Software and Systems Modeling (2022) 21:1389-1410
https://doi.org/10.1007/s10270-021-00926-6

SPECIAL SECTION PAPER

f')

Check for
updates

Holistic data-driven requirements elicitation in the big data era

Aron Henriksson' - Jelena Zdravkovic'

Received: 5 April 2021 / Revised: 8 September 2021 / Accepted: 13 September 2021 / Published online: 12 October 2021

© The Author(s) 2021

Abstract

Digital transformation stimulates continuous generation of large amounts of digital data, both in organizations and in society
at large. As a consequence, there have been growing efforts in the Requirements Engineering community to consider digital
data as sources for requirements acquisition, in addition to human stakeholders. The volume, velocity and variety of the data
make requirements discovery increasingly dynamic, but also unstructured and complex, which current elicitation methods
are unable to consider and manage in a systematic and efficient manner. We propose a framework, in the form of a conceptual
metamodel and a method, for continuous and automated acquisition, analysis and aggregation of heterogeneous digital sources
that aims to support data-driven requirements elicitation and management. The usability of the framework is partially validated
by an in-depth case study from the business sector of video game development.

Keywords Data-driven requirements engineering - Big data - Requirements modeling - Machine learning - Natural language

processing

1 Introduction

Requirements are traditionally elicited through interactions
with system stakeholders, where the relevant information is
obtained mainly through interviews [1, 2]. Owing to the
ongoing digital transformation across many industries, as
well as the proliferation of social media, it has become highly
relevant to consider digital data sources for elicitation of sys-
tem requirements, in addition to human stakeholders. In the
requirements engineering (RE) community, there are increas-
ing efforts to support and enrich requirements elicitation
by automatically collecting and processing digital data as
additional sources for requirements acquisition [3, 4]. There
are a wide range of digital sources that may be exploited,
but recently increasing attention has been given to sources
that are more dynamic, i.e., continuously generating large
amounts of data through various mediums and platforms,

Communicated by Dominik Bork and Janis Grabis.

<1 Aron Henriksson
aronhen @dsv.su.se

Jelena Zdravkovic
jelenaz@dsv.su.se
https://www.su.se/profiles/jzdra

Department of Computer and Systems Sciences, Stockholm
University, Postbox 7003, 164 07 Kista, Sweden

such as online forums and microblogs, but also machine-
generated logs and sensor data. The main motivation behind
data-driven requirements elicitation is to exploit the availabil-
ity of large amounts of digital data and thereby (i) consider
a wider scope of sources of requirements, including poten-
tially large and dispersed user bases, (ii) enable increased
automation in processing relevant data by leveraging Al tech-
niques based on, for instance, natural language processing
and machine learning [6], (iii) facilitate continuous elicita-
tion by rapidly considering the emergence of newly generated
data, which helps to support software evolution through more
frequent releases. Although the potential of digital data as
sources of information for system requirements is becoming
well-recognized, there are numerous challenges in process-
ing this data effectively such that it can be fully exploited for
development and evolution of enterprise software [7].

In contrast to conventional elicitation, where the require-
ments are elaborately elicited and guided by requirements
engineers in stakeholder interviews, digital data sources are
often non-intended, i.e., the information is not originally cre-
ated for purposes of requirements elicitation and therefore is
limited in terms of completeness, may be ambiguous, and
lack structure. Being either human-generated, in the form of
unstructured natural language, or machine generated, in the
form of sensor data or computer logs, the data moreover tends
to provide only implicit feedback on requirements; it is there-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00926-6&domain=pdf
http://orcid.org/0000-0002-0870-0330

1390

A. Henriksson and J. Zdravkovic

fore an inherent and fundamental challenge to transform the
obtained raw data toward some canonical requirement for-
mat that is understandable to a software team and feasible to
develop and implement, such as to the structured requirement
template in the plan-based approach [2], or to the user story
template in agile approaches [8]. Consequently, data-driven
elicitation outcomes risk to be of low quality and practical
use [8], or requiring a substantial manual effort [7, 9]. Fur-
thermore, the structure and semantics of the data obtained
from different sources vary significantly, leading to numerous
challenges concerning how to process and aggregate data into
coherent requirements. This is a highly complex task, and
because business organizations are increasingly interested
in exploiting the value of digital data sources for RE, they
face the challenge of understanding how to apply data-driven
RE. For many organizations, potentially relevant digital data
sources generate massive amounts of data that come in many
different shapes and forms, which adds significant complex-
ity to data collection, storage and, in particular, analysis.

Our research aims to address this problem by proposing a
structured and holistic approach to data-driven requirements
elicitation. The relevant research questions are:

e RQI How can different digital data sources, and different
means of processing these, be conceptually modeled and
related for eliciting system requirements?

e RQ2 How can the conceptual model and the process for
its use be validated to demonstrate the feasibility of the
proposed framework?

In relation to RQI1, we have proposed a model-based
approach for structuring and relating the concepts of different
digital data sources, the means for their processing, and the
mapping to system requirements; and for using it as a design
basis for developing automated acquisition, structuring, and
aggregation of heterogeneous digital data, toward mapping
to requirements artifacts [5]. In this study, we address RQ2
by (i) elaborating the elicitation process, (ii) carrying out a
partial empirical validation of the metamodel’s correctness
and usability through a case study using real data from a
large gaming company, and (iii) by developing a prototype
for analyzing the case study data using machine learning,
in particular for classification and sentiment analysis, and
comparing the distribution of predictions for three different
games.

The proposed framework is intended to complement exist-
ing stakeholder-driven approaches to requirements elicita-
tion by setting up a conceptual basis and a process for linking
heterogenous digital data and means for their processing to
requirements artifacts through—as far as possible—automa-
tion. While we envision that it is possible to automate most,
but perhaps not all, of the activities in the process, the val-
idation of the proposed framework in this study is partial

@ Springer

and does not include all possible types of data and, more-
over, constitutes a combination of automated and manual
analyses. Manual analysis is performed in order to allow for
illustration of the entire process; however, further research
is needed for investigating how best to aggregate and map
candidate requirements to requirements artifacts, as well as
how best to exploit machine-generated data in the form of
computer logs and sensor data.

The rest of the paper is organized in the following
way. Section 2 provides a brief background to the relevant
approaches for requirements elicitation, and an overview of
previous research concerning requirements elicitation from
digital sources. Section 3 presents the holistic metamodel
for processing of digital sources and linking to requirements
artifacts, and a process for its use. Section 4 seeks to validate
parts of the theoretical proposal through an in-depth case
study involving a global video game development company.
A discussion and concluding remarks are presented in Sect. 5
and 6, respectively.

2 Background

This section provides a brief background to the main
approaches to requirements elicitation, as well as overview
of previous work in data-driven RE, focusing primarily on
requirements elicitation from digital data sources.

2.1 Requirements elicitation

The main activity in RE concerns elicitation of information
from available sources, which are primarily human stake-
holders. Traditionally, the main goal of different elicitation
techniques, such as interviews, workshops and observa-
tions, is to effectively support the requirements engineer in
obtaining relevant information from stakeholders [2]. The
collected requirements are specified in a structured way using
a notation, i.e., template, for fostering a canonical syntactic
structure.

The plan-driven process emphasizes the use and combi-
nation of different elicitation techniques, thus facilitating a
rich elicitation that is then documented in detail, including
main requirements types: functional requirements—tasks to
be performed by the system—and quality requirements for
the system behavior—some of which are also referred to
as “constraints” in the literature. In many projects, require-
ments elicitation starts from goals, as they describe the
intentions of stakeholders with respect to how the system
should support business aspects. Through brainstorming and
decomposition—in a process driven by the requirements
engineer—the goals are further mapped to functional or qual-
ity requirements. While functional requirements have the
“clear cut” determination criterion, quality requirements are

Holistic data-driven requirements elicitation in the big data era

1391

often elicited as goals and need to be further elaborated to
become measurable.

Agile requirements elicitation also relies on collecting
information from various human stakeholders in parallel, i.e.,
during interactive sessions between the agile team and stake-
holders, the requirements are sketched as user stories [8]. The
requirements are sometimes collected as “epics,” i.e., large
user stories resembling rather goals than concrete tasks. All
of them are groomed in the product backlog to a suitable size
to be developed in an iteration according to a given prior-
ity. In addition to desired functionalities represented by user
stories, the backlog contains quality requirements, e.g., per-
formance and reliability [2]. The product owner is the main
authority responsible for deciding which requirements are of
interest for development and the order in which to implement
them.

Even though the two approaches differ in terms of work-
ing practices and roles, as well as in the templates used for
requirements, they share some common aims, such as the
need for continuous [10] and extensive requirements elicita-
tion (which in plan-based approaches is done more upfront; in
agile as late as possible), classification of requirements types,
and prioritization. Recent studies have, in fact, reported the
empirical perspective that the two approaches are often mixed
in practice, especially in large-scale agile development [11]
and that it is possible to combine them [12].

2.2 Data-driven requirements elicitation

Many studies have lately been addressing the need to elicit
requirements from digital sources. One research track has
focused on eliciting requirements from static data sources,
typically domain knowledge [13], e.g., business documents
[14], various types of models [15], or from software reposito-
ries, e.g., in order to support the elicitation of quality require-
ments [16]; the elicitation of data-driven quality requirements
was also the focus of another study [17], emphasizing
that these are typically collected as goals and need further
refinement toward tangible requirements requests. Another,
more recent research track concerns requirements elicita-
tion from more dynamic, online data sources, motivated by
the increasing inflow of user feedback. Common sources
are discussion forums [18], online and app reviews [19],
microblogs, e.g., Twitter [20], and mailing lists [21]. While
this digital data is created by humans and primarily in the
form of natural language, there are also research studies min-
ing requirements from machine-generated sources, such as
usage data [22] and sensor data [23]. Most of these efforts
have focused on identifying and classifying requirements-
related information from a single source; however, some
studies have discussed techniques for combining user feed-
back and machine-generated data [24, 25]. A systematic
literature review of data-driven requirements elicitation tech-

niques showed that more research is needed to develop
methods for eliciting requirements from machine-generated
data and also that there is still a lack of methods that combine
more diverse types of data sources [26].

Recently, some holistic views on data-driven requirements
elicitation have been presented: [3] proposed an approach for
integrating information originating from different IS using a
domain ontology to serve as the baseline for the data model.
[27] is similar in the sense that it relies on a domain ontol-
ogy, with the addition of a high-level proposal for storing the
final outcome of the elicited requirements originating into a
connected graph. Previous efforts differ from ours as they do
not focus on external data sources, nor do they encompass
algorithms for data processing. The study presented in [28]
defines a metamodel for method chunks built upon activities,
artifacts, roles, and tools used across the entire RE process; as
such, it differs from our approach, where metamodeling has
been used to define and conceptually relate the integration of
heterogeneous data sources, their processing, and mapping
processed data to requirements.

When the data is mainly in the form of free text, natu-
ral language processing (NLP) is applied in order to extract
requirements information. Identification of information in
free-text is typically achieved through named entity recog-
nition (NER), which enables classification of sequences of
words [29] and identifies the beginning and end of any type of
predefined requirements-related information, e.g., mentions
of a functionality. Sentiment analysis is an NLP task applied
to enable classification of a type of emotion or attitude, typ-
ically as positive, negative, or neutral [30]. Classification is
the task of automatically predicting one or more classes that
a set of data belongs, e.g., whether a review contains a fea-
ture request or a bug report. NLP increasingly makes use of
supervised machine learning (ML), which relies on access to
labeled data—often manually annotated to creating training
data. This can be costly, but once an accurate and complete
ML model has been created, it can be applied repeatedly to
facilitate automation of requirements elicitation.

