
Vol.:(0123456789)1 3

Software and Systems Modeling (2022) 21:311–336
https://doi.org/10.1007/s10270-021-00912-y

REGULAR PAPER

A method for transforming knowledge discovery metamodel
to ArchiMate models

Ricardo Pérez‑Castillo1 · Andrea Delgado2 · Francisco Ruiz3 · Virginia Bacigalupe2 · Mario Piattini3

Received: 7 August 2020 / Revised: 3 June 2021 / Accepted: 9 July 2021 / Published online: 2 August 2021
© The Author(s) 2021

Abstract
Enterprise architecture has become an important driver to facilitate digital transformation in companies, since it allows to
manage IT and business in a holistic and integrated manner by establishing connections among technology concerns and
strategical/motivational ones. Enterprise architecture modelling is critical to accurately represent business and their IT assets
in combination. This modelling is important when companies start to manage their enterprise architecture, but also when
it is remodelled so that the enterprise architecture is realigned in a changing world. Enterprise architecture is commonly
modelled by few experts in a manual way, which is error-prone and time-consuming and makes continuous realignment dif-
ficult. In contrast, other enterprise architecture modelling proposal automatically analyses some artefacts like source code,
databases, services, etc. Previous automated modelling proposals focus on the analysis of individual artefacts with isolated
transformations toward ArchiMate or other enterprise architecture notations and/or frameworks. We propose the usage of
Knowledge Discovery Metamodel (KDM) to represent all the intermediate information retrieved from information systems’
artefacts, which is then transformed into ArchiMate models. Thus, the core contribution of this paper is the model trans-
formation between KDM and ArchiMate metamodels. The main implication of this proposal is that ArchiMate models are
automatically generated from a common knowledge repository. Thereby, the relationships between different-nature artefacts
can be exploited to get more complete and accurate enterprise architecture representations.

Keywords Enterprise architecture · ArchiMate · Knowledge discovery metamodel · Model transformation · MDE · ATL

1 Introduction

Enterprise architecture (EA) is a key mechanism to represent
and manage IT and business in a holistic way by defining
relationships between technology aspects and business, stra-
tegical, and motivational concerns. EA management (EAM)
is the “discipline for proactively and holistically leading
enterprise responses to disruptive forces by identifying and
analysing the execution of change toward desired business
vision and outcomes. EA delivers value by presenting busi-
ness and IT leaders with signature-ready recommendations
for adjusting policies and projects to achieve target business
outcomes that capitalize on relevant business disruptions”
[16]. One of the major benefits of EAM perceived by com-
panies is that it enables them to achieve the effective com-
munication and alignment between business and IT [29],
and drive the organization change [2]. Thus, EA is now per-
ceived by companies as on the most useful tools to drive
digital transformation, i.e., a technology-driven continuous
change process of companies and our entire society [49].

Communicated by Ruth Breu.

 * Ricardo Pérez-Castillo
 ricardo.pdelcastillo@uclm.es

 Andrea Delgado
 adelgado@fing.edu.uy

 Francisco Ruiz
 francisco.ruizg@uclm.es

 Virginia Bacigalupe
 mbacigalupe@fing.edu.uy

 Mario Piattini
 mario.piattini@uclm.es

1 Faculty of Social Sciences and IT, University
of Castilla-La Mancha, Av. Real Fábrica de Sedas s/n,
45600 Talavera de La Reina, Spain

2 Instituto de Computación, Facultad de Ingeniería,
Universidad de La República, 11300 Montevideo, Uruguay

3 Information Technology and Systems Institute (ITSI),
University of Castilla-La Mancha, Paseo de la Universidad 4,
13071 Ciudad Real, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00912-y&domain=pdf

312 R. Pérez-Castillo et al.

1 3

Although the alignment of the business and IT can be
achieved through EA models, such models must be revis-
ited continuously, due to the agile adaptation of companies
within changing markets and volatile technologies [67].
Companies are consequently forced to (re)define business
goals and processes, along with the respective functionality
of their IT stacks, by (re)developing and operating them in
a continuous way [10, 12]. As a consequence, EA modelling
has become in one of the most critical tasks within EAM
[51]. EA modelling has traditionally been carried out manu-
ally by experts. However, manual EA modelling has several
flaws [48], such as error-proneness, time-consumption, slow
and poor re-adaptation, and cost. In most of the cases, the
main reason for such problems lies in the subjective opinion
provided by experts when they create EA models, which
might lead to models with missing elements and irrelevant
elements. Thereby, some researchers have claimed the need
to automate EA modelling through the use of different
reverse engineering and mining techniques in order to dis-
cover EA models [12, 14, 47].

EA elements, according to different EA viewpoints, can
be extracted from a wide variety of artefacts (e.g., informa-
tion systems, enterprise service bus, databases, source code,
etc.). Current proposals provide techniques and tools that
focus on specific artefacts and generate certain EA elements
and relationships in the same or various EA models. Most
of the existing techniques are thus built as a silo solution
(see left hand side in Fig. 1). In bottom-up silo solutions,
different parsers or alternative mining methods are used to
extract information from various independent artefacts; then

different platform-specific models are built for every arte-
fact. In silo solutions, various models may be integrated for
the same artefact, while these silos are independent among
them. Finally, some analysis methods can be applied to syn-
thetize some information and abstract it into the target EA
models. This signifies that the specific information extracted
or generated by mining techniques are used independently
for different analysers and transformations to generated cer-
tain EA viewpoints in isolation. What we propose in this
research is the usage of Knowledge Discovery Metamodel
(KDM) [45], according to a Model-Driven Engineering
(MDE) approach, in order to consider a common knowl-
edge repository that can be used in an integrated way for
automatic transformations. MDE can boost the automatic
EA modelling since abstract representations of IT artefacts
can be reused by automatic model transformations. In con-
trast, KDM ecosystems (see Fig. 1) facilitate the definition
of EA model transformations based on a standard notation
that allow to abstract specific reverse engineering details
for all the specific artefacts. This idea is similar to the work
proposed by [28] who introduced an integration layer for
the automation of EA models that synchronizes static and
runtime data from different data sources. The advantage of
KDM is that many existing reverse engineering and mining
tools use this standard and may be reused for EA modelling
through the KDM to ArchiMate transformation proposed
in this paper.

The main contribution of this paper is the definition of
a model transformation from KDM to EA models (repre-
sented according to ArchiMate). The transformation focuses

parser

MMooddeell

integra�on

analysis

EEAA MMooddeell

parser

MMooddeell

integra�on

analysis

EEAA MMooddeell

parser

MMooddeell

integra�on

analysis

EEAA MMooddeell

SSiilloo ssoolluuttiioonnss

parserparser
parser

KKDDMM MMooddeell

Transforma�on

KKDDMM EEccoossyysstteemm

EEAA MMooddeell

data

code

services data

code

services

Fig. 1 Comparison of EA mining techniques by using (or not) Knowledge Discovery Metamodel

313A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

on source code of information systems that is reversed into
KDM models that are then transformed into ArchiMate by
considering the application and technology layers of the
standard. The model transformation is implemented in ATL
and evaluated in a case study with KDM models obtained
from the source code of a real-life information system.
The main implication of this work is that the feasibility
and suitability of a model-driven engineering approach for
EA modelling are demonstrated through the definition and
application of automatic model transformation. As a result,
software representation in ArchiMate allows to represent
what that business context is, and specifically, the relation-
ship between a technology solution and the business context.
Thus, EA modelling can be boosted by automating some
modelling tasks while flaws associated with manual model-
ling are reduced. As a result, EA models can be continuously
updated in an easier way, and the alignment of business and
IT is therefore improved. This eventually allows companies
to make better business/IT decisions.

The remaining of the paper is structured as follows. Sec-
tion 2 introduces the core concepts used in the paper. Sec-
tion 3 discusses some related work. Section 4 explains in
detail the KDM to ArchiMate transformation. Section 5
demonstrates the applicability of the model transforma-
tion in a proof-of-concept and with a case study involving
six open-source systems. Section 6 evaluates the proposal
through the analysis of results obtained in the case study.
Finally, Sect. 7 draws conclusions and future work.

2 State of the art

This section introduces the main concepts involved in the
research proposal. First, the core concepts of model-driven
engineering are summarized. Second, ArchiMate is pre-
sented as the de facto standard for representing and manag-
ing EA models, which is used as the output metamodel. Last,
the KDM standard is presented, which is used as the input
metamodel in the proposed transformation.

2.1 Model‑driven engineering

MDE focuses on models as centre of the software develop-
ment process, being models the most important artefacts
from which other models and code are generated [27, 55,
64]. Models, metamodels and transformations between
them are key elements in the process of MDE, being the
basis for understanding, specifying, and analysing software
systems. Metamodels define modelling languages (abstract
syntax) providing concepts and relationships between them,
and notations (concrete syntax) that can be graphical or tex-
tual, in order to specify models that represent those systems
[26, 52]. Examples of such modelling languages are the

Unified Modelling Language (UML) [38], Business Pro-
cess Model and Notation (BPMN 2.0) [34], ArchiMate, and
KDM. Meta-metamodels allow the definition of modelling
languages to specify metamodels, such as the Metamodel
Object Facility (MOF) [37] and Ecore, its technological
implementation on Eclipse platform. Models specified in a
modelling language “conform to” the corresponding meta-
model, i.e., all concepts and relationships specified in the
model are as defined by the metamodel.

MDE can provide, based on model transformations,
refinement steps that decrease the level of abstraction usu-
ally traveling from specification models to code, but also
allowing other scenarios such as reverse engineering, i.e.,
traveling from code to models [26], helping to recover the
hidden knowledge (see Fig. 2). Other model transformations
consider models at the same abstraction levels but in dif-
ferent domains (see Fig. 2). The model-driven architecture
(MDA) [35] is a specific implementation of MDE provided
by the Object Management Group (OMG) to support the
development of systems based on transformation of models
from specifications to code. In this context, the architecture-
driven modernization (ADM) [39] approach supports the
reengineering of information systems going from code to
specification models.

To specify transformations, specific-purpose languages
are also needed. Examples are Query/Views/Transforma-
tions (QVT) [33] which defines two declarative languages
(QVT Core and QVT Relations) and an imperative language
(QVT Operational),as well as ATLAS Transformation Lan-
guage (ATL) [26] which provides a mixture of declarative
and imperative constructs, where the declarative style allows
specifying relations between source and target patterns
between elements from the metamodels in the transforma-
tion, being closer to the way developers perceived it. The
imperative style allows using well-known constructs for
specifying control flow elements such as loops, conditions,
among others.

Transformations follow a common pattern known as
model transformation pattern, where TAB is a model trans-
formation between domains A and B. The execution of TAB
takes as input the model MA and generates the model MB.
 MA, TAB and MB are models that, respectively, conform met-
amodels MMA, MMT and MMB (see Fig. 2). In turn, those
three metamodels conform to the MMM meta-metamodel
[26]. In the context of MDA, the MMM meta-metamodel
is the Meta Object Facility (MOF). Additionally, a model
transformation may occur within the same domain to reduce
or increase abstraction, for example, from a Computational
Independent Model CIMB to a Platform Independent Model
 PIMB (see Fig. 2).

