
Software and Systems Modeling (2020) 19:1519–1540
https://doi.org/10.1007/s10270-020-00809-2

THEME SECT ION PAPER

Interface protocol inference to aid understanding legacy software
components

Kousar Aslam1 · Loek Cleophas1 · Ramon Schiffelers1,2 ·Mark van den Brand1

Received: 22 June 2019 / Revised: 28 May 2020 / Accepted: 31 May 2020 / Published online: 28 June 2020
© The Author(s) 2020

Abstract
High-tech companies are struggling today with themaintenance of legacy software. Legacy software is vital to many organiza-
tions as it contains the important business logic. To facilitate maintenance of legacy software, a comprehensive understanding
of the software’s behavior is essential. In terms of component-based software engineering, it is necessary to completely under-
stand the behavior of components in relation to their interfaces, i.e., their interface protocols, and to preserve this behavior
during the maintenance activities of the components. For this purpose, we present an approach to infer the interface protocols
of software components from the behavioral models of those components, learned by a blackbox technique called active
(automata) learning. To validate the learned results, we applied our approach to the software components developed with
model-based engineering so that equivalence can be checked between the learned models and the reference models, ensuring
the behavioral relations are preserved. Experimenting with components having reference models and performing equivalence
checking builds confidence that applying active learning technique to reverse engineer legacy software components, for which
no reference models are available, will also yield correct results. To apply our approach in practice, we present an automated
framework for conducting active learning on a large set of components and deriving their interface protocols. Using the
framework, we validated our methodology by applying active learning on 202 industrial software components, out of which,
interface protocols could be successfully derived for 156 components within our given time bound of 1h for each component.

Keywords Active automata learning · Interface protocols · Learning framework · Equivalence oracles

1 Introduction

Large-scale software systems are inherently complex, with
complexity caused by a large number of constituent compo-
nents and the interactions between them [54]. The software
also changes over time due to maintenance as a result

Communicated by Federico Ciccozzi, Antonio Cicchetti and Andreas
Wortmann.

B Kousar Aslam
k.aslam@tue.nl

Loek Cleophas
l.g.w.a.cleophas@tue.nl

Ramon Schiffelers
r.r.h.schiffelers@tue.nl; ramon.schiffelers@asml.com

Mark van den Brand
m.g.j.v.d.brand@tue.nl

1 Eindhoven University of Technology, Eindhoven,
The Netherlands

2 ASML, Veldhoven, The Netherlands

of evolving requirements, emerging technology trends and
hardware changes [38]. To deal with this ever-increasing
complexity of high-tech software systems, different soft-
ware development methodologies emerged with the goal
of raising the abstraction level of software development.
In the late 1960s, component-based software engineering
(CBSE) [9] started becoming popular, which presented the
idea of componentization and the consequent focus on inter-
face specification. The components communicate with each
other through the interfaces [6]. The communication follows
the software specification which states the order and timings
of the messages [43].

As a step forward in increasing abstraction of soft-
ware development, in the 1980s, model-driven engineering
(MDE) [50] started coming into play. MDE represents soft-
ware structure and behavior in terms of models, which are
better suited for formal verification and are closer to the prob-
lem domain. Hence, MDE-based software is expected to be
easier to understand andmaintain by the domain experts [20].
For building complex software, high-tech companies are now

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00809-2&domain=pdf

1520 K. Aslam et al.

adoptingMDE techniques [25,41], yet a considerable amount
of software exists that was developed by manual coding. For
the components that are built with MDE, usually good inter-
face protocols are available. In the general case, however,
for traditionally developed software components only some
rudimentary interface descriptions can be found.

To achieve the same benefits for traditionally developed
software as those offered by MDE, such as formal ver-
ification, easier understanding and maintenance, interface
protocols need to be constructed for this software. Manu-
ally creating models for large legacy software systems is
very time-consuming and often infeasible. In this paper,
we present the research that we have conducted to sup-
port an automated and cost-effective transition from existing
software to models. We try to achieve this by developing
techniques which use information available in source code,
execution traces and/or other software documentation to
infer interface protocols [5,67]. The interface protocols, once
learned, can serve as the starting point for several engineering
and maintenance activities, which is discussed in Sect. 2.

Several techniques exist in the literature about the reverse
engineering of existing software components. These tech-
niques can be broadly categorized as static or dynamic
analysis techniques. Static software analysis methods exam-
ine the code without actually executing it. This provides
an understanding of the code structure and components
constituting the software [23]. Dynamic software analysis
techniques examine the actual execution of the software,
either by processing execution traces—passive learning [37]
or by actively interacting with the software components—
active automata learning or active learning [52].

In this work, we have explored the active learning tech-
nique. Active learning extracts the software behavior by
alternating between two phases, learning and testing. Learn-
ing builds a hypothesis, and testing checks the equivalence
between the hypothesis and the systemunder learning (SUL).
Learning a behavioral model from an existing software sys-
tem using active learning has been an area of quite some
interest. In this context, the technique was first used in 2010
to learn a network protocol for analyzing botnets [12]. Later,
it has been used for learning formal models of bank cards [2],
reverse engineering a smartcard reader for bank cards [11],
learning big control software component from Océ print-
ers [53] and learning legacy code at Philips [51][3]. These
studies show active learning as a promising approach to con-
struct behavioral models from existing software, for different
purposes.

The scope of previous active learning studies is, however,
limited to a single (part of a) software component, or at most
a few components. Furthermore, all of the existing case stud-
ies performed with active learning mostly focus on learning
the current behavior of software components. To the best of
our knowledge, there is no prior published work on inferring

interface protocols for software components based on active
learning. Also, in practice, active learning cannot learn the
correct and complete model of the SUL. This is because the
number of queries posted to the SUL is finite and limited
for practical reasons (Sect. 4.2), making it typically impos-
sible to guarantee that the active learning result is a true
representation of the behavior of the legacy software compo-
nents [59]. Therefore, the correctness and completeness of
learned results cannot be ensured.

To address the above-mentioned challenges, we propose
a two-step methodology to infer the interface protocols for
software components. In the first step, we apply active learn-
ing to learn the behavior of software component. For reducing
the uncertainty about the learned models, we apply active
learning on MDE-based components. These components are
based on models, which we use as reference models to for-
mally check the equivalence with our active learning result.
This is an excellent step toward building confidence in the
technique and validating its correctness before applying it
to legacy components with unknown behavior. Our chosen
components only possess control flow behavior and do not
have data flow behavior. This is because learning data flow
behavior is still an open research question in the active learn-
ing field [59]. There have been efforts to make steps in this
direction [1,10,24], but there is not enough evidence yet, both
in terms of fundamental research and required tool support
to learn data flow behavior of industrial-scale software com-
ponents.

In the second step of our methodology, we infer interface
protocols from the active learning results of a desired inter-
face by abstracting away (i.e., hiding) the actions coming
from other interfaces. We validate the interface protocols
by verifying that the original behavioral relations, which
existed between the original interface specification and the
implementation, are preserved between the derived interface
protocol and the implementation. This validation ensures that
the inferred interface protocols are correct. Ourmethodology
provides the basis for inferring interface protocols of legacy
software components, for which indeed no reference models
are available.

To validate our approach, we present an automated frame-
work that can be used to perform active learning on a number
of software components. Using our framework, we applied
active learning on 202 MDE-based software components
from our industrial partner ASML’s lithography machines
software. Testing is known to be the bottleneck of active
learning process [59,67]. To achieve best results, and ben-
efiting from our automated framework, we applied active
learning using several testing methods. In this way, we are
able to infer interface protocols for a large number of software
components out of 202 software components under learn-
ing. We derived interface protocols for the 156 components

123

Interface protocol inference to aid understanding legacy software components 1521

Fig. 1 A simple CBSE-based system with components A, B and C,
interacting with each other over the interfaces

learned by active learning and verified that behavioral rela-
tions are preserved between learned and reference models.

This paper is an extension of our previous work [5], where
we already presented the methodology and a small example
as proof of concept. The added contributions in this paper
include:

1. an automated framework to apply our methodology on a
large number of software components.

2. a large-scale industrial evaluation as validation of our
methodology, using several testing methods.

Outline of paper Section 2 discusses a few use cases of
the derived interface protocols as motivation of our work,
Sect. 3 summarizes the related work, Sect. 4 gives the back-
ground information necessary to understand the paper, Sect. 5
presents our methodology to infer interface protocols, and an
example is presented in Sect. 6 to illustrate theworking of our
approach. Section 7 explains our framework for conducting
active learning experiments, and Sect. 8 presents the evalua-
tion of our approach. We finally conclude and present future
work directions in Sect. 9.

2 Motivation

As already discussed, deriving interface protocols is part
of understanding legacy software components. Models such
as interface protocols can be used like models for compo-
nents developed usingMDE, e.g., they can be used for formal
verification and are closer to the problem domain, facilitat-
ing understanding of the legacy components. The interface
protocols coming from the complex software of high-tech
systems can be utilized in a variety of ways, which we dis-
cuss below. We explain each use case using a small system
example, shown in Fig. 1. The system consists of three soft-
ware components A, B and C, interacting with each other
over the interfaces depicted between them.

2.1 Observer and armor

2.1.1 Observer

Observer and monitor are two terms used interchangeably to
refer to the activity of observing software execution [44,62].

By monitoring the externally observable behavior of a sys-
tem, the observer determines if it is consistent with a given
specification. Software can be observed for different pur-
poses such as performance analysis, software fault detection,
diagnosis and recovery [14]. This increases the confidence
in the implemented system.