3 Integration of digital data to requirements

This section presents the theoretical foundation for the con-
ceptualization and the process for analysis and aggregation
of big data for requirements elicitation. The presented results
are based on a previous publication [5], and in this study they
are elaborated and improved based on a prototype implemen-
tation and an in-depth case study using real data from the
business sector of game development.

@ Springer

1392

A. Henriksson and J. Zdravkovic

3.1 Metamodel for data-driven requirements
elicitation

One of the key challenges concerns the variety of big data,
i.e., the fact that the data comes in many different shapes and
forms, which adds significant complexity to data collection,
storage and, in particular, analysis. The metamodel in Fig. 1
is aimed to define heterogeneous digital data sources, the
means for their processing, and mapping of automatically
analyzed data to requirements artifacts. The main purpose
of the metamodel is to provide a model basis for structuring
and designing the process of requirements elicitation from
big data.

The metamodel was developed by the authors, and then
assessed for correctness, completeness and usability by a
senior academic, a data architect, and a Scrum developer
[5]; in the process of this study, the metamodel was also
reviewed by the gaming company (Sect. 4.6). The main dif-
ferences from [5] include (i) refinement of some attributes
as the result of the empirical validation presented in Sect. 4,
(ii) generalization of the part related to requirements in terms
of elicitation approaches.

The metamodel distinguishes: a classification of digital
data sources (in yellow), the elements for processing the data

(in gray), the elements for data aggregation and further map-
ping to requirements (in light olive), and a conceptualization
of the requirements artifact and related elements (in white).
The depicted classes and relationships are in detail described
in Table 1.

3.2 Requirements elicitation process

The process of collecting digital data and mapping the data
to requirements based on the conceptualization defined in
the previous section is illustrated in Fig. 1. The main four
activities in the process are data collection from different
digital sources, analysis by different means of data process-
ing, aggregation of analyzed data from one or more sources
into candidate requirements, and mapping of the candidate
requirements to requirements artifacts—new or existing. The
inputs to data collection are various, potentially heteroge-
neous sources of data, generated by humans and machines.
The output of the process may be a new requirements arti-
fact, or a change to an existing requirements artifact. The
process is automated for data collection and processing and
hence occurs continuously, while some manual intervention,
particularly in the later stages, may be required. Mapping
candidate requirements to new or existing requirements arti-

has|1“' hasl 1.* |0..* 0.* leads_to | 0..* leads_to | 0.*
Review 0.* 1.7 Measure Classification 1 Goal F-Requirement Q-Requirement
type has| yajue class type
creator 0.* probability | | |
has) 1 has | 0..*
MicroBlogPost MeasureType Sentiment PriorityType Development
o service name polarity 1. description
"~ | creator description score 0" .
has 1" 0..
has [0..1 NamedEntity . RequirementArtifact
ForumPost 1.. Priority 1 o
e — NLSource content has - description
0.* 1 t value status
creator —D body 1 ype sl o o]0
thread language as (0. . . maps 1o 0.."
attachment Ii.' 0. 1.* . I’om 1.* fromj1.* 0. * 1 1
Policy ;E Segment Trom Processing f1r?’-" CandidateRequirement
o * .1
— — X DigitalSource || 1."[.ot ——1.."| description ffO:" classification_aggregate
concern 0-" | gatetime from{ ordering 1. sentiment_aggregate
location from [1..* 1.* from ne_aggregate
status uses |0..1 measure_aggregate
Chat behavior_aggregate
o Algorithm
sender MachineSource _ - 1 produces |1
: name 1 *
— 1. 0.* Behavior desorition uses | 1.
E-mail record has | description Aggregation
subject type ’—0 annotation
sender [:| AnalyzedContent i1 > datetime
ComputerLogEntry
TrackedIssue _A 0.1
SensorReading
service ——— 0.* Model
id e ?ev;celD ServerLogEntry UserLogEntry ESTing s ass 0.*| name
type ype 0.." | origin is from description
annotation serverld sserld :
user is from | annotation hyperparameters

Fig. 1 Metamodel for processing and aggregating data from digital sources, and mapping them to new or existing requirements artifacts. The yellow
color depicts different sources, grey for data processing, light olive for aggregation and mapping, and white for requirements

@ Springer

Holistic data-driven requirements elicitation in the big data era 1393

Table 1 The elements of the metamodel from Fig. 2

Concept

Description

Data sources

DigitalSource
NLSource
MachineSource

TrackedIssue
E-mail
Chat

Policy
ForumPost

MicroblogPost

Review

Measure, MeasureType

SensorReading

ComputerLog entry

UserLogEntry
ServerLogEntry

Data analysis

Segment
NamedEntity
Sentiment
Classification
Behavior

Processing

Algorithm
Model

Training dataset

Analyzed content

Digital data generated from a source created by a human or machine at a given time (datetime) and location (if
known, e.g., a URL or URI); it can have a status, e.g., fetched or processed

A specialization of DigitalSource where data is created by humans; the main data content is held in body written in an
identified language, and may have some attachment (e.g., document, image)

A specialization of DigitalSource where data is created by a machine and supervised by an administrator; the main
data content is held in a record

A specialization of NLSource containing in addition an id, a user, belonging to a service, and being part of a thread
A specialization of NLSource with a sender (e-mail address) and a subject

A specialization of NLSource describing one or more text messages of communication between a sender and a system
administrator

A specialization of NLSource with a policy name and possibly a concern, describing to whom it is pertaining
A specialization of NLSource with a creator, belonging to a forum service, and being possibly part of a thread

A specialization of NLSource containing in addition a creator and belonging to a service (e.g., Twitter, Tumblr,
Weibo)

A specialization of NLSource containing in addition a creator, designating a known or unknown (i.e., anonymous)
person or role who created it and a rype, e.g., App Review, Expert Review, Suggestion Box

Additional information about certain types of NLSource, e.g., MicroblogPost and Review, which by value measures
the attention a digital source obtained, using a MeasureType, e.g., rating, re-posting, liking

A specialization of MachineSource: output of a device that detects and responds to some input (such as movement)
from a physical environment

A specialization of MachineSource: a record as an entry describing an occurred event within a server or software

A specialization of ComputerLogEntry: a record of an entry describing an event of a user having a userld in the user’s
interaction with the software

A specialization of ComputerLogEntry: a record of an entry describing an event within a software at a specific server
designated with a serverld

A part of an NLSource body, e.g., a sentence or a paragraph (i.e., content). The chosen granularity depends on how
the data should be analyzed in terms of NER, classification and sentiment analysis

A phrase that identifies an item of interest in a Segment; the identified content belongs to a type (entity class), e.g.,
person, place, organization

Classification of a type of emotion or attitude expressed in a Segment, with a polarity (positive, negative, or neutral)
and score indicating the strength of the sentiment

A description of how data from a Segment is grouped into a class (e.g., “feature request” or “bug report”) and the
model’s associated prediction probability

An analytical outcome of data generated by a machine, describing the behavior of a user or system, e.g., a frequent
navigational pattern. It has a description and a type

An automated task contributing to a data transformation, which eventually produces an outcome such as Segment,
NamedEntity, Sentiment, Classification, Behavior, Model, Aggregation, and CandidateRequirement. The details of a
processing task are stored in description and several tasks may be used in an ordering to produce a final outcome

A defined set of instructions for processing data, e.g., an ML algorithm or a more basic algorithm, having a name and
a description

A predictive data model pertaining to a semantic scope derived from a TrainingDataset and a (learning) Algorithm. It
has a name, description and hyperparameters used when creating the model

A set of data, which together with Algorithm (and model hyperparameters) can be used for obtaining a Model; if the
origin is internal, the data comes from DigitalSource, while source link is stored for external data; annotation is the
result of human labeling to support learning for some analytical task

A generalization of Segment and Behavior that, after analysis, becomes part of a possible Aggregation

@ Springer

1394

A. Henriksson and J. Zdravkovic

Table 1 continued

Concept Description
Aggregation
Aggregation A collection of AnalyzedContent that is, according to Processing, deemed similar, e.g., refer to the same system

property, and designated by annotation, and has a datetime

Candidate requirement

Analyzed and summarized information concerning a requirement, contained in behavior aggregate, ne (named entity)

aggregate, classification aggregate, sentiment aggregate and measure aggregate. Several Aggregation(s) may
contribute to a single CandidateRequirement over time. Mapping from Aggregation is determined by Processing

Requirements artifact

Requirements artifact

The content obtained by mapping from a CandidateRequirement using Processing and human intervention describing

a goal for the system, or some its function or a quality

Goal A specialization of RequirementsArtifact, describing a desired system condition

F-requirement
NF-requirement

Priority, PriorityType

A specialization of RequirementsArtifact describing a single system behavior (function)
A specialization of RequirementsArtifact describing a quality of a system behavior

An F-Requirement or NF-Requirement is prioritized in order to determine which requirements should be developed

first
Development A list of requirements planned for development (such as requirements specification, or backlog, or even GitHub
repository)
Model /
< Algorithm
N
Existing
Human
(Natural Language) Req::tr;::.nts
&/ automatic automatic automatic semi-automatic
Data :(> :(> |:\’> Map to \/\
—— Collection Analpus Aggragstion Requirements
L’/ New
. . Requirements
Continuous & lterative Artifact
Machine Sources C
w \—/\

Fig.2 The process of managing the data in an instantiation of the metamodel. The intended degree of automation of each activity is indicated in red

facts is likely to be semi-automatic, while we envision that the
previous activities can be highly if not fully automated. The
process is iterative in the sense that certain activities, in par-
ticular mapping to requirements, require manual engagement
and decision-making that are organized by the requirements
team in time-planned iterations according to the practice for
change requests of the development method in place.

Data Collection The first task in the process is to iden-
tify data sources that are deemed relevant and that should
be considered for requirements elicitation. The proposed
metamodel (Fig. 2) guides the classification of the sources
among their different types: for the sources generated by
humans (NLSource), the data is primarily in the form of some
natural language, including E-mail, Review, Microblog-
Post, ForumPost, Chat, TrackedlIssue from an issue-tracking
system, and Policy from a business document. Machine-
generated sources can be sensor data (SensorReading) or
computer logs of various kinds: ServerLogEntry or User-
LogEntry. Each of these source types contain some metadata,

@ Springer

described in Table 1, which is used to programmatically fetch
the data from the designated location (Fig. 2) and store the
content structured according to source type. Some of the
source types have Measure that is of MeasureType, which can
provide insights about the relevance of data for requirements
and even for prioritization in development; some examples
are scores of reviews and forum posts, likes and sharing on
microblogs. As a summary, the main tasks of the data collec-
tion activity are emphasized in Table 2.

Analysis The aim of this task is to provide tool-assisted
data processing from a raw to a structured form such that
relevant information or behavior can be identified. Fully auto-
mated analysis is critical because, for most of the sources,
the data is generated at such high volumes and velocity that
it is not feasible to analyze it manually, resulting in poten-
tially valuable data being missed. Based on the classification
of data source types as shown in Fig. 2, different analytical
tasks to process and analyze collected data are needed.