314 R. Pérez-Castillo et al.

1 3

2.2 ArchiMate

With the increasing interest on EA, various EA frameworks
have been appeared and some of them have gained cer-
tain adoption in the industry such as TOGAF, DoDAF or
MODAF, Zachman, ESARC, etc. The TOGAF framework
[58] is extensively adopted by private companies and can
be said that it is the de facto standard [57, 60]. TOGAF
proposes the Architecture Development Method (ADM) as
an iterative methodology for defining EA.

EA modelling languages and specifications are necessary,
alongside EA frameworks, to depict all the EA concerns
in different architectural viewpoints. ArchiMate [59] is a
modelling language compliant with TOGAF with which
to represent different EA information models. ArchiMate
allows the modelling of EA from different viewpoints, in
which the position within the cells highlights the stakehold-
ers’ concerns (see Fig. 3).

ArchiMate proposes layers and aspects as the two main
dimensions for organizing all the elements. Core layers rep-
resent the three levels at which it is possible to model an
enterprise in ArchiMate, i.e., business, application, and tech-
nology. Aspects refers to: (i) the active structure (elements
representing who/what makes the things), (ii) behaviour
(elements indicating what is made and how it is made), and
(iii) passive structure (things on which behaviour is per-
formed). Despite the mentioned structure, composite ele-
ments belonging to various aspects are also allowed. Finally,
it should be noticed that the ArchiMate specification define
further layers for strategy, physical and implementation/

migration elements, as well as fourth additional aspects with
motivational elements (why things are made). The scope
of the model transformation of this research consists of the
application layer (see highlighted part in Fig. 3).

There are several EA suites that facilitate the manual
modelling of ArchiMate models [49]. In this paper, we
mostly are based on Archi tool [4], an open source Archi-
Mate modelling tool that is based on Eclipse project and,
therefore, it provides the ArchiMate Ecore metamodel.

2.3 Knowledge discovery metamodel

KDM, recognized as standard ISO/IEC 19506, makes it pos-
sible to represent all software artefacts involved in a certain
legacy information system in an integrated and standardized
way [45]. This metamodel was specifically defined to be
used within the architecture-driven modernization (ADM)
approach [39], i.e., reengineering of information systems fol-
lowing the (MDE) principles. A KDM model is obtained in
an integrated manner because it works as a KDM repository
that can be gradually completed with knowledge discovered
through the analysis of different information systems and
different artefacts. Thus, KDM avoid silo solutions where
different miners, analysers and transformations operate in
isolation (see Fig. 1).

The KDM metamodel provides a comprehensive high-
level view of the behaviour, structure, and data of systems,
while procedural information of the systems (i.e., sequence
and control flow in source code) is not the main purpose
of KDM. Such kind of information is better represented by

Computa�onal
Independent

MMA

Pla�orm
Independent

MMA

Pla�orm
Specific MMA

Computa�onal
Independent

MA

Pla�orm
Independent

MA

Pla�orm
Specific MA

Computa�onal
Independent

MMB

Pla�orm
Independent

MMB

Pla�orm
Specific MMB

Computa�onal
Independent

MB

Pla�orm
Independent

MB

Pla�orm
Specific MB

T

T

T

T

T

T

ArchiMate

KDM

C#

Domain A Domain B

T

Fig. 2 Possible transformations in MDA context

315A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

using other standards like UML. The KDM metamodel is
divided into layers representing both physical and logical
software artefacts of information systems at several abstrac-
tion levels [36]. It separates knowledge about legacy infor-
mation systems into various orthogonal concerns that are
known in software engineering as architecture views (see
Fig. 4). The KDM metamodel consists of four abstraction
layers, each based on a previous layer. Furthermore, each
layer is organized into packages that define a set of meta-
model elements whose purpose is to represent a specific

independent facet of knowledge related to information
systems.

3 Related work

There is certain research about reverse engineering of EA
models. Such works consider, as input, a wide range of infor-
mation systems artefacts [47]. For example, [14, 15] auto-
mate the collection of relevant data from various external

Business

Applica�on

Physical

Ac�ve structureBehaviourPassive
structure

Aspects

La
ye
rs

Strategy

Technology

Implementa�on
& Migra�on

M
o�

va
�o

n

SSccooppee ooff tthhee mmooddeell ttrraannssffoorrmmaattiioonn

Fig. 3 ArchiMate 3 core framework (adapted from [59])

Core

KDM

Source

Code Actions

Data Event UI Platform

Conceptual Build Structure

Infrastructure
LayerFramework

P
rim

iti
ve

s,
 e

xp
lic

it,

au
to

m
at

ic
al

ly
 e

xt
ra

ct
ed

Metamodel

Programs
Elements
Layer

Runtime
Resource
Layer

Abstractions
Layer

H
ig

h-
le

ve
l,

im
pl

ic
it,

ex

pe
rts

, a
na

ly
st

s

Fig. 4 Layers, packages and concerns in KDM (Adapted from [36])

316 R. Pérez-Castillo et al.

1 3

sources. It provides a specific metamodel and draws some
techniques to achieve a better synchronization between EA
models and organizations’ facts. Also, Kleehaus and Matthes
[28] leverage runtime service instrumentation of the existing
IT architecture to automatically create, update, and enhance
static EA models with runtime information. These authors
propose a new integration layer that synchronizes static and
runtime data from different data sources. In the same line,
Sánchez et al. [54] provided an technique to collect “infor-
mation from multiple sources such as information systems,
databases, files (system’s logs, source code, configuration),
and previously existing models” and create enterprise mod-
els in a semi-automatic manner. Other proposals employ
process mining techniques with runtime execution data to
visualize the respective runtime enterprise architecture [63].
Similarly, Liu et al. [31] recover component-based architec-
tures from software execution data. Truong et al. [62] pro-
posed a method that combines “enterprise’s strategy together
with data mining rules extracted from the data warehouse
of the enterprise in order to make design-time changes to its
business processes”. Werf et al. [65] also consider opera-
tional data for extracting architectural descriptions in which
quality attributes are considered apart from functional
aspects. Johnson et al. [25] proposed to use dynamic Bayes-
ian networks for automating EA modelling, which was then
specifically realized for ArchiMate models by [5].

In contrast with our research, all the mentioned works
do not follow a clear MDE approach. In this sense, there
exist some works that generates EA models by following
the MDE principles. For example, Ge et al. [17] attempt
to model a system-of-systems (SoS) architecture framed in
the DoDAF Metamodel. This work facilitates the automated
transformation of executable models from architectural
information. Also, Hu et al. [22] define an MDE method for
service oriented SoS architecting, modelling and simula-
tion. This work employs SysML to cope with the intrinsic
complexity of SoS and make it possible the alignment of
business requirement and IT infrastructure. Bogner and Zim-
mermann [6] use some metamodeling principles together
with some ontology-based methods for the integration of
microservices architectures. Similar to this work, Granchelli
et al. [18] employ a domain-specific language (DSL) to auto-
matically represent microservices architectures.

All the previous works (in the context of MDE) do not
employ KDM as the core metamodel to manage a com-
mon knowledge repository. There are other works using
KDM and model transformations in the context of MDE.
For example, Landi et al. [30] define a DSL based in the
Structure KDM layer for representing planned architectures,
i.e., not only the architectural abstractions of the system but
also the access rules that must exist between them and be
maintained over time. Moutaouakkil and Mbarki [32] define
a KDM extension to represent the Model/View/Controller

(MVC) architectural concepts of web application into KDM
models. However, this information is not used to generate
EA models. Pérez-Castillo et al. [44] provide an ADM
framework based on KDM to generate business process
models from KDM models, which are previously obtained
through various sources, for example, from source code [42,
50], data models [46], or events logs [50].

Finally, there are other works that provide model trans-
formations between some EA concepts or artefacts and
ArchiMate models. For example, Buckl et al. [8] propose
an approach based on model transformations implemented
in QVT to transform EA data to their graphical represen-
tation. Today, the creation of visual EA models is already
solved through the majority of EA suites. Our current pro-
posals focus on generating EA models from other arte-
facts by reverse engineering. Other work employing model
transformations is proposed by [11]. However, those model
transformations are actually metamodel mappings with ficti-
tious model transformations, i.e., such transformations are
not coded in a model transformations language like ATL or
QVT as our proposal is. Thus, such transformations cannot
be executed automatically. Engelsman et al. [13] propose
some guidelines for transforming business models into EA
models, with which to improve the traceability of the con-
tribution of IT to the value offerings of a business. However,
this transformation has not been implemented. Holm et al.
[21] propose an approach and a tool to generate EA models
(using Archimate as example) based on network scanning for
recovering data automatically and then mapping this data to
EA elements. This approach needs to manually define the
mappings within the tool to generate the EA model each
time (for each language used, i.e., Archimate) with no use
of KDM, where the transformation is implemented in the
tool. This makes the usability, extensibility, and changeabil-
ity somehow limited. Opposite our approach provides clear
rules for mappings defined in ATL which is easy to extend
for new mappings, as presented in Sect. 4.3. Pepin et al. [41]
a software modernization approach is taken to link legacy
software architecture models with enterprise business mod-
els via KDM and using MoDisco [7] and ATL transforma-
tions to generate Application, Functional and Business Pro-
cess models. However, the metamodels used are not standard
(i.e., not Archimate or BPMN 2.0) making it difficult for
organizations to integrate into their models. Differently, our
approach is completely based on existing standards both for
models and for transformations.

4 Research proposal

The research method used is Design Science Research
Method (DSRM) [20, 24, 40, 66]. DSRM proposes a set of
steps or activities to complete the design and construction

317A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

of some artefacts. The piece of research in this article (the
KDM-to-ArchiMate transformation) is classified as “devel-
opment- and evaluation-focused design science research”.
This is owing to the fact this research is mainly concentrated
in the three last activities of the DSRM (i.e., design and
develop, demonstrate and evaluate). This DSRM scenario
is aimed at designing and developing an artefact using both
research and creative methods, as well as a demonstration
and a thorough evaluation by means of experiments, case
studies or other research strategies.

The artefact under investigation is a method for extracting
EA models (represented using ArchiMate) from KDM mod-
els. In order to understand how KDM models are generated,
Sect. 4.1 introduces the generic technique to obtain Archi-
Mate models from information systems’ artefacts. Then, the
generation of KDM models specifically from source code is
detailed in Sect. 4.2. Finally, Sect. 4.3 covers the main goal
of this research, the model transformation between KDM
and ArchiMate.

