Software and Systems Modeling (2022) 21:2367-2394
https://doi.org/10.1007/s10270-021-00940-8

THEME SECTION PAPER

f')

Check for
updates

Model-driven system-level validation and verification on the space

software domain

Aarén Montalvo'
Agustin Martinez' - Sebastian Sanchez'

- Pablo Parra' - Oscar Rodriguez Polo' - Alberto Carrasco' - Antonio Da Silva' -

Received: 1 November 2020 / Revised: 4 October 2021 / Accepted: 7 October 2021 / Published online: 9 November 2021

© The Author(s) 2021

Abstract

The development process of on-board software applications can benefit from model-driven engineering techniques. Model
validation and model transformations can be applied to drive the activities of specification, requirements definition, and
system-level validation and verification according to the space software engineering standards ECSS-E-ST-40 and ECSS-Q-
ST-80. This paper presents a model-driven approach to completing these activities by avoiding inconsistencies between the
documents that support them and providing the ability to automatically generate the system-level validation tests that are run
on the Ground Support Equipment and the matrices required to complete the software verification. A demonstrator of the
approach has been built using as a proof of concept a subset of the functionality of the software of the control unit of the

Energetic Particle Detector instrument on-board Solar Orbiter.

Keywords MDE - Validation - Verification - Space - Software - ECSS

1 Introduction

The European Space Agency (ESA) has adopted a set of
standards that apply to every engineering process involved
in space missions. These standards have been defined by the
European Cooperation for Space Standardization (ECSS),
which is supported by ESA and several space national
agencies such as CNES (France), UK Space (UK), DLR (Ger-
many), and CSA (Canada). The ECSS standards that apply to
the software development process are ECSS-E-ST-40 (Space
Engineering. Software) and ECSS-Q-ST-80 (Space product
assurance. Software product assurance). Both standards have
undergone several revisions since their inception. Current
versions are called ECSS-E-ST-40C (March 2009) [1] and
ECSS-Q-ST-80C Rev.1 (February 2017) [2].
ECSS-E-ST-40 applies to the software development pro-
cess for space missions. It defines the procedures to be
followed and the documentation to be provided during soft-

Communicated by J. Araujo, A. Moreira, G. Mussbacher, and
P. Sanchez.

B Aar6én Montalvo
aaron.montalvo@uabh.es

Space Research Group, University of Alcald, Alcald de
Henares, Madrid, Spain

ware construction, covering all the project development
phases, from the software specification to the subsequent
validation, verification, and maintenance. ECSS-Q-ST-80, in
turn, defines the product assurance mechanisms that guaran-
tee the quality of the developed software. Both standards are
combined during all phases of the on-board software devel-
opment, from the initial specification to the final validation
and verification stages.

One of the main objectives of verification is to ensure
that the necessary evidence is provided that the developed
software conforms to the specifications. A fundamental part
of this information is the tracing of the user specifications
(called Software System Specification in the ECSS standard)
against all the elements derived from them, such as the soft-
ware requirements, the architecture, or the detailed design. It
is also necessary to trace the specifications and the mentioned
derived elements against the different scheduled analyses and
tests and their corresponding reports.

The management of requirements, validation tests, and
verification evidence under the ECSS standard is a costly task
that is generally supported by one or more tools. There are
currently several tools on the market that facilitate the man-
agement of verification evidence, including the traceability
of the requirements specification against the corresponding
validation tests. Rational DOORS [3] deals with managing

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00940-8&domain=pdf
http://orcid.org/0000-0002-6896-5226

2368

A. Montalvo et al.

possible changes in the requirements and verifying that the
produced validation evidence covers all the requirements.
Another example is Sparx Systems Enterprise Architect [4],
which is a general-purpose tool based on UML [5] that can
be used for requirements management and traceability within
the lifetime of any development project.

In the space domain, system-level validation tests involve,
in addition to the on-board software itself, other mission-
specific elements such as telemetry and telecommand
(TM/TC) interface information or the Ground Support Envi-
ronment (GSE). The TM/TC information is provided as a
database that follows the format defined by ESA’s Satellite
Control and Operation System 2000 (SCOS-2000) mission
control system [6]. This database includes the definition of all
possible TM/TC packets that the on-board software can send
or receive. The GSE consists of the test harness that emu-
lates the flying environment where the on-board software
operates, providing the required hardware interfaces to the
on-board processor and enabling the execution of the system-
level validation test using a hardware-in-the-loop approach.
The management of the GSE is centralized through the so-
called Ground Support Software (GSS), a software tool or
set of tools used to perform the validation tests.

Within this context, model-driven engineering (MDE)
techniques can be beneficial when dealing with the valida-
tion and verification process defined in the ECSS standard.
On the one hand, MDE avoids the errors inherent to the direct
use of documents and ensures consistency between the ele-
ments incorporated into the process in the different phases.
On the other hand, this type of approach makes it easier to
obtain, through transformations, the different products, and
evidence, whether intermediate or final.

The approach presented in this paper aims to use MDE
techniques to support the system-level validation and ver-
ification process for space software applications under the
standards ECSS-E-ST-40 and ECSS-Q-ST-80. The work
covers common aspects of requirements engineering, e.g.,
checking for inconsistencies during the definition of any
element contained in the development process and its trace-
ability against the requirements. These checks include that
requirements marked to be validated by testing should be cov-
ered by test procedures, not by inspection or analysis reports,
or that requirements removed in a previous version are no
longer in the updated traceability matrix.

Besides, as a novel aspect, the proposed approach uses
intermediate platform-independent models for defining the
validation tests, the validation environments, and the dif-
ferent scenarios. The complete set of meta-models that
are defined conform to the system-level on-board software
domain defined by the ECSS-E-ST-40 and ECSS-Q-ST-80
standards. The model elements associated with the TM/TC
database are subsequently used to determine the system-
level tests and verification matrices. In this way, the elements

@ Springer

available for defining tests go beyond the on-board software
domain and are customized for each project. The system-
level test procedures are defined as a list of steps that establish
the telecommands to be sent and the expected telemetries to
be received, thus using the elements resulting from incorpo-
rating the information from the TM/TC database. In addition,
since the software to develop is part of an embedded system,
the models of the validation environments can describe both
the capabilities of the test harness and its interfaces to auto-
mate the tests and import the information from the reports
obtained after the execution. This approach makes it possible
to generate, from the procedure models, and through trans-
formations, the input files of the GSS toolset, thus achieving
complete automation of the system-level validation tests.

A proof of concept of these MDE techniques is pre-
sented in this paper. It has been built from a subset of the
requirements and validation tests of the on-board software
of the Instrument Control Unit (ICU) of the Energetic Par-
ticle Detector (EPD) [7], that is part of the Solar Orbiter
mission. The software was developed by our group, namely
the Space Research Group of the University of Alcald (SRG-
UAH). It is currently running in nominal mode on-board the
Solar Orbiter, which was launched in February 2020.

The solution adopted also integrates the complete TM/TC
database of EPD and shows how to use the platform-
independent models for defining the validation environments
and scenarios needed to automatically generate the input files
corresponding to the system-level validation tests for a spe-
cific GSS tool. This tool, called SRG-GSS (Space Research
Group—Ground Support Software), was used for the val-
idation of the on-board software of the ICU of EPD, thus
demonstrating that the solution provided is feasible to be
used in a real environment. The whole process is automatic:
only the selection of the report logs at the end of the ver-
ification process is performed manually. Finally, the proof
of concept demonstrates that the validation tests generated
automatically, as a product of the model-based approach pro-
posed in this work, are the same as those used to qualify the
on-board software of the ICU of EPD.

The rest of the paper is organized as follows. Section 2
covers the related works. Section 3 describes the general val-
idation and verification process. Later, Sect. 4 details all the
models present in the approach. The proposed proof of con-
cept is then summarized in Sect. 5. Finally, the last section
contains the conclusions and future works.

2 Related works

The use of model-based engineering (MBE) and model-
driven engineering (MDE) techniques to automate the activ-
ities involved in the validation and verification of software

Model-driven system-level validation and verification

2369

systems has been approached from different perspectives and
with different scopes.

On the one hand, in the last decades, many research
works have been carried out trying to apply MBE and
MDE techniques to managing software project requirements.
The model-based requirement engineering approach [8] uses
models to facilitate the management and organization of
requirements. The consistency between the requirements and
their derived design elements provides agile management of
software change requests and software problems during the
development process.

The integration of MDE and requirements engineering
(RE) [9,10] goes one step further and uses models as a central
element in requirements management. A direct application
of MDE techniques to RE allows the automatic generation of
reports such as the traceability matrix between requirements
and design elements of different abstraction levels.

On the other hand, and complementary to requirements
management, efforts have also been made to integrate
MBE techniques in different software development method-
ologies focused on validation and verification, such as
test-driven development (TDD) and behavior-driven devel-
opment (BDD).

Test-driven development (TDD) [11] is based on a sim-
plified approach to software development in which the effort
is mainly focused on testing, whose design and implemen-
tation are addressed before the actual implementation of the
software. In this way, priority is given to activities aimed at
reducing errors detected by software testing [12], as opposed
to the classical approach to the software development pro-
cess, where the system requirements and their transposition
into a design are completed before addressing the design of
the tests. The pragmatism of this approach was welcomed
with great interest by the community that adopted the agile
software development principles [13]. In this way, an agile
software development process based on TDD proposes to
approach detailed design and implementation tasks as an
iterative process of refactoring and continuous integration,
reducing, in each iteration, the number of errors obtained
in the tests. The variant known as acceptance test-driven
development (ATDD) [14] is a type of TDD where the devel-
opment process is driven by acceptance tests that meet the
user requirements, unlike the classic TDD approach, which is
more centered on unit and integration tests. MBE techniques
have been broadly applied to TDD [15-18] and ATDD [19].
In these solutions, models and tools are integrated into TDD
and ATDD methodologies to facilitate the test definition and
automation.

On the other hand, behavioral-driven development (BDD)
was introduced by Dan North in 2006 to address some of
the problems of ATDD and TDD [20]. While ATDD and
TDD conceive software development as a test-centric pro-
cess, BDD focuses more on the specification of requirements

that express the desired behavior of the system. This approach
is consistent with the fact that the primary source of errors in
software projects is the misunderstanding of the specification
[21].

Although BDD proposes that the artifacts that drive
development should not actually be the tests but rather a spec-
ification of the program’s behavior, they can also be used for
test generation. In this sense, Tavares et al. [22] have a per-
spective of BDD as a methodology that allows validation to
be integrated into the design phase so that acceptance tests
can be obtained before the system is fully designed. This
approach proposes that the system to be designed is the one
that must pass the automatically generated tests, conforming
to a formal specification of the expected behavior of the sys-
tem and using a tool that transforms this specification into
tests. This BDD perspective converges in objectives with the
model-based testing (MBT) approach. MBT proposes using
formal models to define the behavior and interface of the soft-
ware and, optionally, the environment with which it interacts.
These models allow the automatic generation of the elements
involved in their validation, such as test cases or the data that
feed them [23]. They can also automate the generation of
evidence needed during verification, such as matrices that
provide information on the coverage achieved by test cases,
represented, for example, in terms of coverage of states or
transitions mapped to the behavioral model [24]. The syner-
gies between BDD and MBT have been explored in several
papers [25,26].

In an area such as ESA’s space missions, where a large
part of the critical functionality of the system relies on the on-
board software, the adoption of MDE techniques from agile
methodologies requires an adaptation that fits the exhaus-
tive process of validation and verification required by the
ECSS standard. Therefore, in our opinion, the direct appli-
cation of the approaches proposed by TDD and BDD is not
entirely adequate. In them, the modeling of elements such as
the specification or the design is left in the background, giv-
ing priority to the behavioral model, from which it is feasible
to obtain, in an assisted way, or even automatically, tests at
different levels, and it is these tests that drive the develop-
ment process. This criticism about the benefits of reducing the
design effort has been remarked in [27]. Following the same
direction, the ECSS standard does not alleviate the effort of
modeling the specification. On the contrary, it requires the
completion, in detail, of both a user specification (called the
software system specification), which constitutes the require-
ment baseline of the software, and a technical specification,
which arises from translating the user specification into soft-
ware requirements. In this sense, a model-driven approach
such as the one presented in this article, which is focused both
on requirements management and the definition of validation
tests through a specific meta-model, and which simultane-
ously assists in the verification of the process itself, is better

@ Springer

2370

A. Montalvo et al.

adapted to the ECSS standard than the solutions based on
TDD or BDD.