For CBSE-based software systems, the observer monitors
the calls to the interface functions and responses made to
such calls. In this way, it detects unexpected behavior [69].
The goal of the observer is to collect the actual interactions
by observing the communication between the components.
The ability of an observer to detect unusual behavior is deter-
mined by its specifications. For instance, an observer may be
specified to check whether the number of processes for one
software component is as specified, or how many events are
produced by a software component during a certain times-
pan. Observers find applications in several domains, e.g.,
Steinbauer et al. [55] used observers for detecting failures in
the control software of autonomous robots. Diaz et al. [15]
propose a system in which distributed systems can be veri-
fied with respect to the specifications of a previously defined
model.

The interface protocols contain the information of soft-
ware components and their relationships. They can monitor
the externally observable behavior of software components
and compare it to the specifications and raise a flag in case of
a discrepancy. In this way, a separate observer will not need
to be implemented. This is shown in Fig. 2a.

2.1.2 Armor

The functionality of an armor is one step forward compared
to that of the observer. It blocks any call to the interface that
does not obey the specifications of the component, thus pro-
tecting the software from illegal behavior. With armoring,
it is easy to distinguish failures caused by protocol viola-
tions from failures caused by (functional) errors. Armoring
reduces the risk of process crashes or hangups. In the pres-
ence of armoring, the analysis of failures caused by protocol
violations becomes easier. An armor component separates
all the error handling code from the main functionality of the
system, thus facilitating separation of concerns.

Armoring facilitates automatic program recovery by
detecting illegal behavior. The idea gained a lot of popularity
in recent decades [35]. The Adaptive Reconfigurable Mobile
Objects of Reliability (Armor) middleware architecture [30]
was developed and used in different case studies to detect and
recover from failures at runtime. Kalbarczyk et al. [31] have
developed a tool called Chameleon which uses the concept
of armors to provide an infrastructure for runtime-adaptable
fault-tolerant software. Stramaglia [56] applied armoring to
reduce the probability of memory errors affecting the oper-
ating system and causing a reboot.

123

1522 K. Aslam et al.

Fig. 2 Interface protocols serving as observer and armor for software components

ForMDE-based components, armors can be automatically
constructed from formal specifications and then integrated at
proper places in the program. Figure 2b shows the use of an
interface protocol as armor.

2.2 Re-factoring and re-engineering

As discussed in Sect. 1, large-scale software systems typi-
cally undergo repeated changes over time due to evolving
requirements, hardware changes and emerging technology
trends. During this evolution phase, the software documen-
tation may not be regularly updated and the developers
initially working on the project may no longer be available,
as discussed by Lehman [38]. These factors turn the soft-
ware into so-called legacy software which becomes harder to
understand and costly to maintain. Legacy software usually
implements crucial domain logic which cannot be discarded
or easily replaced. However, for different reasons, such as
technology changes or performance issues, the legacy com-
ponents may need to be re-factored or re-engineered. To
support such activities, the implicit domain logic (behav-
ioral models) of these components and interface protocols
implemented between the components need to be extracted
and learned. While re-factoring or re-engineering, the exter-
nal behavior of the component needs to be preserved so that
the whole system operates externally in the same manner as
before the intervention.

Figure 3 shows the scenario where a component B is to be
replaced by B′. After replacement, B′ is expected to perform
the same interactionswith the surrounding componentsAand
C. As these interactions are meant to be specified in inter-
face protocols, these protocols can serve as the starting point
by specifying requirements for re-factoring, re-engineering,
code modernization or software rejuvenation. For legacy
components, therefore, it is necessary to derive the interface
protocols so that maintenance activities can be facilitated.

2.3 Supervisory control synthesis

Supervisory controllers coordinate the control of the indi-
vidual machine components. The traditional practice of

Fig. 3 Replacement of software components by a re-factored/re-
engineered component

Fig. 4 Supervisory control synthesis by integrating software require-
ments and interface protocols

developing supervisory controllers is to code themmanually,
based on control requirements. Using supervisory control
theory (SCT) [65], an uncontrolled system and the require-
ments are formally specified in terms of an automaton (a.k.a.
the plant). Then, from thesemodels, the supervisor is derived.
SCT synthesizes the models of the supervisors such that the
correctness of these models is predetermined.

Such supervisor synthesis has been studied by van Beek et
al. [60] in the context of the Compositional Interchange For-
mat (CIF),1 a modeling language and accompanying toolset
based on automata that is used to specify discrete-event,
continuous-time and hybrid systems. Loose [39] synthesized
supervisory controllers formultipleMDE-based components
and compared these with manually created supervisory con-
trollers, enablingverificationof the synthesizedones. Theuse

1 http://cif.se.wtb.tue.nl/index.html.

123

http://cif.se.wtb.tue.nl/index.html

Interface protocol inference to aid understanding legacy software components 1523

of (formal)models for controller design allows validation and
verification of controllers long before they are implemented
and integrated into the system, leading to fewer defects and
reduced costs.

Figure 4 shows the idea for supervisory control syn-
thesis where component models can be computed using
SCT based on interface protocols and the requirements. The
interface protocols describe the uncontrolled system. The
requirements and design decisions are the requirements to
be implemented by the control component. Using the inter-
face protocols and these requirements, with SCT one can
automatically generate the controller component.

3 Related work

A considerable amount of work for inferring the inter-
nal (control) behavior of existing software with static and
dynamic analysis (passive and active) techniques can be
found in the literature.
Static analysis Software reusability is facilitated by using
frameworks and libraries through Application Program-
ming Interfaces (APIs). Using advanced and complicated
APIs is often challenging due to hidden assumptions and
requirements. Research has been conducted lately to retrieve
undocumented properties of APIs. An overview of static
analysis techniques and tools for automated API property
inference is given in [48].

An annotation assistant tool to infer pre-conditions and
post-conditions of methods of Java programs is presented
in [17]. Identifying the pre-conditions of functions to infer
both data and control flow is discussed in [46]. Buse and
Weimer present a tool that learns exception-causing con-
ditions in Java programs [8]. Their approach infers the
properties concerned with behavior in erroneous conditions,
so they can describe only the pre-conditions that lead to
exceptional behavior. For a given API method, the approach
infers possible exception types that might be thrown, pred-
icates over paths that might cause these exceptions to be
thrown and human readable strings describing these paths.
Tillmann et al. developed a tool called Axiom Meister
that infers properties, using symbolic execution, automat-
ically from the code [57]. The inferred specifications are
human readable and can also be used as input to program
verification systems or test generation tools for valida-
tion.
Passive learning Data mining techniques are combined with
passive learning algorithms to learn data flow behavior of
software components [64]. A passive learning algorithm
named GK-tail is presented in [40]. The authors show that
the behavioral models capturing the constraints on data val-
ues and the interactions between software components are
learned with this algorithm. Model checking has been used

to enhance a passive learning algorithm (QSM) to learn soft-
ware behavior [63]. Passive learning has been applied for
dynamically inferring functional specifications frommethod
calls [66]. They developed a tool called Perracotta that uses
heuristics to generalize inferred specifications into regular
expressions. These regular expressions can be represented as
a DFA.
Active learning The active learning technique has been
used for understanding existing software and analyzing cur-
rent implementations for detecting flaws. Aarts et al. [2]
applied active learning to learn formal models for bank
cards. Chalupar et al. [11] reverse engineered a smartcard
reader for internet banking using active learning and man-
aged to detect a security flaw in its behavior. Smeenk et
al. [53] learned a big control software component, the Engine
State Manager (ESM), from Océ printers. They used effi-
cient techniques to find counterexamples faster and managed
to learn the behavioral model of this complex software.
In [51], the authors combined model learning and equiv-
alence checking to gain the confidence in refactoring of
legacy components. Equivalence is checked between active
learning results from the legacy and refactored compo-
nent with the mCRL2 toolset. If the models are equivalent,
learning ends. Otherwise, models or implementations are
refined based on the counterexamples generated by mCRL2.
This again is based on the assumption that active learn-
ing can learn complete and correct behavior, which does
not hold in practice. Recently, Duhaiby et al. [3] discussed
the challenges faced and lessons learned by applying active
learning to software components of Philips Healthcare sys-
tems.

All of the work stated above deals with learning existing
software, and the learned results or inferred specifications
are not formally validated. We propose that formally vali-
dating the learning techniques (active learning in our case)
brings greater confidence in the methodology when applied
to legacy components. Therefore, we check the equivalence
of active learning results with the reference models and for-
mally validate the interface protocols. Equivalence checking
guarantees that during learning we preserve the formal rela-
tions and do not lose any behavioral information.

To support the software maintenance, we need to infer
the interface protocols for communication between software
components. To the best of our knowledge, there is no exist-
ing work to infer interface protocols using active learning.
Our work is a step toward building confidence for applying
active learning to derive interface protocols for legacy com-
ponents as well.

123

1524 K. Aslam et al.

4 Background

4.1 Definitions

First, we present a few definitions that will be used later in
the paper.

We choose Mealy machines to represent the results of
active learning and derived interface protocols. This is
because Mealy machines provide the notion of inputs and
outputs; therefore, they are good representations for reactive
systems.

Definition 1 AMealy machine is a tupleM = 〈S,Σ,�,→
, ŝ〉, where

– S is a set of states,
– Σ is a set of input actions,
– � is a set of output actions,
– →⊆ S × Σ × � × S is a transition relation and
– ŝ ∈ S is the initial state.

Definition 2 An action that can happen but cannot be directly
observed is called an internal action, denoted by τ .

Definition 3 An interfaceprotocol is a tupleIP = 〈S,Σ,�,

I ,→, ŝ〉, where

– S is a set of states,
– Σ,�, I are three pairwise disjoint sets of input, output
and internal actions,

– →⊆ S × Act × S is a transition relation, where Act =
Σ ∪ � ∪ I and

– ŝ ∈ S is the initial state.

Definition 4 A labeled transition system (LTS) is a tupleL =
〈S, Act,→, ŝ〉, where

– S is a set of states,
– Act is a set of actions,
– →⊆ S × Act × S is a transition relation and
– ŝ ∈ S is the initial state.