Holistic data-driven requirements elicitation in the big data era

1395

Table 2 Tasks of data collection

Task Guideline

Assessment of data sources to be used

Consider relevance for system’s requirements

Consider frequency of data emergence and amount
Consider effort needed to programmatically access, fetch, and store data
Consider whether persistent storage of raw data is needed

Collection from NL sources

Identify and maintain the API and the protocol of access for the source

For event-driven sources, e.g., forums and microblogs, data may be collected continuously, either in
near real-time or in batches at defined time intervals, from a location, a timestamp is set, and the

status that it is fetched

For task-driven sources, e.g., Policy, the data may be collected by a trigger based on the policy type;
For sources that have Measure, identify its type;
The fetched data is added to its processing module/program

Collection from machine sources

Identify and maintain the API and the protocol of access for the source

Consider the frequency of data collection, i.e., in near real-time or in batched at defined time intervals

For NLSource, which is mostly unstructured, NLP is
required to extract relevant information. The analytical tasks
for NLSource include: Classification, Sentiment Analysis,
and NER (included in the metamodel in Fig. 2). The outputs
of these tasks are associated with a Segment, which allows
for the body of an NLSource to be divided into smaller units,
such as paragraphs or sentences, allowing for the analyses
to be carried out on different granularity levels. The par-
ticular language used in the body of an NLSource must be
known for the subsequent analysis of the data; often such
information is not available as metadata, requiring the use
of a pre-trained language detection tool. In order to keep
track of the sequence of data transformations that have been
applied to obtain a particular analysis output, these (Classi-
fication, Sentiment, NamedEntity) are associated with one or
more Processing. Each processing step is, in turn, associated
with an Algorithm or a Model that was used to achieve a par-
ticular data transformation. To trace how a particular model
was obtained, Model is associated with both Algorithm and
TrainingDataset, which is annotated in the case of supervised
ML. The choice of data processing and analysis depends not
only on the data type, but also on the structure and the avail-
ability of, e.g., ML models. One of the implications of data
heterogeneity is that different prediction models are required
for different types of data, irrespective of how the models are
created—e.g., using ML or rule-based approaches—simply
because there are likely differences in the distributions of the
data that are difficult to capture in a single prediction model.
For example, the language use in microblog posts versus pol-
icy documents is rather dissimilar in terms of vocabulary and
grammar. This entails that if you, e.g., train a model on pol-
icy documents and apply it to tweets, it would likely perform
poorly. Important to note is also that different prediction mod-
els are needed for different analytical tasks, e.g., one model
is used for NER and another for sentiment analysis.

A MachineSource data is commonly processed to identify
some form of Behavior (Fig. 2). By analyzing SensorRead-

ing, one may discover statistical anomalies that could provide
information regarding needed changes in the system require-
ments. The case study presented in the next section would,
for example, need to use NLP and ML for efficient process-
ing and analysis of forum posts, while different techniques
are needed for analyzing data obtained from the eye-tracking
systems used for recognizing playing behavior patterns. By
analyzing ComputerLogEntry, it is possible to identify the
quality of a system’s response in terms of performance,
security, or user’s behavior, such as attempts to perform inter-
actions with the system in an unexpected, unsuccessful, or
suboptimal manner.

The tools, techniques, and algorithms employed in this
step of the process depend also on the desired result in relation
to mapping to requirements, which in turn require different
resources and skills. In order to achieve more complete data
toward RequirementArtifact, more techniques and tools will
likely need to be used, combined and developed; these would
also differ depending on the structure of RequirementsArti-
fact—in our proposal, it is defined that the processed data
could be classified as goals, functional or quality require-
ments. As a summary, the main tasks of the analysis activity
are emphasized in Table 3.

Aggregation In this process step, similarities in data
obtained from different digital sources are detected and
grouped into an Aggregation that is identified by an annota-
tion (numerical or symbolic). An Aggregation is made up of
several AnalyzedContent instances and is hence created prior
to mapping to a CandidateRequirement and after the Segment
and/or Behavior instances have been analyzed. For example,
an Aggregation may be composed of segmented data from
reviews and microblog posts, as well as the behavior obtained
from user logs, all concerning the same experience, such as
missing a particular functionality. The more sources are used
and the more they differ, the more difficult it is to find and
aggregate those that concern the same requirement; how-
ever, this can be facilitated through automation and the use

@ Springer

1396

A. Henriksson and J. Zdravkovic

Table 3 Tasks of analysis

Task Guideline

Processing of NL-based source types

Determine the desired quality of automated processing

Identify processing techniques, e.g., classification, sentiment analysis or NER, to apply to the

collected data;

Identify the availability of existing—or the possibility of developing new—models and tools that
could be used for each source type, language and analytical task

Decide whether and how to analyze Measure for the sources that have it

test the outputs of processing techniques and tools in relation to the desired outcome;

Continuously improve techniques and tools in the form of, e.g., adequate ML models

Processing of machine-based source types

Determine the desired quality of automated processing;

Identify processing techniques for enabling rich behavior identification for each source type

Identify the availability of existing—or the possibility of developing new—models and tools that
could be used for each source type and analytical task

Test the outputs of processing techniques and tools in relation to the desired outcome;

Continuously improve techniques and tools in the form of, e.g., adequate ML models

of ML-based techniques. On the other hand, the existence
of similar or related concerns in the source data means that
aggregation becomes increasingly relevant for proper clas-
sification of similar concerns. Aggregation can be achieved
automatically or semi-automatically through, for instance,
clustering which is specified in Processing. An Aggregation
is then analyzed and summarized as a CandidateRequire-
ment, either by creating a new instance or by mapping to a
previously created one. In the former case, the task is to, based
on the content of an annotated Aggregation, create a proposal
related to NE_aggregate, classification_aggregate, senti-
ment_aggregate, and measure_aggregate for NLP sources,
and similarly for machine source data, i.e., based on
Behavior, fulfill the behaviour_aggregate attribute in Can-
didateRequirement. To which extent aggregation can be
automated depends mostly on the availability of the algo-
rithms and models for aggregation. Aggregation can be done
in numerous ways and, for example, be based on analysis
outcomes alone, or also taking into account the original con-
tent. Aggregation could, for example, simply be based on
the polarity values of the AnalyzedContent included in the
annotated Aggregation being the same; the task may also
be more complex when the information contained in several
AnalyzedContent instances originating from a NamedEntity,
Behavior, and a Segment would address a similar system
property, yet with some different proposals related to its

Table 4 Tasks of aggregation

development, or change; here, it is on the requirements engi-
neer to monitor the mapping and intervene by changing the
outcome when the automated processing has not been cor-
rect, such that a single Aggregation should lead to several
CandidateRequirements instead of one. As new data is col-
lected and analyzed (in the two previous process steps), it
could by Processing be placed into an existing annotated
Aggregation, or when the data concerns a new system issue, a
new Aggregation could be created. In both cases, the mapping
to an existing or a new CandidateRequirement will be done
as described earlier. Since the mappings may in some situa-
tions require manual engagement, the requirements engineer
may decide on the pace of this task by triggering the mapping
instead of it, for example, being performed continuously. As
a summary, the main tasks of the aggregation activity are
emphasized in Table 4.

Map to Requirements Once a new CandidateRequirement
is instantiated, creation of a RequirementsArtifact of the type
Goal, FunctionalRequirement or QualityRequirement can
be attempted. The first task is to understand correctly and
entirely requirement-related intention(s) from the content
of the CandidateRequirement, which in some cases would
also require reviewing the content of AnalyzedContent, i.e.,
Segment (for NLSource) and Behavior (for MachineSource).
The task is then to decide if the CandidateRequirement per-
tains to an existing requirements artifact: if the content of the

Task Guideline

Create an aggregation

Run in batches, e.g., according to some regular time interval; combine analyzed data (AnalyzedContent) into

Aggregations based on which processing techniques were applied
Annotate each aggregation, numerically or symbolically, for a unique identification

Map to candidate requirement

Automatically fill the attributes of a new CandidateRequirement from a new, i.e., non-mapped Aggregation

Semi-automatically update the attributes of an existing CandidateRequirement from a non-mapped
Aggregation when the attributes or content are similar to an existing CandidateRequirement, or if they are
not, create a new CandidateRequirement

@ Springer

Holistic data-driven requirements elicitation in the big data era

1397

Table 5 Tasks of map to requirements

Task Guideline

Map to requirements artifact

Map CandidateRequirement according to a correct requirements artifact type

Combine the filled attributes of CandidateRequirement to create the content of a RequirementArtifact
Use the measure_aggregate if filled to assess the importance of the requirements artifact

Move requirement to development

Finalize the requirements artifact according to the structure and way of working used in the RE approach

in place, and move the requirement to Development

CandidateRequirement is assessed as entirely new or related
to a change of some existing requirements artifact, then a
goal or a functional or a quality requirement content should
be created. This depends on the classification_aggregate
applied in the analysis step using Classification, i.e., does
the applied classification model match the possible types for
RequirementsArtifact, or, if they differ, the intervention of the
requirement engineer is needed. If the measure_aggregate is
filled for a CandidateRequirement, that will provide addi-
tional relevant information regarding the consideration of
the content, and even its prioritization. The entire step needs
to be supported and reviewed by the requirement engineer,
while some processing by the support of accurate ML models
and algorithms could increase automation of the described
tasks. Finally, the RE approach in use, i.e., whether plan-
based or agile (Sect. 2.1), will influence how the requirement
engineer/development team will finalize the content of the
requirements artifact, including discussing possibly needed
decomposition, e.g., from a goal (i.e., similar to epic in the
agile approach) toward one or more functional and/or quality
requirements, and once that is achieved, move the require-
ment(s) to Development. As a summary, the main tasks of
the map to requirement activity are emphasized in Table 5.

4 Case study: gaming company

We have studied the applicability of the proposed frame-
work in a case study, which is described below. Real data
from the company is used to create a proof-of-concept of the
proposed framework. Automated data collection and analy-
sis, in the form of sentiment analysis and classification, is
performed using an implementation of a prototype tool. We
further illustrate the use of the metamodel for these and the
rest of the steps of the process from Fig. 3 by instantiating the
metamodel using data from the case study. For demonstra-
tion purposes, some of the activities, such as aggregation and
mapping candidate requirements to requirements artifacts,
are in this case performed manually. We further evaluate
the proposed framework in the organizational context and
conduct both introductory and evaluation sessions with the
gaming company, represented by the CTO and several devel-
opment team members.

4.1 Case description

The company in this case study is active in the business
domain of game development, publishing and developing
games. Their game portfolio consists of more than 100 titles
and the company publishes its games globally, primarily
through digital channels. The games are developed primarily
for PC and console platforms, but also for mobile devices.
The largest markets include the USA, UK, China, Germany,
France, Russia and Scandinavia. Currently, they have a player
base of over four million gamers that play at least one of their
games each month; the total number of registered users, how-
ever, exceeds 12 million. Each game has between 1000 and
100,000 concurrent players.

The company today has around 500 employees and relies
on the use of agile development methods. In order to develop
games that are playful and attractive to its player base, the
company is continuously making decisions about the direc-
tion of the games’ evolution based on explicit and implicit
user feedback. According to key persons within the organi-
zation, the main business concern is to please the requests
of players regarding new features and to minimize nega-
tive feedback. Currently, analysis of collected data is to a
large extent done manually, or semi-automatically at best,
which requires substantial human resources. The process for
analyzing the collected data is also rather ad hoc, whereby
product owners and developers meet to review and discuss
the data with the aim of creating request-for-change items
corresponding to several user stories, or to improve existing
features. However, the company has the ambition to further
automate data analysis to efficiently and continuously obtain
insights that will, ultimately, lead to new requirements.