4.1 General method for reversing ArchiMate
models

ArchiRev is the method for extracting EA Models which
has been proposed in a previous research [48]. ArchiRev
considers ArchiMate for modelling EA. This method is
generic and extensible since it is based on a set of reverse
engineering techniques aimed at generating ArchiMate mod-
els by analysing software artefacts. In this method, different
software artefacts can be considered as input by using spe-
cific and/or adapted reverse engineering techniques which,
in turn, can discover and model further EA elements. Dif-
ferent reverse engineering within ArchiRev not only con-
tribute to generate more accurate and complete EA models
(i.e., further elements). Additionally, such techniques take
into account certain information of IS artefacts to generate
specific viewpoints concerning different stakeholders (see
Fig. 3). It should be noticed that different EA views can
be generated from EA models according to the viewpoints.
Thereby, information gathered from IS artefacts drives the
selection of certain elements to be included in a specific
view, as well as some relationships between those elements.
In these specific viewpoints, some layout issues could be
addressed through reverse engineering techniques included

EA Viewpoints
Business Layer
• Business Product/Services
• Business Process/Func�on
Applica�on Layer
• Applica�on Structure/Coopera�on
• Applica�on Behaviour/Usage
• Informa�on Structure
Technology and Physical
• Implementa�on and Deployment
• Technical Infrastructure

IS artefacts
Source code
Execu�on logs
Database schema
Data model specifica�ons
Enterprise service bus / Service interface specifica�ons
Opera�onal data / process logs
Applica�on configura�on file / deployment specifica�onsReverse Eng. Techniques

Sta�c Analysis
Dynamic analysis
Concept Loca�on
Process Mining
Textual analysis

Fig. 5 Overview of ArchiRev dimensions

318 R. Pérez-Castillo et al.

1 3

in ArchiRev. Therefore, ArchiRev can be understand as a
three-dimensional approach with three different dimensions
that can be considered (see Fig. 5).

These dimensions are (i) the possible EA viewpoints/con-
cerns that ArchiRev is able to extract and generate; (ii) the
possible reverse engineering techniques that could be used
to extract some of those specific EA concerns/viewpoints;
and finally (iii) the dimension of IS artefacts that are con-
sidered during reverse engineering for gathering relevant
EA information. Table 1 shows the most common possible
combinations between systems artefacts (in rows), reverse
engineering techniques (columns to the left) and the EA
viewpoints according to Archimate (columns to the right).

4.2 Generation of knowledge discovery metamodel
repository

ArchiRev employs KDM to represent all the information
extracted and generated through the analysis of informa-
tion systems’ artefacts. In this way, all the knowledge is
abstracted in a technological independent way.

Different KDM packages and layers could be used
depending on the artefacts analysed. The scope of the model
transformation presented in this research is restricted to the
Code and Action packages of the KDM metamodel, since we
focus on source code. Further model transformations could
be considered for other artefacts like data model, enterprise
service bus, among other. The advantage of using KDM is
that its metamodel covers the abstraction of different soft-
ware artefacts. Code and Action within the Program Ele-
ments layer are the specific KDM packages to represent
the source code are Code and Action (see Fig. 4). Program
Elements is the second abstraction layer of KDM after the
Infrastructure layer and it aims to provide a language-inde-
pendent intermediate representation for various constructs
determined by common programming languages. The Code
package represents the named items from the source code
and several structural relationships between them and the
Action package focuses on behaviour descriptions and con-
trol- and data-flow relationships determined by them. Fig-
ure 6 shows the most important meta-elements of the Code
and Action packages of the KDM metamodel. According
to the KDM Code metamodel, each analysed source code
artefact is represented as a CodeModel element, the root
meta-element. A CodeModel is then composed as a set of
code elements (AbstractCodeElements) such as Callable-
Unit, StorableUnit, and so on. The code elements can be
interrelated among them (see AbstractActionRelationships)
through relationships with different semantics such as Flow,
Calls, Reads, Writes.

In addition to the elements shown in Fig. 6, other basic
elements of the kdm and core packages in the KDM layers
below are used in combination, for example, the Annotation

element that allows textual descriptions to be attached to any
instance of a model element. Information collected in these
annotations that are attached to CompilationUnit elements
are then a key source of information in the proposed model
transformation.

For the case of source code, the most common technique
employed to extract relevant information is static or dynamic
analysis (see Table 1). Static analysis consists of a syntax
inspection of the source code, which can be expressed in
terms of a grammar. Commonly, we speak about parsers
that are in charge of recognizing the whole structure of a
piece of code and generate an abstract syntax tree (AST)
from which specific information can be then gathered and
represented in the KDM model (e.g., callable units belong-
ing to a compilation unit). On the one hand, the advantage
of static analysis is that there are many tools that support
the automatic creation of specific parsers from grammars,
which are available for the most common programming
languages. On the other hand, static analysis fails to detect
dead code (unreachable parts of source code) and to figure
out parts of the code most frequently executed. Because of
these inconveniences, dynamic analysis inspects the source
code while it is being executed. Sometimes, source code is
annotated with some statements able to register execution
information, while other times profiling techniques (based
on the execution environment) are used without altering the
original artefact.

Within the context of ArchiRev, different parsers and
dynamic analysers might be used in combination to inspect
artefacts written in different programming languages. The
derived information is then integrated according to the KDM
metamodel. In the case study presented in the empirical
validation (Sect. 5.2), we consider KDM models that are
extracted from information systems written in C#. For this
case, a parser has been coded based on the C# grammar.
Specific implementation details are omitted in this paper
since this kind of efforts has been extensively covered both
in academia and industry. The recognized AST is built
according to the C# metamodel depicted in Fig. 7. Then, a
mapping is produced almost directly from the C# metamodel
to the KDM metamodel previously depicted in Fig. 6.

4.3 KDM to ArchiMate transformation

The M2M transformation from KDM to ArchiMate is
based on one input and output metamodel. The input met-
amodel is the KDM metamodel defined in the standard
ISO/IEC 19506 [45], while the output metamodel is the
ArchiMate metamodel defined by Archi tool [4]. Although
there is a tool-independent ArchiMate specification named
Model Exchange File Format [61], we decided to use the
Archi metamodel. The main drawback of not using the
Model Exchange File Format is that it prevents the direct

319A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

Ta
bl

e
1

 A
rc

hi
Re

v
m

ap
pi

ng
 re

ga
rd

in
g

m
os

t c
om

m
on

 re
le

va
nt

 u
se

 o
f r

ev
er

se
 e

ng
in

ee
rin

g
te

ch
ni

qu
es

, i
np

ut
 IS

 a
rte

fa
ct

s a
nd

 E
A

 v
ie

w
po

in
ts

 g
en

er
at

ed

In
pu

t I
S

ar
te

fa
ct

s
Re

ve
rs

e
En

g.
 T

ec
hn

iq
ue

s
EA

 v
ie

w
po

in
ts

 b
y

la
ye

r

St
at

ic
 a

na
ly

si
s

D
yn

am
ic

an

al
ys

is
C

on
ce

pt

lo
ca

tio
n

Pr
oc

es
s m

in
in

g
Te

xt
ua

l
an

al
ys

is
B

us
in

es
s l

ay
er

A
pp

lic
at

io
n

la
ye

r
Te

ch
ni

ca
l l

ay
er

B
us

in
es

s
pr

od
uc

t/s
er

-
vi

ce
s

B
us

in
es

s
pr

oc
es

s/
fu

nc
tio

n

A
pp

lic
at

io
n

str
uc

tu
re

/c
oo

p-
er

at
io

n

A
pp

lic
at

io
n

be
ha

vi
ou

r/
us

ag
e

In
fo

r-
m

at
io

n
str

uc
tu

re

Im
pl

em
en

ta
tio

n
an

d
de

pl
oy

m
en

t
Te

ch
ni

ca
l

in
fr

as
tru

c-
tu

re

So
ur

ce
 c

od
e

■
■

■
●

●
●

●
Ex

ec
ut

io
n

lo
gs

■
■

■
●

●
●

●
●

●
D

at
ab

as
e

sc
he

m
a

■
■

●
●

D
at

a
m

od
el

 sp
ec

ifi
-

ca
tio

ns
■

■
●

●

En
te

rp
ris

e
se

rv
ic

e
bu

s/
Se

rv
ic

e
in

te
r-

fa
ce

 sp
ec

ifi
ca

-
tio

ns

■
■

●
●

●
●

O
pe

ra
tio

na
l d

at
a/

pr
oc

es
s l

og
s

■
●

A
pp

lic
at

io
n

co
nfi

gu
ra

tio
n

fil
e/

de
pl

oy
m

en
t

sp
ec

ifi
ca

tio
ns

■
■

●
●

●

320 R. Pérez-Castillo et al.

1 3

interoperability between EA tools. However, we believe that
the usage of Archi metamodel has several advantages:

• The Archi metamodel provides a MOF-compliant meta-
model, and Archi tool is based on ECORE metamodel. It

offers an easier extensibility and integration with future
model transformation through the Eclipse plug-in archi-
tecture and ECORE metamodels.

• Archi tool is an open-source tool used by a significant
part of the EA community.

Fig. 6 A simplified view of the Code and Action packages of the KDM metamodel

Fig. 7 A simplified view of the C# metamodel

321A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

• Archi tool has been developed by The Open Group staff
and is compliant with the ArchiMate standard.

• Archi can export ArchiMate models to Exchange File
Format

The transformation from KDM to ArchiMate is based
on the following mappings, which are shown in Table 2 for
elements and in Table 3 for relationships between those ele-
ments. The whole model transformation implementation is
available online [3]. The overall idea is that some of the
compilation units in the KDM model are abstracted to a
relevant software element in the target ArchiMate model.
Also, associations and dependencies between these compila-
tion units are analysed under some constraints to be filtered
out and transformed into specific relationships between the
respective ArchiMate elements.

As it can be seen in Table 2, the mappings defined refer
to a reduced set of elements from both metamodels, which
are based on mappings provided in [43]. These mappings
are based on the source code annotations and their semantics
according to some software architectural patterns as well
as according to some common coding platforms. However,
mappings in Table 2 might be enhanced by adding more
elements and the corresponding mappings to be used in the
model transformation.

The mapping proposed considers four target ArchiMate
elements (see Table 2): application functions, application
services, application components and data objects. All these

elements are in the Application layer of ArchiMate (see
Fig. 3). This is due to the fact that the EA knowledge and
semantics embedded in the source code (used as the input
artefact) is mainly related to that layer. Application functions
and components are generated from compilation units that,
respectively, provides knowledge about the behaviour and
the active structure. These elements represent the internal
view of the EA model, while those related with the exter-
nal view (such us application services and interfaces) are
difficult to be generated from the source code information
in the KDM model. Despite this fact, application services
can be still generated from compilation units annotated as
‘services’. With regard to the collaborative behaviour (e.g.,
application interactions and application processes), these are
not considered as target ArchiMate elements. Instead of this,
the model transformation focuses on generating relationships
between application components and applications functions.
Finally, data objects represent the passive structure and can
be mapped since the information of the usage of some data
structures from the source code is available in the KDM
model (e.g., some compilation units are representations of
business/data entities in the source code).

The only origin element from the KDM metamodel that
is taken into account is the Compilation Unit element, for
which we analyse the type of annotation present in order
to define to which element in the Archimate Metamodel it
has to be transformed. When the annotation corresponds to
ManagedBean, Controller, Component, Named and Service,
the corresponding element is the Application Function ele-
ment. When the annotation corresponds to Entity, Table,
MappedSuperclass the corresponding element is the Data
Object element, and when the annotation corresponds to
the Repository or the SpringBootApplication element, the
corresponding one is the Application Component element.
For relations between elements, the corresponding type in
Archimate for each one is shown in Table 3.