Definition 5 Given a Mealy machine M = 〈S,Σ,�,→
, ŝ〉, we define the underlying LTS as L(M) = 〈SL ,Σ ∪
�,→L , ŝ〉,where SL and→L are the smallest sets satisfying:

– S ⊆ SL
– for every (s, i, o, t) ∈→, there are transitions in →L

such that s
i−→ s1

o−→ t , where s1 ∈ SL that does not have
any other incoming or outgoing transitions.

Definition 6 Given a set of input traces, a prefix tree acceptor
PT A is a tree-like automaton (a.k.a. trie automaton) where

Fig. 5 Active learning framework

each input trace in the set is represented by a path from the
initial state to an accepting state, and no state has multiple
incoming transitions.

4.2 Active learning

Angluin [4] presented active learning in 1987 to learn regular
languages. The technique is based on the minimal adequate
teacher (MAT) framework. Figure 5 shows the MAT frame-
work for active learning. The MAT framework assumes the
availability of a teacher who isminimally able to provide cor-
rect answers to the queries posted by the learner. The learner
is provided with a finite input alphabet for the SUL.

With this input alphabet, the learner starts learning the
SUL by posting membership queries (MQs) to the SUL.
Based on the responses to these queries, the learner for-
mulates a hypothesis. To verify the correctness of this
hypothesis, the learner posts an equivalence query (EQ)
to the equivalence oracle (EO). If the hypothesis is a true
representation of the behavior of the SUL, the learning is
completed and thus stopped. Otherwise, the EO returns a
counterexample based onwhich the learner further refines the
learning. The counterexample shows the difference between
the currently learned model and the SUL. The learning cycle
continues until the hypothesis is accepted by the EO.

Several learning and equivalence checking algorithms
have been proposed over the years. The learning algorithms
include the TTT [26], the Rivest–Schapire [47], the Kearns–
Vizarani [32], etc. All of these algorithms still follow the
basic MAT framework proposed by Angluin. Previous case
studies show that TTT scales up to learning larger compo-
nents. TTT is highly efficient due to the use of redundancy
free data structures. It asks fewer membership queries and
uses less memory in the process. Therefore, in our work we
also choose TTT as the learning algorithm.

Tofind these counterexamples, usually some conformance
testing technique such as theW-method [13], theWp-method
[18] and hybrid-ADS [53] are used to test the hypothesis. In
theory, using the conformance testing techniques as equiv-
alence oracle can learn a complete model. However, this
requires the number of states of the SUL to be known. Yet

123

Interface protocol inference to aid understanding legacy software components 1525

for legacy systems, the (exact) behavior of SUL is unknown.
Therefore, in practice an estimation of the number of states is
used. As the number of required test queries increases expo-
nentially with the increased difference in number of states
between a hypothesis and the actual system behavior [59],
the estimates are often kept lower for performance reasons.
Due to the number of queries posted to the SUL being finite,
and the use of reduced estimates, it is practically impossible
to guarantee that the learned model is the true representation
of the behavior of the legacy component.

In our work, we have experimented with several existing
equivalence checking methods which are explained below.

4.2.1 Wp-method

The Wp-method [18] is a conformance testing technique
which generates test cases to characterize the specification.
The test trace generated by theWp-Method is the cross prod-
uct of three sets of sequences, namely prefix, infix and suffix.
Here we informally describe these sets.

The prefix P is a prefix closed set which contains all the
sequences required to reach every state of the hypothesis from
the initial state. This set of sequences ensures we reach all the
states of the hypothesis. However, the SUL can have hidden
states that do not exist in the specification. The Wp-method
introduces a parameter k which is the number of potential
extra states in the SUL. The infix set is constructed using
the value of k : {ε ∪ Σ ∪ · · · ∪ Σk+1} where Σ is a set of
symbols used in the hypothesis. The Wp-method generates
an n-complete test suite consisting of test cases which are
concatenations of an element of the prefix set P , the infix
set I and the suffix set S. This is given by the equation, π =
P · I · S. The test suite ensures that the test cases exhaustively
examine not only the expected states but also k extra states.
The infix set ensures we cover the entire SUL in case it has
more states than the hypothesis. The suffix set S comprises
the sequences that identify every single state in the model.
The suffix set checks whether the prefix and infix agree on
the states that are reached.

The Wp-method reduces the size of the test suite as com-
pared to its predecessor, the W-method [13], by reducing the
size of the suffix set. The Wp-method is based on the obser-
vation that a subset of the suffix set can be selected, based
on the final state in the Mealy machine at the end of the tran-
sitions due to the prefix and infix inputs. For example, after
a combination of prefix and infix inputs, if the model is in
state 1, the suffix set for state 1 is used. So, the entire suffix
set is not needed every single time.

4.2.2 Hybrid-ADS

An adaptive distinguishing sequence (ADS), proposed by
Lee et al. [36], can be used to reduce the suffix set to a single

sequence. An ADS is actually not a sequence; it is a distin-
guishing tree that can be used for state identification. State
identification refers to the problem of identifying the initial
state of aMealymachine.After the transitions from the prefix
and infix sequences, the current state of the running machine
becomes the initial state for an ADS. It is then possible to
identify that state using an ADS. However, an ADS does not
always exist for every Mealy machine.

For this reason, Smeenk et al. [53] proposed Hybrid-ADS
(H-ADS),which is an augmentation to the basicADSmethod
usingHarmonicState Identification (HSI) [42].HSI can iden-
tify states in partially specified non-deterministic finite state
machines (PNFSMs). A PNFSM is a finite state machine
(FSM) with possibly multiple input transitions of the same
type for each state, some (or even all) of which may be
unknown. Given that FSMs are a subclass of PNFSMs, the
same technique can also be applied to all theMealymachines
in our case. In the absence of an ADS, H-ADS supplements
HSI with the intermediate results of the ADS tree.

4.2.3 Cache-based oracle

A cache-based oracle is based on the idea that queries that
have been presented to the oracle before do not need to be
asked again, for instance, the counterexamples that a learner
has already processed provided by the tester or the testing
queries that have already been asked in the previous testing
round.

A cache-based oracle also facilitates sink state optimiza-
tion. This means that if an illegal trigger is encountered, the
whole input sequence after that trigger is not tried. Testing
algorithms do not know which inputs are illegal and they
will try all combinations up to a certain length after such
input. These input queries can be trivially answered using
interfacing protocol knowledge (see Sect. 7.2.2).

The active learning tool, LearnLib [45], supports both
of the above functionalities.2 Upon construction, the cache
is provided with a delegated oracle. Queries that can be
answered from the cache are answered directly, and others
are forwarded to the delegated oracle. When the delegated
oracle has finished processing these remaining queries, the
results are incorporated into the cache.

4.2.4 Log-based oracle

Yang et al. [67] have proposed to use software execution
logs to refine the hypothesis proposed by the learner, before
posting it to the conformance testing algorithm. The log-
based oracle is built on the observation that logs represent
real behavior of the system. Hence, counterexamples can be

2 http://learnlib.github.io/learnlib/maven-site/0.9.1/apidocs/de/
learnlib/cache/mealy/MealyCacheOracle.html.

123

http://learnlib.github.io/learnlib/maven-site/0.9.1/apidocs/de/learnlib/cache/mealy/MealyCacheOracle.html
http://learnlib.github.io/learnlib/maven-site/0.9.1/apidocs/de/learnlib/cache/mealy/MealyCacheOracle.html

1526 K. Aslam et al.

found by identifying traces present in the logs that cannot
be generated by the hypothesis model. The log-based oracle
constructs aPT A from the execution logs of the SUL. After
constructing the PT A, the log-based oracle computes the
difference automaton for PT A\Hypothesis. If the result-
ing automaton has at least one accepting trace, which shows
the language is not empty, the log-based oracle generates
the trace and returns it as a counterexample. Otherwise, the
hypothesis is forwarded to the conformance testing tech-
nique. A log-based oracle provides counterexamples without
posting any test queries to the SUL.

In our work, we have combined logs and cache with both
theWp-method andH-ADS.The complete list of equivalence
checking methods we experimented with is given below.

1. Wp
2. Cache + Wp
3. Log + Wp
4. Cache + Log + Wp
5. H-ADS
6. Cache + H-ADS
7. Log + H-ADS
8. Cache + Log + H-ADS

4.3 LearnLib and AutomataLib

We use the LearnLib [45] tool to perform active learning.
LearnLib is a free and open-source (Apache License 2.0)
Java framework for automata learning. LearnLib implements
the latest learning techniques and algorithms and is actively
being developed and maintained. Automatalib [27] is the
standalone finite state machine library3 that is developed on
top of LearnLib. It provides a rich toolbox of data structures
and algorithms for finite state machines, facilitating graph
theory, automata theory and model checking.

4.4 Analytical software design (ASD)

ASD:Suite, a tool by the company Verum4, is based on
Verum’s patented Analytical Software Design (ASD) [7]
technology. ASD and ASD:Suite are used interchangeably
in this paper. ASD is a component-based technology which
enables engineers to specify, design, validate and formally
verify software components for complex software systems.
The basic unit of ASD is a component. ASD components
provide and use services from other components. An ASD
component is composed of two types of models; namely
interface and designmodels. The external behavior of a com-
ponent is specified in the interface model. The design model

3 https://learnlib.de/projects/automatalib/.
4 http://www.verum.com/.

Fig. 6 Communication over ASD interfaces

specifies the internal behavior of the component and how it
interacts with other components. All ASD components have
both an interface model and a design model. ASD offers for-
mal verification of thesemodels, enabling engineers to verify
the system design before starting implementation.