4.2 Data description

We obtained data sets from one of the company’s most valued
data sources, i.e., reviews from the online gaming platform
Steam.! In the proposed metamodel, this would be classified
as a NLSource of type Review. Each review is timestamped
and associated with a player and a specific game. There is
also additional data associated with the player who posted the

1 https://store.steampowered.com/about/

@ Springer

https://store.steampowered.com/about/

1398

A. Henriksson and J. Zdravkovic

Table 6 Descriptive statistics of

case study data Game # Reviews # English reviews Time period # Tokens
Game 1 95,877 51,869 2013-08-13-2021-02-23 49.7
Game 2 133,193 69,380 2016-06-06-2021-02-23 41.2
Game 3 5879 4457 2012-06-27 — 2021-02-22 73.1
review, e.g., the number of games owned, number of reviews RISEBGtIOmAF Senkimant Scoles
posted, time spent playing the game, and whether the game 0.6 4 .
was purchased on Steam or received for free. Other users can
also react to a posted review and this data is also associated 04
with each review, i.e., the number of times the review was ’
voted up or down and commented on. This metadata would
correspond to Measure and MeasureType in the proposed 027
metamodel.
We obtained reviews for three games that were collected 0.0
over time (4-8 years) and, in this case, analyzed retrospec-
tively. Descriptive statistics of these datasets are provided in —0.2
Table 6.
The reviews for Game 1 and 2 are written in 28 differ- —04 4 =
ent languages, while the reviews for Game 3 are written - T T
Game 1 Game 2 Game 3

in 26 different languages. However, the dominant language
is English, and in the automated analyses, we select only
reviews written in English. While the length of reviews
varies, on average the reviews contain around 41-73 tokens
(tokenization is based on whitespace and punctuation and
tokens include words, digits, punctuation marks etc.).

4.3 Sentiment analysis

Sentiment analysis is an NLP task to automatically and
systematically identify, extract and quantify expressions of
sentiment in free-text. While this may seem like a fairly
straightforward task and a matter of polarity detection, in
the form of positive/negative sentiment classification, it can
also be approached on a deeper level that, in itself, requires
several more fundamental NLP tasks to be completed. These
NLP tasks can be viewed as belonging to syntactic, semantic
and pragmatic layers of text analysis [30].

4.3.1 Method

Python is used for implementing the prototype and pro-
cessing the data according to the metamodel (Fig. 2). The
data is read into Pandas dataframes, dropping duplicates and
only selecting English reviews. spaCy>—a Python library
for NLP and large-scale information extraction tasks—in
conjunction with a pre-trained NLP pipeline for English,
‘en_core_web_sm’, is used for processing the data. The
pipeline allows for tokenization, lemmatization, syntactic

2 https://spacy.io

@ Springer

Fig. 3 The distribution of sentiment scores obtained for each of the three
games

parsing, tagging and NER. Sentiment analysis is conducted
on the reviews for the three games using the pre-trained NLP
pipeline in conjunction with the spaCyTextBlob library.® The
sentiment analysis component takes an input text and pro-
duces scores for polarity (on a scale from -1, indicating a
negative sentiment, to 1, indicating a positive sentiment) and
subjectivity (on a scale from O to 1). We process the reviews
for each of the three games, analyze the obtained sentiment
scores, and select reviews with a positive and negative score,
respectively.

4.3.2 Results

The distribution of sentiment polarity scores are shown in
Fig. 3. As one would expect, reviews express a wide range of
sentiment, from negative to positive, as well as neutral. The
average sentiment score for 0.11 for Game 1, 0.12 for Game
2, and 0.10 for Game 3. While a single average sentiment
score for a game may provide some indication of general
player satisfaction and allows for quick comparison of games
in this respect, it may be more valuable to study changes
in sentiment over time. In addition, one could also identify
sentiment with respect to a specific feature or aspect of a
game.

3 https://spacytextblob.netlify.app

https://spacy.io
https://spacytextblob.netlify.app

Holistic data-driven requirements elicitation in the big data era

1399

Table 7 Examples of reviews

for each game with a positive or Game Polarity ~ Sentiment score Review
negative sentiment Game 1 Positive 1.0 Best map painting sim you’ll find at the moment
Positive 1.0 Lots of replayability, and just one of the best strategy games that
I'd ever played
Positive 1.0 THE BEST
Negative — 1.0 Terrible
Negative — 1.0 It has become horribly mired by DLC
Negative — 1.0 I hate this game...it destroyed hours of my life. HOURS!
Game 2 Positive 1.0 One of the best strategy games i’ve ever played
Positive 1.0 This is one of the best ww2 sims out there
Positive 1.0 One opf the best stratergy games of all time, must have for WW2
stratergy sim
Negative — 1.0 boring dont buy
Negative — 1.0 Worst Al ever
Negative — 1.0 Combat is boring. So is everything else. SHITTY!!!!!!!
Game 3 Positive 1.0 Awesome music
Positive 1.0 That’s a very welcome surprise! Keep them coming!
Positive 1.0 Superb
Negative — 1.0 Awful DLC policy
Negative — 1.0 Insanely overpriced for what it gives
Negative — 1.0 Holy.....Why do I want pop music for medeival game!!!!!

Table 7 provides examples of reviews for each game that
expressed a positive sentiment, i.e., obtained a high polarity
score, and reviews that expressed a negative sentiment, i.e.,
obtained a low (negative) polarity score. As can be seen, the
games receive both very positive and very negative reviews.
For game developers, it may be valuable to know why players
like a specific game, which this type of automated analysis
can contribute to. However, it is arguably of higher impor-
tance to analyze and act on negative reviews, in particular
reviews that provide reasons for dissatisfaction.

There are also cases where a sentiment analysis model will
incorrectly score or classify areview: an example of thatis the
following review for Game 1: “I hate this game...it destroyed
hours of my life. HOURS!” This review obtained a negative
sentiment score, while the review can be interpreted in a
positive light, describing the game as highly addictive. Some
of the other challenges involved in analyzing this type of data
are also revealed by the examples, e.g., spelling mistakes, as
well as abbreviated and creative language use.

4.4 Classification

Classification is the task of automatically predicting one or
more classes that a set of data belongs to. Classification can
be performed using rule-based systems or ML models. Clas-
sification with machine learning is typically carried out in
a supervised setting, i.e., with access to (manually) labeled
data.

4.4.1 Method

We use a publicly available dataset that can be used for train-
ing a classification model.* The data consists of app reviews
from Apple AppStore and Google Play and has been manu-
ally annotated into four classes: Bug Report, Feature Request,
User Experience, and Rating. The data was represented using
sets of different features, and classification models were
trained using a few different learning algorithms. They found
that using binary classifiers for each target class—as opposed
to a single multiclass classifier—Ied to the best results [31].

Python is used for preprocessing the training data, build-
ing classification models, and applying them to the case study
data. The training data, stored in JSON format, is read into
Pandas DataFrame data structure’; only the reviews and the
manual labels are used. The Python library scikit-learn is used
for feature engineering,® ML modeling and evaluation. Two
feature representations are experimented with: bag-of-words
and ngrams. A bag-of-words representation in this context
entails that each review is represented as a frequency distribu-
tion of words in some vocabulary, e.g., all (lowercased) words
that appear in the training data. The n-grams representation
here is also a frequency distribution, but includes counts not
only for unigrams but also for contiguous sequences of words

4 https://mast.informatik.uni-hamburg.de/app-review-analysis/
3 https://pandas.pydata.org
6 https://scikit-learn.org

@ Springer

https://mast.informatik.uni-hamburg.de/app-review-analysis/
https://pandas.pydata.org
https://scikit-learn.org

1400

A. Henriksson and J. Zdravkovic

of length n; in this case n = 2, which means we include both
unigrams and bigrams.

For each training set (corresponding to one of the target
class labels) and feature representation (unigrams, unigrams
+ bigrams), we train a binary classifier using the random
forest learning algorithm. We chose this ML algorithm for
its reputation of achieving high predictive performance and
its ability to handle high-dimensional data; it also has the
advantage of not being overly sensitive to the choice of
hyperparameters. The algorithm constructs an ensemble of
decision trees, which together vote for which class label to
assign to a review. Each tree in the forest is built from a boot-
strap replicate of the original training set, and a subset of all
features is sampled at each node when constructing the tree.
This is done in order to increase diversity among the trees:
as the number of trees in the forest increases, the probability
that a majority of the trees makes an error decreases, as long
as the individual trees perform better than random and errors
are made independently. While this can only be guaranteed
in theory, in practice the algorithm often achieves state-of-
the-art predictive performance. In this study, we use random
forest with 100 trees, while n features are inspected at each
node. We evaluate the models using tenfold cross-validation
and, since the classes are balanced, we employ accuracy as
our primary performance metric.

Once we have evaluated the performance of the models
and made a decision with respect to the choice of feature
set, we re-train models using the entire training data. The
models are then applied on the case study data in order to
predict whether the reviews belong to one or more of the tar-
get classes: Bug Report, Feature Request, User Experience,
and Rating. Note that this requires that the case study data is
represented in the same fashion as was done when training the
models and that the model’s vocabulary is determined by the
training data alone. The size of the feature set for the bag-
of-words unigram models are: 2950 for Bug Report, 2650
for Feature Request, 2873 for User Experience, and 2697 for
Rating. The size of the feature set for the ngram models are:
15,599 for Bug Report, 12,742 for Feature Request, 14,129
for User Experience, and 13,739 for Rating.

4.4.2 Results

The cross-validated performance with the two data repre-
sentations is presented in Table 8. As can be seen, the
bag-of-words representation tends to perform better than the
ngrams representation, with the only exception for Feature
Request where the performance of the two models is close
to identical. For the sake of consistency, we employ the sim-
pler and more efficient bag-of-words representation for all
models, retrained using the entire datasets.

The overall results of applying classification models are
shown in Table 9. As can be seen, a fairly large number and

@ Springer

Table 8 Cross-validated performance (accuracy) with two data repre-
sentations

Class Bag-of-words: Ngrams: Unigrams +
unigrams Bigrams

Bug report 74.9 74.3

Feature request 75.2 75.3

User experience 76.6 74.6

Rating 76.9 76.4

proportion of reviews are classified as belonging to each of
the target classes. Around 34% of the reviews for Game 1
are predicted to contain bug reports, while the correspond-
ing proportions are approximately 27% and 46% for Game 2
and Game 3, respectively. The numbers for feature requests
are similar, with more proportionally more feature requests
predicted for Game 3 (47%) compared to the other games
(35% and 28%, respectively). The opposite is observed for
ratings, with more ratings predicted for Game 1 and 2 com-
pared to Game 3. Generally, however, a high proportion of
reviews are predicted to contain ratings, which is not all that
surprising. Finally, regarding user experience, around 40%
of reviews are predicted to contain descriptions of the user
experience, while the corresponding proportions for Game 2
and Game 3 are 33% and 53%, respectively. Note that since
the case study data has not been manually labeled, we cannot
make conclusions with respect to the predictive performance
of the classification models on the target data: while both
training and target data are in the form of reviews, they are
from different sources (training data from Apple AppStore
and Google Play, and target data from Steam).

On average, 2.3 class labels were predicted for each
review. To understand if there were correlations in terms of
which classes were predicted for a review, we calculated the
proportion of reviews across all three games that were pre-
dicted to belong to a given pair of classes. As can be seen
in Fig. 4, there is a fairly large overlap between bug reports
and feature requests (64.8%), as well as between bug reports
and ratings (62.0%). On the other hand, the overlap is fairly
small between User Experience and the other three classes
(11.1% overlap with Bug Report, 10.2% overlap with Feature
Request, and 9.7% with Rating).

As the classification model gives a probability that a
review belongs to a given class, one can rank the reviews
according to their probability of belonging to a certain class.
In Table 10 are examples of reviews for which the corre-
sponding classification model assigned a high probability to
belong to the positive class.

