorporated very large graphs50 with several
millions of nodes and edges showed that the efficiency of
recent query languages is sufficient to be used even in inter-
active tools. Current initiatives in the domain, as the E-RMS
development and theOSMoSE51 initiative to develop a space
systems ontology, are expected to produce larger datasets
with the required level of detail and appropriate extensible
tool support in the near future. Yet, the challenge is, that only
the ECSS repository data is not sufficient—to investigate
the application to projects, compatible system specifications
with adequate granularity and formality have to be avail-
able. In addition, the small group of interview partners is
not representative. Yet, the aim of this qualitative investiga-
tion was to verify our assumptions about heterogeneity and
lack of awareness for different tailoring procedures and con-
formance review approaches and to explore new facets of
the topic. Semi-structured interviews are well suited for this
[106], but due to their time consuming nature do not scale
well for large samples.

Artifact Type Only natural language requirements and
specificationdocuments are considered.Generally, the approach
is extensible for other artifact and relation types, which may
raise the need for additional relation types and adjustment of
derivation rules. For EagleEye also other artifacts, such as
system models and source code are available.

Programming Language As we used a lightweight graph
implementation for our evaluation, we expect it to be easily
portable to other graph representations and query languages.
Yet, consistency constraints cannot be preserved on the tech-
nical level thisway. This can be achieved by directly using the
XML based population feature of the NORMA ORM-tool.
This, however, suffers from severe performance issues and
does not scale to larger populations. An alternative are graph

50 Those graphs were extracted as fine-grained representations of pro-
gram structures of complex software systems.
51 Kick-Off meeting in June 2019, https://indico.esa.int/event/310/
(visited 17/11/2020).

123

https://indico.esa.int/event/310/

Requirements document relations 2163

frameworks with schema support, such as JGraLab52 which
works on TGraphs [114]. However, manual meta-model
transformation is tedious and error prone. It is possible to
overcome such problems by an automatic model transforma-
tion from the ORM schema to a TGraph schema. Obviously,
the transformation should convey the complete datamodel. A
more ambitious goal is to transfer the constraints and derived
facts from the conceptual level to the implementation level,
too. First results in this direction were achieved in a proto-
type transformation tool [111]. However, an implementation
of the referencemodelwith its queries should be integrated to
a full requirements engineering and/or traceability solution.

Selection Bias For proof of concept, only a subset of the
available data is implemented as trace graph. To show the
applicability we select examples representative for problem
categories. We do not claim this to be statistically represen-
tative for occurring relation types or quality of real-world
projects.

Information Bias As mentioned in Sect. 7.3, we assume
that better precision is achieved when formalized sources,
like DOORS databases or E-RMS [83], are used instead of
PDF text documents. However, as we only aimed for a proof
of concept, the current results are not negatively impacted by
this. A Negative Set Bias is not applicable, as no automated
classification is used. Concerning reliability, we provide the
graph and queries of our experiment for replication and anal-
ysis [112]. However, the conceptual model it is based on
may differ, if modeled by other researchers. Nevertheless,
the general assumptions are likely to hold, as they conclude
from domain expert knowledge and literature by application
of the Conceptual Schema Design Procedure (CSDP) [85,
p.13].

7.5.2 Challenges and future work

Our approach is based on the existence of explicit rela-
tions fromwhich additional implicit relations can be derived.
“It is also useful to incorporate extraction mechanisms not
bounded to the existence of explicit links” [27]. Some
relations can be derived through derivation rules over the
properties of traceable entities. We address this in work in
progress on an extended version of the meta-model covering
more fine-grained properties of requirements. It is of spe-
cial importance to correctly identify the content and targets
of requirements, but this is also challenging for Systems of
Systems (SoS) [115]. In Sect. 2, some related approaches
for automated trace retrieval are discussed. Such approaches
need to be tailored to match our set of relation types, as
most automatic approaches to trace recording only support
one general type of traceability link [69]. Besides this, our
reference model is ready to be used together with automated

52 https://jgralab.github.io/jgralab/, visited on 10/29/2020.

trace retrieval techniques, as for our constraints, analysis, and
additionally derived relations it is not important if the links
are asserted manually or by some algorithm.

Furthermore, we plan to extend the meta-model with
further relations and dependencies resulting from the refine-
ment of documents within the customer supplier chain and
to adjust it to SAVOIR’s generic specifications. One chal-
lenge in this area is the relation between SAVOIR and
ECSS documents. Our interviews (c.f. Sect. 6.3) show that
it is not yet clearly defined, how applicable document links
from SAVOIR specifications to ECSS standards should be
resolved. The integration of feature models [80]would enable
to express more complex dependencies in tailoring, as also
mutually conditional recommendations can be expressed.
Further work in this area could be the basis to build tool
support that enables requirements engineers to better handle
complex document dependencies in big projects and facili-
tate reuse by formalizing the import of existing requirements,
not only from standards. Likewise, tailoring of other stan-
dards, generic sources, requirements from legal documents,
and legacy requirements are expected to work in a similar
way.

The lack of convenient tools with suitable requirements
classification and good facilities for accessing the require-
ments repository is also identified as a critical factor hinder-
ing requirements reuse [22]. We therefore need to develop
such tooling or integrate our approach to existing tools
targeting an appropriate level of granularity, e.g., in the
context of the E-RMS [83] or OSMoSE initiatives. One chal-
lenge here is the transformation of the existing standards
to the new, more fine grained, format. Currently implicit
properties of requirements, i.a., the differentiation in meta-
and view-requirements, needs to be made explicit. Machine
learning (ML) approaches for text classification [116,117]
have been successfully applied for requirements classifica-
tion problems [108,118] and seem promising for this task.
Alternatively, heuristic rules on term patterns can be used, as
Houmb et al. [119] or Gärtner et al. [120] demonstrate for
the identification of security requirements.