The hardware or software components in a system that are
not developed using ASD are said to be foreign components.
Foreign components can be some third party component,
legacy code or hand written code. They do not necessarily
have a design model but need to have an interface model that
allows ASD to verify their interaction with the rest of the
system.

ASD interfaces With the help of Fig. 6, we explain the
terminology related to ASD, w.r.t. the SUL, that will be used
later in this paper. The figure shows three components, C,
SUL and S. Here,C is the client for SUL and S is the server for
SUL. The interface model specifies application, notification
and modeling interfaces for a component. A component pro-
vides services to other components via application interfaces.
Over application interfaces, call events are sent and reply
events are received. Notification interfaces exist to provide
notification events to clients. The application and notification
interfaces of the SUL collectively constitute the provided ser-
vice of the SUL. In Fig. 6, the arrows directed toward and
from the SUL are its inputs and outputs, respectively.

Modeling interfaces define modeling events, which rep-
resent spontaneous behavior of an interface model, i.e., they
are anonymous notifications from servers to be replaced by
concrete notifications in an implementation of the compo-
nent. A modeling event may be optional, meaning the event
may or may not occur, or it can be inevitable, meaning that
if no other event occurs, this event will eventually occur.

An ASD component can use services from other ASD or
foreign components. Used services define the link between
the design model and the used interface model. For foreign
components, only interface models are available and these

123

https://learnlib.de/projects/automatalib/
http://www.verum.com/

Interface protocol inference to aid understanding legacy software components 1527

interface models ensure proper interfacing of foreign com-
ponents with the rest of the system.

Stable failures refinement For everyASDengineered com-
ponent, its interface model refines its design model modulo
stable failures refinement, denoted by 	SFR .5 Let Li , where
i ∈ {1, 2}, be two LTSes. The LTS L1 refines LTS L2 in sta-
ble failures semantics if and only ifweak traces (L2)⊆weak
traces(L1) and failures(L2) ⊆ failures(L1). A weak trace is
a trace where internal actions, i.e., τ , are ignored. The set
of failures contains information about all the actions that are
not allowed for each state of that LTS. For a more detailed
explanation of SFR, the reader is referred to [34].

4.5 mCRL2

mCRL2 is a formal model verification and validation lan-
guage, with an associated toolset. Specifications written in
mCRL2 can be converted to LTSes. Even in the presence
of reference models, it is hard to manually compare models
when the number of states and actions increases.We therefore
use mCRL2 for behavioral reduction of models and check-
ing formal relations between learned and reference models.
For this purpose, we convert the Mealy machine to LTS. It is
to be mentioned that SFR is called weak trace refinement in
mCRL2 toolset.

5 Methodology

In this section, we present our methodology to infer the
interface protocol of a software component. The proposed
methodology combines equivalence checking and model
learning. We use the terms active learning result for models
obtained by learning the implementation of software compo-
nents and derived interface protocols for interface protocols
inferred from active learning results. The overview of the
methodology is shown in Fig. 7 which summarizes the learn-
ing and validation steps for performing active learning and
inferring the interface protocol of software component.

As explained inSect. 4.2, applying active learning requires
to identify the number of states in the SUL. This requires
soundknowledge of theSUL, as over-approximation can lead
to performance issues and under-approximation will result
in learning incomplete behavior of the SUL. We learn MDE-
based components, so that we can use the number of states
from the behavior of the MDE models (i.e., reference mod-

5 In the conference version of this paper [5], we discussed that for every
ASDengineered component, its interfacemodel refines its designmodel
modulo failures divergence refinement, denoted by	FDR . Experiments
on a larger set of ASD components showed that this relation does not
always hold. This led to further investigation and the correspondence
with the company Verum (which developed ASD) revealed that the
relation is stable failures refinement.

els). In case of non-MDE software components, static code
analysis [23] may help provide the estimate for number of
states.

The presence of reference models also facilitates for-
mal comparison with the learned results. However, our
approach can be easily applied on legacy software compo-
nents, as we already applied and validated our methodology
on components with reference models. ASD components are
particularly experimented with, as this research takes place
at ASML which uses ASD for developing new control soft-
ware. This provides uswith a chance to validate our approach
on industrial components.

While learning ASD software components, ASD design
models are used as reference models for comparison with the
models learned by the active learning algorithm by interact-
ingwith the implementation of theASDsoftware component.
The derived interface protocols are compared with both the
ASD design and interface models. This in turn provides the
validation for the active learning technique as well. The con-
fidence in the technique and learned results cannot be gained
by learning an arbitrary black box component.

Our approach comprises two main steps. Based on the
translation schemes presented in [29], a state space can be
generated for ASD interface and design models. First, we
learn the components with active learning and validate the
learning results by comparing them with the reference state
space of ASD design models of software components, indi-
cated by 1 in Fig. 7. In the second step, we abstract the
active learning results to the level of the desired interface. The
inferred interface model is also verified formally to ensure
it refines the ASD design model of that component modulo
SFR, indicated by 2 in Fig. 7. Below we explain both steps
of our methodology in detail.

5.1 Step 1: Learning the component’s behavior and
validating learned results

5.1.1 Learning component’s behavior with active learning

LetA.dm be the designmodel of anASDengineered software
component and our SUL from now on. The A.dm imple-
ments the services specified in the interface model A.im and
also uses services from other components. As stated ear-
lier, A.im refines A.dm in stable failures semantics. The ASD
code generator generates code from A.dm. An active learn-
ing algorithm interacts with this code to learn the behavior of
the component. We perform this learning under the assump-
tions listed below. These assumptions relate to the conditions
needed to be fulfilled by the SUL.

– A can be isolated from its environment.
– Outputs from A can be observed and A does not produce

“spontaneous” outputs.

123

1528 K. Aslam et al.

Fig. 7 Methodology: from component to interface protocol. The func-
tion arrows represent abstraction and transformation functions. Dotted
lines represent formal relations. The extensions .im and .dm represent

ASD interface and designmodel; .lts and .mm refer to labeled transition
system and Mealy machine formalisms, respectively

– A can be initialized and reset to its initial state after every
query.

– A is input enabled.
– A is deterministic.
– The internal behavior of A does not vary due to timing.
– The values of data parameters do not influence the behav-
ior of A.

These assumptions are satisfied for ASD-generated code
as ASD has a clear separation between interface and design
models. Thismeans that for anyASDdesignmodel, the inter-
face it implements and the interface it requires are strictly
defined. The outputs are return values of method calls and
notifications for which a callback can be registered. As such,
all outputs can be observed. ASD-generated code has no
spontaneous behavior. Unless a function is called on the
API of the component, no code is executed. Resetting is
done by simply creating a new instance. Java takes care of
destroying the instances through garbage collection. ASD
components are not guaranteed to be input enabled.We solve
this issue by implementing an interfacing protocol, explained
in Sect. 7.2.2. ASD design models must be deterministic.
ASD checks this through verification, i.e., it checks that rule
cases for the same input in the same state do not have overlap-
ping. All models are un-timed. InASD, data cannot influence
behavior. It can only be passed along to other components
(including foreign components) and be used for verification
purposes.

Fig. 8 Mapping between a active learning scope and b translated ASD
models from [29]

Some of these assumptionsmay not hold in practice. How-
ever, for instance, if a SUL cannot be fully isolated, the SUL
together with part of its environment could potentially be
learned. Besides, there are ways to perform active learning
without a means to reset the SUL, for instance, by using
homing sequences [47]. For our work, we do not relax any
of these assumptions.

5.1.2 Comparison of learned results with reference ASD
design model

To validate the learning results, we check the equivalence
between the learned results and the ASD design models. As
mentionedbefore,wegenerate the state space forASDdesign

123

Interface protocol inference to aid understanding legacy software components 1529

Fig. 9 ASD models of the SUL and Used service

and interface models based on the translation scheme pre-
sented in [29]. The mapping between active learning results
and translations obtained from [29] is shown in Fig. 8. Before
we compare the translatedASDdesignmodelswith the active
learning results,we apply renaming to synchronize the names
of actions between translated and learned models. Without
this renaming that is having same names for actions for both
learned results and the reference models, we cannot check
the equivalence between them. So from now on, as shown
in Fig. 8, we use (outwardNotification, triggerNotification)
for notification events, (outwardReply, sendReply) for reply
events and α for Call events. To unify the naming between
active learning results and referencemodels,we apply renam-
ing on A.dm.lts.

To apply this renaming, we update the transition relation
and define fLT S(〈S, Act,→, ŝ〉) = 〈S, Act, {ρ(e)| e ∈→
}, ŝ〉, where

ρ((s1, a, s2)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(s1, α, s2) ifa ∈ {outwardReply(α),

sendReply(α),

outwardNotification(α),

raiseNotification(α)}
(s1, a, s2) otherwise.

The renaming is performed using the Automatalib. After
renaming, the resulting LTS may contain a relatively large
number of τ actions which can be reduced by apply-
ing divergence–preserving–branching–bisimulation [21] to
increase understandability and readability of the resulting
LTS. We choose divergence–preserving–branching–
bisimulation for behavior reduction because it preserves the
SFR relation.

Now having derived A.dm′.lts, we check whether the
active learning result A.mm.lts is isomorphic with its refer-
ence design model A.dm′.lts. Isomorphism is a very strong
form of equivalence because if two LTSes are isomorphic,
their structure is exactly the same. Isomorphic LTSes are only
allowed to differ from each other in the labels of their states.
If the isomorphism exists between active learning result and
reference design model, it shows the learned model is cor-
rect and complete. This comparison is performed using the
AutomataLib library.

5.2 Inferring and validating the interface protocol

The second step of our methodology concerns inferring and
validating the interface protocols of the software compo-
nents.