It also represents an evolution compared to the MBT
approach since, as will be presented in the following sec-
tions, it is the models that drive the validation and verification
process entirely at the system level. Moreover, its objective
is not to replace the specifications with a logical model that
allows the automation of the tests but to ensure that the logi-
cal model of the system-level response maintains traceability
with the specifications to enable not only the automatic gen-
eration of the tests but also the generation of the verification
matrices with respect to the specifications. Since this is also
a domain in which the product to be developed is embedded
software, it is necessary to address the need to model the
test harness capabilities that physically implement the vali-
dation environment and its interfaces. The modeling of these
elements will allow automating the tests and importing the
reports obtained after their execution to build the mentioned
verification matrices.

The MDE techniques, such as those proposed in the arti-
cle, have also been widely used to manage the validation and
verification activities required by the software development
process. On the one hand, the model-driven testing (MDT)
approach uses models to drive the entire testing process and
integrates model transformation technologies to automati-
cally generate oracles and test cases [28]. Model validation
and model transformations can also be used to automate
more complex tasks such as the verification of non-functional
properties of software systems. In this direction, some frame-
works, such as MICOBS [29], or TASTE [30], enable the
software system timing analysis [31,32], or the analysis of
software quality metrics [33]. The MDT approach has also
been used in combination with the BDD methodology in [34].

There have also been some interesting proposals for using
MBDE to automate the activities of software product lines
[35-37]. The use of MDE techniques in software product
lines is of particular interest. This is an area characterized by
reuse, where standards that specify the processes, artifacts,
and documents to be completed during software develop-
ment are often applicable. These characteristics facilitate the
construction of models that fit both the products and the
activities of their development process. Furthermore, they
enable the integration of tools that are used on a recurrent
basis. Examples in this direction can be found in the appli-
cation of MDE techniques to the development of software
under the avionics standard RTCA DO-178C [38—40]. The
first one characterizes different model-based approaches and
analyzes their philosophy, achievement of DO-178C cover-
age, information handling, and usage. The second example
instead focuses on software development life cycles, namely
Waterfall, V, Spiral, and Incremental life cycles, and the dif-
ferent tailorings needed to make them compliant with the
DO-178C standard. Finally, the third example shows var-

@ Springer

Requirements SW validation
Baseline (RB) w.r.t. RB
888 - -\ttt e ey SVs
Technical SW validation
Specification (TS) w.rt. TS
SRS [------\-rmrmmmmmommoofommme SVs

Design Integration Tests

Implementation Unit Tests

Source Code

Fig.1 Model-driven validation and verification process

ious UML diagrams for modeling a module of DO-178C.
These three examples are centered on modeling the avionics
domain, showing how different MDE techniques can facili-
tate the software development processes.

Similarly, the ECSS-E-ST-40 standard for space soft-
ware development adopted by ESA is a good candidate
for using MDE techniques, and there are examples such as
[41] or [42] which also show the suitability of these tech-
niques applied to the standard. The first example uses MDE
techniques for modeling the ECSS-E-ST-70-01C standard,
creating a Domain-Specific Language (DSL) for deploy-
ing a full model-based IDE. Similarly, the second example
builds a toolchain for a space software development process
from requirements using models and transformations. Both
of them show how MDE techniques for software develop-
ment in the space domain using ESA standards contribute to
improving system reliability and usefulness.

In these works, using MDE techniques allows accelerating
the software development process under the corresponding
standard, contributing to improving its reliability. However,
none of them explicitly covers the automation of one of the
most time and effort-consuming tasks, i.e., the development
of the functional system-level tests that validate the require-
ments.

3 Validation and verification process

The software development process described in the ECSS-
E-ST-40 standard, and complemented with ECSS-Q-ST-80,
defines several phases. Each phase concludes with a specific
review and the generation of a particular deliverable docu-
ment. Figure 1 shows a general outline of the whole software
development process, focusing on the documents produced
on each stage.

In this software development process, validation refers
to the activities that answer the question “have you devel-

Model-driven system-level validation and verification

2371

oped the right system?”, while verification addresses the
question “have you developed the system correctly?”. Thus,
validation focuses on providing the set of tests and analyses,
with their corresponding reports, that demonstrate that the
behavior of the system is correct, both in its functional (the
outputs obtained are those expected in each test case), and
extra-functional aspects (response time, memory utilization,
or energy consumption comply with the limits set as system
metrics). On the other hand, verification analyzes whether the
entire development process has been carried out following the
product assurance plan. To this end, verification analyzes the
matrices that guarantee that all the required steps have been
completed, verifying that there is traceability between the
elements incorporated in the different phases. In system-level
verification, the ECSS standard requires that the specifica-
tions are covered by the software requirements, and these in
turn by the validation tests, and that once these tests have been
executed, their reports are available and provide the expected
results. This information, generated in the form of a Software
Verification Report (SVR), also incorporates the status of “To
Be Defined” (TBD) or “To Be Confirmed” (TBC) items in the
different pre-qualification reviews. Finally, system-level ver-
ification also includes configuration control of all documents
related to specifications, software requirements, validation
tests, and reports. These data are necessary so that the spe-
cific version of each document delivered in the software data
package can be determined at each project review.

The process begins with the software specification. This
activity involves the compilation and classification of the
requirements settled by the customer that apply to the soft-
ware. As aresult of this activity, the so-called software system
specification (SSS) document is defined. This document can
be considered as an input to the software development pro-
cess, and it is generated in collaboration with the customer,
and it is focused on “what” the software shall do to meet
scientific and operational goals. It is, therefore, a customer-
defined specification, and it must be included as part of the
requirement baseline (RB). In some projects, the elaboration
of a formal SSS is substituted by the identification, inside
several system-level documents, of which customer require-
ments apply to the software. Interface requirements at the
customer level can also be compiled in a specific document,
called the interface requirements document (IRD). Under this
approach, it is possible to consider more than one document
contributing to the software RB.

The next step is to derive the software requirements from
the requirements defined in the RB. The document gener-
ated as a result of this activity is the software requirement
specification (SRS). This document must be issued by the
software developer/supplier team and is part of the technical
specification (TS).

Once the SRS has been released, two activities are devel-
oped in parallel. On the one hand, the software validation

team defines the software validation specification (SVS) doc-
ument. SVS includes the test design, cases, and procedures
needed to fulfill every requirement specified in the SRS.
The SVS is mainly focused on testing, as this is the pre-
ferred method for requirement validation. Review, analysis,
or inspection methods can also be used when validation by
testing cannot be performed. The validation process also
requires validating the SSS requirements. However, the trace-
ability between SSS and SRS requirements can be used to
achieve this, so the addition of new test cases may not be
necessary. The SVS, regardless of whether it is defined with
respect to the SRS or the SSS, is part of the Design Justifi-
cation File (DJF).

On the other hand, the engineers in charge of the design
and implementation shall transform the requirements spec-
ified in the SRS into an architecture. This architecture is
provided as a preliminary version of the Software Design
Document (SDD), which is part of the Design Definition File
(DDF). This document is subsequently completed with the
detailed design. Both the architecture and the detailed design
are traced against the SRS to ensure that all the requirements
have been covered.

As noted in “Introduction,” the use of MDE techniques
to cover activities of the on-board software development
has been addressed in other research works. The work pre-
sented in this paper focuses specifically on an unaddressed
part of the development process: the automation of the Val-
idation and Verification (V&V) of software requirements.
Thus, the elements related to the design and implementa-
tion activities have not been taken into account. For these
activities, our research group has developed its component-
based model-driven framework called MICOBS. One of the
future objectives is the integration of the V&V models into it,
thus performing all the activities of the development process
inside an integrated MDE environment.

As mentioned above, to complete the validation and ver-
ification process, a document called Software Verification
Report (SVR) is also required. This document contains the
definition of the verification process that has been followed
during the development of the software, as well as the reports
produced by it. These reports include verification control
matrices that trace the software validation items against the
requirements defined in both the TS and the RB. Specifi-
cally, the TS traceability is presented as a matrix of the SRS
requirements against the SVS test cases and reports. At the
same time, traceability of the RB is obtained by transitively
tracing the SSS requirements against the ones of the SRS.

Besides, as far as feasibility is concerned, the document
must contain the reports of the software validation tests.
Therefore, it must include another matrix that maps the SVS
tests to the evidence resulting from a successful running of
the test campaign in the form of appropriate log informa-
tion. Based on the traceability of the SRS from the SSS,

@ Springer

2372

A. Montalvo et al.

' RB)

Requirements
Basline

Software System
Specification

—

7 1s N\ (DIFE)
Technical Design
Specification Justification File
Software AN
Software Validation
Requirements Specification
Specification
Software
Verification Report

- O\ /

Fig.2 ECSS documents for the RB, TS, and DJF folders

the requirements of the SSS can also be validated using the
information obtained from the tests. Like this, this process
goes from software to customer requirements. Figure 2 shows
the aforementioned documents and the deliverable folders to
which they belong.

4 Model-driven approach

The proposed model-driven approach defines one main
model for each one of the documents established in the
ECSS-E-ST-40 standard, namely the software system speci-
fication (SSS), the software requirement specification (SRS),
the software validation specification (SVS), and the soft-
ware validation report (SVR). These four models rep-
resent the contents of the documents established in the
ECSS-E-ST-40 standard described in the previous section.
Apart from these four models, the solution includes several
other support models and model-to-model and model-to-
text transformations. The main outputs of the process are
the final deliverable documents and the files that con-
tain the definition of the validation tests. The following
subsections describe in detail the complete model-driven
validation and verification process and the different mod-

@ Springer

els defined by approach. The meta-models are available
online.!

4.1 Model-driven validation and verification process

The complete validation and verification process using the
proposed model-driven solution comprises the following
stages:

1. Create the SSS models with all the requirements at the
requirement baseline (RB) level provided by the final
customers. More than one model can be considered if
customer requirements are selected from different system-
level documents.

2. Usingthe SSS models, create a single SRS model instance
containing the complete set of software requirements
defined at the technical specification (TS) level.

3. Create the instance of the SVS model. This model contains
the definition of the validation tests. Each test establishes
references to the requirements that itself validates and that
are defined in the SRS model. The SVS, in turn, refers to
other models that might be either new or reused from other
projects. These models are as follows:

— Test Setup. This model describes the test scenarios.
They contain the description of the configuration that
has to be carried out to reproduce the environment
necessary for the execution of the tests.

— TC and TM Templates. These models contain the
basic formatting data and templates needed to define
the telemetry and telecommand (TM/TC) packets that
can be received and sent during the execution of the
tests. This information is extracted directly from the
TM/TC database.

4. Create the Ground Support Software (GSS) test configu-
ration files. These files are automatically generated from
the description of the test cases established in the SVS.
The transformation that allows generating the configura-
tion files will depend on the GSS that is being used.

5. Execute the validation tests. This execution will result in
the production of a set of log reports by the GSS tool.
These log reports should be incorporated into the SVR.
For this purpose, an intermediate model has been defined,
called test campaign report (TCR). This model is used to
describe the results of the validation tests. For each GSS
tool, a transformation will be implemented to automati-

! The standard models are located in https://github.com/uah-srg-
tech/verification, the document models in https://github.com/uah-
srg-tech/documents, and the models for the database in https:/
github.com/uah-srg-tech/tmtcif. Finally, the transformation for creat-
ing the final OOXML documents is in https://github.com/uah-srg-tech/
gss_log_to_tcr.

https://github.com/uah-srg-tech/verification
https://github.com/uah-srg-tech/verification
https://github.com/uah-srg-tech/documents
https://github.com/uah-srg-tech/documents
https://github.com/uah-srg-tech/tmtcif
https://github.com/uah-srg-tech/tmtcif
https://github.com/uah-srg-tech/gss_log_to_tcr
https://github.com/uah-srg-tech/gss_log_to_tcr

Model-driven system-level validation and verification

2373

1 2 3

N

1_ ™ TC
Template/ Template

\/7

_h\
o
(o))

Fig.3 Validation and verification process flowchart

cally translate the execution log reports into instances of
TCR models.

6. Create the SVR using the TCR models obtained from the
outputs of the test execution. This step is performed by a
transformation that is independent of the GSS in use. The
selection of the desired report logs is performed man-
ually, but then the transformations themselves are done
automatically. The SVS will also be used for generating
the required matrices automatically.

In addition, for each of the primary documents, namely the
SSS, the SRS, the SVS, and the SVR, transformations have
been defined to obtain the final deliverable files in the form
of OOXML documents. If the Test Setup model used has
been specifically defined for this validation and verification
process, it will also be necessary to generate its correspond-
ing OOXML document using the appropriate transformation.
Figure 3 shows a diagram with all the steps mentioned and
the different transformations that take place, and the products
generated in each case.