Furthermore, such tooling also needs to address meta-data
for trace management and versioning of relations and trace-
able entities. State of the art tools mostly already support
configuration management, thanks to the integration of ver-
sion control systems. Through baselines, different versions
can be treated as individual traceable entities in the sense
of our conceptual model. This is necessary, as several ver-
sions of a document might be used in parallel. For example,
a project near to completion might not want to update the
version of a used standard anymore. Thus, automated prop-
agation of changes through different projects is challenging.
It depends on the type of relation between the entities and the
type of change. This could be handled via event-condition-
action rules as by Schwarz et al. [88]. The main challenge is

123

https://jgralab.github.io/jgralab/
https://jgralab.github.io/jgralab/

2164 K. Großer et al.

to differentiate between pure editorial and semantic changes.
We plan to research this for a future extension of the reference
model.

8 Conclusion

The main goal of our approach presented in this paper is to
support reviews and conformance analysis within projects
with dependent and reused requirements documents, such
as standards. To achieve this, we investigate the following
research questions:

RQ-I. Which types of relations are relevant for requirement
reuse from documents?

RQ-II. How can requirements reuse from documents be
formalized into a structured process that supports
integration?

In this paper, we provide an overview on different types
of requirement relations with a special focus on inter-set and
view relations. Documents are considered as views on sets
of requirements with traceability relations on their own. To
specify these relation types, the concept of “layered traceabil-
ity” described by Gotel and Finkelstein [6] is used. Relations
between artifacts of different representation granularity, e.g.,
requirements documents, requirements sets, or individual
requirements, influence each other. We particularly focused
on dependencies between relations of different types to han-
dle implications through different representation layers.

As a reference for reuse scenarios tacklingRQ-I andRQ-II
the tailoring processes for standards of the European Coop-
eration for Space Standardization (ECSS) [43] are analyzed.
We introduced specific relations amongst logical sets of
requirements and requirements documents, based on known
inter-requirements relations, which are relevant for confor-
mance analysis with respect to standard tailoring.We showed
their applicability in practice through usage examples from
space industry.

Results are formalized as a conceptual model using
the Object-Role Modelling (ORM) [86,87] notation. We
expressed dependencies between different relation types via
constraints and derivation rules.

The EagleEye case study, a virtual earth observation mis-
sion, is used to implement a proof of concept trace graph in
Neo4J.We show example Cypher queries to detect violations
of tailoring recommendations and missing tailorings.

Yet, our framework in its current state ismostly theoretical
and we have not yet developed any tool support. Future work
should therefore focus on implementing a practical tool to
validate the framework. State of the art requirements engi-
neering tools bring the capacities to define meta-models with
customized artifact and relation types. Yet, often limitations

exist in terms of defining the relation semantics, constraints,
and especially dependencies among them. Further investiga-
tions of potential existing tools to be extended are necessary.

The theoretical foundations shall contribute to initiatives
to conceptualize and standardize these trace dependencies.
The provided reference model extends similar reference
models for high-end traceability as provided by Ramesh
and Jarke [5] to enable shared semantics within the target
domain. The overall goal is to enable semantic interoperabil-
ity between different tools used through the overall space
systemdevelopment and operations life-cycle, betweenESA,
the space related national agencies and industry, as envi-
sioned, e.g., by Winkler and Pilgrim [69] and tackled by
ESA’s OSMoSE initiative. Furthermore, advanced require-
ments management systems supporting requirements reuse
through pattern catalogues, such as the ECSS E-RMS [83],
need such traceability models to support conformance anal-
ysis and enhance the catalogue by usage feedback.

We expect our contributions to be relevant beyond the
space engineering context. The interoperability difficulties
encountered in the European space business are not bound to
this domain. They exist in all large projects involving many
tools andmany teams, distributed geographically and in time.
Similarly, the reuse through standards and related dependen-
cies and conformance analysis issues are also found in other
safety critical, standardized, embedded systems domains, as
aeronautics, defense, automotive, or health care.

Acknowledgements We gratefully acknowledge financial support by
European Space Agency’s (ESA) NPI program under NPI No.
4000118174/16/NL/MH/GM. Furthermore, we are thankful for the
fruitful collaboration with ECSS and ESA’s ESTEC, Noordwijk. In
particular, the contributions of Serge Valera, Andreas Jung, and the
whole TEC/SW team. Our best thanks for constructive discussions and
feedback also to Marsha Chechik, Daniel Strüber, Veronika Vasileva,
and Jakob Großer, as well as the anonymous reviewers, who helped to
improve the quality of the paper. Modeling of ORM performed with
NORMA [122] and UML with Astah [123].