The transformation was implemented in ATL and takes
as input a KDM model compliant with the KDM metamodel
and generates as output an ArchiMate model compliant with
the ArchiMate metamodel, which also includes the graphical
representation of the elements. In the following, the trans-
formation and its rules are described.

Table 2 Mappings between KDM and ArchiMate elements

Compilation unit annotation ArchiMate element

ManagedBean Application function
Controller Application function
Component Application function
Named Application function
Repository Application component
SpringBootApplication Application component
Service Application service
Entity Data object
Table Data object
MappedSuperclass Data object

Table 3 Default relationships between each pair of Archimate element kinds

Source Target

Application Function Application Component Application Service Data Object

Application function Triggering Triggering Realization Access
Application component Serving Serving Realization Access
Application service Access Access Triggering Access
Data object Access Association Access Composition

322 R. Pérez-Castillo et al.

1 3

4.3.1 Transformation rules

The transformation defines mainly three types of rules, in
which we separated three different creation types to organize
the rules providing better understanding and extensibility:

1. From the root of KDM metamodel Segment, to the root
of ArchiMate metamodel ArchimateModel, creating
default Folders and Viewpoints to include graphical ele-
ments.

2. From CompilationUnit KDM elements to its corre-
sponding ArchiMate elements, based on the annotation
or name of the KDM element (cf. Table 2).

3. From relations between KDM elements into relations
between ArchiMate elements, depending on the target
elements that were generated (cf. Table 3).

4.3.2 Rule type 1: KDM segment to ArchiMate model

It generates the structure of the output ArchiMate model
which will be populated with the corresponding elements
depending on the input model. The structure of the output
model will be the same for every input model, as a way to
organize the resulting file. It will contain nine default folders
which were selected based on the ArchiMate examples and
most used categorizations for different elements: Strategy,
Business, Application, Technology & Physical, Motivation,
Implementation & Migration, Other, Relations and Views.

Although we generate the complete list of folders, since
the mappings defined in Tables 2 and 3 refer to a reduced
set of elements, at this point we only populate three folders:

• Application folder which contains the ArchiMate ele-
ments generated from the KDM CompilationUnit ele-
ments,

• Relations which include all the ArchiMate relations gen-
erated, and

• Views in which we generate the twenty-five Viewpoints
proposed in the ArchiMate specification, where the
graphical notation corresponding to the generated ele-
ments is included, for each element and relation between
elements. Although only the Application and Information
Structure viewpoints will be fully covered, the model
transformation provides all the ArchiMate viewpoints as
a predefined structure for helping with the future manual
refinements by enterprise architects.

As mentioned before, each ViewPoint presents graphical
diagrams containing selected types of elements, which can
belong to several ViewPoints, and correspond to elements
already generated in the model. As an example of the View-
Points generated, we can mention: (i) Information Structure,
which includes elements Business object, Representation,
Data object, Artifact and Meaning, (ii) Organization which
contains elements Business actor, Business role, Business
collaboration, Location and Business interface. The com-
plete list of ViewPoints and corresponding elements can be
seen in the ArchiMate specification [59].

Listing 1 shows an excerpt of the Segment2Archimat-
eModel rule to present as example the generation of the root
model and one view (view1: Information Structure View-
point) as well as one of the empty folder (folder1: Strategy)
for the generation of the views and folders mentioned before.

4.3.3 Rules type 2: KDM CompilationUnit to Archimate
elements

This type of rule deals with the generation of Archimate ele-
ments from KDM CompilationUnit elements, depending on
the annotation or name it presents. To determine which rule
will be applied we defined several helpers, which based on
the KDM input element returns true on the type of annota-
tion or name that it presents. Also, in these rules we added
the generation of the corresponding graphical element that
will be included in the associated viewpoint, under the cor-
responding View element that we created in the first rule.

323A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

Lis�ng 1. Rule Segment2ArchimateModel excerpt showing one View and one Folder crea�on

rule Segment2ArchimateModel{
from
input: KDM!Segment
to
output: ArchiMate!model(

id <- input.name,
folder <- output.folder -> union(ArchiMate!Folder.allInstances()),
name <- input.name
--file <-,
--metadata <-,
--properties <-,
--purpose <-,
--version <-
),

view1: ArchiMate!ArchimateDiagramModel(
name <- 'Information Structure Viewpoint',
child <- KDM!CompilationUnit.allInstancesFrom('IN') -> select(dobj |

thisModule.isDataObj(dobj)) -> collect(doDiag|
thisModule.resolveTemp(doDiag,'outputDiagObj3')),

id <- view1.name
--connectionRouterType <-,
--documentation <-,
--properties <-,
--viewpoint <-
),

……….
folder1: ArchiMate!Folder(

name <- 'Strategy',
id <- 'idS',
type <- #strategy
--folder <-
-- element <-
--documentation <-,
--properties <-,

),

Each graphical element includes the Bound definitions
(position and size inside the view), and the graphical repre-
sentation of the relations for which the element is the source.
Although the graphical representation of the relations is cre-
ated in the type 3 relations rules, in the rules type 2 we are
describing here, they are referenced in the corresponding
element and connected to the general diagram. Anyway,
visualization matters, like graphical and layout concerns,
are outside of the scope of the model transformation. It sim-
ply takes default values since the visualization concerns is
delegated in human modelers.

In Listing 2 we present an example of a type 2 rule, Com-
pilationUnit2ApplicationFunction to generate Archimate

ApplicationFunction elements from KDM CompilationU-
nit elements, and in Listing 3, the helper function that is
invoked, which returns true or false depending on the type
of KDM element that is being checked.

In Listing 4 another example of type 2 rule is presented,
CompilationUnit2DataObject, to generate Archimate Data-
Object elements from KDM CompilationUnit elements, an
in Listing 5, the helper function is presented, that is invoked
from the rule and returns true or false depending on the type
of KDM element that is being checked as input.

324 R. Pérez-Castillo et al.

1 3

Lis�ng 3. Helper isAppFunc example of helper used for elements genera�on in Lis�ng 2

helper def: isAppFunc(input: KDM!CompilationUnit): Boolean =
if (input.annotation -> exists (o | o.text = 'Service')) then true
else if (input.name -> indexOf('Service') > 0) then true
else if (input.annotation -> exists (o | o.text = 'Named')) then true
else if (input.name -> indexOf('Named') > 0) then true
else if (input.annotation -> exists (o | o.text = 'ManagedBean')) then true
else if (input.name -> indexOf('ManagedBean') > 0) then true
else if (input.annotation -> exists (o | o.text = 'Component')) then true
else if (input.name -> indexOf('Component') > 0) then true
else if (input.annotation -> exists (o | o.text = 'Controller')) then true
else

(input.name -> indexOf('Controller') > 0)
endif
endif
endif
endif
endif
endif
endif
endif
endif;

Lis�ng 2. Rule Compila�onUnit2Applica�onFunc�on excerpt elements genera�on from mappings in Table 2

rule CompilationUnit2ApplicationFunction{
from
input: KDM!CompilationUnit (thisModule -> isAppFunc(input))
to
output: ArchiMate!ApplicationFunction(

name <- input.name,
id <- input.name
--properties <-
--documentation <-

),
outputDiagObj: ArchiMate!DiagramObject(

name <- input.name+'1',
id <- input.name+'1',
bounds <- outputbound,
archimateElement <- output,
sourceConnection <- KDM!CodeRelationship.allInstancesFrom('IN') -> select

(rel | rel.from.name = output.name) -> collect(relDiag |
thisModule.resolveTemp(relDiag, 'outputrel')),

targetConnections <- KDM!CodeRelationship.allInstancesFrom('IN') -> select
(rel | rel.to.name = output.name) -> collect(relDiag |
thisModule.resolveTemp(relDiag, 'outputrel'))

),
outputbound: ArchiMate!Bounds (

x <- 100,
y <- 100,
width <- 120,
height <- 55

),

325A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

Lis�ng 4. Rule Compila�onUnit2DataObject excerpt elements genera�on from mappings in Table 2

rule CompilationUnit2DataObject{
from
input: KDM!CompilationUnit (thisModule -> isDataObj(input))
to
output: ArchiMate!DataObject(
name <- input.name,
id <- input.name
--documentation <-,
--properties <-
),
outputDiagObj: ArchiMate!DiagramObject(
name <- input.name+'1',
id <- input.name+'1',
bounds <- outputbound,
archimateElement <- output,
sourceConnection <- KDM!CodeRelationship.allInstancesFrom('IN') -> select

(rel | rel.from.name = output.name) -> collect(relDiag |
thisModule.resolveTemp(relDiag, 'outputrel')),

targetConnections <- KDM!CodeRelationship.allInstancesFrom('IN') -> select
(rel | rel.to.name = output.name)-> collect(relDiag |
thisModule.resolveTemp(relDiag, 'outputrel'))

),
outputbound: ArchiMate!Bounds (
x <- 100,
y <- 100,
width <- 120,
height <- 55
),

Lis�ng 5. Helper isDataObj example of helper used for elements genera�on in Lis�ng 4

helper def: isDataObj(input: KDM!CompilationUnit): Boolean =
if (input.annotation -> exists (o | o.text = 'MappedSuperclass')) then true
else if (input.name -> indexOf('MappedSuperclass') > 0) then true
else if (input.annotation -> exists (o | o.text = 'Table')) then true
else if (input.name -> indexOf('Table') > 0) then true
else if (input.annotation -> exists (o | o.text = 'Entity')) then true
else

(input.name -> indexOf('Entity') > 0)
endif
endif
endif
endif
endif;

326 R. Pérez-Castillo et al.

1 3

Fig. 8 Input.xmi file for the KDM model with the ‘controller’ annotation in a CompilationUnit (a) and a ‘repository’ annotation in a Compilatio-
nUnit (b)

It is easy to note that adding a new rule to generate
elements from a new mapping is straightforward: it only
requires to add a new rule similar to the ones presented in
Listing 2 and Listing 4, and define the corresponding helper
to be invoked from the rule, which is in charge of checking
whether the KDM input element corresponds to the desired
one. So, the difference between the defined rules is provided
by the helpers which allow the identification of specific ele-
ments from the KDM input Model, to be mapped to the
corresponding Archimate output Model, as defined by the
mappings presented in Table 2.

4.3.4 Rules type 3: KDM relations to Archimate relations

The type of the Archimate relation that is generated depends
on the type of elements that are present in the source and
target ends of the relation to use a relationship by default.
The mapping that defines the type of relation is the one pre-
sented in Table 3, which is used in the rules to generate

the corresponding type of relation, as well as the graphi-
cal representation of the relation. This is used as default
relationship as the most common association between two
kind of ArchiMate elements although this is not the only
possible relationship that could be established according to
ArchiMate. In these types of rules, we also defined helpers
to check the type of relation that is under generation, and
also include the graphical element and the reference to the
corresponding existing Archimate element. In Listing 6 we
present as an example a rule of a relation generation and in
Listing 7 the corresponding helper.

4.3.5 Considerations

As mentioned before, the transformation is easily extensible
to include new mappings for elements from KDM to Archi-
mate, by adding the new rule only copying the structure of
the type of rule that applies, and the corresponding helper
to identify the input element and the corresponding output.