To recap, in this section, the collected data, in the form
of Steam reviews, was automatically processed and ana-
lyzed using ML for sentiment analysis and classification.
The outcomes of the automated analyses contribute to the

Holistic data-driven requirements elicitation in the big data era 1401
Table 9 Classification results - -
Game Bug report Feature request User experience Rating
% # % # % # %
Game 1 17,456 33.7 17,893 35.0 20,699 40.0 32,021 62.0
Game 2 18,821 27.2 19,455 28.0 23,181 33.0 47,102 68.0
Game 3 2057 46.2 2096 47.0 2380 53.0 2170 49.0

Prediction Overlap (%)

Bug Report ; 11.1

Feature Request

User Experience

Rating

Fig. 4 Percentage of overlap between pairs of predicted classes

instantiation of the relevant parts of the metamodel, which
will be demonstrated in next section.

4.5 Demonstration by metamodel instantiation

In this section, we demonstrate the use of the framework by
creating instantiations of the metamodel using the case study
data. In addition to the case study, other sources have also
been searched in order to illustrate the ability of the frame-
work to handle and integrate heterogeneous data sources. In
the first instantiation, as shown in Fig. 5, the data analysis
is fully automated using the sentiment analysis and clas-
sification models described in the previous sections. Note,
however, that in this study aggregation has not been auto-
mated, but is nevertheless included to demonstrate how data
is intended to be automatically aggregated to produce a can-
didate requirement. In the second instantiation, as shown in
Fig. 6, a possible alternative scenario is demonstrated, where
different choices with respect to data analysis have been made
and where we show how this may have implications on aggre-
gation and the resulting candidate requirements. Note that
while the second demonstration is also based on real data
from the case study, it includes certain manual processing
activities (in particular, NER) for illustrative purposes.

As can be seen in Fig. 5, there are three instances of Digi-
talSource, all of type NLSource: one Review instance (r1) and
two ForumPost instances (f1, f2). The two forum posts origi-
nate from two different forums: Reddit and a forum hosted by
the case study company where players can discuss games and
suggest improvements. Both forums allow posts to be liked
by other forum members; in the metamodel, this is captured
through Measure and MeasureType. The company’s forum
moreover records a reaction score for each user, which could
be relevant for requirement engineering as it indicates the
influence of a poster and the exposure a post is likely to
get. The review is from the Steam data described earlier; the
reviews can be up-voted, which indicates agreement by other
players.

Each NLSource contains one or more segments. This
allows for analyzing the free-text content as a whole, or to
further split it into, for instances, paragraphs or sentences. In
this case, each NLSource is associated with one Segment,
which entails that the input to the subsequent processing
and analysis will be the entire content. The segments are
automatically analyzed through classification and sentiment
analysis. While all four classification models described ear-
lier are applied to the segments, only positive predictions
are in this case retained: all three segments are classified as
Feature Request, albeit with different model probabilities.
Each Classification instance is associated with a Processing
instance, which in this case involves the use of a machine
learning model, yielding a Model instance. The model that
predicts feature requests—as well as the classification mod-
els that predict bug reports, user experiences and ratings—is
created using an Algorithm applied to a TrainingDataSet. In
this case, the chosen learning algorithm is the random forest
classifier, applied to an external training set, with a specific
set of hyperparameters, which are attributes of the resulting
model. Each Segment instance is also associated with a Sen-
timent, in the form of a polarity (positive or negative) and a
score indicating the strength (and polarity) of the sentiment.
The sentiment analysis is based on Processing using a pre-
trained Model for sentiment analysis. The outcome of this
analysis is that one Segment (s1) is deemed to express a pos-
itive sentiment, while the other two (s2, s3) express a slightly
negative sentiment.

In this case, all three segments are (manually) aggregated
based on semantic similarity (see “random events”), which

@ Springer

1402

A. Henriksson and J. Zdravkovic

Table 10 Examples of classification of reviews

Game

Review

Predicted class

Probability

Game 1

Game 2

Game 3

Game 1

Game 2

Game 3

Game 1
Game 2
Game 3

Game 1

Game 2

Game 3

Hiliariously fun yet always slightly broken. Crashes alot and patches are a double edged sword that
fix some things while breaking others

Everytime they decide to do a mojor DLC update it’s cool, but it destroys all my saved data and takes
a bit to fix until they fix the crashes XC

I have tried 16 times now, and the game always crashes to desktop after a few minutes of play

The game worked fine before (I have several hundreds of hours of game time), but this new DLC
apparently broke my game

So until that is fixed I can not even tell what’s new or if it’s any good... The only thing I had the time to
notice, that was new, was the ability for tribes to build temples in areas with only a tribal settlement

I have tried to start the game without the new DLC, but it doesn’t work: the game still crashes to
desktop after a few minutes of play

UPDATE: The game has been updated from 2.4.1 to 2.4.2 and the problem with crash to desktop
remains. It has not fixed anything in this context

NOT worth it, main theme is kinda all right although I guess I expected more. Deal breaker is that you
listen to the new tune then start the game and go back to original tuns! There is no on/off switch or
playlist or anything—jumping from new tunes back into classical soundtrack is a no go and is very
annoying in my oppinion...

This would be worth it IF there was an option to only use new music but otherwie I wouldn’t bother

I absolutely love this game. If you are willing to take the time and learn how to play it is extremely
rewarding. Plus all the mods make it have almost unlimited play value. My only notable complaint is
the fact that the DLC is just unjustifiable. The add-ons from the DLC should have been in to begin
with

I would rank it a solid 9/10 great buy

This expansion is rather meh. I get why they introduced the council to offset min-maxing with
courtiers and frankly enjoy the challenge, but there should be a slight reward to bend the knee to
your powerful vassals aside from them not being terribly cranky. The childhood focus thing is nice,
but educating mainly results in avoiding bitter rivalries for me so it’s also not very rewarding. If you
apply a court teacher, some boredom sets in and you have to check a lot manually

Simply not enjoyable
Scrumptious game:)
Awful DLC policy

This game is an absolute classic of a game. It has a steep learning curve, however, the tutorials and
help tips are great for helping new players. You can choose from an extensive range of countries, or
even create your own (I once created the knights templar as a country and took back their lands).
This is the sort of game where you can spend hours and not even realise how long you have been
playing for. I have played more hours of this game than are actually displayed

Very fun game. Enjoyed raping the Soviets. But game mechanics is a bit too complicated, the game
keeps on crashing and multiplayer keeps on getting connection timed out. Please work on improving
the game interface and multiplayer please

1 just have played a few hours after the release, but I feel it’s very fascinating

You can run your own horse horde, making some sheeps or camp forts which can be packed to the new
capital

Plus you can make tributaries for more gold. Silk lord trade port and new fortress are also very nice
new mechanic IMO

10/10 for the lords of steppe!

Bug report
Bug report

Bug report

Feature request

Feature request

Feature request

User experience
User experience
User experience

Rating

Rating

Rating

87%

91%

82%

87%

86%

88%

100%
100%
99%
87%

88%

81%

could be based on both the original contents, as well as
the outcome of the automated data analysis, e.g., the fact
that they are all classified as Feature Request. Automatic
aggregation could be achieved by unsupervised machine
learning (e.g., clustering), or in a (semi-)supervised fash-
ion if one has access to labeled data regarding which data
should be aggregated. Aggregation could also be based
on temporal alignment techniques, in particular to aggre-
gate MachineSource and NLSource data. The Aggregation

@ Springer

instance produces a CandidateRequirement instance, which
records relevant information about the aggregation, including
the outcomes of the data analysis. Here, we have aggregated
information with respect to classification, sentiment analysis
and measures. The measure aggregate can, for example, be
leveraged for prioritization of discovered requirements. As
described earlier, a candidate requirement may be mapped to
a repository of existing requirements; however, in this case,
we do not have access to such a repository. This phase is

Holistic data-driven requirements elicitation in the big data era 1403

r1: Review
datetime: 2016-12-14
location: Unknown m1: Measure
status: Processed 1
body: Always fun with more rp choices, value: 1

and more ways to affect how your character
develops. Some stuff could be a little more
fleshed out, and i would appreciate even
more variation in the random events. But all
in all, it's one of those dic's that feel crucial
to my experience of the game.

language: English

attachment: None

type: Steam

creator: <anonymized>

mt1: MeasureType

name: VotesUp
description: Indicates
agreement by other users

content: Always fun with more rp choices,
and more ways to affect how your character
develops. Some stuff could be a little more
fleshed out, and i would appreciate even

more variation in the random events. But all
in all, it's one of those dic's that feel crucial
to my experience of the game.

sal: Sentiment

class: Feature Request | | polarity: positive
probability: 0.73 score: 0.13
[

f1: ForumPost m2: Measure f2: ForumPost
datetime: 2020-08-30 — value: 6 datetime: 2021-02-13
location: Unkown | location: Unkown
status: Processed mt2: MeasureType status: Processed
body: More events - | feel this game is body: Returning to original idea, there also
lacking in events compared to ck2 and would name: Like should be random event for "Joan of Arc" like
like more random ones to happen where | description: Indicates figure for cultures that hadn't lradmon of
can actually use my traits. | am spending agreement by other users female iors. (and for
more time in this game with time passing | (militarily) female dominated religions)
without anything happening. i language: English
language: English mo: Moasuee attachment: None
attachment: None value: 4 ™ service: <Company> Forum
service: Reddit user: <anonymized>
user: <anonymized> i __ thread: 15
thread: 45 m4: Measure
value: 454
|
content: More events - | feel this game is mi3: MeasureType content: Returning to original idea, there also
lacking in events compared to ck2 and would . " should be random event for "Joan of Arc" like
like more random ones to happen where | name: F?eacnonl Score figure for cultures that hadn't lradmon of
can actually use my traits. | am sp female iors. (and d vari for
more time in this game with time passing poster engagement (militarily) female dominated religions)
without anything happening.

c2: Classification c3: Classification
class: Feature Request | | | polarity: negative class: Feature Request || polarity: negative
probability: 0.85 score: -0.23 probability: 0.77 score: -0.03

p1: Processing
description: Feature Request description: sentiment
classification with Bow classification
ordering: 1 ordering: 1
description: aggregation
m1: Model ordering: 1
name: Feature Request Classifier name: SA Model al: Aggreg Jl‘

binary ifi — ined model \ i
hyperparameters: ('en_core_web_sm') using datetime: 2021-03-01 :
n_estimators=100, spaCy + spaCyTextBlob g1: Goal
max_features="auto" hyperparameters: default Add more events

cr1: CandidateRequirement status: For decomposition
behavior_aggregate: None

name: Bug Report Classmer ne_aggregate: None

ion: binary i classification_aggregate: 100% Feature Request 92: Goal
:sz:r:;mﬁ'go sentiment_aggregate: 33.3% positive, 66.6% negative description: Increase variation in existing random events
max_features="auto" o measure_aggregate: Medium attention status: For decomposition

name: RandomForestClassifier
= implementation: sklearn.ensemble.
: F-Requiremen

name: User Experience Classmer oqulre!