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Requirements document relations 2165

A Basic ORM graphic notation

References

1. Dick, J.: Rich traceability. In: 1st International Workshop
on Traceability in Emerging Forms of Software Engineering
(TEFSE’02), pp. 18–23 (2002)

2. Spanoudakis, G., Zisman, A.: Software traceability: a roadmap.
In: Handbook Of Software Engineering And Knowledge Engi-
neering: Vol 3: Recent Advances. World Scientific, pp. 395–428
(2005)

3. Goodrum, M., et al.: What requirements knowledge do devel-
opers need to manage change in safety-critical systems? In:
25th IEEE International Requirements Engineering Conference
(RE’1). Sept. (2017), pp. 90–99. https://doi.org/10.1109/RE.
2017.65

4. Gaspard-Boulinc, H., Conversy, S.: Usability Insights for
Requirements Engineering Tools: AUser Studywith Practitioners
in Aeronautics. In: 25th IEEE International Requirements Engi-
neering Conference (RE’17), pp. 223–232 (2017)

5. Ramesh, B., Jarke,M.: Toward referencemodels for requirements
traceability. In: IEEE Transactions on Software Engineering 27.1,
pp. 58–93 (2001). https://doi.org/10.1109/32.895989

6. Gotel, O.C.Z., Finkelstein, A.C.W.: Contribution structures
[Requirements artifacts]. In: 2nd IEEE International Symposium
on Requirements Engineering, pp. 100–107 (1995)

7. da Silva, L.F., Leite, J.C.S.d.P.: Generating requirements views: a
transformation-driven approach. In: Electronic Communications
of the EASST 3 (2006): 3rd Workshop on Software Evolution
Through Transformations: Embracing the Change (2006). https://
doi.org/10.14279/tuj.eceasst.3.39.21

8. Leite, J.C.S.d.P., Oliveira, A.d.P.A.: A client oriented require-
ments baseline. In: IEEE International Symposium on Require-
ments Engineering (RE’95), pp. 108–115 (1995). https://doi.org/
10.1109/ISRE.1995.512551

9. Leite, J.C.S.d.P., et al.: Enhancing a requirements baseline with
scenarios. In: Requirements Engineering 2.4, pp. 184–198 (1997)

10. Siegemund, K., et al.: Towards ontology-driven requirements
engineering. In:WorkshopSemanticWebEnabledSoftwareEngi-
neering at 10th International Semantic Web Conference (ISWC)
(2011)

11. van Lamsweerde, A.: Requirements Engineering. From System
Goals to UML Models to Software Specifications. John Wiley &
Sons Inc (2009). (ISBN: 978-0-470-01270-3)

12. Schwarz, H., et al.: Graph-based traceability: a comprehensive
approach. In: Software and Systems Modeling (SoSym) 9.4, pp.
473–492 (2010)

13. Maletic, J.I., et al.: Using a hypertext model for traceability link
conformance analysis. In: InternationalWorkshop on Traceability
in Emerging Forms of Software Engineering, pp. 47–54 (2003)

14. Espinoza, A., et al.: Analyzing and systematizing current trace-
ability schemas. In: 30th An nual IEEE/NASA Software Engi-
neering Workshop (SEW), pp. 21–32 (2006). https://doi.org/10.
1109/SEW.2006.12

15. Rupp, C., Joppich, R.: Anforderungsschablonen - der MASTER-
Plan für gute Anforderungen. German. In: C. Rupp and die
SOPHISTen. Requirements-Engineering und -Management - Aus
der Praxis von klassisch bis agil. 6th ed. Carl Hanser Verlag
München, pp. 215–246 (2014). ISBN: 978-3-446-43893-4

16. Rupp, C., Günther, A.: Das SOPHIST-REgelwerk - Psychothera-
pie für Anforderungen. German. In: C. Rupp and die SOPHISTen.
Requirements-Engineering und -Management - Aus der Praxis
von klassisch bis agil. 6th ed. Carl Hanser Verlag München, pp.
123–164 (2014). ISBN: 978-3-446-43893-4

17. Mavin, A., et al.: Easy approach to requirements syntax (EARS).
In: 17th IEEE International Requirements Engineering Confer-
ence (RE’09), pp. 317–322 (2009). https://doi.org/10.1109/RE.
2009.9

18. RequirementsWorking Group. Guide for Writing Requirements.
Tech. rep. INCOSE-TP-2010-006- 03. Version 3. International
Council on Systems Engineering (INCOSE) (2019)

123

https://doi.org/10.1109/RE.2017.65
https://doi.org/10.1109/RE.2017.65
https://doi.org/10.1109/32.895989
https://doi.org/10.14279/tuj.eceasst.3.39.21
https://doi.org/10.14279/tuj.eceasst.3.39.21
https://doi.org/10.1109/ISRE.1995.512551
https://doi.org/10.1109/ISRE.1995.512551
https://doi.org/10.1109/SEW.2006.12
https://doi.org/10.1109/SEW.2006.12
https://doi.org/10.1109/RE.2009.9
https://doi.org/10.1109/RE.2009.9

2166 K. Großer et al.

19. ISO/IEC/IEEE 29148: Systems and software engineering—
Life cycle processes—Requirements engineering. ISO/IEC/IEEE
29148:2018(E) (ISO/- IEC/IEEE). Nov. (2018)

20. Castañeda, V., et al.: The use of ontologies in requirements engi-
neering. In: Global Journal of Researches in Engineering 10.6,
pp. 2–8 (2010). ISSN: 2249-4596

21. Krueger, C.W.: Software reuse. In: ACM Computing Surveys
24.2, pp. 131–183 (1992). ISSN: 0360-0300. https://doi.org/10.
1145/130844.130856

22. Palomares, C., et al.: Requirements reuse and requirement pat-
terns: a state of the practice survey. Empir. Softw. Eng. 22,
2719–2762 (2017). https://doi.org/10.1007/s10664-016-9485-x

23. van Lamsweerde, A.: Requirements engineering in the year 00: a
research perspective. In: 22nd International Conference on Soft-
ware Engineering (SE). ACM, pp. 5–19 (2000)