327A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

Lis�ng 6. Rule KDMRela�onship2Access example of rela�onship genera�on from mappings in Table 3

rule KDMRelationship2Access{
from

input: KDM!CodeRelationship
(

thisModule.isAccessRel(input)
)

to
output: ArchiMate!AccessRelationship(

id <- input.from.name + 'TO' + input.to.name,
name <- input.from.name + 'TO' + input.to.name,
source <- thisModule.resolveTemp(input.from,'output'),
target <- thisModule.resolveTemp(input.to,'output')
--accessType <- ,
--documentation <- ,
--properties <- ,

),
outputrel: ArchiMate!Connection(

name <- output.name+'1',
id <- output.name+'1',
archimateRelationship <- output,
source <- thisModule.resolveTemp(input.from, 'outputDiagObj'),
target <- thisModule.resolveTemp(input.to, 'outputDiagObj')

),

Fig. 9 Excerpt of the Application Cooperation Viewpoint diagram of the generated ArchiMate model

328 R. Pérez-Castillo et al.

1 3

helper def: isAccessRel(input: KDM!CodeRelationship): Boolean =
if (((thisModule -> isDataObj(input.from)) and thisModule -> isAppFunc(input.to))

or ((thisModule -> isDataObj(input.to)) and (thisModule ->isAppFunc(input.from)
or thisModule -> isAppComp(input.from)))) then

true
else

false
endif;

Lis�ng 7. Helper isAccessRel example of helper for rela�onship genera�on in Lis�ng 6

Table 4 Selected cases under study

ID GitHub Project Description KLOC C# KLOC C# files

S1 go2ismail/Asp.Net-Core-Inventory-Order-Man-
agement-System

It is an inventory order management system. Warehouse,
product, vendor, customer, purchase order, sales order,
etc

1571 10 162

S2 SOFTENG701G1/Flatmate-Management-System It manages flat (shared house) expenses for a given flat
and tracking who has paid those bills

28 3 54

S3 nbarnwell/OrderManagementSystem A sample application for manage orders 84 5 149
S4 cocoa-mhlw/cocoa A COVID-19 Contact-Confirming Application (COCOA) 53 37 371
S5 trevoirwilliams/leave-management Simple application for managing employee leaves 50 7 75
S6 M-Zuber/MyHome A simple desktop program to manage home finances 20 13 122

1 ArchiMate Ecore: https:// github. com/ archi matet ool/ archi/ tree/ mas-
ter/ com. archi matet ool. model/ model.

A compatibility problem with Archi tool was detected
when generating the Archimate model. The Ecore meta-
model used for the transformation, which we downloaded
directly from the GitHub repository1 of Archi tool [4], was
not exactly managed in the same way by Archi tool. The
result was that some elements had different names in the
Ecore metamodel and the model internally managed by the
tool. This means that the output we generated (which we
named with the .archimate extension to be imported by the
tool) was not compliant with the tool metamodel and thus
could not be opened in the tool.

To solve this, we decided to modify the Archimate meta-
model we used in the transformation, by adding the elements
needed for the tool to understand the output file. Specifi-
cally, we kept the base elements to preserve the compat-
ibility with other Archimate files apart from those generated
by our transformation. In order to use the original elements,
we added:

• The model class as a copy of the ArchimateModel class
• The DiagramObject class as a copy of the DiagramMod-

elArchimateObject class
• The Connection class as a copy of the DiagramMod-

elArchimateConnection class

• The attribute folder inside the FolderContainer class as
copy of folders attribute

• The attribute element inside the Folder class as copy of
elements attribute

• The attribute child inside the DiagramModelContainer
class as copy of children attribute

• The attribute sourceConnection and targetConnection
inside the Connectable class as copies of sourceCon-
nections and targetConnections attributes, respectively.

5 Demonstration

To validate the automated generation of Archimate models
from KDM models with our transformation, we used first a
proof-of-concept to test and demonstrate the applicability
of the model transformation (cf. Section 5.1), and then we
conducted a more formal case study with six open-source
information systems used for generating six KDM models
used as input (cf. Section 5.2).

5.1 Proof‑of‑concept

Before conducting the formal case study, we run a proof
of concept with a real software application from which a
KDM model was discovered through the ArchiRev Tool

https://github.com/archimatetool/archi/tree/master/com.archimatetool.model/model
https://github.com/archimatetool/archi/tree/master/com.archimatetool.model/model

329A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

[1]. The use of this case study also allowed us to compare
the generated model with previous generations that were
carried out programmatically by means of a java tool that
coded the transformation mappings in traditional structured
programming. The result of that previous research is found
in [43]. In order to facilitate the replication of this study, all
the experimental materials (transformation, metamodels as
well as input and output models) are available online [3].

The case selected was GIST-ERA, an information system
of an Italian ship refurbishment company. GIST-ERA allows
to manage and plan all the exact measurements that must
be taken for every cabin. The particularity of huge cruise
ships is that the size of cabin changes over time because of
the metallic structure and continuous dilatation and contrac-
tion of this. GIST-ERA follows a client–server architecture.
A client application for tablets allows the staff to register
all the measures as well as help them to follow an optimal
process preventing mistakes. The server side collects all the
measures and manages them optimizing material and acces-
sories orders. Technologically, the system is written in C#
and uses a MS SQL Server as storage system. Additionally,
this system was coded by using Dynamic MVC framework,
which helps to produce data-driven Model/View/Controller
applications. The size of the system is 38KLOC with 414
classes.

In Fig. 8 we present the input KDM model of the case
study. In (a) a package where a CompilationUnit with the
Controller word in the name is shown, which will be trans-
formed into an ApplicationFunction in Archimate. In (b) a
package where the Repository word is present as annotation
and in the name of the element is shown, which will be
transformed into a DataObject in Archimate.

After the execution of the transformation, we generated
the ArchiMate model which is imported in the Archi tool
and can be navigated within the generated folders, views,
and other elements. Figure 9 shows a snapshot of the com-
plete Archi tool with three main elements: the Models
tree view can be seen on the left side, with the Applica-
tion Cooperation ViewPoint diagram selected, showing the
graphical representation of this viewpoint with an excerpt
of the generated elements in the centre, and the elements
palette on the right side of Fig. 9. The elements shown are
of type ApplicationComponent in the top right (IDynami-
cRepository and DynamicRepository), ApplicationFunc-
tion in the bottom centre (MisureEccezioneController and
OrdineMaterialeController), and DataObject in the top left
(DynamicComplexEntityPropertyMetadataFixup, Dynamic-
CollectionEntityPropertyMetadataFixup and DynamicEn-
tityMetadata), with the last one selected. In the properties
view it can be seen that the selected DataObject is used

Table 5 Dataset collected for
the case study

S1 S2 S3 S4 S5 S6 min max Mean SD

Input KDM elements
Package 293 17 73 115 22 37 17 293 92.8 104.7
Compilation unit 162 54 149 371 75 122 54 371 155.5 113.5
Class unit 191 44 143 327 94 86 44 327 147.5 101.5
Annotation 447 102 388 1057 288 202 102 1057 414.0 338.6
Code relationship 506 211 365 809 139 441 139 809 411.8 238.5
Transformation time (s) 1.634 0.704 0.301 2.024 0.100 0.412 0.10 2.02 0.86 0.78
Output ArchiMate elements
Application function 65 11 20 82 4 16 4 82 33.0 32.3
Application Component 0 7 5 15 8 11 0 15 7.7 5.1
Data object 0 1 0 0 4 0 0 4 0.8 1.6
Triggering 66 31 20 144 5 53 5 144 53.2 49.7
Access 0 1 0 0 0 0 0 1 0.2 0.4
Association 0 1 0 0 0 0 0 1 0.2 0.4
Serving 0 13 8 24 14 21 0 24 13.3 8.7
Metrics
Sizeele 65 19 25 97 16 27 16 97 41.5 32.5
Sizerel 66 46 28 168 19 74 19 168 66.8 53.9
Connectivity 0.98 0.41 0.89 0.58 0.84 0.36 0.36 0.98 0.68 0.26
Density 0.03 0.27 0.09 0.04 0.16 0.21 0.03 0.27 0.13 0.10
Heterogeneityele 0.00 0.84 0.50 0.43 1.04 0.68 0.00 1.04 0.58 0.36
Heterogeneityrel 0.00 0.79 0.60 0.41 0.58 0.60 0.00 0.79 0.50 0.27
Transformation ratio 34% 43% 17% 30% 17% 31% 17% 43% 28.8% 10.1%

330 R. Pérez-Castillo et al.

1 3

in many Viewpoints (Application Cooperation, Application
Usage, Business Process Cooperation, Implementation and
Deployment, and Information Structure) and presents several
relationships with other elements, as shown in the Model
Relations part.

5.2 Case study

Although the proof-of-concept demonstrated the applicabil-
ity of the model transformation to a real case, a more formal
case study was conducted with six open-source systems.

5.2.1 Research goal and questions

The subject of the study is the ATL model transformation
developed while the purpose of the study is the assessment
of the complexity and the expressiveness of the outgoing
ArchiMate models as well as the scalability of the model
transformation, which are directly related to research ques-
tions RQ1 to RQ3, respectively.

RQ1. Does the model transformation generate non-com-
plex ArchiMate models?

RQ2. Does the model transformation generate ArchiMate
models with enough expressiveness?
RQ3. Is the model transformation scalable for larger
KDM models?

First, complexity (RQ1) has been widely studied as one
of the most important measurable concepts in EA [23, 56],
and it has been demonstrated to be related to the understand-
ability and maintainability of models [9, 23, 53]. Second,
expressiveness (RQ2) is introduced in this research as the
ratio of input models that are eventually transformed into
output elements. This aspect is important since the proposed
model transformation filters some elements during transfor-
mation. Finally, scalability (RQ2) is related to the efficiency
of the model transformation. This focuses on the scalability
regarding the size of the input models to demonstrate its
applicability even with larger systems. This is because we
do not have benchmarks of similar model transformations
to compare the transformation time.

It should be noticed that the effectiveness of the model
transformation is not analysed from a point of view of
the sensitivity and specificity of the ArchiMate elements
generated (i.e., the study of recall and precision from an

Fig. 10 Summary of the analysis results for the case study

331A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

information retrieval perspective). This is because it is not
possible to satisfy the need of human intervention, i.e.,
experts who know the context and business domain of every
system and are able to annotate the ArchiMate models and
determine wrong elements (false positives) and missing ele-
ments (false negative). This was done in a previous, similar
case study [43]. However, to count with actual experts for
open-source systems is no possible and this is the reason for
which this is outside of the scope of the case study.

5.2.2 Measures and variables

The independent variable of the study is the case under
study, i.e., the output ArchiMate model generated from
each selected system, which is the unit of analysis. Regard-
ing RQ1, the case study considers various variables that are
directly related to the complexity:

• Size It is defined as the set of elements or relationships
in the output ArchiMate model. It is distinguished for
elements (Sizeele) and relationships (Sizerel). Size is an
instrumental measure, but it is still associated with the
complexity [23].

• Connectivity It is the ratio between the total number of
relationships and the total number of elements.