: binary ifi ™ - Add "Joan of Arc"-like random event for
hyperparameters: s):jTrainnobamtet cultures without female warriors
n_estimators=100, origin: https://mast.informatik. status: For decomposition
max_features="auto" uni-hamburg.de/wp-content/

loads/2014/03/REJ_data.zip

annotation: yes

name: Rating Classifier
binary

hyperparameters:
n_estimators=100,
max_features="auto"

Fig.5 Metamodel instantiation with automated processing of case study data up until aggregation

likely to involve requirements engineers or similar roles in ~ (“Add ‘Joan of Arc’-like random event for cultures without

order to conduct a deeper analysis of the automatically col- female warriors”).
lected and analyzed data, before deciding on whether the In Fig. 6, a second demonstration is shown that also
candidate requirement should lead to the change of an exist- includes manual NER for illustrative purposes and due to the

ing RequirementsArtifact, be used as input for creatinganew unavailability of a publicly available model or training data
RequirementsArtifact, or discarded. In this case, the obtained ~ for RE-specific NER. The purpose is also to illustrate how dif-
CandidateRequirement may lead to the identification of two ferent choices may lead to different candidate requirements
new Goal instances: gl (“Add more random events” and g2 and, in turn, to potentially to the identification of different
(“Increase variation in existing random events”). In addition, requirements artifacts. In this case, segmentation is carried
a functional requirement (F-Requirement) is obtained: frl out on the sentence level, yielding three Segment instances

@ Springer

1404 A. Henriksson and J. Zdravkovic

c1: Classification ne1: NamedEntity

content: more rp choices
type: Feature

—

name: NER-features

m5: Model

class: Feature Request
probability: 0.72

content: Always fun with more rp choices, |4 polarity: positive gontent: move Weys Eo aﬂ_ect ion: NER for feature identification
— and more ways to affect how your character score: 0.25 s oW your P P defaiil
— 4| develops. M Bl ng type: Feature yperp Ll

1 r1: Review p2: Processing

s1: Segment sail: Sentiment

sa2: Sentiment

s2: Segment c2: Classification ne3: NamedEntity pS: Processing

content: Some stuff could be a little more ||| polarity: negative | (> class: Feature Request content: more variation in 7 description: NER for features identification
— fleshed out, and i would appreciate even score: -0.05 probability: 0.75 the random events ordering: 1
more variation in the random events. type: Feature

1

sa3: Sentiment c3: Classification

p4: Processing

content: But all in all, it's one of those dic's p
— that feel crucial to my experience of the score: 0.10 probability: 0.86 with Bow

polarity: positive class: User Exp - User Experi ifi

il

game. I

[g 1
S

c4: Classification ne4: NamedEntity

s4: Segment sa4: Sentiment

content: More events - | feel this game is |—4— polarity: negative | L class: Feature Request content: More events
|1 lacking in events compared to ck2 and would score: -0.18 probability: 0.68 type: Feature
like more random ones to happen where | T I
can actually use my traits.
content: | am spending more time in this |4 polarity: negative - mo
— game with time passing without anything score: -0.28 content: fandom ones
happening. type: Feature
— f2: ForumPost
sa6: Sentiment c5: Classification ne6: NamedEntity
content: Returning to original idea, there also |—{—] polarity: positive class: Feature Request content: random event for
|| should be random event for "Joan of Arc" like score: 0.25 probability: 0.77 “Joan of Arc"
figure for cultures that hadn't tradition of I type: Feature
female warriors. |
(and opp 1 for | polarity: negative
| (militarily) female dominated religions) score: -0.04
g1: Goal
cri: CandidateRequirement description: Add more role-playing choices
behavior_aggregate: None status: For decomposition
ne_aggregate: more rp choices, more ways to affect
how your character develops g2: Goal
classification_aggregate: 100% Feature Request
sentiment_aggregate: 100% positive description: Add more ways to affect character development
measure_aggregate: Low attention status: For decomposition
a2: Aggregation cr2: CandidateRequirement
Agg g3: Goal
behavior_aggregate: None T on i exist nd
ne_aggregate: more ion in the events v 1 In'exisiing random events
classification_aggregate: 100% Feature Request status: For decomposition

sentiment_aggregate: 100% negative
measure_aggregate: Low attention

g4: Goal
cr3: CandidateRequirement description: Add more random events
behavior_aggregate: None status: For decomposition
ne_aggregate: More events, more random ones,
random event for “Joan of Arc” fr1: F-Requirement
classification_aggregate: 100% Feature Request
p3: Processing sentiment_aggregate: 50% positive, 50% negative description: Add "Joan of Arr;"-like random event for
measure_aggregate: Medium attention cultures without female warriors

status: For decomposition

Fig.6 Metamodel instantiation with automated and manual processing of case study data

for r1 and two Segment instances for f1 and f2, respectively. classification and sentiment analysis models. This may lead
This entails that each segment is analyzed separately by the to the identification of more fine-grained information: for

@ Springer

Holistic data-driven requirements elicitation in the big data era

1405

instance, a negative sentiment for one of three segments from
r1 as opposed to an overall positive sentiment for r1 in the first
demonstration, and the classification of a segment as User
Experience. We have also added (manual) NER in this second
demonstration; in this case, the NER model tries to identify
mentions of features in the segments. In s1, for instance, the
following two named entities are identified: “more rp choic-
es” and “more ways to affect how your character develops”.

The choice of segmentation and analysis may have impli-
cations for aggregation. One possibility, depending of course
on the aggregation model/algorithm, is that three Aggrega-
tion instances are created instead of just one. Here, we have
one Aggregation instance based on sl alone, leading to the
creation of a CandidateRequirement instance (crl), while
another Aggregation instance is based on s2, leading to the
creation of another CandidateRequirement instance (cr2),
and, finally, a third Aggregation instance is based on s4 and
s6, leading to the creation of another CandidateRequirement
instance (cr3). The first CandidateRequirement instance,
crl, leads to the identification of two Goal instances: gl
(“Add more role-playing choices”) and g2 (“Add more
ways to affect character development”). The second Candi-
dateRequirement instance, cr2, leads to the identification of
one Goal instance: g3 (“Increase variation in existing random
events”). Finally, the third CandidateRequirement instance,
cr3, leads to the identification of one goal and a functional
requirement: g4 (“Add more random events”) and frl (“Add
‘Joan of Arc’-like random events for cultures without female
warriors”).

4.6 Evaluation of framework with case study
company

We conducted both ex ante and ex post evaluation ses-
sions with the experts of the case study company, through
interviews and demonstration. The company’s representa-
tives were represented by three employees: the CTO and
two development team members. In the ex-ante period, i.e.,
before developing the prototype for processing the case study
data sets, we carried out a series of sessions in order to demon-
strate the envisioned metamodel and the method of its use;
in the ex-post period, i.e., once the prototype had been devel-
oped and once the ML models had been trained and evaluated,
a demonstration of the results was performed, which was fol-
lowed by a discussion that we summarize below.

The company has so far invested mainly in automation
of analytics related to sales, i.e., to follow the statistics of
purchases across games and for different releases of games.
However, they have expressed a great interest in improving
their ability to monitor and act on the evolution of the require-
ments of its player base, particularly in order to improve
performance, structuring, automation and objectivity.

In the introduction sessions, the focus was on present-
ing the intention and motivation of our research in order to
obtain initial feedback. The conclusion of these sessions was
that the company is very interested in experimental results
toward automation that contribute to filtering the massive
amounts of data that is generated by its player base, as cur-
rently this is only partially exploited and processed manually
or semi-automatically at best. The company was particu-
larly interested in seeing reliable evaluations concerning the
performance of techniques such as sentiment analysis and
classification on their data, with the ambition to apply such
techniques in the near future.

In the evaluation session, we prepared several questions
in a semi-structured interview. The questions provided the
basis for an open discussion that followed. A summary of
the interview is presented below.

Question 1 related to the overall quality and usefulness
of the metamodel (Fig. 2), specifically in relation to data
sources, types of data analysis, as well as aspects related
to mapping of data to requirements. The feedback of the
company can be summarized as follows:

e The metamodel is a very useful tool for sharing under-
standing of the common concepts that need to be grasped
by different roles in the company (decision makers,
creative directors, product owners, developers) and for dif-
ferent activities: for instance for the development teams
of different games to unify the design architecture and
programming entities and attributes; for decision makers
and creative directors to obtain the same type of analyt-
ics across different games; for product owners to get more
clear insights regarding available models and existing tech-
niques for processing NL and machine-generated data.

e The types of digital data sources are well covered. Their
classification is very useful as it supports separation of
concerns; it also provides insights concerning the quan-
tity and importance of data from various sources, in turn
helping to better determine which data sources to focus
more or less on and supporting more effective allocation
of resources.

e Processing of NL sources is the most urgent and would be
prioritized due to their dominant quantity. However, the
company also utilizes an external machine source: an eye-
tracker service for obtaining various statistics on players’
behavior, i.e., concerning eye gazes, moves and fixation.
Regarding other sources, such as internal and external pol-
icy documents concerning ethics and privacy, these are
often consulted in relation to development of game fea-
tures.

e The processing-related entities in the metamodel provide
a good basis for “documenting” different techniques and
predictive models.

@ Springer

1406

A. Henriksson and J. Zdravkovic

e The aggregation and mapping to requirements elements
are sufficiently elaborated. It is very useful to support iden-
tification of requirements for the Requirements Engineer
or similar role with automation of certain tasks, while not
suppressing the creativity of humans who created and have
visions for the games.

e A possible direction in which the metamodel could be
extended is to cover also sales-related metrics related to
different (releases of) games in order to help with strate-
gic prioritization of requirements, i.e., in addition to users’
data that provide insights into issues and desired features.

Question 2 related to the process of using the metamodel
as presented in Fig. 1 and Tables 2, 3, 4, 5. The company
answered that the process is correct in terms of covered activi-
ties and emphasized that even the agile approach that has been
adopted in the company in recent years needs to distinguish
different tasks and steps; however, these need to be performed
in a pace that facilitates a quick feedback on new releases.
Since the presented process involves automation and semi-
automation of various activities, it also supports development
of requirements in more flexible and more rapid timeframes.
This is of high value for the company because they need to
have the ability to react promptly to critical issues, as well
as to have the flexibility of dealing with request for changes
when it is strategically the right time.

Question 3 related to the usefulness of automated senti-
ment analysis. The company representatives were presented
with the Steam reviews datasets: amount, content, and the
results of the analysis in Tables 6, 7, 8, 9, 10. The company’s
main feedback was the following:

e Even this narrow dataset in terms of timeframe and source
confirms that the company is dealing with enormous
amounts of data.

e Steam reviews have so far been seen as the main data
source, but there is high interest to increase objectivity of
management of players’ feedback by collecting data from
even other highly relevant sources, primarily from forums
and Twitter.

e Performing accurate and automated sentiment analysis
(which is currently not performed by the company at all)
with ML models that have been optimized for each source
type and tracing their use by the conceptualization (Fig. 2)
has great value for i) saving human resources, i.e., the
development teams that are currently reviewing the data
manually, ii) largely increasing the amount of data that
can be considered due to automation, and iii) decreasing
the subjectivity of creative directors who are currently the
ones deciding on the management of requirements (player
feedback is currently manually monitored for discovering
bugs and critical errors).

@ Springer

e It would be highly useful to automatically get accurate
overviews of sentiment expressed by players with respect
to (i) a specific game, (ii) a specific release of a game, (iii)
a specific aspect of a game (character, feature, etc.), and
to be able to track this over time.

e Negative sentiments are critical to detect and require a
fast reaction when the number or impact of the players
who express it is significant. Positive feedback is also
important: for instance, if many players say that “female
characters are great to have,” then the company will prob-
ably want to incorporate more female characters in their
games. Positive feedback is also relevant for understand-
ing which new requirements and features it should invest
in to attract more players to a successful game.

e Sentiment analysis would facilitate efficient granulation of
relevant information and would help in timely understand-
ing if the company is on the right track when launching
a new game or a new release, as the gaming industry is
very competitive: “we can’t afford anymore taking wrong
directions in new releases” .