24. Robinson, W.N., et al.: Requirements interaction management.
In: ACM Computing Surveys 35.2, pp. 132–190 (2003). ISSN:
0360-0300. https://doi.org/10.1145/857076.857079

25. Carlshamre, P., et al.: An industrial survey of requirements inter-
dependencies in software product release planning. In: 5th IEEE
International Symposium on Requirements Engineering, pp. 84–
91 (2001). https://doi.org/10.1109/ISRE.2001.948547

26. Mavin, A., et al.: Does goal-oriented requirements engineering
achieve its goal? In: 25th IEEE International Requirements Engi-
neering Conference (RE), pp. 174–183 (2017)

27. Pinheiro, F.A.C.: Requirements traceability. In: do Prado Leite,
J.C.S., Doorn, J.H. (eds.) Perspectives on Software Requirements.
Springer, pp. 91–113 (2004). ISBN: 978-1-4615- 0465-8. https://
doi.org/10.1007/978-1-4615-0465-8_5

28. Goknil, A., et al.: Change impact analysis based on formalization
of trace relations for requirements. In: Oldevik, J., et al. (eds.)
ECMDA Traceability Workshop (EC- MDA-TW), Vol. 274, pp.
59–75 (2008). SINTEF Report. ISBN: 978-82-14-04396-9

29. Goknil, A., et al.: Semantics of trace relations in requirements
models for consistency checking and inferencing. In: Software
and Systems Modeling (SoSym) 10.1 (2011), pp. 31-54

30. Samer, R., et al.: New approaches to the identification of depen-
dencies between requirements. In: 31st IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI’19), pp.
1265–1270 (2019). https://doi.org/10.1109/ICTAI.2019.00-91

31. Abbas, M.: Variability aware requirements reuse analysis. In:
42ndACM/IEEE InternationalConference onSoftwareEngineer-
ing (ICSE): Companion Proceedings, pp. 190–193 (2020). https://
doi.org/10.1145/3377812.3381399

32. Reinhartz-Berger, I., Kemelman, M.: Extracting core require-
ments for software product lines. In: Requirements Engineer-
ing 25.1, pp. 47–65 (2020). https://doi.org/10.1007/s00766-018-
0307-0

33. Goldin, L., et al.: Reuse of requirements reduces time to market.
In: IEEE International Conference on Software Science, Tech-
nology Engineering, pp. 55–60 (2010). https://doi.org/10.1109/
SwSTE.2010.17

34. Naish, J., Zhao, L.: Towards a generalised framework for classi-
fying and retrieving requirements patterns. In: 1st International
Workshop On Requirements Patterns, pp. 42–51 (2011). https://
doi.org/10.1109/RePa.2011.6046721

35. Siena, A., et al.: From laws to requirements. In: 1st International
Workshop on Requirements Engineering and Law (RELAW), pp.
6–10 (2008). https://doi.org/10.1109/RELAW.2008.6

36. Siena, A., et al.: A meta-model for modelling law-compliant
requirements. In: 2nd International Workshop on Requirements
Engineering and Law (RELAW), pp. 450–451 (2009). https://doi.
org/10.1109/RELAW.2009.1

37. Zeni, N., et al.: ApplyingGaiusT for extracting requirements from
legal documents. In: 6th In- ternational Workshop on Require-

ments Engineering and Law (RELAW), pp. 65–68 (2013). https://
doi.org/10.1109/RELAW.2013.6671349

38. Guo, J., et al.: Tackling the term-mismatch problem in auto-
mated trace retrieval. In: Empirical Software Engineering 22.3,
pp. 1103–1142 (2017)

39. Wang, W., et al.: Detecting software security vulnerabilities via
requirements dependency analysis. In: IEEE Transactions on
Software Engineering (2020). https://doi.org/10.1109/TSE.2020.
3030745. Early Access

40. Renault, S., et al.: A pattern-based method for building require-
ments documents in call-for-tender processes. In: International
Journal of Computer Science &Applications (IJCSA) 6.5 (2009):
Special Issue on Advanced Solutions for Information Systems
Engineering. Ed. by A. Flory andM. Collard, pp. 175–202. ISSN:
0972-9038. http://www.tmrfindia.org/ijcsa/v6i57.pdf (visited on
11/09/2020)

41. Ramadan, Q., et al.: A semi-automated BPMNbased frame-
work for detecting conflicts between security, data-minimization
and fairness requirements. In: Software and Systems Modeling
(SoSyM) 19.5, pp. 1191–1227 (2020). https://doi.org/10.1007/
s10270-020-00781-x

42. Alvarez, J.L., et al.:Model-based systemengineering approach for
the Euclid mission to manage scientific and technical complexity.
In: Modeling, Systems Engineering, and Project Management for
AstronomyVI. SPIEAstronomical Telescopes + Instrumentation.
Vol. 9911. International Society for Optics and Photonics. Aug.
18, (2016), p. 99110C. https://doi.org/10.1117/12.2231373

43. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. ECSS system—Description, implementation and gen-
eral requirements. ECSS-S-ST-00C (ECSS). July 31 (2008)

44. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space project management—Project planning and
implementation. ECSS-MST- 10C (ECSS). Mar. 6 (2009)

45. Bartodziej, C.J.: The concept industry 4.0. In: The Concept Indus-
try 4.0: An Empirical Analysis of Technologies and Applications
in Production Logistics. Springer, pp. 27–50 (2017). ISBN: 978-
3-658-16502-4. https://doi.org/10.1007/978-3-658-16502-4_3