• Density It represents the ratio between the total number
of relationship in a model and the maximum number of
possible arcs (considering ArchiMate models as directed
graphs). Both, connectivity and density affect the com-
plexity (and therefore the understandability and main-
tainability) in a negative manner [9]. That means that
lower connectivity and density values lead to ArchiMate
models which are more understandable and modifiable,
thanks to a lower level of intricacy.

• Heterogeneity (Entropy) This is applied to elements and
relationships in ArchiMate models and measures the
diversity of kind of elements or relationships used in a
certain model. Heterogeneity is directly related to com-
plexity [23, 56].

Sizeele = #ApplicationFunction + #ApplicationComponent + #ApplicationService + #DataObject

Sizerel = #Triggering + #Access + #Association + #Serving + #Realization

Connectivity =
Sizerel

Sizeele

Density =
Sizerel

Sizeele⋅(Sizeele−1)

2

 With regard to RQ2, it evaluates the expressiveness
that relates the output and input model. For this purpose,
the measurable concept is the amount of class elements
in the input model that are eventually transformed into
one of the possible elements in the ArchiMate model.
This attempts to provide a numeric value of the num-
ber of elements in the input models that were useful and
therefore transformed into some elements in the output
model.

• Transformation ratio It is defined as the ratio between the
output size and the input size. The input size is defined
as the number of Class Unit elements in the input KDM
model.

 Finally, in order to assess RQ3, related to the study of
the scalability, it considers the model transformation time
to be analysed in comparison with Sizeinput.

• Model transformation time, that is the total time spent by
the ATL engine to execute the proposed model transfor-
mation and generate the ArchiMate model.

5.2.3 Case selection

The six case under study were selected according to the fol-
lowing criteria: (i) the system must be an enterprise sys-
tem (i.e., the system supports business processes or some
managerial aspects of the organization that uses the infor-
mation system); (ii) it must be coded in C#, since this is the
programming language supported by the ArchiRev tool to
generate the KDM models; and (iii) the system must contain
at least 5000 lines of code in C# to be analysed. Table 4
shows the six projects selected from GitHub with a brief
description, KLOC, C# KLOC and the number of C# files
to be analysed.

Heterogeneityele = −

n
∑

e=1

pe ⋅ ln
(

pe
)

, pe

= relative frequency of element e

Heterogeneityrel = −

n
∑

r=1

pr ⋅ ln
(

pr
)

, pr

= relative frequency of element r

Transformation ratio =
Sizeele

Sizerel
, Sizeinput = #ClassUnit

332 R. Pérez-Castillo et al.

1 3

5.2.4 Execution procedure and data collection

The execution procedure of the case study consists of four
steps. First, (i) the source code of the information systems
is analysed with ArchiRev and the respective KDM models
are generated. Second, (ii) the KDM models are then trans-
formed into ArchiMate models by means of the proposed
model transformation that is executed through ATL engine
embedded in Eclipse. Third, (iii) the ArchiMate models are
inspected to take other measures that were not automatically
collected (as the transformation time) and derived variables
are computed as well. Finally, (iv) the whole dataset is ana-
lysed for answering research questions and draw conclusions
of the case study.

The execution environment consisted of macOS BigSur
with intel i5, ATL version 4.2.1.v202006221222 and Eclipse
Modeling Tools version 2020-09 (4.17.0).

Table 5 shows the whole dataset completed after the six
information systems (S1–S6) were analysed and transformed
into ArchiMate models. First rows provide information
about the input KDM models that was generated from the
inspection of the C# source code. Then, the model trans-
formation time in seconds is provides. The following set
of rows provides number of elements and relationships in
the outgoing ArchiMate model. Finally, bottom rows pro-
vide the three variables to be analysed: cohesion, coupling
and coverage. The ride side of Table 5 provides aggregated
values for every row with minimum, maximum, mean, and
standard deviation.

6 Evaluation

This section provides the evaluation of the artefact proposed.
First, Sect. 6.1 analyses the results obtained in the case
study. Then, Sect. 6.2 discusses the threats to the validity.

6.1 Result analysis

Figure 10 summarizes results of the case study. Left-hand
side provides two bar plots for analysing variables regarding
RQ1, i.e., connectivity and density (top-left) and heteroge-
neity (bottom-left). Then, the transformation ratio (RQ2)
is graphically analysed in a bar plot (see top-right plot in
Fig. 10). Finally, Fig. 10 (bottom-right) provides the scatter
plot and trend line to analyse the scalability of the model
transformation (RQ3).

Density is normalized between 0 and 1; and the values
for the six models are 0.13 on average. According to the
connectivity definition, these values are not normalized and
could be higher for bigger models. In the 6 models with
a Sizeele = 41.5 on average, the connectivity values vary
between 0.36 and 0.98. Although there are not indicators in

the literature for connectivity, the obtained values mean that
there are between one and three elements for each relation-
ship in the ArchiMate Model. These results suggest that the
complexity of the model is affordable.

With regard to heterogeneity, the six models have similar
values on average (see Fig. 10) that are, respectively, 0.58
and 0.50 for elements and relationships. On the one hand,
these values are low contributing to a lower complexity
which is good, in turn, for understandability and maintain-
ability of ArchiMate models. On the other hand, it should be
noticed that there are various kind of ArchiMate elements
that are almost not present in any of the six output models
(see Table 5). This suggests that additional mappings consid-
ering other input annotations (apart from those in Table 2)
could be necessary to be able to generate more elements
and provide more complete ArchiMate models. Involving
human experts in future case studies will probably lead to
improve the model transformation in this regard. However,
as we explained before, it is outside of the scope of this
current study.

As a result, RQ1 can be answered positively, although
in a moderate way. The results obtained seems to provide
ArchiMate models with a moderate complexity that in some-
how are manageable by enterprise architects in case these
models have to be improved, modified or integrated with
other EA models.

About RQ2, the transformation ratio in some of the output
models is medium–low, with an approximate 30% on aver-
age. This signifies, that various class units in KDM were not
used in the model transformation rules. This was expected
since class units are filtered according to specific annotations
as we previously depicted. In other words, a transforma-
tion ratio of 100% was not expected. Thereby, this value
is certainly representative. In general, we cannot reject the
hypothesis that the model transformation does not provide
output model with enough expressiveness. Anyway, further
experimentation will be necessary as we already mentioned.

About scalability (RQ3), despite we have few cases to
extract stronger conclusions, the trend line according to
the correlation value (R2 = 0.87) suggests a linear relation-
ship between the size of KDM models and the time spent to
transform such models. As we discussed before, the model
transformation could vary depending on the transformation
ratio (i.e., the number of annotation in class units more than
merely depending on the number of class units) among other
factors. Anyway, with the current evidence, we can suggest
that the model transformation time will not increase expo-
nentially for larger KDM models. Actually, the R2 for the
exponential model was 0.41, which can explain worse the
hypothesized scalability.

333A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

6.2 Threats to the validity

The case study has some issues threatening its validity that
must be commented transparently. First, the case study
considers variables that have been used in similar works
directly related to the complexity of EA models; however
other measures based on the experts’ opinion could improve
the evidence about effectiveness of model transformation
(e.g., precision and recall regarding relevant and missing
elements in output models among others). Although it is a
threat for the construct validity, the lack of available experts
on eligible cases prevents to choose these metrics.

Regarding internal validity, there is no large population
with regard to the cases under study. Therefore, results are
statistically less representative. Despite this, a trend for the
proposed measures was identifiable in the case study. In
order to mitigate this threat, we hope to contrast the result
of this case, by means of meta-analysis, with future results
obtained from additional case studies.

Other threat to the internal validity is the tool we
employed for generating the KDM models (ArchiRev), since
it introduced a bias for the study. KDM models represent-
ing KDM code and action packages that are generated with
other tools might be included in future case studies. Also,
the outgoing EA models are not represented with the Model
Exchange File Format which prevents the tool interoper-
ability and therefore limits the generalisability of results.

Finally, about generalisability of the results, it can be only
generalised to KDM models generated with ArchiRev from
enterprise/management information systems coded in C#.
Thus, it is clear that further evidence is necessary.

7 Conclusions and future work

One of the biggest challenges to achieve an operational
Enterprise Architecture Management is the ability to auto-
matically retrieve parts or skeletons of enterprise architec-
ture models from the most common IT artefacts. We believe
the semiautomatic EA modelling is key to re-align busi-
ness and IT in a volatile business world. We think an MDE
approach helps a lot in this matter. Thus, the research pre-
sented in paper follows the MDE approach and proposes the
usage of KDM as an intermediate step between information
systems artefacts and target ArchiMate models. The usage
of KDM helps to integrate knowledge extracted by reverse
engineering from different artefacts. As a result, the usage
of KDM contributes to integrate information coming from
different sources and thus the proposed model transforma-
tion between KDM and ArchiMate can exploit those cross-
cutting relationships.

The KDM-to-ArchiMate model transformation has been
implemented in ATL, which allowed us to validate it with a

KDM model extracted from real-life information systems.
We believe this case study demonstrates the feasibility of
transforming KDM into ArchiMate models which, in turn,
facilitates the applicability in the industry in a greater extent.

Despite the preliminary insights, we are conscious of
the limitations of the proposal. For example, KDM should
be populated with the extraction of information of further
information systems’ artefacts like for example, data model,
enterprise service bus, etc.; and the ATL model transforma-
tion should be extended accordingly. Fortunately, KDM is
an ISO/IEC standard that is employed in the industry up
to a certain extent, so many reverse engineering tools that
are able to generate KDM models may be reused, i.e., the
outgoing KDM models may be transformed into ArchiMate
models. As a consequence, EA mining is automated, and the
EA management is benefited through an easier, continuous
re-adaptation. In this way, the EA debt [19], analogous to
the technical debt, can be kept or even reduced. Also, one
of the rationale of this proposal was that the usage of KDM
prevent to use independent silo solutions for EA modelling.
Thus, a limitation of this work is the lack of validation to
demonstrate that a KDM-based approach performs better
than silo solutions. This means that the usage of MDE and
standard metamodels on the automatic EA modelling should
be analysed in the future to figure out how those aspects
influence the mentioned problems of manual EA modelling,
i.e., error-proneness, time-consumption, slow and poor re-
adaptation and costs.

Our future research will be basically oriented toward
improvement of the model transformation through the
parametrization. We are conscious of default relationships
defined between certain types of ArchiMate elements could
be improved with some previous setup that allow to generate
different types of relationships under different conditions.
Moreover, we will work on strengthening the validation of
the model transformation with additional case studies in dif-
ferent information systems and using further IT artefacts.

Funding Note: Open Access funding provided thanks to the CRUE-
CSIC agreement with Springer Nature.