5.2.1 Inferring interface protocol

For an ASD component, the potential interface models for a
given designmodel are those which are stable failures related
to that design model, i.e., {im| im 	SFR dm}, where im
represents an interface model and dm represents a design
model. This suggests that one design model can have several
potential interface models. As we have already learned the
component behavior, one of the immediate solutions can be
to use the learned model itself as the interface protocol by
applying the identity function. Every design model is sta-
ble failures related to itself so the learned behavioral model
can be considered as the interface protocol. From the set of
potential interface models, this is the most strict interface
model as it allows only what is possible to be done according

123

1530 K. Aslam et al.

to the design model. The most flexible interface model will
be a flower model, i.e., a model which allows every possible
action.

To abstract away the details of interaction with the ser-
vices provided by other components, server side actions are
abstracted away from A.mm.lts and A.dm’.lts. A function
f I M ′ is introduced to perform this abstraction. This infers
the interface protocol from A.mm.lts, the model obtained by
active learning. For A.mm.lts, we define Σused ⊂ Σ and
�used ⊂ �, where Σused and �used represent input and
output actions from used services, respectively. We define
Actused = (Σused ∪ �used) containing actions from used
services. Then, f I M ′(〈S, Act, →, ŝ〉) = 〈S, Act, {ρ(e) |
e ∈→}, ŝ〉, where ρ is defined as follows:

ρ((s1, a, s2)) =
{

(s1, τ, s2) if a ∈ Actused
(s1, a, s2) otherwise

As for fLT S ,Automatalib is used for renaming anddivergence–
preserving–branching–bisimulation canbeoptionally applied
to increase readability of the inferred interface protocol.

5.2.2 Validation of interface protocol

To confirm the inferred interface protocol A.im′.lts is a valid
interface protocol, we need to check how it formally relates
to A.dm′′.lts. Before applying this comparison check, we
apply f I M ′ to A.dm′.lts as well to hide actions from used
services. Since we hide the same actions on both sides and
the LTSes A.dm′.lts and A.mm.lts were isomorphic, surely
A.im′.lts 	SFR A.dm′′.lts, SFR is reflexive in nature [34].
This validates A.im′.lts as interface protocol for A.dm′′.lts.
We also verify that the original interface model, (A.im.lts),
refines the inferred interface protocol, (A.im′.lts), modulo
weak trace inclusion. We choose weak trace inclusion to be
checked because the theory of active learning is based on
traces, and the weak trace inclusion also takes care of the τ

actions.
To guarantee that the translation from ASD models to

mCRL2 models is correct and does not lose any behavior,
we check that A.im.lts is a stable failures refinement of
A.dm′′.lts, as expected.

In this way, we have an approach for the formal validation
of the results learned from active learning. In the following
section, we discuss a small example to illustrate our method-
ology.

6 Example

To demonstrate our approach, we designed an example ASD
component Awith one application and one notification inter-
face. Figure 9 shows the interface and design models of

Fig. 10 Active learning result of component A, denoted by A.mm.lts
in Fig. 7

component A and the interface model of its server compo-
nent S. The ai.a and bi.b are the call events in application
interfaces of A and S, respectively, ani.an is the notification
event sent by A to S, and bni.bn is the notification event sent
by S to A. The interface models of A and S are flower models,
allowing every triggered behavior.

We learn the behavior of the component A by applying
active learning, using TTT as the learning algorithm and
the Wp-method as the equivalence checking algorithm. Fig-
ure 10 shows the active learning result. The green circle in the
state diagrams shows the initial state. To validate the active
learning result, we check isomorphism between the learned
result and state space generated from its ASD design model.
Then, server side actions are being hidden using f I M ′ to infer
the interface protocol. Divergence–preserving–branching–
bisimulation is also applied to reduce the number of τ actions.
The transformations are applied as specified in the method-
ology to obtain A.mm.lts and A.im′.lts as shown in Figs. 10
and 11, respectively.

The inferred interface protocol (A.im′.lts), shown in
Fig. 11, refines the learnedmodel, (A.dm′.lts),modulo stable
failures refinement. The original interfacemodel, (A.im.lts),
refines the inferred interface protocol, (A.im′.lts), modulo
weak trace inclusion.

7 Our framework for applying active
learning and inferring interface protocols

In this section, we illustrate our Java framework which
automates the proposed methodology for inferring interface
protocols of software components using active learning in an
automated manner. The framework consists of a state-of-the-
art learning algorithm (TTT), several equivalence checking
methods, the middleware to connect SUL to the learning
and equivalence checking algorithm and the abstraction of
the active learning result to obtain interface protocols from

123

Interface protocol inference to aid understanding legacy software components 1531

Fig. 11 Inferred interface model of component A, denoted by A.im’.lts
in Fig. 7. T represents τ actions

a learned component. For validation of the framework, it is
augmentedwith the formal checkingw.r.t. the referencemod-
els (if available). The framework can be used to apply active
learning on any software, that is, MDE-based or traditionally
developed software. Below, we explain the framework with
reference to ASD components.
Overview of framework The toolchain used to develop our
framework is as follows (Fig. 7): from A.im to A.java,
ASD is used to automatically generate the code from the
design model. LearnLib is used to learn the implementa-
tion of A.java with active learning and its output is A.mm.
The toolchains for learning the behavior and generating
the reference behavior are implemented separately, inde-
pendent of each other, to reduce the chances for similar
mistakes in both chains. The independent toolchains provide
confidence that the comparison check between learned and
reference models is a proper validation of the approach. Iso-
morphism is checked with AutomataLib. Renaming is done
with Automatalib, and the SFR check is performed using
the mCRL2 toolset. The state spaces from the interface and
design models are generated, which provide the reference
behavior of the software component. Next we describe the
details of our framework.

7.1 Obtaining the SUL

To obtain the SUL, we generate Java code for the software
componentwith theASD toolset.We also collect information
about the API of the SUL, such as the names of client and
server function calls, the number of inputs and outputs, the
number of states in the Mealy machine representation of the
reference model. This information is later used during the
analysis of the obtained results.

7.2 Learning the behavior

Figure 12 shows the learning setup for connecting the active
learning tool (LearnLib) to the SUL. The setup consists of

Fig. 12 Learning setup to connect LearnLib and MDE SUL

two parts: the SUL and the LearnLib. The details of the learn-
ing setup are discussed below.

7.2.1 Client and server stubs

The SUL is isolated from its environment. To learn all the
interactions of the SUL with its environment, the clients and
servers of the SUL are stubbed, similar to how this is done in
the field of software testing. LearnLib can interact directly
with the SUL or through the client and server stubs, depend-
ing on what is simpler to achieve. Client stubs store the client
callbacks received from the SUL, so that the interfacing pro-
tocol of the SUL wrapper may retrieve them when needed.
Server stubs are needed so that the SUL can create instances
of its server components. Then, the SUL can invoke methods
for server calls on those server components.

7.2.2 SUL wrapper

Typically, a SUL is not directly coupled to the LearnLib, but
instead a SUL wrapper is used. The SUL wrapper is used
as a bridge between the SUL and the LearnLib. In our case,
the SUL wrapper includes an API mapper and an interfacing
protocol.

Usually, inputs and outputs in the LearnLib are repre-
sented as strings. TheAPImappermaps input names to client
function calls on the actual SUL and maps client return val-
ues from the SUL back to learner outputs. On the server
side, the role of inputs and outputs is swapped with respect
to the client side. The API mapper also creates and destroys
instances of the SUL. A new instance of the SUL is used for
each input sequence, to start from the same initial state.

To reject illegal inputs related to the particular state of the
SUL, we inject an interfacing protocol between the Learn-
Lib and the SUL. For instance, when the component is idle,
there is no active server call. Thus, a server reply will be an
illegal input. The protocol will reject such illegal inputs from
the learner with an ‘error’ output. The interfacing protocol
is designed in a maximally permissive way, that is, it only

123

1532 K. Aslam et al.

rejects inputs as much as necessary. This way, all the relevant
behavior of the SUL can be learned.

Furthermore, we use LearnLib to learn Mealy machines.
LearningMealy machines require alternating inputs and out-
puts, to avoid needing timeouts to decidewhether or not there
will be an output. In case of multiple consecutive outputs, we
join them into a single output, for instance, client notifica-
tions collected in the client stub and subsequently joinedwith
the next client reply or server call. In case there are no out-
puts, we inject an artificial output. Server notification replies
are an example of artificial outputs.

7.2.3 Learning and testing algorithms

The framework can be easily used and integrated with dif-
ferent learning and equivalence checking algorithms. The
equivalence oracles based on caching, logs and passive learn-
ing results are already integrated into the framework.

7.3 Deriving interface protocol

After learning the behavior of the software component, the
actions fromused services of the component are being hidden
using AutomataLib. This provides the interface protocol of
the software component. If a component interacts with sev-
eral other components over different interfaces, choice can
be made about which interface needs to be inferred.

7.4 Comparison with referencemodels

AutomataLib is used to check isomorphism between active
learning results and reference ASD design models. The com-
parison result indicates whether the correct and complete
behavior of the SUL is learned, and provides validation for
our framework. SFR is checked between the derived interface
protocol and the ASD reference design model using ltscom-
pare from the mCRL2 toolset.

8 Evaluation of proposed approach

Using the framework described in the previous section, we
perform an evaluation of our methodology on industrial
MDE-based software components. We conducted this work
at ASML, the world market leader in lithography systems.
ASML develops complex machines called TWINSCAN,
which produce integrated circuits (ICs). A TWINSCAN is
a cyber-physical system containing software based on a
codebase of over 50million lines of code. The software archi-
tecture is component based, where components interact with
each other over interfaces. ASML uses MDE techniques,
such as ASD [7] to develop new components in a model-

driven way. We present our study according to the guidelines
of Reuneson et al. [49].

8.1 Goal

The study aims to evaluate our methodology by inferring
interface protocols for industrial software components.