46. Edwards, P.R., et al.: International requirements for payloadmulti-
platform reuse methodology. In: ESA Workshop on Aerospace
EMC (Aerospace EMC), pp. 1–7 (2019). https://doi.org/10.
23919/AeroEMC.2019.8788967

47. Bos, V., et al.: Time and space partitioning the eagleeye ref-
erence misson. In: Data Systems in Aerospace (DASIA). Vol.
720. ESA Special Publication. Aug. (2013), pp. 22–29. https://ui.
adsabs.harvard.edu/abs/2013ESASP.720E..22B/abstract (visited
on 11/11/2020)

48. Bos, V., et al.: Time and space partitioning using on-board soft-
ware reference architecture. In: IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW). Oct.
(2016), pp. 17-20. https://doi.org/10.1109/ISSREW.2016.49

49. Ayuso, A.: EagleEye—VIRTUAL SPACECRAFT MISSION
REQUIREMENTS. Tech. rep. TOSEMS-VSRF-SPC-0001. Ver-
sion 5. SENER, Oct. 6 (2004)

50. Pace, F.: EARTH OBSERVATION REFERENCE MISSION—
SYSTEM SPECIFICATION. Tech. rep. ATB-RAC-D5. ESA -
ESTEC (2009)

51. Pace, F., et al.: ATB SOFTWARE REQUIRE- MENTS SPECI-
FICATION. Tech. rep. ATB-RACD8. Version 2.1. ESA-ESTEC
(2010)

52. Pace, F., Barrena, V.: EARTH OBSERVA- TION REFERENCE
MISSION—SWSPECIFI- CATIONS. Tech. rep. ATB-RAC-D8-
D. ESA - ESTEC (2010)

53. Srungavruksham, D.T.: CSW V6 Requirements Document.
EagleEye TSP porting to HWIL configuration (RTB). Tech. rep.
EERTB-SSF-SRS- 005. Version 5.0. SSF (2017)

123

https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/130844.130856
https://doi.org/10.1007/s10664-016-9485-x
https://doi.org/10.1145/857076.857079
https://doi.org/10.1109/ISRE.2001.948547
https://doi.org/10.1007/978-1-4615-0465-8_5
https://doi.org/10.1007/978-1-4615-0465-8_5
https://doi.org/10.1109/ICTAI.2019.00-91
https://doi.org/10.1145/3377812.3381399
https://doi.org/10.1145/3377812.3381399
https://doi.org/10.1007/s00766-018-0307-0
https://doi.org/10.1007/s00766-018-0307-0
https://doi.org/10.1109/SwSTE.2010.17
https://doi.org/10.1109/SwSTE.2010.17
https://doi.org/10.1109/RePa.2011.6046721
https://doi.org/10.1109/RePa.2011.6046721
https://doi.org/10.1109/RELAW.2008.6
https://doi.org/10.1109/RELAW.2009.1
https://doi.org/10.1109/RELAW.2009.1
https://doi.org/10.1109/RELAW.2013.6671349
https://doi.org/10.1109/RELAW.2013.6671349
https://doi.org/10.1109/TSE.2020.3030745
https://doi.org/10.1109/TSE.2020.3030745
http://www.tmrfindia.org/ijcsa/v6i57.pdf
https://doi.org/10.1007/s10270-020-00781-x
https://doi.org/10.1007/s10270-020-00781-x
https://doi.org/10.1117/12.2231373
https://doi.org/10.1007/978-3-658-16502-4_3
https://doi.org/10.23919/AeroEMC.2019.8788967
https://doi.org/10.23919/AeroEMC.2019.8788967
https://ui.adsabs.harvard.edu/abs/2013ESASP.720E..22B/abstract
https://ui.adsabs.harvard.edu/abs/2013ESASP.720E..22B/abstract
https://doi.org/10.1109/ISSREW.2016.49

Requirements document relations 2167

54. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering—Control engineering. ECSS-E-60-
A (ECSS). Sept. 14 (2004)

55. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering—Control performance. ECSS-E-ST-
60-10C (ECSS). Nov. 15 (2008)

56. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering—Stars sensors terminology and per-
formance specification. ECSS-E-ST-60-20C (ECSS). Nov. 15
(2008)

57. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering—Software—Part 1: Principles and
requirements. ECSSE- ST-40Part1B (ECSS). Nov. 28 (2003)

58. ECSS Secretariat and ESA-ESTEC Requirements & Stan-
dardsDivision. Space engineering—Software—Part 2:Document
requirements definitions (DRDs). ECSS-E-ST-40Part2B (ECSS).
Mar. 31 (2005)

59. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering—Interface and communication pro-
tocol for MIL-STD- 1553B data bus onboard spacecraft. ECSS-
E-ST- 50-13C (ECSS). Nov. 15 (2008)

60. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering—Space data links—Telecommand
protocols, synchronization and channel coding. ECSS-E-50-04A
(ECSS). Nov. 14 (2007)

61. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering—Ground systems and operations—
Telemetry and telecommand packet utilization. ECSS-E-70-41A
(ECSS). Jan. 30 (2003)

62. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the require-
ments traceability problem. In: IEEE International Conference
on Re- quirements Engineering (RE), pp. 94–101 (1994). https://
doi.org/10.1109/ICRE.1994.292398

63. ISO/IEC/IEEE 24765: Systems and software engineering—
Vocabulary. ISO/IEC/IEEE 24765: 2010(E) (ISO/IEC/IEEE).
Dec. 15 (2010)

64. Gotel, O., Finkelstein, A.: Extended requirements traceability:
results of an industrial case study. In: 3rd IEEE International
Symposium on Requirements Engineering (ISRE), pp. 169–178
(1997). https://doi.org/10.1109/ISRE.1997.566866