4.2 Common generic models

The proposed solution includes the definition of three generic
models for facilitating the establishment of model relation-
ships and the implementation of model transformations. The
following paragraphs describe them in detail.

4.2.1 Document Template

The Document Template models the contents of a text-
based formatted document with a minimal structure that

—> —> —>
SSS SRS SVS
{
Test b
Setup GSS_LOG: TCR
\\ J/ L J J . J L J \ J
Test /Manually generated <—Reference
SRS Set svs | Ve~ SVR
etup @Automatically generated .. *Transformation

supports the hierarchical organization of its elements. Fig-
ure 4 presents the simplified meta-model. The root class of
the meta-model is DDocumentTemplate. All the document
models of the approach inherit from it. It contains references
to the elements commonly present in a document, such as
sections, tables, or figures, and the lists of applicable and ref-
erence documents required in every document of the software
development project. The transformations use these refer-
ences to obtain the complete sets of elements instantiated in
the final documents. The implementation of these references
is done for each particular document model. It is in each of
these concrete document models where the actual contain-
ment relationships between elements are established.

An Applicable Document (AD) is a binding document
that defines several requirements or constraints. A Reference
Document (RD) is a document taken as a source of infor-
mation for the current one. The Applicable and Reference
Documents of the current document are modeled using the
classes DApplicableDocument and DReferenceDocument,
respectively; both of them inherit from the abstract class
DAbstractRelatedDocument, which has several attributes:
Document title and identifier are compulsory; issue, revision,
and date are required only if available.

The abstract class DAbstractSection models a section of
the document. There are two types of sections: fixed and
instantiable. The class DFixedSection represents the fixed
type, and it models the mandatory sections whose title and
structure are fixed by the very definition of the document.
The instantiable sections, modeled through the class DInstan-
tiableSection, are optional sections whose name and location
within the document are established in the definition of the

@ Springer

2374

A. Montalvo et al.

DDocumentTemplate
sectionsl/o..* figures|o..* tables|0..* applicableDocuments|0..* referenceDocuments|0..*
\Z) DApplicableDocument DReferenceDocument
subsections
DAbstractSection —)
0.. DAbstractFigure | |
(caption: EString) v
| LP | % DAbstractRelatedDocument
DinstantiableSection = DFixedSection DFigureFromFile title: EString
name: EString referenceFile: Estring id: EString RGeS
width: EString [pix] (issue: EString) DAlignment
height: EString [pix] (revision: EString) left
(date: EString) center
DAbstractTable right
€7 (caption: EString) justified
DBodyContent bodyContent, DBody A
) \
(alignment: DAlignment) 1.7
A DBasicTable DTableFromFile
(style: EString)
DCell (width: EString) [%] referenceFile: Estring
(indent: EString) [cm])) .
(colSpan: EString) (alignment: DAlignment) | | width: EString [pix]
(rowSpan: EString) rows|1..* height: EString [pix]
(width: EString) [%] cells. ~ DRow
(shadow: EString) [rgb] DReferenceableObject
name: EString
paragraph DText toxt DRun f 1\
.) . -— reference
DListContent itcms DListltem ¢ 1 content: Strin (bold: EBoolean)
1. sublist ’ 9 run DHyperlink
0—| (italics: EBoolean) —e
‘ﬁ ' - DTab 01
tab i
ab | (underline: EBoolean)
Dltemize DEnumerate 0.1 (color: EString) [rgb]
\
V4
DParagraph paragraphContent DParagraphContent

1.*

Fig.4 Meta-model of the document template model

document model instance. Aggregation relationships can be
established between sections in order to define the hierarchi-
cal organization required by each document type.

Figure 5 shows, as an example of the use of this template,
a simple specifications document model that uses these fea-
tures. The root class of the document is Specification, which
inherits from DDocumentTemplate. The document has four
fixed sections in the first level of the hierarchy, each modeled
using a class that inherits from DFixedSection:

— “Applicable Documents,” modeled through the class
ApplicableDocsSection. This mandatory section con-

@ Springer

tains the list of ADs to the current document. To model
this list, the class contains a set of references to objects
of the DApplicableDocument class. These objects are
used to store the information related to the documents as
described above.

— “Reference Documents” The class ReferenceDocsSec-
tion models the section that lists the RDs of the current
document. Like in the previous case, this list is modeled
by a set of references to objects of the class DReference-
Document. These objects store the data related to the
RDs.

Model-driven system-level validation and verification

2375

Specification

TAppIicabIeDocs ReferenceDocs

ApplicableDocsSection

0..*YapplicableDocuments

ScopeT

ReferenceDocsSection ScopeSubsection

e
T

referenceDocuments

ScopeText
DApplicableDocument

0..1 Tlntroduction

IntroductionSection

$introductionText GeneralDescriptionTextT

DDocumentTemplate
TGeneraIDescription

GeneralDescriptionSection

TProductPerspective
]

ProductPerspectiveSection

F‘roductPerspectiveTextT PreviousMissions {1..*
-————— DBody

DReferenceDocument

Vv

DFixedSection

DinstantiableSection

name: EString

InstantiabIeTextl

PreviousMissionSubsection

Fig.5 Meta-model of a basic specification using sections and text

— “Introduction” The IntroductionSection class represents
the introduction section of the specifications document.
This fixed section contains a separate body, modeled
through the class DBody, and one instantiable subsec-
tion that is modeled through the class ScopeSubsection.
The body of the subsection is also modeled through the
class DBody, whose description can be found below.

— “General Description” This section of the document con-
tains a general description of the product to be developed.
Itis modeled using the GeneralDescriptionSection class.
This class contains a body and a fixed section called
“Product Perspective,” which is modeled using the Pro-
ductPerspectiveSection class. This last section, in turn,
contains a body and a set of instantiable sections that cor-
respond to information about previous missions related
to the one that is the subject of the current document.
This section is modeled using the PreviousMissionSub-
section class and only contains a body.

As mentioned above, the class DBody represents a
body. A body is composed of one or more objects which
can either be figures, tables, lists, or text paragraphs.
All the objects contained in a body inherit from the
abstract class DBodyContent. This class contains a set
of attributes that are used in the generation of the deliv-
erable OOXML document files. The first attribute sets
the alignment type of the body content as one of the
fields of the enum DAlignment, which includes the tra-
ditional values left, center, right, and justified. The other
two attributes are style and indentation. These attributes
are directly translated when generating the OOXML doc-
ument. The first one is the name of the style that will be
assigned to the content, and the second one is the indenta-
tion.

Figures are modeled through the abstract class DAbstract-
Figure. Each of the possible sources of the figure is modeled
by a concrete class that inherits from it. This class contains
a single attribute, which is the optional caption of the figure.
Currently, the meta-model only defines one concrete class:
DFigureFromFile. It models a figure obtained from an image
file. It contains several attributes, such as the path to the file in
the file system and the width and height of the corresponding
image in pixels.

Following the same approach, tables are defined using
the abstract class (DAbstractTable). This class only contains
an optional attribute that models the caption of the table.
Two different concrete classes have been defined. The first
one is used when the table is stored in an external image
file. This class, called DTableFromFile, contains the same
attributes as the class DFigureFromFile. The other class is
DBasicTable. It models a user-defined table and contains two
optional attributes: width and alignment. The first one is used
to define the relative width of the table expressed as a percent-
age of the total text width. The second attribute defines the
alignment of the text within the table using the enumerate
DAlignment, described above. User-defined tables contain
rows, modeled using the DRow class, which in turn are com-
posed of cells, represented by the class Cell. Cells can span
multiple rows and columns using the rowSpan and colSpan
attributes, respectively, which provides flexibility in the def-
inition of tables. Besides, cells can also define their specific
width as a percentage of the total table width and the color
of the background shading.

The third type of body content is a list of items. The meta-
model defines an abstract class, called DListContent, and
two concrete classes, namely Dltemize and DEnumerate.
The first one corresponds to a bulleted list, while the second
one models a numbered list. Lists are composed of items,

@ Springer

2376

A. Montalvo et al.

modeled using the DListltem class, which in turn can contain
one paragraph of text and one sublist.

The last type of body content is a paragraph. They are
modeled through the DParagraph class and, like bodies, must
contain at least one paragraph content. Paragraph contents are
modeled using the abstract class DParagraphContent. The
meta-model currently defines two different types of content:
text runs and hyperlinks.

A text run, modeled using the class DRun, represents a
sequence of characters that are subject to a given format.
This format can be set by using the boolean attributes bold,
italics, and underline. A text run contains an object of the
class DText which stores the actual characters. Also, a text
run can contain a DTab object to model an optional horizontal
tab located prior to the text.

Hyperlinks are modeled through the class DHyperlink. Tt
includes a text run, which stores the text to be displayed on
the link inside the document, and a reference to the linked
object, represented by the abstract class DReferenceableOb-
ject. Hyperlinks can point to six different types of items,
namely ADs, RDs, tables, figures, paragraphs, and lists.

4.2.2 Traceable document model

The second common generic model is the traceable docu-
ment model (TDM), depicted in Fig. 6. It contains the classes
required for defining traceable items within a document. A
traceable item is an element or part of a document that can be
referenced from other elements. The root class of the meta-
model is VTraceableDocument. All of the document models
of the approach containing requirements inherit from it. It
contains several attributes for establishing the name, identi-
fier, issue and revision numbers and date of the document,
and requirement groups for sorting requirements.

Traceable documents can have parent documents. The ref-
erences to these parent documents are modeled using the
VTraceableParentDocumentRef class. These parent docu-
ments contain the items that can be referenced from the ones
in the current document since an item cannot reference items
that belong to its container document. For example, an SSS
document shall be the parent of an SRS document.

It may be that a customer-defined specification document
that is part of the RB contains requirements that do not
apply to the software. To filter out those requirements, the
class VTraceableParentDocument includes a list of non-
applicable items. These items shall not be taken into account
when the final relationship matrices are generated.

Referenceable items themselves are modeled using the
abstract class VTDAbstractltem. Each document will define
its specific classes that shall include the attributes neces-
sary to model the concrete type of item. The generic class
includes two attributes common to all item types, which are
the name and the validation method. The type of the latter

@ Springer

<<enumeration>>
VTraceableDocument

VValidationMethod parents VTI arentDoct tRef
Analysis name: EString o
Inspection id: EString document notApplicableltem0..*
Testing issue: EString
Review revision: EString
ModelSimulation date: EString
groups|1..*
WalkThrough
CrossReading
DeskChecking
VTDFixedGroup VTDInstantiableGroup
name: EString
doc
VTDAbstractGroup

items|1..*
group
VTDAbstractitem parentitem

0..
name: EString

ValidationMethod: VValidationMethod

1: the referenced item shall belong to a parent document

Fig.6 Traceable document meta-model

is an enumeration whose fields are the values defined by the
ECSS-E-ST-40 standard. As mentioned above, an item can
also reference other items, which shall belong to a parent doc-
ument. For example, an SVS requirement item can reference
an SSS specification item.

Finally, all items defined within a TDM must belong
to a group. There is an abstract class VTDAbstractGroup
for representing a group of items. Groups can be fixed or
instantiable. Fixed groups are modeled using the class VTD-
FixedGroup, and they are groups with a predefined name that
must always be defined in a given instance of a TDM-based
model. As for instantiable groups, represented by the class
VTDInstantiableGroup, they are optional groups of items
whose names are established in the definition of the doc-
ument model instance. For example, several fixed groups
are defined in ECSS-E-ST-40 standard, such as “Capabilities
requirements” or “System interface requirements,” and they
must be modeled using fixed groups. However, sometimes
software requirements are tailored, and some requirements
cannot be grouped into any group of the standard. Those
requirements must be modeled using an instantiable group,
as the name and meaning are project-scoped.

4.2.3 Validation document model

The third and last common generic model is the validation
document model (VDM), whose meta-model is depicted in
Fig. 7. It contains the classes needed for modeling documents
that validate the traceable items included in other documents.

The root class of the meta-model is VValidationDocu-
ment. All the document models of the approach that contain

Model-driven system-level validation and verification

2377

VTraceableDocument

parents

0..

VValidationDocument

name: EString
id: EString
issue: EString

revision: EString

date: EString
groups|1..*
VVDFixedGroup VVDInstantiableGroup
doc
VVVDAbstractGroup
items[0..*
group

VVVDAbstractltem VTDAbstractitem
name: EString
va\idatingltemslm.' 1\

Fig.7 Validation document meta-model

validation items, i.e., test cases, inherit from it. As with the
TDM, the root class has attributes for establishing the name,
identifier, issue and revision numbers, and date of the docu-
ment, as well as validation groups for sorting the validation
items.