8.2 Study object

We apply active learning on industrial MDE-based con-
trol software components from a sub-system of ASML’s
TWINSCANmachine [67].UsingASD technology, the com-
ponentswere initially designed in 2012 .Thebehavior of each
component is represented by a control flow model, modeled
as a Mealy machine. The generated code consists of more
than 700 KLOC. Table 1 shows the range of inputs and states
for the components under study. The number of inputs and
the number of states in the behavioral model are key char-
acteristics that determine the SUL complexity with respect
to active learning [59]. The chosen components are nicely
distributed over the number of inputs and number of states.
Figure 14 shows the spread of our chosen components over
these features.

8.3 Experimental setup

Using the learning setup shown in Fig. 12, we perform
active learning. The learning algorithm selected is the TTT,
as implemented in the LearnLib. TTT is highly efficient
due to redundancy free data structures. Testing is known to
hinder the performance of active learning process signifi-
cantly [67]. For testing the correctness of the hypothesis, we
experimented with several equivalence checking methods,
explained in Sect. 4.2 to learn the maximum number of com-
ponents. We evaluated the impact of several testing methods
on the performance of the active learning process as well.

We chose two conformance testing techniques, the Wp-
method and the H-ADS. The Wp-method is a traditional
conformance testing method implemented in the LearnLib,
and H-ADS has recently shown promising results when
applied for learning a large industrial software component.
H-ADS reduces the test suite and is therefore expected to
outperform the Wp-method. We combine both these con-
formance testing techniques with the logs- and cache-based
oracles. Figure 13 depicts the setup we used for these exper-
iments.

Timeout of experimentsActive learning can learn the com-
plete model of a software component if (i) provided with the
correct number of expected states in the active learning result,
and (ii) continued for a long enough period of time, which
increases exponentially with the increase in the number of
states. As this is not practically possible, we set the timeout

123

Interface protocol inference to aid understanding legacy software components 1533

Table 1 Features summary of
202 components

Inputs States
Client func. calls Server ret. values Server notifs. Total

Min 1 0 0 1 1

Max 77 176 32 201 8446

Fig. 13 Experimental setup for applyingdifferent equivalence checking
methods. Besides theWp-method, we experiment with H-ADS as well.
An instance of Cache-based oracle is also integrated into the framework

for learning a single component to a duration of 1h. In one
experiment, we extended the timeout to 8 h, 2 days and 8 days
(Sect. 8.7). This extension did not benefit the active learning
process significantly, so we settled for a timeout of 1h. If a
timeout occurs, the last hypothesis produced during learning
is used for comparison with the reference model. Since in
case no timeout occurs, the final testing round will not find a
counterexample, this may be a lengthy testing round. After
obtaining and comparing the active learning results with the
reference models, i.e., checking for isomorphism between
learned and reference models, we remove the server side
actions to infer the interface protocols. We later form our
conclusions based on the components learned with in 1h.

8.4 Hardware setup

All the experiments are executed on high-performance clus-
ter with Skylake Gold 6126 CPU, 2.6 Ghz, 190 gigabytes
memory and RHEL 7.2 operating system.

8.5 Metrics

We record the number of components learned and the total
learning time to measure the performance of the active learn-
ing process. For all the learned components, we are able to
derive interface protocols.

The total learning time is the sum of the time spent in the
learning and the testing phases of active learning. The time
spent in then deriving the actual interface protocols by hiding

server side actions is negligible and therefore not taken into
account.

8.6 Stability of measurements

Since we ran our experiments on a cluster and one of our
metrics is the time spent in the active learning process, there
can be noise in our measurements due to factors like shared
memory, caching, garbage collection and CPU throttling.
Therefore, we repeat each experiment with different testing
algorithms 30 times to ensure minimization of the effect of
noise. For a given testing algorithm, for each model we cal-
culate the coefficient of variation (standard deviation/mean)
for the time spent in active learning over these 30 runs. If the
value of coefficient of variation was less than 0.3, the mea-
surements are acceptable and we average the 30 values [22].
If it was larger, we further analyzed the data and saw that in
such cases there are 1–3 outliers contributing to the greater
values of coefficient of variation. We therefore take out the
outliers and average the rest of the values. In this way, we
ensure stability of our measurements.

8.7 Results

8.7.1 Number of components learned

As both the theoretical (worst-case) bounds for learning and
testing algorithms are influenced more by the number of
states than by the number of inputs [16,26], we grouped the
components according to the number of states for the analysis
of our results.

The number of components learned by using different
equivalence checkingmethods is shown in Table 2. The num-
ber of states of our chosen software components ranges from
1 to 8446. The first column of the table shows the range of
number of states. The second column shows the number of
components belonging to a particular range of number of
states. There are more components with number of states
from 1 to 100, so we have subdivided those components in
smaller-sized groups with intervals of 25. From 101 to 200,
the interval is 50, and then till 800, the interval is 100. We do
not have any component in the range between 401 and 500
states. Above 800, we have only 9 components. The third col-
umn shows the number of components that are not learned
by any equivalence oracle. The fourth column and onwards
of the table show the number of components learned by each

123

1534 K. Aslam et al.

Ta
bl
e
2

N
um

be
r
of

co
m
po
ne
nt
s
le
ar
ne
d
by

ea
ch

eq
ui
va
le
nc
e
or
ac
le
gr
ou
pe
d
ac
co
rd
in
g
to

th
e
nu
m
be
r
of

st
at
es

N
o.

of
st
at
es

C
om

ps
.

C
om

ps
.n

ot
le
ar
ne
d

by
an
y
or
ac
le

W
P

C
ac
he

+
W
p

L
og

+
W
p

C
ac
he

+
L
og

+
W
p

H
-A

D
S

C
ac
he

+
H
-A

D
S

L
og

+
H
A
D
S

C
ac
he

+
L
og

+
H
-A

D
S

1–
25

99
0

88
97

94
99

90
94

94
98

26
–5
0

34
4

9
20

22
27

13
21

23
27

51
–7
5

10
3

2
5

2
6

2
4

4
5

76
–1
00

16
5

1
8

0
9

1
7

3
11

10
1–
15
0

7
6

0
0

0
1

0
0

0
0

15
1–
20
0

7
6

0
1

0
1

1
1

1
1

20
1–
30
0

1
1

0
0

0
0

0
0

0
0

30
1–
40
0

3
3

0
0

0
0

0
0

0
0

40
1–
50
0

–
–

–
–

–
–

–
–

–
–

50
1–
60
0

4
3

0
1

0
1

0
1

0
1

60
1–
70
0

9
5

0
0

0
4

0
0

0
0

70
1–
80
0

3
1

0
2

0
2

0
2

0
2

80
1-
on
w
ar
ds

9
9

0
0

0
0

0
0

0
0

To
ta
l

20
2

46
10
0

13
4

11
8

15
0

10
7

13
0

12
5

14
5

C
ac
he

+
L
og

+
W
p
le
ar
ne
d
m
ax
im

um
nu
m
be
r
of

co
m
po
ne
nt
s
an
d
W
p
le
ar
ne
d
th
e
le
as
t.
O
ut

of
20
2
co
m
po
ne
nt
s,
46

co
m
po
ne
nt
s
w
er
e
no
tl
ea
rn
ed

by
an
y
eq
ui
va
le
nc
e
or
ac
le
an
d
15
6
co
m
po
ne
nt
s

w
er
e
le
ar
ne
d
by

at
le
as
to

ne
eq
ui
va
le
nc
e
or
ac
le

123

Interface protocol inference to aid understanding legacy software components 1535

Fig. 14 Inputs vs states with learning results for Cache + Log + Wp

equivalence oracle from a particular group. The last row of
the table shows the total number of components learned by
each oracle.

Overall, the smallest number of components is learned by
the Wp-method. This is expected because the Wp-method
generates longer test sequences and therefore takesmore time
to find counterexamples. H-ADS performed better than the
Wp-method.We see a considerable increase in the number of
learned components when either the Wp-method or H-ADS
is combinedwith caching, and evenmorewhen logs are used.
The logs represent the real behavior of the software. Using
logs, counterexamples are found without sending queries to
the SUL. This makes the whole process quite faster, resulting
in more components being successfully learned within the
time limit of 1h.

A closer look at the table shows that for components with
smaller number of states (0–25), all the algorithms learned
the vast majority if not all of the components. As the number
of states grows, the difference in performance of the oracles
becomes more pronounced. Especially when the number of
states rises above 100, except for one component that is also
learned by H-ADS, the components are only learned when
we aid conformance testing techniques with cache and logs.
Out of 202 components, there exist 46 components that are
not learned by any testing method and 156 components are
learned by at least one of them.

The maximum number of components is learned by
Cache + Log + Wp. There still exist six components that
are not learned by this best performing oracle, but that are
learned by at least one other oracle. The relation of the fully
and partially learned components by Cache + Log + Wp to
the size of the components is shown in Fig. 14. Regarding
the number of inputs in the API, components with smaller as
well as components with larger numbers of inputs have been
correctly and completely learned. Regarding the number of

Fig. 15 Comparison of different equivalence oracles. Here we only
include components for which learning is finished with in 1h

states, as the number of states increases, less components
can be learned completely. The largest component w.r.t. the
number of states learned by Cache+Log+Wp has 24 inputs
and 767 states; the largest component w.r.t. the number of
inputs learned has 164 inputs and 31 states. For models with
a large number of states and a large number of inputs, the
number of states has more impact than the number of inputs,
as discussed before.

Another important finding from Table 2 is that the number
of states is not the only criterion to measure the complexity
of a component with respect to active learning. For instance,
there are four components with 201–400 states. None of
these components is learned by any equivalence oracle. How-
ever, components with evenmore states are still learned. This
shows that there might be some difficult design patterns that
make a particular component harder to be learned, apart from
the number of states. To improve the active learning perfor-
mance, such design patterns can be looked into particularly,
as done previously [67].