65. Darimont, R., et al.: GRAIL/KAOS: an environment for goal-
driven requirements engineering. In: 19th International Confer-
ence on Software Engineering (ICSE’97), pp. 612–613 (1997)

66. Letelier, P.: A framework for requirements traceabilityin UML-
based projects. In: 1st International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE), pp. 173–183
(2002)

67. Haidrar, S., et al.: On the use of model transformation for require-
ments trace models generation. In: International Conference
on Wireless Technologies, Embedded and Intelligent Systems
(WITS). IEEE, pp. 1–6 (2017)

68. EspinozaLimón,A.,GarbajosaSopeña, J.: Theneed for a unifying
traceability scheme. In: ECMDA Traceability Workshop. Oct. 19
(2005)

69. Winkler, S., Pilgrim, J.: A survey of traceability in requirements
engineering andmodel-drivendevelopment. In: Software andSys-
tems Modeling (SoSyM) 9.4, pp. 529–565 (2010)

70. Salay, R., et al.: Language independent refinement using par-
tial modeling. In: de Lara, J., Zisman, A. (eds.) Fundamental
Approaches to Software Engineering, pp. 224–239. Springer,
Berlin Heidelberg (2012)

71. Pinheiro, F.A.C., Goguen, J.A.: An object oriented tool for tracing
requirements. In: IEEE Software 13.2, pp. 5264 (1996). https://
doi.org/10.1109/52.506462

72. Glinz,M.:AGlossary ofRequirementsEngineeringTerminology.
Tech. rep. Version 1.6. International Requirements Engineering
Board IREB e.V. (2014)

73. Bruneliere, H., et al.: A feature-based survey of model view
approaches. In: Software&SystemsModeling (SoSym), pp. 1–22
(2017). https://doi.org/10.1007/s10270-017-0622-9

74. Lexico. Meaning of document in English. https://www.lexico.
com/definition/document (visited on 05/10/2021)

75. ISO/IEC/IEEE 42010: Systems and software engineering—
Architecture description. ISO/IEC/-IEEE 42010:2011
(ISO/IEC/IEEE). Dec. 1 (2011)

76. Palm, S.U.: ATB CONSOLIDATION—Space/- Ground Interface
Control Document. Tech. rep. TER-ATBC-TS-ICD-004. Version
1.1. Terma (2013)

77. Li, F.-L., et al.: From stakeholder requirements to formal spec-
ifications through refinement. In: Fricker, S.A., Schneider, K.
(eds.) Requirements Engineering: Foundation for Software Qual-
ity. Springer International Publishing, pp. 164–180 (2015). ISBN:
978-3-319-16101-3. https://doi.org/10.1007/978-3-319-16101-
3_11

78. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. Space engineering - Technical requirements specifica-
tion. ECSS-E-ST-10- 06C (ECSS). Mar. 6 (2009)

79. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. ECSS system—Glossary of terms. ECSS-S-ST-00-01C
(ECSS). Oct. 1 (2012)

80. Kang, K.C., et al.: Feature-oriented product line engineering. In:
IEEE Software 19.4, pp. 58–65 (2002). https://doi.org/10.1109/
MS.2002.1020288

81. Gervasi, V.: Keynote: requirements philology. In: 2nd Workshop
on Natural Language Processing for Requirements Engineering
(NLP4RE’19) (2019)

82. Lions, J.-L.: ARIANE 5 Flight 501 Failure. Report by
the Inquiry Board. (1996). http://sunnyday.mit.edu/accidents/
Ariane5accidentreport.html (visited on 02/28/2018)

83. Valera, S.: ECSS Requirements Management System—[E-
RMS]. SOW—Statement of Work ESATECSWM-SOW-009970.
ESA/ESTEC (2018)

84. SAVOIR. SAVOIRDocumentation Tree. Tech. rep. SAVOIR-TN-
000. ESA ESTEC (2016)

85. Halpin, T.: OBJECT-ROLE MODELING FUNDAMENTALS.
Technics Publications, A Practical Guide to Data Modeling with
ORM (2015). ISBN:978-1-63462-074-1

86. Halpin, T., Morgan, T.: Information Modeling and Relational
Databases, 2nd ed. Morgan Kaufmann (2010). ISBN:978-0-12-
373568-3

87. Halpin, T.: Object-role modeling. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems. Springer, pp. 1941–1946
(2009). ISBN: 978-0-387-35544-3. https://doi.org/10.1007/978-
0-387-39940-9_251

88. Schwarz, H., et al.: Using expressive traceability relationships
for ensuring consistent process model refinement. In: 15th IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 183–192 (2010). https://doi.org/10.1109/
ICECCS.2010.66

89. ISO/IEC 9834-8: Information technology—Procedures for the
operation of object identifier registration authorities—Part 8: gen-
eration of universally unique identifiers (UUIDs) and their use in
object identifiers. ISO/IEC 9834-8:2014 (ISO/IEC). Aug. (2014)

90. Mouratidis, H., Jürjens, J.: From goal-driven security require-
ments engineering to secure design. In: International Journal of
Intelligent Systems 25.8, pp. 813–840 (2010)

91. Ahmadian, A.S., et al.: Model-based privacy and security analysis
with CARiSMA. In: 11th Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE’17), pp. 989–993 (2017). https://
doi.org/10.1145/3106237.3122823