A validation document can have one or more parent doc-
uments, which are necessarily traceable documents. The
traceable items to be validated will be extracted from these
parent documents. In the case of the ECSS-E-ST-40 standard,
an SVS document shall have at least one SSS or SRS doc-
ument as a parent. In our approach, an SVS document will
always have an SRS document as a parent. SSS documents
are always validated transitively by using a matrix that maps
the requirements defined in the SRS to their corresponding
SSS requirements.

The rest of the structure of the VDM is similar to that of
the TDM. Validation items are modeled using the abstract
class VVDAbstractltem. Final document models shall spec-
ify this class depending on the information associated with
the validation procedure and the items to be validated. All
validation items belong to a group that can be fixed if it is
defined in the standard associated with the document and is
present in all models, or instantiable if, on the contrary, it is
a specific group of a particular document. The meta-model
defines two abstract classes to model the groups: VVDFixed-
Group for fixed groups and textsfVVDInstantiableGroup for
instantiable groups.

The main validation document defined in the ECSS-E-ST-
40 standard is the SVS. This document contains the test cases
that comprise the software validation campaign. As shown
in Sect. 4.4, these test cases will be modeled as validation

items, and all of them will be within the same fixed group
called “Test Cases.”

4.3 Requirement models

In the ECSS-E-ST-40 standard, there are two documents
that contain requirements: the software system specifica-
tion (SSS) and the software requirement specification (SRS).
They contain requirements at requirement baseline and at
technical specification levels, respectively. Thus, SSS and
SRS models have been created with all the classes required
for expressing all the information contained in the corre-
sponding documents according to the standard.

Both SSS and SRS models have the same structure. The
root of the meta-models inherits from the root classes of
two of the common generic models, namely DDocument-
Template and VTraceableDocument. The remaining classes
of the meta-models can be divided into two groups: those
that model the descriptive text of the document and those
that model the requirements themselves. The following para-
graphs describe both document models in detail.

4.3.1 Software system specification model

Figure 8 contains a simplified diagram with the main classes
of the SSS meta-model. The root of the model is the class
called VSSSDocument. This class includes a set of objects
that represent the different sections of the document. The
first four sections belong to the first group described above,
that is, those containing the descriptive text part of the docu-
ment. They are fixed sections that present in all the document
models. These sections are the following:

— “Introduction” It is used to contextualize the document
and its objectives and is modeled by the VSSSIntroduc-
tion class. This section contains one or more instantiable
sections, represented by the class VSSInstantiableSec-
tion, which inherits from the class DInstantiableSection
defined in the Document Template model. Each of them
contains a body in which you can display both text and
figures and tables.

— “Applicable documents” This section contains the list
of applicable documents. It is modeled using the VSS-
SApplicableDocumentsSection class. In turn, this class
contains the references to the documents, modeled by the
class DApplicableDocument defined in the Document
Template model.

— “Reference documents” Modeled by the VSSSReference-
DocumentsSection class, this section contains the list
of reference documents. The references to the docu-
ments are modeled using the DReferenceDocument
class, defined in the Document Template model.

@ Springer

2378 A. Montalvo et al.

‘_é VSSSintroduction |, - 0.+ |sssInstantiableSubsections
_‘g ssslnstantiableSubsections VSSSinstantiableSection
]
23 0. DApplicableDocument
£9Q
£ | vSSSApplicableDocumentsSection applicableDocuments body
@ —E -
§ 3 0.* DReferenceDocument
3 8 ..
s g
? g X referenceDocuments; DRun DBody
5 VSSSReferenceDocumentsSection
5 -
8 0. VSSSTerm
% ..
] terms|
2 description
0. VSSSDefinition VSSSAbstractBriefDescription
5 definitions name: EString
§ VSSSTermsDefinitionsAbbreviations
*—< o+ | VSSSAbbreviation
£ ..
3 abbreviations
8
3
s o,,*lssslnstantiabIeSubsections
§ VSSSFixedSection
g body
2
:,:-; c productPerspective
£ S —
3 2 .| generalCapabilites VSSSinstantiableRequirementSection
a (g VSSSGeneralDescription .—IgeneraIConstraints
0| &5 - - description
8 s 0—|operat|onaIEnV|ronment
j *
= S assumptionsDependencies 0. Tsssltems VSSSDocumentitem
o> VTDAbstractltem I
<t
oA,*lsssRequirementSubsections
VTDFixedGroup VSSSAbstractRequirementSection|, .
5 sssltems
£
)
®
g general VSSSGeneralRequirements T
.g VSSSSpecificRequirements
*—3
Q2
z& systemSoftwareObservability VSSSystemSoftwareObservabilityRequirements

verificationValidationProcess | VSSSVVProcessRequirements

VSSSVVintegrationRequirements

verification

VSSSVerificationRequirements

verificationValidationIntegrationSection

VTraceableDocument DDocumentTemplate

\V4

Fig.8 Meta-model of the software system specification model

— “Terms definitions and abbreviations™ This section con- The items themselves are finally modeled as name/de-
tains a list of the terms, definitions, and abbreviations scription pairs through concrete classes that inherit from
used during the definition of the document. It is modeled the abstract class VSSSAbstractBriefDescription.

using the class VSSSTermsDefinitionsAbbreviations.

@ Springer

Model-driven system-level validation and verification

2379

The class VSSSGeneralDescription models the “General
description” fixed section. This is the main text section of
the document. It describes, from the customer point of view,
the main capabilities and constraints of the software, its
operational environment, and any dependencies that may
affect it. According to this, it contains several fixed subsec-
tions defined in the standard, namely “Product perspective,”
“General capabilities,” “General constraints,” “Operational
environment,” and “Assumptions and dependencies.”

The standard defines two types of requirements in the
SSS: the specific requirements and the verification, valida-
tion, and integration requirements. To keep this distinction in
the model, there are two different fixed sections, one for the
specific requirements, modeled using the class VSSSSpecifi-
cRequirements, and another one for the verification, valida-
tion, and integration requirements, represented by the class
VSSWintegrationRequirements.

Each of these sections, in turn, is divided into fixed subsec-
tions. These subsections, most of which have been removed
from the diagram for simplicity, group and organize the var-
ious requirements according to the ECSS-E-ST-40 standard.
Also, they act as fixed groups according to the Traceable
Document model. The requirements are modeled using the
class VSSSDocumentltem. This class in turn inherits from
the class VTDAbstractltem, making the requirements trace-
able items. Each of these items contains a body that can
include text paragraphs, figures, or tables as appropriate for
the definition of the different requirements.

4.3.2 Software requirement specification model

A simplified version of the SRS document meta-model is
depicted in Fig. 9. The root class is called VSRSDocument,
and its structure is similar to that of the SSS. It contains the
same four initial sections described above, namely “Intro-
duction,” “Applicable Documents,” “Reference Documents,”
and finally “Terms definitions and abbreviations.”

The main text section of the SRS as defined in the stan-
dard is “Software overview.” This section describes the main
functionality and purpose of the software, its interfaces, and
operational environment, and also any constraints that may
affect it. This section is modeled through the class VSRSSoft-
wareOverview. This fixed section, in turn, includes four
other fixed subsections whose names and scope are also
stated in the standard.

These sections are: “Function and purpose,” “Environ-
mental considerations,” “Relation to other systems,” and
“Constraints.” Each of these subsections is modeled as fixed
sections using classes that inherit from the ones defined in the
Document Template model. All of them define their own bod-
ies which may include paragraphs of text, figures, or tables.

The SRS does not distinguish, at the top level, between
specific requirements and verification, validation, and inte-

gration requirements, as does the SSS, so only one type of
requirement is defined at this level. Thus, the model includes
a single fixed section to include them, which is modeled
using the class VSRSRequirements. This fixed section is
divided into several fixed subsections, most of which have
been removed from the diagram for the sake of simplicity.

Each subsection groups a specific set of requirements. As
in the case of the SSS, SRS requirements are modeled also
as traceable items inheriting from the class VTDAbstractltem
defined in the TDM. These items also include their own bod-
ies that can include text paragraphs, figures, or tables.

According to the ECSS-E-ST-40 standard, the SRS doc-
ument must include a requirements traceability matrix. This
matrix must link every requirement present in the SSS doc-
uments to a requirement in the SRS. However, one of the
targets of our approach is the automatic generation of this
matrix with information from the SSS and the SRS models.
After being generated, this matrix is incorporated into the
final deliverable SVR document.

4.4 Validation models

The ECSS-E-ST-40 standard defines the software validation
specification (SVS) as the main document of the validation
process. This model behaves like a domain-specific language
for defining test procedures according to the ECSS standard.
It also integrates the telemetry and telecommand information
of the project, provided via a SCOS-2000 database. This way,
the definition of the test procedures is done by establishing
the sequence of the required TCs with the related expected
TMs, according to the database, and adjusting the field values
where appropriate.

A simplified diagram of the SVS meta-model is depicted
in Fig. 10. This diagram only represents the classes corre-
sponding to the sections that contain text and the ones that
model the test designs and cases. Another figure below shows
the diagram corresponding to the specific classes that model
the test procedures.

SVS document models incorporate elements from both
the Document Template and Validation Document models.
The root class of the SVS document meta-model is called
VSVSDocument. This class inherits from classes DDocu-
mentTemplate and VValidationDocument.

The document contains an initial set of four fixed sec-
tions which have the same structure and semantics as the
ones described in Sect. 4.3. These sections are “Introduc-
tion,” “Applicable Documents,” “Reference Documents,”’
and “Terms definitions and abbreviations.” There are also
five other fixed sections that provide information about the
software to validate, the available validation methods, the test
platforms that are going to be used, the way to identify the
tests, and any other additional information that must be taken
in account during the testing campaign. These sections con-

@ Springer

2380 A. Montalvo et al.
-g VSRSIntroduction |, . 0..» [srsInstantiableSubsections
*3 -
5 srsinstantiableSubsections VSRSInstantiableSection
T c
=}
8 3 0.+ DApplicableDocument
£
% VSRSApplicableDocumentsSection applicableDocuments body
0—% -~
a
= o~ DReferenceDocument
-.§ § referenceDocuments DRun DBody
2§ | VSRSReferenceDocumentsSection
*27 E—
89 o VSRSTerm
2 .
39
88 terms
38 description
58
23 o VSRSDefinition VSRSAbstractBriefDescription
25 .
£ definitions name: EString
% VSRSTermsDefinitionsAbbreviations
*—c - 0.+ | VSRSAbbreviation
abbreviations
= 0__*lsrsInstatianbleSubsections
)
€ VSRSFixedSection
3 body
o
o
(7]
o
g s functionPurpose
B ,J VSRSInstantiableRequirementSection
§ VSRSSoftwareOverview [* environmentalConsiderations
Kl .-
’5 ®JrelationOtherSystems description
>
% ‘| constraints 0.. Tsrsltems VSRSDocumentltem
£
® VTDAbstractltem
o__*lsrsRequirementSubsections
VTDFixedGroup VSRSAbstractRequirementSection|, .
» ..
srsltems
j=
'é% : general VSRSGeneralRequirements T
%@ |VSRSRequirements *
@*—5
§
3 adaptationinstallation
(7]
T VSRSAdaptationinstallationRequirements
VTraceableDocument LDDocumentTemplate
1>

Fig.9 Meta-model of the software requirements specification model

tain only descriptive text and are unique to this document. All
these fixed sections and their corresponding subsections are
modeled using the class VSVSFixedSection, which uses the
classes provided by the Document Template model to define

the body of the sections as objects of the DBody class.

@ Springer

The last three fixed sections of the document are:

— “Software validation testing specification design” It spec-
ifies the test grouping criteria and a general description
of the design of the validation tests.