8.7.2 Time spent in active learning

To analyze how much cost different equivalence checking
methods incur to the active learning process, we plot the time
spent in active learning by each equivalence oracle against
the number of components learned, in Fig. 15. On the x-axis,
the total time spent on active learning is shown, while the y-
axis presents the number of components learned within that
time, by a certain equivalence checking method. Each line in
the plot represents one equivalence oracle, as per the legend.

The higher a line appears in the graph at some partic-
ular time instant, the greater the number of components
learned by the equivalence oracle represented by that line
and thus better the performance of the equivalence oracle.

123

1536 K. Aslam et al.

Fig. 16 Learning time versus testing time in active learning, for the 150
fully learned components by Cache + Log + Wp

Similarly, the more to the left a line appears in the graph for
some particular number of learned components, the faster
the equivalence oracle represented by that line learned that
number of components. The graph shows that using bet-
ter equivalence checking methods, more components can be
learned completely and in less time. However, the rate at
which the number of learned components increases decreases
over time, as can be seen by the flattened ends of the lines
in the graph. This shows that only granting more time to the
active learning process does not help; instead better tech-
niques and strategies are required to find counterexamples
faster to finish learning.

At the end of the 1h maximum time per component,
Cache+Log+Wp learns the highest number of components
within the given time bound. Wp performed worst among
all equivalence oracles. The above results show that caching
should always be turned onwhile performing active learning.
If available, the real-time logs of software execution should
also be used. Applying these two techniques greatly reduces
the number of test queries, thus significantly improving the
performance of the active learning process.

We analyze the time spent in the learning and testing
phases of active learning for Cache + Log +Wp . Figure 16
shows boxplots for the duration of the learning and testing
algorithms of the execution of active learning phase. Only
models that are correctly and completely learned within 1
h, without timeout, are included for this analysis. The plot
shows that testing takes significantlymore time than learning.
Using this equivalence oracle, learning and testing together
take approximately 52 min. By maximum, learning takes a
little above one minute. As the total learning and testing time
increases, testing becomes more and more dominant. Thus,
the performance of active learning process is highly domi-
nated by the testing time.
Effect of increasing learning timeout One may argue that
increasing the timeout can increase the number of fully
learned models. To investigate this, we increased the time-
out of the experiment usingWp-method for components that
were only partially learnedwith theWp-method from1 to 8h.

This increased the percentage of fully learned models from
about 53% to about 57%. Increasing the timeout further to
2 and 8 days does not bring any benefit, as no additional
models are fully learned. This shows that only giving more
time to the active learning process is not the solution; instead,
efficient testing methods may help improve performance of
the active learning process significantly.

8.7.3 Statistical significance test

Given a set of equivalence checking methods, we want to
analyze which testing method performed significantly better
than others. For this purpose, we perform a statistical sig-
nificance test on the time spent by different testing methods
in the active learning process. For this statistical analysis,
we include the components learned by all testing methods
with in 1h. Out of 202, 100 components are learned by all
equivalence checking methods.

To perform statistical comparison, we employ the T̃ pro-
cedure proposed by Konietschke et al. [33] and successfully
applied in empirical software engineering studies [28,61,68].
We prefer T̃ to more traditional two-phase approaches such
as ANOVA followed by pairwise t-tests or Kruskal–Wallis
test followed by pairwise Mann–Whitney–Wilcoxon tests,
since T̃ avoids possible inconsistencies between the overall
testing (e.g., using ANOVA or Kruskal–Wallis) and the sub-
sequent pairwise tests [19]. Specifically, we apply T̃ to detect
relations between all pairs of testing methods employing the
so-called Tukey-type contrasts [58] in combination with the
traditional family-wise error rate threshold of 5%.

The results of the T̃ procedure are summarized in Table 3.
As we have eight equivalence checking methods in total,
there are 8∗7

2 = 28 pairs to be compared. For the sake of
brevity, we only list the pairs that showed significant statis-
tical difference. The second column shows the pairs of the
testing methods to be compared. For a particular pair, the
null hypothesis states that there is no statistically significant
difference between the performance of equivalence oracles
of that pair. For each pair, we analyze the 95% confidence
interval to test whether the corresponding null hypothesis can
be rejected. The third and fourth columns show the lower and
upper boundary for a confidence interval, respectively. If the
lower boundary for a pair (A, B) is greater than zero, then we
claim that A performed significantly better than B. Similarly,
if the upper boundary for a pair (A, B) is less than zero, then
we claim that A performed significantly worse than B. Out of
28 pairs, the null hypothesis can be rejected for twelve pairs
(p value <0.05). For all pairs listed in the table, the lower
boundary is greater than zero. This shows that, on the set of
components learned by all testing methods, the first testing
method in the pair performed better than the second. We see
that the first testing methods for all the pairs include Cache
and few of them involve Log as well. This is in agreement

123

Interface protocol inference to aid understanding legacy software components 1537

Table 3 Results of the T̃
procedure. Each row shows the
pair of equivalence oracles to be
compared, the lower and upper
bounds for the confidence
interval and the p value for that
pair

No. Pair Lower Upper p-value

1 Cache+H-ADS, Cache+Log+Wp 0.243 0.473 5.54e−03

2 Cache+H-ADS, Cache+Wp 0.228 0.454 1.24e−03

3 Cache+H-ADS, Wp 0.552 0.781 9.60e−04

4 Cache+Log+H-ADS, Wp 0.577 0.803 1.67e−05

5 Cache+Log+Wp, H-ADS 0.593 0.812 4.06e−05

6 Cache+Log+Wp, Log+H-ADS 0.611 0.822 2.13e−07

7 Cache+Log+Wp, Log+Wp 0.589 0.809 4.49e−06

8 Cache+Log+Wp, Wp 0.655 0.856 1.01e−09

9 Cache+Wp, H-ADS 0.615 0.826 1.46e−07

10 Cache+Wp, Log+H-ADS 0.617 0.825 1.60e−07

11 Cache+Wp, Log+Wp 0.609 0.821 2.53e−07

12 Cache+Wp, Wp 0.675 0.867 3.26e−11

with our previous inference that testingmethods perform sig-
nificantly better when aided with logs and cache.

9 Conclusions and future work

In this paper, we have presented a two-step methodology
to infer interface protocols of software components using
active learning. First, the active learning result obtained from
learning the implementation provides an insight into the soft-
ware, thus facilitating adaptations that need to be made to the
component or documentation that needs to be updated. We
then abstract the learned model to infer an interface proto-
col. We gain confidence in the derived interface protocols
through equivalence checking and validating formal rela-
tions between learned models and reference models. The
inferred interface protocols provide a starting point for sev-
eral engineering and maintenance activities of the software
components that we have discussed in Sect. 2 of the paper.
To the best of our knowledge, this is the first work to use
active learning technique for inferring interface protocols of
software components.

We also presented an automated framework for applying
active learning to software components and then inferring
their interface protocols.Using the framework,we performed
an evaluation for our methodology on a set of MDE-based
industrial software components. We performed experiments
using several equivalence checking methods to learn max-
imum number of software components. The results show
that faster equivalence checking techniques contribute signif-
icantly to increase efficiency of the active learning process.
We observed that few components, despite having less num-
ber of states, cannot be learned by any equivalence checking
method. Such components are planned to be studied in detail
to discover the design patterns that make learning so difficult.
In total, we were able to derive interface protocols for 156

out of 202 components. We want to use these interface pro-
tocols for engineering and maintenance tasks, few of which
are already discussed in the paper.

In the future, we also plan to infer interface protocols for
industrial legacy components using the proposed methodol-
ogy and framework. We see several research challenges in
that direction. Data-guarded behavior is unavoidable when
dealing with the legacy software and therefore will be a con-
cern for future work. Also, having the reference models for
our chosen software components, we could find the number
of states from the reference models to feed the conformance
testing techniques. If the number of states is unknown, as will
be the case for legacy software, we may give a low or high
estimate resulting in an incomplete result or influencing the
scalability, respectively. Static code analysis [23]may help in
providing this estimate for non-MDE software components.

Acknowledgements This research was partially supported by Eind-
hoven University of Technology and ASML Netherlands B.V., carried
out as part of the IMPULS II project, and partially supported by the
Dutch Ministry of Economic Affairs, ESI (part of TNO) and ASML
Netherlands B.V., carried out as part of the TKI project ‘Transposi-
tion.’ The authors would also like to express deep gratitude to Dennis
Hendriks and Leonard Lensink for providing support on the design of
experiments and implementation, Alexander Serebrenik for advice on
results analysis and Alessandro di Bucchianico for discussions on sta-
tistical tests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1538 K. Aslam et al.