Question 4 related to the usefulness of automated classi-
fication of the data into the following classes: Bug Report,
Feature Request, User Experience, and Rating. The company
confirmed the importance of the chosen classes for a specific
game, a release of a game and a specific aspect of a game,
assuming these were also identified automatically and accu-
rately. “Our games are known as creative, but you can’t live
on these wings too long for a game if you are full of bugs or
annoying features”. Over time, classes should be extended to
allow for “drilling down” into more sophisticated classifica-
tions, e.g., if a game is fun to play, different user experiences,
and even classification of different player types (e.g., “steppe
wolfs,” “social” or “action-hungry”) to allow for streamlining
next releases to the dominant type, or even to better support
the types that are under-represented in certain games.

Question 5 related to automated aggregation of the ana-
lyzed data and mapping to candidate requirements. Model
instance diagrams (Fig. 5 and 6) were shown and discussed
with the company, asking if this type of information would
be useful to have given that automation could be achieved
up to the level of CandidateRequirement (and possibly an
attempted mapping to existing requirements), i.e., upon filter-
ing, aggregating and summarizing large amounts of analyzed
data, and then engaging a Requirements Engineer to formu-
late actual requirements. The main immediate feedback was
highly encouraging, namely the company explained that full
automation of filtering with adequate accuracy is highly wel-
come; yet, when it comes to aggregation and mapping to
requirements, the company believes that their creative direc-
tors should have “the last word” on the requirements to ensure
that they follow the established vision for a game. It is there-
fore important that creative directors have a view and control

Holistic data-driven requirements elicitation in the big data era

1407

on aggregation and candidate requirements; then, by comb-
ing their creative knowledge and the data from the model,
they would be able to make optimal decisions for require-
ments and subsequent prioritization. The shown instances
were understandable to the company, including the fact that
the choice of segmentation, as well as analytical tasks, could
have implications for aggregation and the candidate require-
ments, in turn affecting the resulting goals and requirements.
The company also expressed that full automation should not
be achieved at any price and is a process that must be imple-
mented step by step: “It is not our goal to run after pure
quantities, i.e., one should not be blind. More controlled and
gradually implemented automation, with as much data as
possible, is the best approach”.

In the open discussion part, the company emphasized that
a challenge concerns the capability to integrate “two world-
s”—(i) users and (ii) software development—in a single
process, while achieving both quantity and quality, having
an objective basis for decision making, using dashboards
to continuously monitor game conditions, and incorporat-
ing humans in the loop in the right place. Following that, the
company recognized that the presented framework has that
capability.

5 Discussion

We have addressed the need for a holistic approach to data-
driven requirements elicitation, i.e., not only automating
elicitation of requirements from digital data, but also integrat-
ing data from heterogeneous data sources. This effort aims to
increase automation of the process, while considering which
activities are likely to require human intervention. Successful
organizations need to cater to the needs and desires of its cus-
tomers or end users, and we argue that this will increasingly
depend on an organization’s ability to continuously collect,
analyze and quickly act on information available in a variety
of data sources.

In many cases, large amounts of data can be collected that
may be relevant for and support requirements elicitation and
other requirements engineering activities in an organization.
Once the relevant digital data sources have been identified
and data collection has commenced, it can be analyzed in a
myriad ways. Some of the most relevant types of data anal-
yses for requirements elicitation have been captured by the
proposed metamodel, such as sentiment analysis, classifica-
tion, and NER for natural language data, while one typically
wants to identify “behavior” when analyzing data generated
by machines. We do not claim the metamodel with respect
to possible data analyses to be exhaustive; additional types
of data analyses can readily be incorporated into the exist-
ing metamodel. In this study, we demonstrated the use of
ML for sentiment analysis and classification of natural lan-

guage data in the form of reviews and forum posts. Sentiment
analysis is highly relevant for identifying end users’ senti-
ments with respect to a software system in general, a specific
aspect of a system or even in relation to particular feature.
The power and utility of sentiment analysis does not pri-
marily lie on an instance level, i.e., for a specific review
or forum post, as this can readily and more accurately be
performed by a human being. However, sentiment analy-
sis is useful in that it can be carried out efficiently on a
large scale, providing insights about the overall sentiment
expressed by a user base, or groups of users, over time. An
organization may, for instance, be particularly vigilant after
releasing a new software update. This allows an organiza-
tion, in the case study a gaming company, to readily obtain
on overview of player satisfaction over time and work to
improve its games based on feedback from players. A similar
argument can be made for automatic classification of natural
language data. In this study, we developed a ML model to
classify reviews into different classes: Bug Reports, Feature
Requests, User Experiences, and Ratings. While classifying
individual reviews can help to identify reviews that are wor-
thy of attention from a requirements engineer or similar role,
and aid in automatic aggregation of data, it is also useful for
efficiently getting an overview of an organizations’ products.
For the company in the case study, for instance, automatic
classification can provide an overview of the number of bugs
that are reported for each of its games. Continuously identify-
ing reported bugs—even in data that is not necessarily aimed
at the organization responsible for the product—allows an
organization to react quickly and thereby increase customer
satisfaction.

A relevant discussion concerns the chosen level of spe-
cialization for the metamodel (Fig. 2); in our previous study
[5], we focused on the agile RE approach, as well as in [36].
However, we have received feedback regarding this focus
on agile RE suggesting that the metamodel and the process
could instead be proposed in a way that supports both agile
and conventional RE methodologies; this is also supported
by empirical studies according to which the two approaches
are often mixed in practice, especially in large-scale agile
development [11, 12]. We have therefore in this study gener-
alized the part of the metamodel related to requirements. We
conducted several unstructured interviews with international
academics in the RE community, as well as development
companies in Sweden. In summary, the response was in favor
of making the metamodel generic and then tailored to a spe-
cific domain, development approach, etc., depending on the
usage context. The requirements are specific only in the way
that they are based on natural language, either following the
traditional template or that of user stories in the agile method-
ology. In other words, they are not tied to any software model
because the ambition of the study was to, from big data,
reach the point of requirements explication. Once a require-

@ Springer

1408

A. Henriksson and J. Zdravkovic

ment has been described, it is not different from requirements
described by traditional stakeholders. Further development-
related steps, e.g., (automated) mapping of NL requirements
to use cases, some design entities, or to code, are necessary;
this has been explored by several studies in the context of
NLP for requirements identification.

Regarding the relevance of the framework, the main
parameters pertain to the diversity of digital data sources
used, and the amount of generated data. Not all companies
use the same types of digital data sources and probably no
company uses them all. Hence, a company needs to assess the
relevance of the data sources toward requirements elicitation
and whether the data is of sufficient quantity and quality to
aim for automated or semi-automated processing. Besides the
gaming company in the case study, which has around twelve
million players, other organizations have also confirmed the
need for and value of such a framework, e.g., a bank with up
to one million customers. Moreover, a number of universi-
ties with 10-100 thousand students have expressed the need
for classifying different sources of student feedback regard-
ing online education platforms and techniques for processing
data from these sources.

The assessment of the framework in this study has been
applied on external systems (games). Regarding the appli-
cability of the proposed framework for internal systems, in
[5] we used for the illustration an internal system, i.e., a
custom-developed web application for managing research
proposals of Stockholm University employees; additional
research could specifically target internal systems by start-
ing from a feasibility assessment regarding which of the tasks
are relevant to invest in automating, as well as determining
which should be semi-automated, and accordingly making a
model of relevant ML models and algorithms. In this study,
we choose to study the gaming company because its data
is much larger, global and attractive, while the company is
already struggling with the fact that they are not able to ade-
quately process the enormous amounts of heterogeneous data
that they have access to.

The focus of this study has been on further developing
the foundations for a holistic and data-driven framework for
requirements elicitation from heterogeneous data sources.
However, while there have been many efforts in the litera-
ture to analyze explicit and implicit user feedback, there is
a need for more research and development of data analysis
methods in the RE domain. If the predictive performance of
the models used for automatic analysis of data is insufficient,
efforts to integrate data from different sources are severely
hampered. Today, data analysis increasingly relies on the use
of ML, often in a supervised setting, which requires access
to labeled data. Moving forward, it will be important that
created resources, e.g., in the form of annotated datasets and
even ML models, are made publicly available to the research
community. For this study, for example, we were unable to

@ Springer

find labeled data or ML models for NER tailored to require-
ments elicitation.

In future work, it will also be important to evaluate and
possibly develop novel methods for aggregation of data for
the purposes of creating candidate requirements, as well as
for mapping between a candidate requirement and a reposi-
tory of existing requirements. In the case study, aggregation
and mapping of candidate requirements to requirements
artifacts were performed manually with the purpose of
illustrating the ambition of the proposed framework for
data-driven requirements elicitation and the process for its
use. We envision that aggregation is an activity that can
be largely automated using, e.g., clustering and other tech-
niques based on semantic similarity. It will be important for
future research to tackle this challenge, in particular to pro-
pose techniques that are able to aggregate language data
with machine-generated data. Mapping candidate require-
ments to requirements artifacts will most likely remain
semi-automatic at best, in the sense that an automated map-
ping could be attempted between a candidate requirement
and a repository of existing requirements artifacts; however,
a requirements engineer or similar role will most likely be
required to verify a proposed mapping, or to select the best
match among a number of candidates. Depending on the
form of the requirements artifact, it is also plausible that
human involvement may be needed to formulate require-
ments. Another relevant issue here is how automation, e.g.,
in the form of classification, could be achieved in order to
facilitate correct identification of the requirements artifact
type.

The validation of the proposed framework in the case
study was partial in the sense that not all classes in the
metamodel were instantiated. While it is not necessary,
or even very likely, that all classes would be instantiated
when used in a particular context—it may, for example, be
decided that only a subset of the available types of digi-
tal sources are relevant—it would be important to validate
other parts of the proposed framework, most notably the
use of machine-generated data, in future work. However,
while some research efforts have been made, more research
is also required for developing and evaluating techniques that
can derive requirements or requirements-related information
from machine-generated data. This is naturally a more com-
plex challenge compared to exploiting natural language data
since there are relatively more steps to go from machine-
generated data to some requirements representation. We have
nonetheless included machine sources in the proposed frame-
work as the ambition is for it to be holistic, and we believe
that such data will play an important role in the future of
data-driven requirements elicitation.

Holistic data-driven requirements elicitation in the big data era

1409

6 Conclusions

In this study, we have extended the work presented in [5],
wherein the foundations were laid for a novel framework,
consisting of a conceptual metamodel and the method for its
use, that supports data-driven requirements elicitation from
heterogeneous data sources. In addition to further elaborat-
ing the metamodel and the process to support the proposed
framework, we have conducted an in-depth case study using
real data from a large gaming company—a company that
has identified several relevant data sources for analyzing
feedback and behavior from the games’ player bases, but
is currently carrying out related activities in a rather ad hoc
manner and still relying, to a large extent, on manual anal-
ysis. The case study has allowed us to further improve and
validate the metamodel and to demonstrate the feasibility
of the framework, including the use of fully automated data
analysis, with real data.

The motivation for the study is the need to provide busi-
ness organizations with a systematic aid for dealing with
the complexity of digital data management: available and
prioritized data sources, amount and dynamics of the data
in these sources, and different techniques for data process-
ing and analysis. The framework is intended to complement
existing approaches to requirements elicitation.