Acknowledgements This study has been partially funded by the
following projects: G3SOFT (SBPLY/17/180501/000150), GEMA
(SBPLY/17/180501/000293) and SOS (SBPLY/17/180501/000364),
funded by the ‘Dirección General de Universidades, Investigación e
Innovación – Consejería de Educación, Cultura y Deportes and Gobi-
erno de Castilla-La Mancha (JCCM)’. This work is also part of the
projects BIZDEVOPS-Global (RTI2018-098309-B-C31) and ECLIPSE
project (RTI2018-094283-B-C31) funded by Ministerio de Economía,
Industría y Competitividad y Fondos FEDER.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes

334 R. Pérez-Castillo et al.

1 3

were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Alarcos Research Group: ArchiRev Tool. https:// alarc os. esi. uclm.
es/ busin esspr ocess archa eology/ Archi Rev (2019). Retrieved 8 Aug
2019

 2. Alwadain, A., Fielt, E., Korthaus, A., Rosemann, M.: Empiri-
cal insights into the development of a service-oriented enterprise
architecture. Data Knowl. Eng. 105, 39–52 (2016). https:// doi. org/
10. 1016/j. datak. 2015. 09. 004

 3. Bacigalupe, V., Delgado, A., Pérez-Castillo, R.: KDM2Archi-
Mate model transformation. https:// gitlab. fing. edu. uy/ open- coal/
KDM2A rchiM ate (2020)

 4. Beauvoir, P., Sarrodie, J.-B.: Archi. Archimate modelling tool.
https:// www. archi matet ool. com/ (2020)

 5. Bebensee, B., Hacks, S.: Applying dynamic Bayesian networks for
automated modeling in ArchiMate: a realization study. In: 2019
IEEE 23rd International Enterprise Distributed Object Computing
Workshop (EDOCW), pp. 17–24 (2019)

 6. Bogner, J., Zimmermann, A.: Towards integrating microservices
with adaptable enterprise architecture. In: 2016 IEEE 20th Inter-
national Enterprise Distributed Object Computing Workshop
(EDOCW) (2016). https:// doi. org/ 10. 1109/ EDOCW. 2016. 75843
92

 7. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: a model
driven reverse engineering framework. Inf. Softw. Technol. 56(8),
1012–1032 (2014)

 8. Buckl, S., Ernst, A., Lankes, J., Schweda, C., Wittenburg, A.:
Generating visualizations of enterprise architectures using model
transformations. In: Proceedings of the 2nd International Work-
shop on Enterprise Modelling and Information Systems Architec-
tures (EMISA’07). St. Goar, Germany, pp. 33–46 (2007)

 9. Caivano, D., Fernández-Ropero, M., Pérez-Castillo, R., Piattini,
M., Scalera, M.: Artifact-based vs. human-perceived understand-
ability and modifiability of refactored business processes: an
experiment. J. Syst. Softw. 144, 143–164 (2018). https:// doi. org/
10. 1016/j. jss. 2018. 06. 026

 10. Chasioti, K.: BizDevOps: a process model for the alignment of
DevOps with business goals. Master Thesis MSc, Utrecht Univer-
sity (2019)

 11. De Kinderen, S., Gaaloul, K., Proper, H.A.E.: On transforming
DEMO models to ArchiMate. 113 LNBIP, 270–284 (2012)

 12. Drews, P., Schirmer, I., Horlach, B., Tekaat, C.: Bimodal enter-
prise architecture management: the emergence of a new EAM
function for a BizDevOps-based fast IT. In: 2017 IEEE 21st
International Enterprise Distributed Object Computing Workshop
(EDOCW) (2017). https:// doi. org/ 10. 1109/ EDOCW. 2017. 18

 13. Engelsman, W., Wieringa, R., Sinderen, M. V., Gordijn, J.,
Haaker, T.: Transforming e3value models into ArchiMate dia-
grams. In: 2020 IEEE 24th International Enterprise Distributed
Object Computing Conference (EDOC), pp. 11–20 (2020)

 14. Farwick, M.: Towards automation of enterprise architecture model
maintenance. In: 24th International Conference on Advanced
Information Systems Engineering (CAiSE’12)—Doctoral Consor-
tium. I. Mirbel and B. Pernici. Gdansk, Poland, pp. 1–11 (2012)

 15. Farwick, M., Schweda, C.M., Breu, R., Hanschke, I.: A situational
method for semi-automated enterprise architecture documenta-
tion. Softw. Syst. Model. 15(2), 397–426 (2016). https:// doi. org/
10. 1007/ s10270- 014- 0407-3

 16. Gartner: Enterprise Architecture (EA). https:// www. gartn er. com/
it- gloss ary/ enter prise- archi tectu re- ea/ (2018)

 17. Ge, B., Hipel, K.W., Yang, K., Chen, Y.: A novel executable mod-
eling approach for system-of-systems architecture. IEEE Syst. J.
8(1), 4–13 (2014). https:// doi. org/ 10. 1109/ JSYST. 2013. 22705 73

 18. Granchelli, G., Cardarelli, M., Francesco, P.D., Malavolta, I.,
Iovino, L., Salle, A.D.: Towards recovering the software archi-
tecture of microservice-based systems. In: 2017 IEEE Interna-
tional Conference on Software Architecture Workshops (ICSAW)
(2017). https:// doi. org/ 10. 1109/ ICSAW. 2017. 48

 19. Hacks, S., Höfert, H., Salentin, J., Yeong, Y.C., Lichter, H.:
Towards the definition of enterprise architecture debts. In: 2019
IEEE 23rd International Enterprise Distributed Object Computing
Workshop (EDOCW), pp. 9–16 (2019)

 20. Hevner, A., March, S., Park, J., Ram, S.: Design science in infor-
mation system research. MIS Q. 28(1), 75–105 (2004)

 21. Holm, H., Buschle, M., Lagerström, R., Ekstedt, M.: Auto-
matic data collection for enterprise architecture models. Softw.
Syst. Model. 13(2), 825–841 (2014). https:// doi. org/ 10. 1007/
s10270- 012- 0252-1

 22. Hu, J., Huang, L., Chang, X., Cao, B.: a model driven service
engineering approach to system of systems. In: 2014 IEEE Inter-
national Systems Conference Proceedings (2014). https:// doi. org/
10. 1109/ SysCon. 2014. 68192 48

 23. Iacob, M.E., Monteban, J., Sinderen, M.V., Hegeman, E., Bita-
raf, K.: Measuring enterprise architecture complexity. In: 2018
IEEE 22nd International Enterprise Distributed Object Computing
Workshop (EDOCW), pp. 115–124 (2018)

 24. Johannesson, P., Perjons, E.: An Introduction to Design Science.
Springer, Cham (2014)

 25. Johnson, P., Ekstedt, M., Lagerstrom, R.: Automatic probabilistic
enterprise IT architecture modeling: a dynamic Bayesian networks
approach. In: 2016 IEEE 20th International Enterprise Distributed
Object Computing Workshop (EDOCW), pp. 1–8 (2016)

 26. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model
transformation tool. J. Sci. Comput. Program. 72(1–2), 31–39
(2008). https:// doi. org/ 10. 1016/j. scico. 2007. 08. 002

 27. Kent, S.: Model driven engineering. In: International Conference
on Integrated Formal Methods, pp. 286–298. Springer, Berlin
(2002)

 28. Kleehaus, M., Matthes, F.: Automated enterprise architecture
model maintenance via runtime IT discovery. In: Zimmermann,
A., Schmidt, R., Jain, L.C. (eds.) Architecting the Digital Trans-
formation: Digital Business, Technology, Decision Support, Man-
agement, pp. 247–263. Springer, Cham (2021)

 29. Kotusev, S., Singh, M., Storey, I.: Consolidating enterprise archi-
tecture management research. In: 2015 48th Hawaii International
Conference on System Sciences, pp. 4069–4078 (2015)

 30. Landi, A.d.S., Chagas, F., Santos, B.M., Costa, R.S., Durelli, R.,
Terra, R., Camargo, V.V.D. (2017) Supporting the specification
and serialization of planned architectures in architecture-driven
modernization context. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC). https:// doi.
org/ 10. 1109/ COMPS AC. 2017. 225

 31. Liu, C., van Dongen, B.F., Assy, N., van der Aalst, W.M.: A gen-
eral framework to identify software components from execution
data. In: 14th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE’19). Heraklion,
Crete, Greece, INSTIC, pp. 234–241 (2019)

http://creativecommons.org/licenses/by/4.0/
https://alarcos.esi.uclm.es/businessprocessarchaeology/ArchiRev
https://alarcos.esi.uclm.es/businessprocessarchaeology/ArchiRev
https://doi.org/10.1016/j.datak.2015.09.004
https://doi.org/10.1016/j.datak.2015.09.004
https://gitlab.fing.edu.uy/open-coal/KDM2ArchiMate
https://gitlab.fing.edu.uy/open-coal/KDM2ArchiMate
https://www.archimatetool.com/
https://doi.org/10.1109/EDOCW.2016.7584392
https://doi.org/10.1109/EDOCW.2016.7584392
https://doi.org/10.1016/j.jss.2018.06.026
https://doi.org/10.1016/j.jss.2018.06.026
https://doi.org/10.1109/EDOCW.2017.18
https://doi.org/10.1007/s10270-014-0407-3
https://doi.org/10.1007/s10270-014-0407-3
https://www.gartner.com/it-glossary/enterprise-architecture-ea/
https://www.gartner.com/it-glossary/enterprise-architecture-ea/
https://doi.org/10.1109/JSYST.2013.2270573
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1007/s10270-012-0252-1
https://doi.org/10.1007/s10270-012-0252-1
https://doi.org/10.1109/SysCon.2014.6819248
https://doi.org/10.1109/SysCon.2014.6819248
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1109/COMPSAC.2017.225
https://doi.org/10.1109/COMPSAC.2017.225

335A method for transforming knowledge discovery metamodel to ArchiMate models

1 3

 32. Moutaouakkil, A., Mbarki, S.: MVC frameworks modernization
approach: adding MVC concepts to KDM metamodel. Int. J. Adv.
Comput. Sci. Appl. 10(10), 304–310 (2019)

 33. OMG: MOF Query/View/Transformation (QVT) v1.3. https://
www. omg. org/ spec/ QVT/1. 3/ PDF (2008). The Object Manage-
ment Group: 282.

 34. OMG. Business Process Model and Notation (BPMN) 2.0.2.
https:// www. omg. org/ spec/ BPMN/2. 0.2/ PDF (2013). Object
Management Group: 532

 35. OMG: MDA Guide Version 2.0. https:// www. omg. org/ cgi- bin/
doc? ormsc/ 14- 06- 01. pdf (2014). OMG: 15

 36. OMG: Architecture-Driven Modernization (ADM): Knowledge
Discovery Meta-Model (KDM), v1.4. https:// www. omg. org/ spec/
KDM/1. 4/ PDF (2016a). OMG: 372.

 37. OMG: Meta Object Facility (MOF™) versión 2.5.1. https:// www.
omg. org/ spec/ MOF/2. 5.1/ PDF (2016b). The Object Management
Group.