123

https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ISRE.1997.566866
https://doi.org/10.1109/52.506462
https://doi.org/10.1109/52.506462
https://doi.org/10.1007/s10270-017-0622-9
https://www.lexico.com/definition/document
https://www.lexico.com/definition/document
https://doi.org/10.1007/978-3-319-16101-3_11
https://doi.org/10.1007/978-3-319-16101-3_11
https://doi.org/10.1109/MS.2002.1020288
https://doi.org/10.1109/MS.2002.1020288
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://doi.org/10.1007/978-0-387-39940-9_251
https://doi.org/10.1007/978-0-387-39940-9_251
https://doi.org/10.1109/ICECCS.2010.66
https://doi.org/10.1109/ICECCS.2010.66
https://doi.org/10.1145/3106237.3122823
https://doi.org/10.1145/3106237.3122823

2168 K. Großer et al.

92. Peldszus, S., et al.: Secure data-flow compliance checks between
models and code based on automated mappings. In: 22nd
ACM/IEEE International Conference onModel Driven Engineer-
ing Languages and Systems (MODELS’19), pp. 23–33 (2019).
https://doi.org/10.1109/MODELS.2019.00-18

93. Gamma, E., et al.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Com-
puting Series, Pearson Education (1994). ISBN: 9780321700698

94. Tarr, P., et al.: N degrees of separation: multidimensional separa-
tion of concerns. In: IEEE International Conference on Software
Engineering (ICSE), pp. 107–119 (1999)

95. OMG® Unified Modeling Language® (OMG UML®) Version
2.5.1. formal/2017-12-05 (Object Management Group (OMG)).
Dec. (2017)

96. Favaro, J., et al.: Next generation requirements engineering. In:
22nd Annual INCOSE International Symposium (2012)

97. ECSS Secretariat and ESA-ESTEC Requirements & Stan-
dards Division. Space engineering—Software. ECSS-E-ST-40C
(ECSS). Mar. 6 (2009)

98. ECSS Secretariat and ESA-ESTEC Requirements & Standards
Division. ECSS—Draft rules and template for ECSS Standards.
ECSS-D-00-01C (ECSS). May 20 (2014)

99. ESATEC-QR.ESAstandardizationmanual. 1st ed.ESSB-D-000.
ESA. Mar. (2014)

100. Lauesen, S.: Software Requirements: Styles and Techniques.
Addison-Wesley (2002)

101. Ayala-Rivera, V., Pasquale, L.: The grace period has ended: an
approach to operationalize GDPR requirements. In: 26th IEEE
International Requirements Engineering Conference (RE), pp.
136–146 (2018). https://doi.org/10.1109/RE.2018. 00023

102. Wiegers, K.E.: Software Requirements: Practical Techniques
for Gathering and Managing Requirement Through the Product
Development Cycle, 2nd edn. Microsoft Press (2003)

103. Business Process Model and Notation (BPMN) Version 2.0.2.
formal/2013-12-09 (Object Management Group (OMG)). Dec.
(2013)

104. Palm, S.U.: ATB Consolidation Central Software Requirements.
Tech. rep. TER-ATBC-TS-REQ- 001. TERMA (2014)

105. Runeson, P., Höst, M.: Guidelines for conducting and reporting
case study research in software engineering. In: Empirical Soft-
ware Engineering 14.2, pp. 131–164 (2009). https://doi.org/10.
1007/s10664-008-9102-8

106. Kallio, H., et al.: Systematic methodological review: developing
a framework for a qualitative semi-structured interview guide. In:
Journal ofAdvancedNursing (JAN) 72.12, pp. 2954–2965 (2016).
https://doi.org/10.1111/jan.13031

107. Opdenakker, R.: Advantages and Disadvantages of Four Inter-
view Techniques in Qualitative Research. In: Forum Qualitative
Sozialforschung / Forum: Qualitative Social Research 7.4 (Sept.
30, 2006). https://doi.org/10.17169/fqs-7.4.175

108. Schneider,K., et al.: Enhancing security requirements engineering
by organizational learning. In: Requirements Engineering 17.1,
pp. 35–56 (2012). https://doi.org/10.1007/s00766-011-0141-0

109. Rath, M., et al.: Are Graph Query Languages Applicable for
Requirements Traceability Analysis? In: (REFSQ) Workshops
(2017)

110. Braimniotis, M.: A Transformation from ORMConceptual Mod-
els to Neo4j GraphDatabase. MA thesis. Radboud University
Nijmegen (2017)

111. Owen, A.: Mapping ORM to TGraph. MA thesis. University of
Koblenz-Landau (2017)

112. Großer, K., et al.: Requirements document relations—a reuse per-
spective on traceability. Supplementary models and files. https://
uni-ko-ld.de/requirementrelations (visited on 10/07/2021)

113. Zogaan, W., et al.: Datasets from fifteen years of automated
requirements traceability research: current state, characteristics,

and quality. In: 25th IEEE International Requirements Engineer-
ing Conference (RE’17), pp. 110–121 (2017)

114. Ebert, J., Franzke, A.: A declarative approach to graph based
modeling. In: Mayr, E.W., et al. (eds.) Graph-Theoretic Concepts
in Computer Science. Springer Berlin Heidelberg, pp. 380–50
(1995). ISBN: 978-3-540-49183-5

115. Tekinerdogan, B., Erata, F.: Modeling traceability in system of
systems. In: SymposiumonAppliedComputing. ACM, pp. 1799–
1802 (2017)

116. Kowsari, K., et al.: Text classification algorithms: a survey. In:
Information 10.4 (2019). ISSN: 2078-2489. https://doi.org/10.
3390/info10040150