The main direction for future work concerns further elab-
oration of automation and efficiency of the last phases of
the process, such as mapping to requirements, as well as
classifying the use of processing techniques and algorithms
according to the specifics of data sources and software prod-
uct to which they concern, and in accordance to that classify
different situational methods [32] and capabilities [33] for
elicitation. Another direction of interest is a further develop-
ment of the framework for model-driven engineering, i.e., to
leverage abstraction and automation in software development
[34, 35].

Funding Open access funding provided by Stockholm University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Soft-
ware Engineering (ICSE), pp. 35-46. ACM Press, New York (2000)

2. Pohl, K.: Requirements engineering: fundamentals, principles, and
techniques. Springer, Heidelberg, New York (2010)

3. Quer, C., Franch, X., Palomares, C., Falkner, A., Felfernig, A.,
Fucci, D., Maalej, W., Nerlich, J., Raatikainen, M., Schenner,
G., Stettinger, M., Tiihonen, J.: Reconciling Practice and Rigor
in Ontology-based Heterogeneous Information Systems Construc-
tion. In Proceedings of the Practice of Enterprise Modeling
(PoEM), LNBIP vol.335, pp. 205-220, Springer (2018)

4. Malej, W., Nayebi, M., Ruhe, G.: Data-Driven Requirements
Engineering — An Update. In Proceedings of Int. Conference on
Software Engineering: Software Engineering in Practice (ICSE
SEIP), IEEE Press (2019)

5. Henriksson A., Zdravkovic J.: A Data-Driven Framework for
Automated Requirements Elicitation from Heterogeneous Digi-
tal Sources. Proceedings of The Practice of Enterprise Modeling.
PoEM. Lecture Notes in Business Information Processing, vol 400.
Springer, pp. 351-365 (2020)

6. Dalpiaz, F., Niu, N.: Requirements engineering in the days of arti-
ficial intelligence. IEEE Softw. 37(4), 7-10 (2020)

7. Dabrowski, J., Letier, E., Perini, A., Susi, A.: Mining User Opin-
ions to Support Requirement Engineering: An Empirical Study. In
Proceedings of International Conference on Advanced Information
Systems Engineering, LNCS, vol. 12127. pp. 401-416, Springer,
Berlin (2020)

8. Cohn, M.: User Stories Applied: for Agile Software Development.
Addison Wesley, Redwood City (2004)

9. van Vliet M., Groen E.C., Dalpiaz F., Brinkkemper S.: Identifying
and classifying user requirements in online feedback via crowd-
sourcing. In Requirements Engineering: Foundation for Software
Quality, REFSQ. Lecture Notes in Computer Science, vol. 12045.
pp. 143-159. Springer, Berlin. (2020)

10. Kirikova, M.: Continuous requirements engineering. In Proceed-
ings of International Conference on Computer Systems and Tech-
nologies (CompSysTech), pp. 1-10, ACM DL (2017)

11. Kasauli, R., Knauss, E., Horkoff, J., Liebel, G., de Oliveira Neto, F.:
Requirements engineering challenges and practices in large-scale
agile system development. J. Syst. Softw. 172, 110851 (2020)

12. Koutsopoulos, G., Kjellvard, N., Magnusson, J., Jelena Z.: Towards
an integrated metamodel for requirements engineering. In Proceed-
ings of FIP Working Conference on The Practice of Enterprise
Modelling, Forum, ceur-ws, vol 2586, pp 40-53 (2020)

13. Meth, H., Brhel, M., Maedche, A.: The State-of-the-Art in Auto-
mated Requirements Elicitation. Information and Software Tech-
nology, vol. 55, pp. 1695-1709, Elsevier, Amsterdam (2013)

14. Manrique-Losada, B., Zapata-Jaramillo, C. M., Burgos, D. A.:
Re-Expressing business processes information from corporate doc-
uments into controlled language. In Natural Language Processing
and Information Systems, pp. 376-383, Springer, Berlin (2016)

15. Nogueira, F. A., De Oliveira, H. C.: Application of Heuristics in
Business Process Models to Support Software Requirements Spec-
ification. In Proceedings of the 19th International Conference on
Enterprise Information Systems (ICEIS), vol. 2, pp. 40-51 (2017)

16. Oriol, M., Martinez-Ferndndez, S., Behutiye, W., Farré, C., Kozik,
R., Seppinen, P., Vollmer, A.M., Rodriguez, P., Franch, X., Aara-
maa, S., Abhervé, A., Choras, P.J.: Data-driven and Tool-supported
Elicitation of Quality Requirements in Agile Companies. Softw.
Qual. J. 28(3), 931-963 (2020)

17. Franch X, et al. Data-driven elicitation, assessment and documen-
tation of quality requirements in agile software development. In

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1410

A. Henriksson and J. Zdravkovic

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

International Conference on Advanced Information Systems Engi-
neering. Springer, Cham (2018)

Xiao, M., Yin, G., Wang, T., Yang, C., Chen, M.: Requirement
Acquisition from Social Q&A Sites. In Proceedings of 2nd Asia
Pacific Symposium (APRES), vol. 558, pp 64-74 (2015)
Dhinakaran, V. T., Pulle, R., Ajmeri, N., Murukannaiah, P. K.:
App Review Analysis via Active Learning: Reducing Supervision
Effort without Compromising Classification Accuracy. In Proceed-
ings of 26th Interantional Requirements Engineering Conference
(RE), pp. 170-181, IEEE (2018)

Williams, G., Mahmoud, A.: Mining Twitter feeds for software user
requirements. In Proceedings of 25th International Requirements
Engineering Conference (RE), pp. 1-10 IEEE (2017)
Morales-Ramirez, I., Kifetew, F. M. Perini, A.: Analysis of Online
Discussions in Support of Requirements Discovery. In Proceedings
of Interanational. Conference on Advanced Information Systems
Engineering (CAiSE), vol. 10253 LNCS, pp. 159-174, Springer,
Berlin (2017)

Xie, H., Yang, J., Chang, C.K., Liu, L.: A statistical analysis
approach to predict user’s changing requirements for software ser-
vice evolution. J. Syst. Softw. 132, 147-164 (2017)

Voet, H., Altenhof, M., llerich, M., Schmitt, R. H., Linke, B.: A
framework for the capture and analysis of product usage data for
continuous product improvement. J. Manuf. Sci. Eng. ASME 141:
021010 (2019)

Oriol, M., Stade, M.J.C., Fotrousi, F., Nadal, S., Varga, J., Seyff, N.,
Abelld, A., Franch, X., Marco, J., Schmidt, O.: FAME: Supporting
continuous requirements elicitation by combining user feedback
and monitoring. In Proceedings of the 26th International Require-
ments Engineering Conference (RE), pp. 217-227, IEEE Computer
Society (2018).

Wiiest, D., Fotrousi, F., Fricker, S.: Combining monitoring and
autonomous feedback requests to elicit actionable knowledge of
system use. In Proceedings of the 25th International Working Con-
ference on Requirements Engineering: Foundation for Software
Quality (REFSQ), pp. 209-225, LNCS 11412 (2019)

Lim, S., Henriksson, A., and Zdravkovic, J.: Data-driven require-
ments elicitation: a systematic literature review. Springer Nature
Computer Science, Vol 2/16 (2021)

Wang, Z., et al.: A novel data-driven graph-based requirement elic-
itation framework in the smart product-service system context.
Advanced Engineering Informatics (2019)

Franch, X., Ralyté, J. Perini, A., Abell6, A., Ameller, D., Gor-
roflogoitia, J., Nadal, S., Oriol, M., Seyff, N., Siena, A., and Susi,
A.: Situational Approach for the Definition and Tailoring of a Data-
Driven Software Evolution Method. In Proceedings of 28th CAiSE,
LNCS, vol. 10816, pp. 603-618, Springer, Berlin (2018)
Henriksson, A.: Learning multiple distributed prototypes of seman-
tic categories for named entity recognition. Int. J. Data Min.
Bioinform. 13(4), 395411 (2015)

Cambria, E., Poria, S., Gelbukh, A., Thelwall, M.: Sentiment anal-
ysis is a big suitcase. IEEE Intell. Syst. 32(6), 74-80 (2017)
Maalej, W., Kurtanovi¢, Z., Nabil, H., Stanik, C.: On the automatic
classification of app reviews. Requir. Eng. 21(3), 311-331 (2016)
Mirbel, 1., Ralyté, J.: Situational method engineering: combin-
ing assembly-based and roadmap-driven approaches. Requir. Eng.
Journal 11(1), 58-78 (2006)

Zdravkovic, J., Stirna, J., Kuhr, J.-C., Ko¢, H.: Requirements
engineering for capability driven development. In: Frank, U.,
Loucopoulos, P., Pastor, 0., Petrounias, 1. (eds.) The Practice of
Enterprise Modeling, pp. 193-207. Springer, Berlin, Heidelberg
(2014)

Pastor, O.: Model-driven development in practice: from require-
ments to code. In Proceedings of SOFSEM ‘17: Theory and
Practice of Computer Science. Lecture Notes in Computer Science,
vol. 10139. Springer, Cham (2017)

@ Springer

35.

36.

Bucchiarone, A., Cabot, J., Paige, R.F,, et al.: Grand challenges in
model-driven engineering: an analysis of the state of the research.
Softw. Syst. Model. 19, 5-13 (2020)

Franch, X., Henriksson, A., Ralyté, J., Zdravkovic, J.: Data-Driven
Agile Requirements Elicitation through the Lenses of Situational
Method Engineering. To appear In Proceedings of the 29th Interna-
tional Requirements Engineering Conference (RE): IEEE Digital
Library (2021).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Aron Henriksson is an Assistant
Professor at the Department of
Computer and Systems Sciences
(DSV) at Stockholm University.
He holds a Ph.D. in Computer
and Systems Sciences from
Stockholm University, and his
dissertation was awarded the
2016 Borje Langefors Prize for
best PhD thesis in Informatics
at a Swedish university. Aron’s
research is primarily in the area
of natural language processing,
focusing on semantic representa-
tions and language models. His

research includes applications of natural language processing and
machine learning to healthcare and, lately, data-driven requirements
engineering.

Jelena Zdravkovic is a Professor
at the Computer and Systems
Sciences (DSV) department
at Stockholm University. She
has a Ph.D. in Computer and
Systems Sciences at The Royal
Institute of Technology (KTH),
as well as the MBA degree in
E-commerce. Jelena’s research
activities include requirements
engineering and capability-driven
IS development. Jelena has pub-
lished around 100 refereed papers
in international conferences and
scientific journals on the topics of

requirements engineering and capability-driven development. She is
in the Editorial Board of Springer BISE and RE Journals, as well as a
regular reviewer and guest editor for a number of other international
journals including several of Springer, Elsevier’s Journal of Systems
and Software and Information and Software Technology Journal, and
IEEE Computing. Jelena has organized a number of international
conferences and workshops in the IS Engineering discipline, and
she serves in the program committees of many of them. Her latest
interest includes Data-driven Requirements Engineering, as well as
development and analysis of Digital Business Ecosystems.

	Holistic data-driven requirements elicitation in the big data era
	Abstract
	1 Introduction
	2 Background
	2.1 Requirements elicitation
	2.2 Data-driven requirements elicitation

	3 Integration of digital data to requirements
	3.1 Metamodel for data-driven requirements elicitation
	3.2 Requirements elicitation process

	4 Case study: gaming company
	4.1 Case description
	4.2 Data description
	4.3 Sentiment analysis
	4.3.1 Method
	4.3.2 Results

	4.4 Classification
	4.4.1 Method
	4.4.2 Results

	4.5 Demonstration by metamodel instantiation
	4.6 Evaluation of framework with case study company

	5 Discussion
	6 Conclusions
	References