 38. OMG (2017). UML 2.5.1. https:// www. omg. org/ spec/ UML/2. 5.1/
PDF, Object Management Group.

 39. OMG: ADM Task Force by OMG. https:// www. omg. org/ adm/
(2020) Retrieved 25 May 2020

 40. Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Vir-
tanen, V., Bragge, J.: The design science research process: a model
for producing and presenting information systems research. In:
Proceedings of the First International Conference on Design Sci-
ence Research in Information Systems and Technology (DESRIST
2006), pp. 83–106 (2006)

 41. Pepin, J., André, P., Attiogbe, C., Breton, E.: A method for busi-
ness-IT alignment of legacy systems. In: Proceedings of the 17th
International Conference on Enterprise Information Systems, vol.
3, pp. Lda: 229–237. SCITEPRESS - Science and Technology
Publications, Barcelona, Spain

 42. Pérez-Castillo, R.: MARBLE: modernization approach for recov-
ering business processes from legacy information systems. In:
28th IEEE International Conference on Software Maintenance
(ICSM’12). Riva del Garda, Italy, pp. 671–676. IEEE Computer
Society (2012)

 43. Pérez-Castillo, R., Caivano, D., Ruiz, F., Piattini, M.: ArchiRev—
Reverse engineering of information systems toward ArchiMate
models. An industrial case study. J. Softw. Evol. Process 33(2),
1–27 (2021). https:// doi. org/ 10. 1002/ smr. 2314

 44. Pérez-Castillo, R., de Guzmán, I.G.-R., Piattini, M.: Business pro-
cess archeology using MARBLE. Inf. Softw. Technol. 53(10),
1023–1044 (2011). https:// doi. org/ 10. 1016/j. infsof. 2011. 05. 006

 45. Pérez-Castillo, R., de Guzmán, I.G.-R., Piattini, M.: Knowledge
discovery metamodel-ISO/IEC 19506: a standard to modernize
legacy systems. Comput. Stand. Interfaces 33(6), 519–532 (2011).
https:// doi. org/ 10. 1016/j. csi. 2011. 02. 007

 46. Pérez-Castillo, R., García Rodríguez de Guzmán, I., Caivano, D.,
Piattini, M.: Database schema elicitation to modernize relational
databases. 14th International Conference on Enterprise Informa-
tion Systems (ICEIS’12), vol. 1, pp. 126–132. INSTICC (2012a)

 47. Perez-Castillo, R., Ruiz-Gonzalez, F., Genero, M., Piattini, M.:
A systematic mapping study on enterprise architecture mining.
Enterp. Inf. Syst. 13(5), 675–718 (2019). https:// doi. org/ 10. 1080/
17517 575. 2019. 15908 59

 48. Pérez-Castillo, R., Ruiz, F., Piattini, M.: A decision-making sup-
port system for enterprise architecture modelling. Decis. Support
Syst. 131, 113249 (2020). https:// doi. org/ 10. 1016/j. dss. 2020.
113249

 49. Perez-Castillo, R., Ruiz, F., Piattini, M., Ebert, C.: Enterprise
architecture. IEEE Softw. 36(4), 12–19 (2019). https:// doi. org/
10. 1109/ MS. 2019. 29093 29

 50. Pérez-Castillo, R., Weber, B., García Rodríguez de Guzmán, I.,
Piattini, M.: Integrating event logs into KDM repositories. In:
27th Annual ACM Symposium on Applied Computing (SAC’12),
Riva del Garda (Trento), Italy, pp. 1095–1102. ACM (2012b)

 51. Proper, H.A., Bjeković, M., Gils, B.V., Kinderen, S.D.: Enterprise
architecture modelling: purpose, requirements and language. In:
2018 IEEE 22nd International Enterprise Distributed Object Com-
puting Workshop (EDOCW), pp. 162–169 (2018)

 52. Rodrigues da Silva, A.: Model-driven engineering: a survey sup-
ported by the unified conceptual model. Comput. Lang. Syst.
Struct. 43, 139–155 (2015). https:// doi. org/ 10. 1016/j. cl. 2015. 06.
001

 53. Rolon, E., Sanchez, L., Garcia, F., Ruiz, F., Piattini, M., Cai-
vano, D., Visaggio, G.: Prediction models for BPMN usability
and maintainability. IEEE Conf. Commer. Enterp. Comput. 2009,
383–390 (2009)

 54. Sánchez, M., Reyes, J.C., Villalobos, J.: Extraction and Recon-
struction of Enterprise Models, vol. 191, pp. 3–20. Lecture Notes
in Business Information Processing, Springer, Berlin

 55. Schmidt, D.: Model-driven engineering. Comput. IEEE Comput.
Soc. 39(2), 25 (2006)

 56. Schütz, A., Widjaja, T., Kaiser, J.: Complexity in enterprise archi-
tectures—conceptualization and introduction of a measure from
a system theoretic perspective. In: 21st European Conference on
Information Systems, ECIS 2013. Utrecht, The Netherlands, p.
202 (2013)

 57. Simon, D., Fischbach, K., Schoder, D.: An exploration of enter-
prise architecture research. Commun. Assoc. Inf. Syst. 32, 1
(2013)

 58. The Open Group: TOGAF. Enterprise Edition. Version 9.1. http://
www. togaf. org (2011)

 59. The Open Group: The ArchiMate 3.0 Enterprise Architecture
Modeling Language. http:// www. openg roup. org/ subje ctare as/
enter prise/ archi mate- overv iew (2016a)

 60. The Open Group: TOGAF® Worldwide. 2018, from http:// www.
openg roup. org/ subje ctare as/ enter prise/ togaf/ world wide (2016b)

 61. The Open Group: ArchiMate® Model Exchange File Format for
the ArchiMate 3.1 Modeling Language. https:// www. openg roup.
org/ xsd/ archi mate/#: ~: text= Intro ducti on,create% 20or% 20int
erpret% 20Arc hiMate% 20mod els (2019). Retrieved 26 Jan 2021

 62. Truong, T.M., Lê, L.-S., Tôn, L.P.: Re-engineering enterprises
using data warehouse as a driver and requirements as an enabler.
In: 2017 IEEE 21st International Enterprise Distributed Object
Computing Conference (EDOC) (2017). https:// doi. org/ 10. 1109/
EDOC. 2017. 18

 63. Van Langerak, R., Van Der Werf, J.M.E.M., Brinkkemper, S.:
Uncovering the runtime enterprise architecture of a large distrib-
uted organisation. In: A Process Mining-Oriented Approach, vol.
10253, pp. 247–263. LNCS. Springer, Berlin (2017)

 64. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-
driven software development: technology, engineering, manage-
mentedtion. John Wiley & Sons (2013)

 65. Werf, J.M.E.M.V.D., Schuppen, C.V., Brinkkemper, S., Jansen, S.,
Boon, P., Plas G.V.D.: Architectural Intelligence: A Framework
and Application to e-Learning. RADAR+EMISA@CAiSE (2017)

 66. Wieringa, R.J.: Design science methodology for information sys-
tems and software engineeringedtion. Springer (2014)

 67. Zimmermann, A., Jugel, D., Schmidt, R., Schweda, C., Möhring,
M.: Collaborative decision support for adaptive digital enterprise
architecture. In: BIR Workshops (2015).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
https://www.omg.org/spec/KDM/1.4/PDF
https://www.omg.org/spec/KDM/1.4/PDF
https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/adm/
https://doi.org/10.1002/smr.2314
https://doi.org/10.1016/j.infsof.2011.05.006
https://doi.org/10.1016/j.csi.2011.02.007
https://doi.org/10.1080/17517575.2019.1590859
https://doi.org/10.1080/17517575.2019.1590859
https://doi.org/10.1016/j.dss.2020.113249
https://doi.org/10.1016/j.dss.2020.113249
https://doi.org/10.1109/MS.2019.2909329
https://doi.org/10.1109/MS.2019.2909329
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1016/j.cl.2015.06.001
http://www.togaf.org
http://www.togaf.org
http://www.opengroup.org/subjectareas/enterprise/archimate-overview
http://www.opengroup.org/subjectareas/enterprise/archimate-overview
http://www.opengroup.org/subjectareas/enterprise/togaf/worldwide
http://www.opengroup.org/subjectareas/enterprise/togaf/worldwide
https://www.opengroup.org/xsd/archimate/#:~:text=Introduction,create%20or%20interpret%20ArchiMate%20models
https://www.opengroup.org/xsd/archimate/#:~:text=Introduction,create%20or%20interpret%20ArchiMate%20models
https://www.opengroup.org/xsd/archimate/#:~:text=Introduction,create%20or%20interpret%20ArchiMate%20models
https://doi.org/10.1109/EDOC.2017.18
https://doi.org/10.1109/EDOC.2017.18

336 R. Pérez-Castillo et al.

1 3

Ricardo Pérez‑Castillo is a
researcher at the Information
Technologies and Systems Insti-
tute, University of Castilla-ssLa
Mancha (UCLM), Spain. His
research interests include quan-
tum software engineering, archi-
tecture-driven modernization,
model-driven development,
business-process archaeology,
and enterprise architecture.
Perez-Castillo received a Ph.D.
in computer science from
UCLM.

Andrea Delgado is an associate
professor at the Instituto de
Computación, Facultad de Inge-
niería, Universidad de la
República Uruguay. Her main
research interests are business
process management and tech-
nologies, process mining, ser-
vice-oriented computing and
model-driven development. She
received her Ph.D. in Computer
Science from the University of
Castilla—La Mancha (UCLM),
Spain and from Universidad de
la República (PEDECIBA),
Uruguay.

Francisco Ruiz is a full professor
at the Information Technologies
and Systems Department, Uni-
versity of Castilla-La Mancha
(UCLM), Spain. His research
interests include enterprise
architecture, business-process
technology, software engineer-
ing and socio-demographic data
analytic. Ruiz received a Ph.D.
in computer science from
UCLM.

Virginia Bacigalupe is a techni-
cian at the Instituto de Com-
putación, Facultad de Ingeniería,
Universidad de la República,
Uruguay. She is an advanced stu-
dent of Computer Science and
will finish her BSc degree this
year. Her main research interests
are model driven engineering
a n d w e b a n d m o b i l e
development.

Mario Piattini is Full Professor
at the Escuela Superior de
Informática (University of Cas-
tilla-La Mancha, Spain). He
holds a PhD. In Computer Sci-
ence and is the Director of the
Alarcos Research Group at
UCLM. He is the Founder of
DQTeam, S.L. and AQCLab,
S.L., spinoffs of the UCLM. He
was ranked among the 15 “Top
scholars in the field of systems
and software engineering (2004–
2008)” and the 15 “Most active
experienced Software Engineer-
ing researchers in top-quality

journal (2010–2017)” according to The Journal of Systems and
Software.

	A method for transforming knowledge discovery metamodel to ArchiMate models
	Abstract
	1 Introduction
	2 State of the art
	2.1 Model-driven engineering
	2.2 ArchiMate
	2.3 Knowledge discovery metamodel

	3 Related work
	4 Research proposal
	4.1 General method for reversing ArchiMate models
	4.2 Generation of knowledge discovery metamodel repository
	4.3 KDM to ArchiMate transformation
	4.3.1 Transformation rules
	4.3.2 Rule type 1: KDM segment to ArchiMate model
	4.3.3 Rules type 2: KDM CompilationUnit to Archimate elements
	4.3.4 Rules type 3: KDM relations to Archimate relations
	4.3.5 Considerations

	5 Demonstration
	5.1 Proof-of-concept
	5.2 Case study
	5.2.1 Research goal and questions
	5.2.2 Measures and variables
	5.2.3 Case selection
	5.2.4 Execution procedure and data collection

	6 Evaluation
	6.1 Result analysis
	6.2 Threats to the validity

	7 Conclusions and future work
	Acknowledgements
	References