117. Kadhim, A.I.: Survey on supervised machine learning techniques
for automatic text classification. In: Artificial Intelligence Review
52.1, pp. 273–292 (2019). https://doi.org/10.1007/s10462-018-
09677-1

118. Kurtanović, Z., Maalej, W.: Mining user rationale from software
reviews. In: 25th IEEE International Requirements Engineering
Conference (RE), pp. 61–70 (2017). https://doi.org/10.1109/RE.
2017.86

119. Houmb, S.H., et al.: Eliciting security requirements and tracing
them to design: an integration of common criteria, heuristics, and
UMLsec. In: Requirements Engineering 15.1, pp. 63–93 (2010).
https://doi.org/10.1007/s00766-009-0093-9

120. Gärtner, S., et al.: Maintaining requirements for long-living soft-
ware systems by incorporating security knowledge. In: 22nd IEEE
International Requirements Engineering Conference (RE’14), pp.
103–112 (2014). https://doi.org/10.1109/RE.2014.6912252

121. Halpin, T.: ORM 2 Graphical Notation. Dec. (2011). http://www.
orm.net/pdf/ORM2GraphicalNotation.pdf

122. Natural ORM Architect for Visual Studio. ORM Solutions and
Neumont University. https://github.com/ormsolutions/NORMA
(visited on 02/07/2020)

123. Astah Professional. ChangeVision, Inc. https://astah.net/
products/astah-professional/ (visited on 11/18/2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Katharina Großer is PhD can-
didate and member of the Insti-
tute for Software Technology
(IST) within the Faculty for Com-
puter Science at the University of
Koblenz-Landau. Her PhD project
on ontology supported require-
ments engineering is part of the
NPI Programme of the European
Space Agency (ESA), where she
prior completed an internship. She
graduated with a Master of Sci-
ence (M.Sc.) in Computational
Visualistics from University of
Koblenz-Landau, where her Mas-

ter’s thesis was awarded the AFCEA price. She is alumnus of the
Evangelisches Studienwerk Villigst.

123

https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/RE.2018
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1111/jan.13031
https://doi.org/10.17169/fqs-7.4.175
https://doi.org/10.1007/s00766-011-0141-0
https://uni-ko-ld.de/requirementrelations
https://uni-ko-ld.de/requirementrelations
https://doi.org/10.3390/info10040150
https://doi.org/10.3390/info10040150
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1007/s00766-009-0093-9
https://doi.org/10.1109/RE.2014.6912252
http://www.orm.net/pdf/ORM2GraphicalNotation.pdf
http://www.orm.net/pdf/ORM2GraphicalNotation.pdf
https://github.com/ormsolutions/NORMA
https://astah.net/products/astah-professional/
https://astah.net/products/astah-professional/

Requirements document relations 2169

Volker Riediger is Senior Resear-
cher at the Institute for Software
Technology (IST) at the Univer-
sity of Koblenz-Landau. He has
more than 20 years of experience
in research, technology transfer
and teaching in software engineer-
ing, including research topics such
as software maintenance, software
evolution, program understanding
and model-based development. He
has a PhD in Computer Science
from the University of Koblenz-
Landau. Dr. Riediger has been
head of the GI (Gesellschaft für

Informatik) section “SRE Software Reengineering” from 2012 to
2016. Before his engagement in the university, he worked for more
than 10 years as professional software developer in several application
domains.

Jan Jürjens is a Professor, lead-
ing the Research Group for Soft-
ware Engineering at the Institute
for Software Technology (IST)
within the Faculty for Computer
Science of the University Koblenz-
Landau. He is also Director
Research Projects at the Fraun-
hofer Institute for Software and
Systems Engineering ISST in Dort-
mund. Previous positions include
a Professorship for Software Engi-
neering at TU Dortmund, a Royal
Society Industrial Fellowship at
Microsoft Research Cambridge, a

non-stipendiary Research Fellowship at Robinson College (Univ.
Cambridge), where in 2009 he was appointed as Senior Member, and
a Postdoc position at TU München. Jan holds a Doctor of Philoso-
phy in Computing from University of Oxford and is author of ”Secure
Systems Development with UML” (Springer, 2005; Chinese transla-
tion 2009) and other publications mostly on software engineering and
IT security. More information: http://jan.jurjens.de.

123

http://jan.jurjens.de

	Requirements document relations
	A reuse perspective on traceability through standards
	Abstract
	1 Introduction
	2 Related work
	3 Running example: EagleEye
	4 Background
	4.1 Traceability relation types
	4.2 Requirement document relations
	4.3 Document reuse
	4.3.1 Clone specification
	4.3.2 Apply standard
	4.3.3 Generic specification

	5 A document-aware traceability model
	5.1 Traceability relations
	5.2 Traceable entities
	5.2.1 Model entities
	5.2.2 Views

	5.3 Levels of abstraction
	5.4 Representation layers
	5.4.1 Derivation between layers
	5.4.2 Consistency between layers
	5.4.3 Crossing layers

	6 Standard tailoring
	6.1 Tailoring decision
	6.2 Tailoring recommendation
	6.3 Integration to project

	7 Case study
	7.1 Graph schema
	7.2 Constraints
	7.3 The EagleEye graph
	7.3.1 Detection of the document structure
	7.3.2 Creating the view and model nodes

	7.4 Consistency and conformance checks
	7.4.1 Conflicting tailoring decisions
	7.4.2 Missing tailorings

	7.5 Discussion
	7.5.1 Threats to validity
	7.5.2 Challenges and future work

	8 Conclusion
	Acknowledgements
	A Basic ORM graphic notation
	References