Model-driven system-level validation and verification

2381

c .
£ |VSVSintroduction | . 0..*|svsInstantiableSubsections
‘—(‘D_ @
2 _) VSVSInstantiableSection +———
g < svsInstantiableSubsections
3 2
8% 0. DApplicableDocument
£93
< | VSVSApplicableDocumentsSection applicableDocuments body
@ —5-
8
3
§ 3 o+ DReferenceDocument
3 =2 DRun
2 g : referenceDocuments DBody
5 VSVSReferenceDocumentsSection
® 55—
8 . VSVSTerm
a 0..
8 =
g S terms o
83 description
e 0
[}
5 0. VSVSDefinition VSVSAbstractBriefDescription
2 .
g definitions name: EString
Qo
é VSVSTermsDefinitionsAbbreviations
@ —35- -— 0. VSVSAbbreviation
- £ —
_% é abbreviations
Jod
Q E
[} .
= VSV ftwareOverview
‘é SVSSoftwareOvervie taskCriteria %7 0..*¢svslnstantiableSubsections
2 featuresToBeTested | . .
Q 5 couTes oFp o VSVSFixedSection |54y
IS '§ featuresNotToBeTested [
“Eg ‘é’ . testPassFailCriteria N
"q&" : g_ VSVSTaskldentification itemsCanNotBeValidated
g < g >4 manuallyAutoGeneratedCode general
= 3 i
8 § % VSVSTestDesign |, esmosetested
[a] = eneral
g) % \VSVSTestingSpecificationDesign $ approachRefinements
(g ‘é) testDesigns
2 T VVDAbstractitem
Lo
é VTestSetupDocument | 7 N
%) | VVDFixedGroup identifier
2 —> % inputs
.§ g < outputs
] general VSVSTestCase $—— [.craicitera
¢ | VSVSTestCases :w
‘_3_ < specialConstraints
c 8 testCases interfaceDependencies
S B 1. .]
g Q testCasel1.. . X
% general identifier
2 VSVSTestProcedures # VSVSTestProcedure |, ..
’é _ tveslProcedures testScript
8 8 1. >
z 3 rocedureSteps
g g p P
g,_ VSVSAnalysisinspectionReview VSVSProcedureSteps
¢ 5
88
% s |VSVSTestPlatformRequirements
-y
g 2
o o
X
g5
g g
z g VSVSAdditionallnformation VValidationDocument DDocumentTemplate
*—=:-
S
£
g i)
Fig. 10 Meta-model of the software validation specification document model

— “Test cases” It defines the inputs and outputs of the test,
the pass-fail criteria, and any environmental needs.

— “Test procedures” It defines the steps to follow for the
execution of the tests.

@ Springer

2382

A. Montalvo et al.

In the SVS document meta-model, the first section is mod-
eled through the class VSVSTestingSpecificationDesign. It
references an object of the class VTestSetupDocument,
which is defined as part of the Test Setup model and described
in Sect. 4.5. Test designs themselves are represented by the
class VSVSTestDesign, which contains the general descrip-
tion of the design, the features to be tested, and the refined
description of the testing approach.

The “Test cases” fixed section is modeled through the class
VSVSTestCase. This section is implemented as defined in the
related ECSS standard ECSS-E-ST-40C, annex L [1]. It con-
tains a fixed subsection, called “General description” that
includes a description of the global aspects of the different
test cases. Test cases themselves are represented by the class
VSVSTestCase. Each test case refers to one or more traceable
items corresponding to the requirements validated by every
particular case. Inside the test case section, several pieces of
information must be present: the identifier, which is com-
posed of a unique name and a short description; inputs and
outputs, which are the elements needed to execute the tests
and the elements expected afterward; the pass or fail criteria;
the environmental needs, containing configurations of both
setup and support software versions; the special constraints
if any; and the inferface dependencies, i.e., all the test cases
to be executed before the current one.

Test procedures are grouped inside the section called
“Software validation test procedures,” modeled using the
class VSVSTestProcedures. This section includes a general
description and at least one test procedure. Each proce-
dure, represented by the class VSVSTestProcedure, contains
fixed text sections: a unique identifier, different from the
test case identifiers; the purpose of the procedure, includ-
ing a reference to the related test case; the fest script, which
can be collected in Appendix, and at least one procedure
step. Each procedure can optionally reference an object of
the class VTestSetupSupportedActionOverVariable which
belongs to the Test Setup model and is detailed in Sect.
45.

Steps are modeled by the class VSVSProcedureStep. The
class uses several auxiliary models for creating the steps. For
its definition, it may use telecommands and telemetries from
the database or actions taken from the ones defined in the
Test Setup model associated with a given scenario. Figure 11
shows a diagram of the classes relevant to the definition of
the procedure steps.

The standard defines the validation procedures as
sequences of inputs (TCs) and outputs (TMs) that fit with
the Arrange—Act—Assert paradigm; thus, this is the most
important part of the procedure steps model. Inputs and out-
puts are modeled using abstract classes VSVSSteplnputs and
VSVSStepOutputs, respectively.

The input for each step can be of one of the following

types:

@ Springer

— A telecommand sequence It is an ordered sequence of
telecommands that are to be sent in the corresponding
step. This input type is modeled through the concrete
class VSVSStepTelecommandSequence.

— An action. It models the interaction between the test and
the test conductor. For example, the test conductor has to
check whether a voltage value is not bigger than a given
limit for 30 seconds. Actions are represented by the class
VSVSStepAction.

Telecommand sequences are composed of one or more
telecommands. Each telecommand is modeled using the
class VSVSStepTelecommand, which contains attributes that
allow you to set a name for the telecommand to be sent, and
apply an optional delay before sending. In addition, the class
defines a reference to an object of the VSVSTestSetupSup-
portedinterface class. This class, defined as part of the Test
Setup meta-model, identifies the interface through which the
telecommand should be sent. The interfaces must have been
defined in the Test Setup, and they are the ports used to receive
and send telecommands and telemetries. Finally, the telecom-
mand meta-model allows you to set both its header and the
payload to be sent.

The telecommand header has a fixed structure that is
determined by the Consultative Committee for Space Data
Systems (CCSDS) standard [43]. The abstract class TMT-
CIFTCHeader represents the header. It contains a series of
fields, modeled by the class TMTCIFTCHeaderField, whose
values are fixed by the standard. These classes must be spec-
ified depending on the GSS tool used, adding in each case
the necessary attributes to generate the test configuration.

Within the telecommand step model, the content of the
fields can be modified explicitly to produce erroneous head-
ers. In this way, the software routines in charge of Fault
Detection Isolation and Recovery (FDIR) can be validated.
These assignments are defined through the class VSVSStepT-
elecommandHeader.

The organization of the payload follows the Packet Uti-
lization Standard (PUS) [44]. This standard sets both the
fields of the payload and its format. Each mission establishes
a database with the telemetry and telecommand packet to
be used. From this database, and following the standard,
the structure of each packet is defined. The abstract class
TMTCIFTC represents this structure. Each object in this class
represents a specific telecommand packet. For each possible
GSS tool to be used, this class must be specified with the
necessary elements and attributes to automate the genera-
tion of TC packets. Telecommand and telemetry models are
stored externally to the SVS document definition itself and
are generated from the information contained in the TM/TC
database.

The SVS document model uses templates, stored in sepa-
rate models as well to facilitate reuse, for assigning values to

Model-driven system-level validation and verification

2383

VSVSStepinputs

—

<<enumeration>>

VSVSStepOutputCheckmode VSVSStepTelecommandSequence

all

unsorted telecommandTO..*

any VSVSStepTelecommand
name: EString
delay_value: EString
delay_unit: VSVSTimeUnit

VSVSStepAction
VSVSProcedureSteps delay_value: EString

delay_unit: VSVSTimeUnit

0.*
tcTemplate fieldRef|
TMTCIFTC
name: EString fields TMTCIFTCField
type: EString 0.* name: EString
subtype: EString
tc fieldRef|
>~ VTCTemplate fields VTCTemplateField
tcData > >— -—
name: EString 0.* value

tcHeader

interface

VSVSStepTelecommandData | fie|gs VSVSStepTelecommandDataField 5,
>~— >

VSVSStepTelecommandHeader, | VSVSStepTelecommandHeaderField

0..*| fields fieldRef 1Va|ue

o.+Jstep period_value: EString TMTCIFTCHeader (fic|ds TMTCIFTCHeaderField
period_unit: VSVSTimeUnit name: EString 0.x name: EString
\l/selectedAction P Terase ValueI
VTestSetupAction
rev_step |0..1 . |
e see inputs TMTCIFFieldValue
VSVSProcedureStep |oytputs VSVSStepOutputs
name: EString 0.1 |
0.1 8=
(replays: EString) o— %[%
figurati 3
configurations 2 VSVSStepTelemetrySet
EI value
S checkmode: VSVSStepOutputCheckmode
= TMTCIFTMHeader fic|ds TMTCIFTMHeaderField
£ valid_time_interval_value: EString
5! name: EString 0..* name: EString
g valid_time_interval_unit: VSVSTimeUnit
telemetry[0..* ﬁeIdRef/]\ Ivalue
VSVSStepTelemetryHeader fic|gs | VSVSStepTelemetryHeaderField
-—
interface 0..%
tmHeader
VSVSStepTelemetry]
—> VSVSStepTelemetryData |fieiqs | VSVSStepTelemetryDataField |yaue
name: EString >— >
tmData 0..*
tmTemplate fieldRef]
. i VSVSStepConfiguration TMTCIFTM
VSVSStepConfigurations configuration
@——— filterStatus: VTestSetupConfigurationStatus name: EString fields TMTCIFTMField
0.*

printStatus: VTestSetupConfigurationStatus

\l/selected()onfiguration

type: EString 0.* name: EString

subtype: EString

/]\‘m fieldRef]

VTMTemplate fields = VTMTemplateField |,5e
-—

—>
name: EString 0..*

Fig. 11 Meta-model of the procedure steps of the software validation specification model

the fields of the telecommand packets. Templates are mod-
eled by the VTCTemplate class. This class belongs to the TC
Template meta-model.

When you define a telecommand step, you establish which
template is going to be used. Templates can assign values to
all the fields of the payload or leave some of them open to be
defined in the step itself. The class VSVSStepTelecommand-
Data is used to make the assignment of values to these open

fields. In this way, the same template can be used in multiple
steps.

As mentioned above, the other type of input that can be
part of a procedure step is an action. Actions are represented
by the class VSVSStepAction. For defining an action inside
a procedure, an object of the class VTestSetupAction must
be referenced. This class and its contents belong to the Test
Setup model and are explained below. Actions allow the def-

@ Springer

2384

A. Montalvo et al.

<ProcedureSteps >
<Step name="TestConnection">
<TelecommandSequence >

<Telecommand name="TestConnectionTC"

milliseconds">

interface="SpW" delay_value="120" delay_unit="

<TelecommandData template="tc_17_1" />

</Telecommand>
</TelecommandSequence>
<TelemetrySet checkmode="all™"

milliseconds">

<Telemetry name="AcceptACK"

<TelemetryData template="tm_1_1"

</Telemetry>

<Telemetry name="TestConnectionReport"
<TelemetryData template="tm_17_2"

</Telemetry>
<Telemetry name="ExecACK"

<TelemetryData template="tm_1_7"

</Telemetry>
</TelemetrySet>
</Step>
</ProcedureSteps>

Listing 1 XML script example of VSVSProcedureStep

inition of two timing attributes: delays, defined as time to
wait before the action should begin, and spans, which is the
time span during when the action should take place.

A procedure step may produce outputs, which are mod-
eled through the abstract class VSVSStepOutputs. Currently,
there is only one concrete type of output available, a set of
expected telemetries. Expected telemetry sets are modeled
using the class VSVSStepTelemetrySet. This class is similar
to the input telecommand sequence. The telemetry set con-
tains an attribute for expressing the expected telemetry order
inside the set, which is an enumeration modeled using the
class VSVSStepOutputCheckmode. The enumeration fields
are: “all,” which means all telemetries in the set must be
received and the order has to be the one in the procedure;
“unsorted,” for expecting all the telemetries but in any order;
and “any,” for receiving at least one of the telemetry packets.

Telemetries are modeled by the class VSVSStepTeleme-
try. The telemetry model is identical to that of the telecom-
mand. It also allows you to define both the header of the
packets and their payload. Telemetry headers are set by
the CCSDS standard and modeled using the same classes
described above. The payload follows the PUS standard,
and the assignment of values to the fields is also done
using templates. The class TMTCIFTM represents the struc-
ture of a telemetry packet. As mentioned above, these objects
are stored in separate files and are generated from the
TM/TC database. Telemetry templates are modeled by the
VTMTemplate class. This class belongs to the TM Template
meta-model. These templates are also stored in separate files
to facilitate reuse.

A simple test procedure is defined in the XML script
listing in 1 . As shown in the model, the XML root ele-
ment for test procedure steps is always VSVSProcedureSteps.
For this simple test, a single step named “TestConnection”
is defined. It contains a telecommand sequence with only

@ Springer

valid_time_interval_value="500"

valid_time_interval_unit="

interface="SpWw">

/>

interface="SpWw">
/>

interface="SpW">

/>

one telecommand. This single telecommand, named “Test-
ConnectionTC,” is configured to be sent via the SpaceWire
“interface,” identified by the key “SpW,” which is a space
communications protocol coordinated by ESA. The telecom-
mand is configured to be sent 120 milliseconds after starting
the procedure with the “delay_value” and ‘“delay_unit”
attributes. For defining this TC, the TC “template” used is a
test connection telecommand, which is identified in the PUS
standard as type 17, subtype 1, and so is called “tc_17_1.”
An example of the TC template and its corresponding format
is shown in Listing 2.

<TCTemplate name="tc_17_1"
/>

tc="tc_epd_17_1_ack™"

<Export from="epd_pus_tc_format.xml"
to="epd_pus_tc_17_1_format.xml">
<settings >
<settingFromConst value="9"
"ACK"/>
<settingFromConst value="17"
="ServiceType"/>
<settingFromConst value="1"
"ServiceSubtype"/>
<settingFromConst value="120"
toFieldRef="SourceID"/>
</settings>
</Export>

toFieldRef=
toFieldRef

toFieldRef=

Listing 2 XML script example of TC Template type 17 subtype 1 and
its corresponding format

For the expected telemetries, this simple test script con-
figures a single step with one telemetry set containing
three different telemetries, which are the expected responses
according to the PUS standard: two acknowledge packets and
the test connection response. Following the check mode key-
word, “all” the three packets must be received mandatorily.
Moreover, as stated by the attributes “valid_interval_value”
and “valid_interval_unit,” they must all be received within
500 milliseconds.

The first packet is the acknowledgment of acceptance
and corresponds to packet type 1, subtype 1 of the PUS

Model-driven system-level validation and verification

2385

standard. It is called “AcceptACK,” and it is received via
the same “SpW” interface and created using the TM tem-
plate “tm_1_1.” The other two telemetries correspond to
the test connection report (PUS type 17, subtype 2) and
the acknowledgment of execution (PUS type 1, subtype 1).
They are called “TestConnectionReport” and “ExecACK,”
are received through the same “SpW” interface, follow the
same structure, and use the TM templates “tm_17_2" and
“tm_1_7,” respectively.

4.5 Test Setup model

The Test Setup model contains all the classes needed to define
a Test Setup document. It is worth recalling that this docu-
ment is not in the ECSS-E-ST-40 standard. The reason for
modeling it, even though it is not included in the standard, is
to allow the reuse of configuration files for the testing process
of different projects.

Figure 12 contains a simplified diagram with the main
classes of the model. The root class is VTestSetupDoc-
ument. The meta-model incorporates the elements from
the Document Template model, and its root class inher-
its from DDocumentTemplate. The document contains the
same initial set of four fixed sections that are present in
all the requirement and validation documents, i.e., “Intro-
duction,” “Applicable Documents,” “Reference Documents,”
and “Terms definitions and abbreviations.” Besides, it con-
tains four other fixed sections that describe the features and
options that define a test setup.

The first fixed section is called “Interfaces” and is modeled
using the class VTestSetuplnterfacesSection. It contains
the description of the interfaces available within the test
environment. Each interface is modeled through the class
VTestSetuplnterface. This class contains the name of the
interface and a description.

The second fixed section of the document is “Packet
configuration.” It is an optional section, modeled through
the class VTestSetupPacketConfigurationsSection, and it
contains one or more packet configurations. A packet con-
figuration is a feature for filtering certain telemetry packets
out of the test flow. One of the uses of this mechanism is
to make the housekeeping telemetry packets, that can arrive
at every moment, not interfere with the test. Any telemetry
can be selected, thus making easier the automation of the test
procedures.

The third fixed section is “Actions,” which is another
optional section and is modeled using the class VTestSetu-
pActionsSection. It contains one or more actions. An action,
represented by the class VTestSetupAction, is an operation
to be performed by the test conductor and not automated by
the test. These actions have a name, a type, and a description
associated.

The type is modeled using the enumeration VTestSetu-
pActionType, whose values have been defined according to
our experience in the development of validation tests. The
following list shows the currently available values, although
the model can be extended by adding other values if neces-
sary:

— instruction, a single instruction given to the test conductor
like “turning on any external device.”

— checking, a requirement for the test conductor to check
values in an instrument such as an oscilloscope.

— tmtc_checking, a checking related to telecommands or
telemetries, can be automated depending on GSS.

The fourth and final section is called “Scenarios,” and
it is modeled using the class VTestSetupScenariosSection.
It contains a list with at least one scenario. Each scenario
relies on all the previous four optional features for creating
a full-defined environment for testing. Thus, it contains the
list of interfaces supported by the scenario, the list of packet
configurations to be applied, and the list of actions available
for the different test procedures.

4.6 Report models

The approach provided in this paper includes the definition
of a report document model called Test campaign report
(TCR) and the modeling of the software validation report
(SVR) document. Both document models are described in
the following paragraphs.

4.6.1 Test campaign report model

The TCR is not a document explicitly defined in the ECSS-
E-ST-40 standard. It contains the results of the execution of
the validation test campaign. In this way, the document is
part of the Design Justification File (DJF). Specifically, it
contains the results of the validation tests. It is intended to
be generated automatically from the execution logs of the
Ground Support Software tool used to launch and manage
the tests. Figure 13 contains a simplified diagram with the
main classes of the model.

The root class of the TCR meta-model is VTCRTestCam-
paignReport. It contains a list of test reports, modeled by
the class VTCRTestReport. Each report has two attributes:
the identifier of the test procedure associated with the report
and the resulting status of the test. This status will have as
value one of the following: pass if the test was run success-
fully, fail if the test failed to obtain the expected result, and
not tested if the test was not run in this particular campaign.
Reports also contain a text string with the evidence for the
status, e.g., the date and time when the test was successfully
run.

@ Springer

2386 A. Montalvo et al.
ADs
VTestSetupDocument Bl =
RDs 0.*
v interfaces 0..1]configurations 0..1]actions scenarios f P
DDocumentTemplate 0.
VTestSetupinterfacesSection VTestSetupPacketConfig Section VTestSetupActionsSection VTestSetupS Sect
interfaces|1..* packetConfigurations|1..* actions[1..* scenarios [1..*
VTestSetuplinterface VTestSetupPacketConfiguration VTestSetupAction <<enumeration>>
descripti VTestSetupActionType
name: EString name: EString name: EString Sscripion B oE
L) . instruction
description id: EString type: VTestSetupActionType
DRun descriptionI tmtc_checking
checking
interface! configuration
VTestSetupSupportedinterface VTestSetupSelectedConfiguration DBody

name: EString name: EString

scenariolnterface

defaultFilterStatus: VTestSetupConfigurationStatus

defaultPrintStatus: VTestSetupConfigurationStatus

scenarioPacketConfig

selectedConfiguration

supportedAction|0..* body§

0..

supportedinterface

VTestSetupS

o

Fig. 12 Meta-model of the test setup model

VTCRTestCampaignReport
1 ..*"testReports <<enumeration>>
VTCRTestReport VTCRTestStatus
test_procedure: EString Fail
status: VTCRTestStatus Pass
evidence: EString NotTested

Fig. 13 Meta-model of the test campaign report model

4.6.2 Software validation report model

The SVR model contains all the classes needed to perform
the definition of an SVR document. Figure 14 contains a sim-
plified diagram with the main classes of the meta-model. The
root of the model is the class VSVRDocument. Like all docu-
ment models, this class inherits from DDocumentTemplate.
The document shares the initial set of fixed sections, namely

@ Springer

1.7

scenario

“Introduction,” “Applicable Documents,” ‘“Reference Docu-
ments,” and “Terms definitions and abbreviations,” with the
rest of the documents. The root class references the parent
SVS document model containing the definition of the vali-
dation tests and the TCR models that incorporate the results
of those tests.

The main content of the document is located in the section
called “Software validation process verification.” This sec-
tion contains the verification matrices for the traceability of
software requirements to system requirements and from the
software requirements to the test cases, and for the feasibility,
including the test reports.

The SVR document model does not explicitly model this
section, since its contents are automatically generated from
the information stored in both the SVS and the TCR models.
These contents shall be directly incorporated into the deliv-
erable document produced as a product of the corresponding
transformation.

This information, generated automatically, allows you to
close the verification cycle. The required test configuration
for the Ground Support Software is automatically generated
from the requirement and test definitions in the SSS, SRS,
and SVS documents.

Model-driven system-level validation and verification

2387

VSVRIntroduction | -

¢

0..* [svrinstantiableSubsections

svrinstantiableSubsections

introductionSection

applicableDocumentsSection

0.~ DApplicableDocument

VSVRApplicableDocumentsSection applicableDocuments body

referenceDocuments

VSVRInstantiableSection

o.+ DReferenceDocument

svsParent

s
K DRun DBody
8 VSVRReferenceDocumentsSection
®5
‘q&" £ 0. VSVRTerm
g g terms
g E . description
a g s
ﬂ>= v o | VSVRDefinition VSVRAbstractBriefDescription
7 2 —
> g definitions name: EString
g VSVRTermsDefinitionsAbbreviations
*—:= o.» | VSVRAbbreviation
é abbreviations
£
€
i 8 VTCRTestCampaignReport
terParent DDocumentTemplate
VSVSDocument

Fig. 14 Meta-model of the software validation report model

Furthermore, the results of the test execution are incorpo-
rated into the SVR verification matrices by means of TCR
models. In this way, the verification process is accelerated,
as the required final evidence is automatically obtained and
traced from the beginning.

4.7 Implementation of the proposed approach

Figure 15 shows a general outline of the models and their
relationships, together with the different transformations and
the products that are obtained.

For the implementation of all the models, we have used
the Ecore meta-model defined within the eclipse modeling
framework (EMF) [45]. We have also used Xtext [46] to
generate textual representations and editors that allow the
definition of the different model instances. We have generated
editors for all the document models of the approach.

The complete set of transformations can be divided into
two groups. The first group corresponds to the transforma-
tions needed to produce deliverable documents in Office
Open XML (OOXML) format [47]. These documents are
to be delivered as part of the folders established by the
standard ECSS-E-ST-40. To maximize the reuse of the trans-
formations, we have defined an intermediate model called
Document (DOC). This model inherits from the Document

Template model and contains the classes necessary to pro-
duce an OOXML file directly. Thus, these models include
only the sections and bodies that will make up the final
documents without any other associated semantics. These
intermediate documents are automatically generated from
the SSS, SRS, SVS, SVR, and Test Setup document mod-
els through specific model-to-model transformations imple-
mented in the QVT operational language (QVTo). Finally, an
additional model-to-model transformation generates the final
OOXML documents. This last transformation, independent
of the original document models, is implemented in C/C++.
In total, 3,165 lines of QVTo and 4,228 lines of C/C++ have
been used to define the complete set of transformations.
The second group of transformations is related to the gen-
eration of the input models of the Ground Support Software
(GSS) tool and the incorporation of the log files result-
ing from the execution of the tests. In this case, we have
integrated a GSS tool called SRG-GSS (Space Research
Group—Ground Support Software). This tool was designed
and implemented from scratch by our group during the devel-
opment of the Instrument Control Unit (ICU) software of the
Energetic Particle Detector (EPD) on-board the Solar Orbiter
mission to enable automation of the execution of the vali-
dation tests. It uses as inputs a set of models serialized in
XML format. These models define the test procedures to

@ Springer

2388

A. Montalvo et al.

[SSS]. [SSS].
DOC DOCX
N DN
[SRS]. | [SRS].
DOC [DOCX
DN DN DN
Test [Test [Test
Setup]. Setup].
el DOC DOCX
T, ™
Template y\
DN DN
[SVS]. | [SVS].
svs by S— Doox
Te DN N
Template
1] [SVR]. [SVR].
DOC DOCX
TCR
i -
> GSS_LOG

Fig. 15 Models, transformations, and products

be executed as sequences of steps. These steps contain the
telecommands to be sent and filters that define the expected
telemetries. The execution of the tests is done automatically,
and the tool itself generates logs in plain text containing the
test results. Figure 16 shows the main interface of this tool.

We have defined a model-to-model transformation imple-
mented in QVTo that allows obtaining, from the SVS
definition and the Test Setup, the input models of the SRG-
GSS tool. Moreover, a second transformation, implemented

@ Springer

in C/C++ allows creating the instances of the TCR models
needed for obtaining the final SVR document. This trans-
formation uses as inputs the log report files obtained by the
SRG-GSS tool. The selection of the required log reports to be
used as test evidences is performed manually, but the trans-
formation itself and the generation of the final SVR document
are done automatically. In total, 883 lines of QVTo and 309
lines of C/C++ have been used to define the complete set of
transformations.

Model-driven system-level validation and verification 2389
22 SRG-GSS _ %
GSS Send Raw Commands Send Protocol Packets Send Steps View Help

gt | KD TEST CONPGURATION A P 3.255ID0 M 0O 3255100 3.255D10 3.2041P)
3.255ID10 840 Rl A
OFf FT_SOLO_EPD_BSW_FORCE_CHECK_MEM-00010 3.255ID100 M0
T : % 7] EPD_Mode 0
3.255ID110 a0 3 LCL_Status_STEP I:]
OFf FT_SOLO_EPD_ICU_BSW_SAFE_ASW_IMAGES_DAMAGED-0030 3.25SIDS | |
tood Hland | assme Coamog ‘<= [
OFf FT_SOLO_EPD_ICU_BSW_BASELINE_ASW_DIRECT_RESTORATION-00... : =
3.25SID7 31840 LCL_Status_HE_1
OFF AL_A I Load +
FT_SOLO_EPD_ICU_BSW_NOMINAL_ASW_DIRECT_RESTORATION-0. 1 t. [soee(213/216) = g LCL_Status_HE_2
SIS Private ~
O FT_SOLO_EPD_ICU_BSW_SERV_17-0040 £ T
sexe@ry [8100 Current STEP
OFfF FT_SOLO_EPD_ICU_BSW_SERV_1-0041 v Wrong CRC 3180 Current_SIS
Current_HE_1
Reset global varable Current_HE_2
Log Voltage_STEP 25
oion
Spw dummy Voltage_HE_1
[1820C0020007198001780003FAES . ————— \Voltage HE_2
wuaucuc
SpW_Error_Cntr Ij]
08270150000 10050 10000000034000011075A45
\ TC_Error_Cntr
[0827C0140000 100501000000003400001 106E 438 B E]
=0 (08270130000 100501000000003400001105ACEC i
! ! 1 11 TC_Accept_Cntr v

Fig.16 SRG-GSS

5 Proof of concept

The Space Research Group of the University of Alcala
(SRG-UAH) developed the on-board software of the Instru-
ment Control Unit (ICU) of the Energetic Particle Detector
(EPD) on-board the Solar Orbiter mission. This development
was a complex process that involved a significant num-
ber of requirements. During this process, SRG-UAH used
a model-driven component-based approach for the design
and deployment of the application software supported by the
MICOBS framework [29,32,48].

A large number of validation tests were needed to cover
both the requirements and the whole set of supported teleme-
try and telecommand packets. The execution of these valida-
tion tests was automated with the aforementioned SRG-GSS
(Space Research Group—Ground Support Software) tool.

Several scenarios were used for the original validation
of the software of the ICU of EPD. Figure 17 shows three
of these scenarios that were actually used in the validation
campaigns. The scenarios shown in Fig. 17a and b were
designed for the early validation of the software and also for
the tests that involve the injection of failures in the behavior
of the sensors. The two of them use an engineering model of
the ICU connected via SpaceWire to the SRG-GSS. In both
cases, several of the instrument’s sensors are emulated using

the SRG-GSS through UART ports. The scenario shown in
Fig. 17a has all four sensors emulated by the SRG-GSS.
Then, the one shown in Fig. 17b uses two hardware sensor
emulators, while the SRG-GSS emulates the other two.

Finally, the scenario displayed in Fig. 17c is based on the
Engineering Qualification Model (EQM) of the ICU. It also
has a SpaceWire port connected to the SRG-GSS, and it was
used to run the black-box validation tests of the software
using the EQM sensors.

During the software development process, we used a
document-based approach for managing requirements, tests
specifications, and generating the different traceability matri-
ces. This approach, however, was error-prone and not specif-
ically designed for these purposes. There are tools that
significantly improve the management of requirements, such
as the previously mentioned Rational DOORS [3] or Sparx
Systems Enterprise Architect [4]. However, none of them
supports the automatic configuration of the SRG-GSS to gen-
erate the validation tests nor incorporate automatic feedback
from the reports to complete the verification matrices.

The proof of concept of the model-driven approach pre-
sented in this paper has been built from a subset of the
requirements and validation tests of the on-board software of
the ICU of EPD. We have been able to generate as products
the same validation tests that were used for its qualification.

@ Springer

2390

A. Montalvo et al.

(@) EPD ICU Test Scenario with 4 emulated sensors

(b) EPD ICU Test Scenario with 2 real and 2 emulated sensors

. -

(¢) EPD EQM ICU Test Scenario

Fig.17 EPD EQM ICU test scenario

Table 1 Validation and verification metrics of the EPD’s ICU software
and the proof of concept

Total number of SSS requirements 351
Total number of SRS requirements 532
Total number of validation tests 212
Total number of supported telemetry packets 318
Total number of supported telecommand packets 118
Selected SSS requirements for the proof of concept 51
Selected SRS requirements for the proof of concept 24
Selected validation tests for the proof of concept 21
Selected telemetry packets for the proof of concept 10
Selected telecommand packets for the proof of concept 17

The solution adopted integrates all telemetry and telecom-
mand (TM/TC) from the EPD database. Finally, we have
defined the concrete classes and transformations needed to
incorporate the SRG-GSS tool into the model-driven devel-
opment process. These transformations allow us to generate
the input models for the SRG-GSS tool automatically and
include the output logs with the results of the validation
tests.

@ Springer

For the proof of concept, we have selected a subset of the
original SSS requirements of the software of the ICU. Specif-
ically, those corresponding to services 1, 3, 5, and 17 of the
Packet Utilization Standard (PUS) [44]. We instantiated the
SSS and SRS models with these requirements and an SVS
model with the same functional tests designed for covering
the software requirements related to them, along with the
needed procedures for maintaining the test campaign flow.
Table 1 shows the total number of requirements defined in
the original SSS and SRS documents and the total number of
validation tests and the telemetry and telecommand packets
supported by the ICU, together with the numbers correspond-
ing to the services selected for this proof of concept. We have
also modeled a Test Setup for the proof of concept, based on
the original scenario shown in Fig. 17.

We generated the documents in OOXML from the four
main models SSS, SRS, SVS, and Test Setup, along with
the input files that configure our SRG-GSS to implement
the validation tests. We compared the generated OOXML
documents with the originals of the project, confirming that
the information contained in the new documents was proper
and complete, and structured according to the ECSS-E-ST-40
standard.

Model-driven system-level validation and verification

2391

The validation tests created with this approach were the
same as the original ones, which were created manually. As
we used the same SRG-GSS tool, the reports generated in
the execution of the validation tests were similar to the orig-
inal ones that had been produced in the V&V process of
the ICU software. Then, we produced the TCRs using these
reports and finally obtained the SVR document automatically
using those TCRs. We compared the SVR document and the
summary matrices contained inside with the original one,
verifying the results were the same.

The proof of concept is available online, along with several
examples. > The specific SRG-GSS models and transforma-
tions are also available online.’

6 Conclusions and future work

This paper has presented a model-driven engineering
approach to the validation and verification process for space
software applications. The solution follows the standards
ECSS-E-ST-40 and ECSS-Q-ST-80 that are applicable in
space software development. The final objective of this
approach is to provide model-driven engineering techniques
that maximize the automation of the different products
required during validation and verification.

To this end, we have defined the necessary models not
only for managing the requirements and validation tests, but
also the test environments and scenarios required for test exe-
cution. Besides, the TM/TC database information has been
integrated into the models, so that validation tests are defined
according to the telemetry and telecommand format that is
actually used in the space mission. Based on these models,
a set of transformations have been implemented that enable
the automatic configuration of the Ground Support Software
in charge of the execution of the validation tests. Finally, to
make it possible to close the verification cycle, the informa-
tion of the logs obtained from test execution has also been
integrated so that the verification matrices can be automati-
cally generated.

The model-driven process provides a straightforward
roadmap to actors to provide the inputs required in each phase
and obtain as outputs the products necessary for the software
validation and verification. Specifically, the requirement and
validation test documents are generated, and also the verifi-
cation reports that provide the traceability matrices between
requirements and test, and also incorporate the test results

2 https://github.com/uah-srg-tech/mde-reg-docs.

3 The models are located in https://github.com/uah-srg-tech/gss-
eclipse. The SRG-GSS specific transformations for creating the
configuration files from the SVS and for parsing the reports
for creating the TCRs are located in https:/github.com/uah-srg-
tech/test_campaign_parser and in https://github.com/uah-srg-tech/
mde_to_ooxml, respectively.

extracted from the logs generated by the ground support soft-
ware.

A completed proof of concept has been explained in
the paper. This case corresponds to the development of the
on-board software of an instrument that is part of an ongo-
ing space mission, as it is the Energetic Particle Detector
instrument of Solar Orbiter. We have selected a subset of
requirements and tests to demonstrate the features of the
solution. From this subset, we have completed the gener-
ation of the corresponding deliverable documents, as well
as the test environment configuration files. These config-
uration files have enabled the ground support software to
execute the validation tests automatically. We have verified
that the results obtained from these tests are identical to those
provided by the manually constructed tests, confirming that
the effort required to complete the process was significantly
lower due to the automation of a large part of it. Finally,
the information contained in the test logs has been imported
as models, and the verification report that traces require-
ments, tests, and test results has been generated. The report
has been compared successfully with the original as an end-
to-end result of the whole process, so it can, therefore, be
concluded that the model-based approach presented provides
an effective solution to assist in the software validation and
verification process under ESA’s ECSS-E-ST-40 and ECSS-
Q-ST-80 standards.

As future works, and to have a single MDE environ-
ment that supports all the on-board software development
activities, we will integrate the models and transformations
that make up this work into the MICOBS model-driven
framework. This framework currently provides support for
component-based on-board software design, implementa-
tion, and deployment. Besides, it also facilitates the analysis
of non-functional properties by applying the principles of
compositionality and composability. All these MICOBS
capabilities have been used to develop, according to the
ECSS-E-ST-40 and ECSS-Q-ST-80 standards, the software
of the control unit of the Energetic Particle Detector, so the
extension of MICOBS to also integrate the activities of the
V&V process will provide a model-driven environment ready
to develop software compliant with the ECSS standards.

Acknowledgements This work was supported by Spanish Ministerio
de Economia y Competitividad under the grants ESP2013-48346-C2-
2-R, ESP2015-68266-R, and ESP2017-88436-R.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

@ Springer

https://github.com/uah-srg-tech/mde-req-docs
https://github.com/uah-srg-tech/gss-eclipse
https://github.com/uah-srg-tech/gss-eclipse
https://github.com/uah-srg-tech/test_campaign_parser
https://github.com/uah-srg-tech/test_campaign_parser
https://github.com/uah-srg-tech/mde_to_ooxml
https://github.com/uah-srg-tech/mde_to_ooxml

2392

A. Montalvo et al.

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

10.

11.

12.

13.

14.

15.

16.

19.

. Secretariat, E.C.S.S.: Space Engineering. Software, ECSS-E-ST-

40C (2009)

Secretariat, E.C.S.S.: Space product assurance. software product
assurance. ECSS-E-ST-80C Rev. 1 (2017)

IBM.: IBM Engineering Requirements Management DOORS
Family. https://www.ibm.com/es-es/products/requirements-
management

Sparx Systems.: Enterprise Architect User Guide, https:/
sparxsystems.com/products/ea/index.html

OMG.: About the Unified Modeling Language Specification Ver-
sion 2.5.1. https://www.omg.org/spec/UML/About-UML/
Peccia, N.: SCOS-2000 ESA’s Spacecraft Control for the 21st Cen-
tury, 2003 Ground System Architectures Workshop (2003)
Rodriguez-Pacheco, J., Wimmer-Schweingruber, R.F., Mason,
G.M., Ho, G.C., Sanchez-Prieto, S., et al.: The energetic parti-
cle detector—energetic particle instrument suite for the solar orbiter
mission. Astron. Astrophys. 642,(2020)

Schitz, B., Fleischmann, A., Geisberger, E., Pister, M.: Model-
based requirements engineering with autoraid, Informatik 2005—
Informatik Live! Band 2 (2005)

da Silva, A.R., Saraiva, J., Ferreira, D., Silva, R., Videira, C.: Inte-
gration of RE and MDE paradigms: the projectit approach and
tools. IET Softw. 1(6), 294-314 (2007)

Baudry, B., Nebut, C., Le Traon, Y.: Model-driven engineering
for requirements analysis. In: 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), p. 459.
IEEE (2007)

Janzen, D., Saiedian, H.: Test-driven development concepts, tax-
onomy, and future direction. Computer 38(9), 43-50 (2005)
Williams, L., Maximilien, E., Vouk, M.: Test-driven development
as adefect-reduction practice. In: 14th International Symposium on
Software Reliability Engineering, 2003, pp. 34-45. ISSRE (2003)
Fowler, M., Highsmith, J., et al.: The agile manifesto. Softw. Dev.
9(8), 28-35 (2001)

Koskela, L.: Test Driven. Manning Publications, Greenwich, Con-
necticut, USA (2008)

Steel, J., Lawley, M., Steel, J., Lawley, M.: Model-based test driven
development of the tefkat model-transformation engine. In: 15th
International Symposium on Software Reliability Engineering, pp.
151-160 (2004)

Wieczorek, S., Stefanescu, A., Fritzsche, M., Schnitter, J.: Enhanc-
ing test driven development with model based testing and perfor-
mance analysis. In: Testing: Academic & Industrial Conference-
Practice and Research Techniques (taic part 2008), pp. 82-86. IEEE
(2008)

Mou, D., Ratiu, D.: Binding requirements and component architec-
ture by using model-based test-driven development. In: First IEEE
International Workshop on the Twin Peaks of Requirements and
Architecture (TwinPeaks), pp. 27-30. IEEE (2012)

. Sadeghi, A., Mirian-Hosseinabadi, S.-H.: Mbtdd: model based test

driven development. Int. J. Softw. Eng. Knowl. Eng. 22(08), 1085-
1102 (2012)

Ramler, R., Klammer, C.: Enhancing acceptance test-driven devel-
opment with model-based test generation. In: 2019 IEEE 19th

@ Springer

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 503-504. IEEE (2019)

North, D.: Introducing BDD. [Online] (2006). http://dannorth.net/
introducing-bdd/

Horner, J.K., Symons, J.: Understanding error rates in software
engineering: conceptual, empirical, and experimental approaches.
Philos. Technol. 32(2), 363-378 (2019)

Tavares, H.L., Rezende, G.G., Santos, V.M., Manhaes, R.S., de
Carvalho, R.A.: A tool stack for implementing behaviour-driven
development in python language, arXiv preprint arXiv:1007.1722
(2010)

Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J., Lott, C.M., Pat-
ton, G.C., Horowitz, B.M.: Model-based testing in practice. In:
Proceedings of the 21st International Conference on Software Engi-
neering, pp. 285-294 (1999)

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-
based testing approaches. Softw. Testing Verif. Reliab. 22(5), 297-
312 (2012)

Snook, C., Hoang, T.S., Dghyam, D., Butler, M., Fischer, T.,
Schlick, R., Wang, K.: Behaviour-driven formal model devel-
opment. In: International Conference on Formal Engineering
Methods, pp. 21-36 . Springer (2018)

Sivanandan, S., et al.: Agile development cycle: approach to design
an effective model based testing with behaviour driven automation
framework. In: 20th Annual International Conference on Advanced
Computing and Communications (ADCOM), pp. 22-25. IEEE
(2014)

Kollanus, S.: Critical issues on test-driven development. In:
Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.)
Product-Focused Software Process Improvement, pp. 322-336.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)

Javed, A.Z., Strooper, P.A., Watson, G.N.: Automated generation of
test cases using model-driven architecture. In: Second International
Workshop on Automation of Software Test (AST’07), p. 3. IEEE
(2007)

Parra, P., Polo, O.R., Knoblauch, M., Garcia, 1., Sanchez, S.:
MICOBS: multi-platform multi-model component based software
development framework. In: Proceedings of the 14th International
ACM Sigsoft Symposium on Component Based Software Engi-
neering, Series. CBSE’11, pp. 1-10. ACM, New York, NY, USA
(2011)

Hugues, J., Perrotin, M., Tsiodras, T.: Using MDE for the rapid pro-
totyping of space critical systems. In: Proceedings of the 2008 The
19th IEEE/IFIP International Symposium on Rapid System Proto-
typing, pp. 10-16. IEEE Computer Society, Washington, DC, USA
(2008). http://portal.acm.org/citation.cfm?id=1447559.1447631
Garrido, J., de la Puente, J.A., Zamorano, J., de Miguel, M.A.,
Alonso, A.: Timing analysis tools in a model-driven development
environment. IFAC-PapersOnLine (2017)

Parra, P., Polo, O.R., Fernandez, J., Da Silva, A., Sanchez, S.,
Martinez, A.: A platform-aware model-driven embedded software
engineering process based on annotated analysis models. IEEE
Trans. Emerg. Topics Comput. 9(1), 78-89 (2021)

Johann Hoflinger, K., Sommer, J., Nepal, A., Maibaum, O., Lidtke,
D.: PaTaS—AQuality assurance in model-driven software engi-
neering for spacecraft. In: Proceedings of the ESA SW Product
Assurance and Engineering Workshop 09 (2017)

Biinder, H., Kuchen, H.: A model-driven approach for behavior-
driven gui testing. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pp. 1742—-1751 (2019)
Perovich, D., Rossel, P.O., Bastarrica, M.C.: Feature model to prod-
uct architectures: applying MDE to software product lines. In: 2009
Joint Working IEEE/IFIP Conference on Software Architecture
& European Conference on Software Architecture, pp. 201-210.
IEEE (2009)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.ibm.com/es-es/products/requirements-management
https://www.ibm.com/es-es/products/requirements-management
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html
https://www.omg.org/spec/UML/About-UML/
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://arxiv.org/abs/1007.1722
http://portal.acm.org/citation.cfm?id=1447559.1447631

Model-driven system-level validation and verification

2393

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Lamancha, B.P., Usaola, M.P., de Guzman, I.G.R.: Model-driven
testing in software product lines. In: 2009 IEEE International Con-
ference on Software Maintenance, pp. 511-514. IEEE (2009)
Cichos, H., Oster, S., Lochau, M., Schiirr, A.: Model-based
coverage-driven test suite generation for software product lines.
In: International Conference on Model Driven Engineering Lan-
guages and Systems, pp. 425-439. Springer (2011)

Paz, A., El Boussaidi, G.: On the exploration of model-based sup-
port for do-178c-compliant avionics software development and
certification. In: IEEE International Symposium on Software Reli-
ability Engineering Workshops (ISSREW), pp. 229-236. IEEE
(2016)

Marques, J., da Cunha, A.M.: Tailoring traditional software life
cycles to ensure compliance of rtca do-178c and do-331 with
model-driven design. In: IEEE/AIAA 37th Digital Avionics Sys-
tems Conference (DASC), pp. 1-8. IEEE (2018)

Grant, E.S., Datta, T.: Modeling rtca do-178c specification to facil-
itate avionic software system design, verification, and validation.
Int. J. Future Comput. Commun. 5(2), 120 (2016)

Pomante, L., Candia, S., Incerto, E.: A model-driven approach for
the development of an IDE for spacecraft on-board software. In:
IEEE Aerospace Conference, pp. 1-17. IEEE (2015)

Hovsepyan, A., Van Landuyt, D., Michiels, S., Joosen, W., Rangel,
G., Fernandez Briones, J., Depauw, J. et al.: Model-driven software
development of safety-critical avionics systems: an experience
report. In: st International Workshop on Model-Driven Devel-
opment Processes and Practices co-located with ACM/IEEE 17th
International Conference on Model Driven Engineering Languages
& Systems (MoDELS 2014), vol. 1249, pp. 28-37 (2014)
CCSDS Secretariat.: Space Packet Protocol, CCSDS 133.0-B-1
Cor. 2 (2012)

Secretariat, E.C.S.S.: Telemetry and Telecommand Packet Utiliza-
tion, ECSS-E-70-41C (2003)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional (2009)

Eysholdt, M., Behrens, H.: Xtext: implement your language faster
than the quick and dirty way, in Proceedings of the ACM inter-
national conference companion on Object oriented programming
systems languages and applications companion, ser. SPLASH " 10,
pp- 307-309. ACM, New York, NY, USA (2010)

ECMA International.: Standard ECMA-376. Open Office XML
File Formats, Sth edn. ECMA-376 (2016)

Parra, P., Polo, O.R., Carrasco, A., da Silva, A., Martinez, A.,
Sanchez, S.: Model-driven environment for configuration control
and deployment of on-board satellite software. Acta Astronau-
tica 178, 314-328 (2021). http://www.sciencedirect.com/science/
article/pii/S0094576520305555

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Aarén Montalvo is a Telecommu-
nications Engineer and Master in
ICT from the University of Alcal.
He is currently is doing his PhD in
Engineering at the University of
Alcal. He has participated in sev-
eral research projects, including
the Solar Orbiter EPD project by
the Space Research Group (SRG)
of the University of Alcal. His
research interests include the
Ground Support Teams (GSE),
including GSE software, the Vali-
dation and Verification processes,
and the quality control in systems
integration.

Pablo Parra received his Ph.D. in
Information and Communication
Technologies from the University
of Alcal in 2012. Since 2006, he
has been working with the Com-
puter Engineering Department and
the Space Research Group (SRG)
of the University of Alcal
His research interests include
component-based software engi-
neering and model-driven engi-
neering applied to the field of
real-time embedded systems. He
has taken part in numerous re-
search projects in the field of on-
board satellite software development, such as the NANOSAT pro-
gramme, Solar Orbiter and Euclid.

Oscar Rodriguez Polo degree in
Physical Sciences from the Uni-
versity of the Basque Country and
a PhD in Physical Sciences from
the Complutense University of
Madrid in 2003. He is currently
Associate Professor in the Depart-
ment of Computer Engineering at
the University of Alcal. His resear-
ch work focus on the areas of
Embedded and Real Time Sys-
tems and Model-Driven Engineer-
ing. He has actively participated
in several national and interna-
tional research projects as flying
software project manager, in missions such as NANOSAT-01,
NANOSAT-1B, MICROSAT or Solar Orbiter.

@ Springer

http://www.sciencedirect.com/science/article/pii/S0094576520305555
http://www.sciencedirect.com/science/article/pii/S0094576520305555

2394

A. Montalvo et al.

EPD instrument.

i iy
N l" R SO
AR ¥ I]l'x'.l”l

tems through virtualization.

Alberto Carrasco Gallardo is a
Telecommunications Engineer
from the University of Alcal. He
is currently employed as research
staff associated to the Solar Orbiter
EPD project by the Space Resear-
ch Group of the University of
Alcal. His main interests are
real time operating systems, em-
bedded systems, software for
critical systems. He has actively
participated in several national
and international projects,
missions such as NANOSAT-1B,
MICROSAT and the Solar Orbiter

Antonio da Silva is an Elec-
tronic Engineer and holds a PhD
in Engineering from the Univer-
sity of Alcal. He is currently Asso-
ciate Professor in the Department
of Computer Engineering at the
University of Alcal. He has partic-
ipated, within the Space Research
Group (SRG) of the University of
Alcal, in the project Control unit
for the Solar Orbiter EPD instru-
ment. His priority areas of inter-
est those related to fault tolerance
and Time and Space Partitioning
(TSP) of critical embedded sys-

Agustin Martinez received the
M.S. degree from the Universidad
Polit’cnica de Madrid (UPM) in
1986 and the Ph.D. degree from
the Universidad de Alcal in 2001.
Professor of Computer Engineer-
ing Department at the University
of Alcal in Spain, Head of Depart-
ment from 2010 to 2016. His
research and teaching activities are
in the areas of DSP, Computer
Architecture, Embedded Systems
and Space Systems. He has been
in charge of technical and man-
agement issues at Telettra, Alcatel

and Alcatel-Lucent over more than 20 years, accounting a deep expe-
rience over technical and management leadership activities in interna-

tional projects.

@ Springer

Sebastian Sanchez holds a PhD
in Telecommunications Engineer-
ing. He is currently Professor at
the University of Alcal (Computer
Engineering Department). His
teaching and research work
focuses on the areas of Operating
Systems, Computer Architecture,
Embedded Systems and Real Time
Systems. He has written several
books on the subject of Operat-
ing Systems in general and UNIX
and Linux in particular. He has
actively participated in several
research projects, both national

and international, in the areas of on-board hardware and software, in
missions such as SOHO, PHOTON, FUEGO2, NANOSAT, Exomars,
MICROSAT, Solar Orbiter and Euclid.

	Model-driven system-level validation and verification on the space software domain
	Abstract
	1 Introduction
	2 Related works
	3 Validation and verification process
	4 Model-driven approach
	4.1 Model-driven validation and verification process
	4.2 Common generic models
	4.2.1 Document Template
	4.2.2 Traceable document model
	4.2.3 Validation document model

	4.3 Requirement models
	4.3.1 Software system specification model
	4.3.2 Software requirement specification model

	4.4 Validation models
	4.5 Test Setup model
	4.6 Report models
	4.6.1 Test campaign report model
	4.6.2 Software validation report model

	4.7 Implementation of the proposed approach

	5 Proof of concept
	6 Conclusions and future work
	Acknowledgements
	References