References

1. Aarts, F.: Tomte: bridging the gap between active learning and real-
world systems. Doctoral Dissertation, Radboud University (2014)

2. Aarts, F., De Ruiter, J., Poll, E.: Formal models of bank cards for
free. In: 2013 IEEE Sixth International Conference on Software
Testing, Verification andValidationWorkshops (ICSTW), pp. 461–
468. IEEE (2013)

3. Al Duhaiby, O., Mooij, A., van Wezep, H., Groote, J.F.: Pitfalls in
applying model learning to industrial legacy software. In: Interna-
tional SymposiumonLeveragingApplications of FormalMethods,
pp. 121–138. Springer (2018)

4. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987)

5. Aslam, K., Luo, Y., Schiffelets, R., van den Brand, M.: Interface
protocol inference to aid understanding legacy software compo-
nents. In: MODELS Workshops, pp. 6–11 (2018)

6. Atkinson, C., Bunse, C., Gross, H.G., Peper, C.: Component-Based
Software Development for Embedded Systems: An Overview of
Current Research Trends, vol. 3778. Springer, Berlin (2005)

7. Broadfoot, G.H., Broadfoot, P.J.: Academia and industry meet:
some experiences of formalmethods in practice. In: Software Engi-
neering Conference, 2003. Tenth Asia-Pacific, pp. 49–58. IEEE
(2003)

8. Buse, R.P., Weimer, W.R.: Automatic documentation inference for
exceptions. In: Proceedings of the International Symposium on
Software Testing and Analysis, pp. 273–282. Citeseer (2008)

9. Cai, X., Lyu,M.R.,Wong,K.F., Ko, R.: Component-based software
engineering: technologies, development frameworks, and quality
assurance schemes. In: Proceedings of Seventh Asia-Pacific Soft-
ware Engineering Conference. APSEC 2000, pp. 372–379. IEEE
(2000)

10. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for
extended finite state machines. Formal Asp. Comput. 28(2), 233–
263 (2016)

11. Chalupar, G., Peherstorfer, S., Poll, E., De Ruiter, J.: Automated
reverse engineering using lego®. In: 8th USENIX Workshop on
Offensive Technologies, WOOT, vol. 14, pp. 1–10 (2014)

12. Cho, C.Y., Shin, E.C.R., Song, D., et al.: Inference and analysis
of formal models of botnet command and control protocols. In:
Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, pp. 426–439. ACM (2010)

13. Chow, T.S.: Testing software design modeled by finite-state
machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)

14. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of
runtime software-fault monitoring tools. IEEE Trans. Softw. Eng.
30(12), 859–872 (2004)

15. Diaz, M., Juanole, G., Courtiat, J.P.: Observer-a concept for formal
on-line validation of distributed systems. IEEE Trans. Softw. Eng.
20(12), 900–913 (1994)

16. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko,
N.: FSM-based conformance testing methods: a survey annotated
with experimental evaluation. Inf. Softw. Technol. 52(12), 1286–
1297 (2010)

17. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant
for ESC/Java. In: International Symposium of Formal Methods
Europe, pp. 500–517. Springer (2001)

18. Fujiwara, S., Bochmann, Gv, Khendek, F., Amalou,M., Ghedamsi,
A.: Test selection based on finite state models. IEEE Trans. Softw.
Eng. 17(6), 591–603 (1991)

19. Gabriel, K.R.: Simultaneous test procedures—some theory of mul-
tiple comparisons. Ann. Math. Stat. 40, 224–250 (1969)

20. González, C.A., Cabot, J.: Formal verification of static software
models in MDE: a systematic review. Inf. Softw. Technol. 56(8),
821–838 (2014)

21. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Commu-
nicating Systems. MIT Press, Cambridge (2014)

22. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory.Wiley,
New York (2008)

23. Hamilton, V.: The use of static analysis tools to support reverse
engineering. In: IEE Colloquium on Reverse Engineering for Soft-
ware Based Systems, pp. 6/1–6/4 (1994)

24. Howar, F., Giannakopoulou, D., Rakamarić, Z.: Hybrid learning:
interface generation through static, dynamic, and symbolic anal-
ysis. In: Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pp. 268–279. ACM (2013)

25. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engi-
neering practices in industry. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering, pp. 633–642. ACM
(2011)

26. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a
redundancy-free approach to active automata learning. In: RV, pp.
307–322 (2014)

27. Isberner, M., Howar, F., Steffen, B.: The open-source Learnlib.
In: International Conference on Computer Aided Verification, pp.
487–495. Springer (2015)

28. Jongeling, R., Sarkar, P., Datta, S., Serebrenik, A.: On negative
results when using sentiment analysis tools for software engineer-
ing research. Empir. Softw. Eng. 22(5), 2543–2584 (2017)

29. Jonk, R.J.W.: The semantic of alias defined in MCRL2. Mas-
ter’s Thesis, EindhovenUniversity of Technology, TheNetherlands
(2016)

30. Kalbarczyk, Z., Iyer, R.K., Wang, L.: Application fault tolerance
with armormiddleware. IEEE Internet Comput. 9(2), 28–37 (2005)

31. Kalbarczyk, Z.T., Iyer, R.K., Bagchi, S.,Whisnant, K.: Chameleon:
a software infrastructure for adaptive fault tolerance. IEEE Trans.
Parallel Distrib. Syst. 10(6), 560–579 (1999)

32. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational
Learning Theory. MIT Press, Cambridge (1994)

33. Konietschke, F., Hothorn, L.A., Brunner, E.: Rank-based multiple
test procedures and simultaneous confidence intervals. Electron. J.
Stat. 6, 738–759 (2012)

34. Laveaux, M., Groote, J.F., Willemse, T.A.: Correct and efficient
antichain algorithms for refinement checking. In: International
Conference on Formal Techniques for Distributed Objects, Com-
ponents, and Systems, pp. 185–203. Springer (2019)

35. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in auto-
matic software repair. Softw. Qual. J. 21(3), 421–443 (2013)

36. Lee, D., Yannakakis, M.: Testing finite-state machines: state iden-
tification and verification. IEEE Trans. Comput. 43(3), 306–320
(1994)

37. Leemans, M., van der Aalst, W.M., van den Brand, M.G.: The
statechartworkbench: enabling scalable software event log analysis
using processmining. In: 2018 IEEE25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp.
502–506. IEEE (2018)

38. Lehman,M.M.: Laws of software evolution revisited. In: European
Workshop on Software Process Technology, pp. 108–124. Springer
(1996)

39. Loose, R.: Component-wise supervisory controller synthesis using
existing plant models in a client/server structure. Master’s Thesis,
Eindhoven University of Technology, The Netherlands (2017)

40. Lorenzoli, D., Mariani, L., Pezz, M.: Automatic generation of soft-
ware behavioral models. In: 2008 ACM/IEEE 30th International
Conference on Software Engineering, pp. 501–510 (2008)

41. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An
empirical study of the state of the practice and acceptance ofmodel-
driven engineering in four industrial cases. Empir. Softw. Eng.
18(1), 89–116 (2013)

42. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nonde-
terministic state machines in protocol conformance testing. In:

123

Interface protocol inference to aid understanding legacy software components 1539

Proceedings of the Sixth International Workshop on Protocol Test
Systems VI, pp. 363–378 (1993)

43. Plasil, F., Visnovsky, S.: Behavior protocols for software compo-
nents. IEEE Trans. Softw. Eng. 28(11), 1056–1076 (2002)

44. Plattner, B., Nievergelt, J.: Special feature: monitoring program
execution: a survey. Computer 11, 76–93 (1981)

45. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a frame-
work for extrapolating behavioral models. Int. J. Softw. Tools
Technol. Transf. (STTT) 11(5), 393–407 (2009)

46. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specifica-
tion inference using predicatemining. In:ACMSIGPLANNotices,
vol. 42, pp. 123–134. ACM (2007)

47. Rivest, R.L., Schapire, R.E.: Inference of finite automata using
homing sequences. Inf. Comput. 103(2), 299–347 (1993)

48. Robillard,M.P., Bodden, E.,Kawrykow,D.,Mezini,M.,Ratchford,
T.: Automated API property inference techniques. IEEE Trans.
Softw. Eng. 39(5), 613–637 (2013)

49. Runeson, P., Höst, M.: Guidelines for conducting and reporting
case study research in software engineering. Empir. Softw. Eng.
14(2), 131 (2009)

50. Schmidt, D.C.:Model-driven engineering. Comput. IEEEComput.
Soc. 39(2), 25 (2006)

51. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy soft-
ware using model learning and equivalence checking: an industrial
experience report. In: International Conference on Integrated For-
mal Methods, pp. 311–325. Springer (2016)

52. Shatnawi, A., Seriai, A.D., Sahraoui, H., Alshara, Z.: Reverse engi-
neering reusable software components from object-oriented APIS.
J. Syst. Softw. 131, 442–460 (2017)

53. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying
automata learning to embedded control software. In: International
Conference on Formal Engineering Methods 2015, pp. 67–83.
Springer (2015)

54. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T.,
Kwiatkowska, M., Mcdermid, J., Paige, R.: Large-scale complex
IT systems. Commun. ACM 55(7), 71–77 (2012)

55. Steinbauer, G., Wotawa, F., et al.: Detecting and locating faults
in the control software of autonomous mobile robots. In: IJCAI,
vol. 5, pp. 1742–1743. Citeseer (2005)

56. Stramaglia, S.: Data integrity for compaq non-stop Himalaya
servers (1999)

57. Tillmann, N., Chen, F., Schulte, W.: Discovering likely method
specifications. In: International Conference on Formal Engineering
Methods, pp. 717–736. Springer (2006)

58. Tukey, J.W.: Quick and dirty methods in statistics. Part II. Sim-
ple analyses for standard designs. American Society for Quality
Control, pp. 189–197 (1951)

59. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95
(2017)

60. van Beek, D.A., Fokkink, W., Hendriks, D., Hofkamp, A.,
Markovski, J., Van De Mortel-Fronczak, J., Reniers, M.A.: CIF
3: model-based engineering of supervisory controllers. In: Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 575–580. Springer (2014)

61. Vasilescu, B., Serebrenik, A., Goeminne,M.,Mens, T.: On the vari-
ation and specialisation of workload—a case study of the Gnome
ecosystem community. Empir. Softw. Eng. 19(4), 955–1008 (2014)

62. Vierhauser, M., Rabiser, R., Grünbacher, P.: Requirements moni-
toring frameworks: a systematic review. Inf. Softw. Technol. 80,
89–109 (2016)

63. Walkinshaw, N., Bogdanov, K.: Inferring finite-state models with
temporal constraints. In: Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, pp.
248–257. IEEE Computer Society (2008)

64. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite
statemachinemodels fromsoftware executions. Empir. Softw.Eng.
21(3), 811–853 (2016)

65. Wonham, W.M.: Supervisory Control of Discrete-Event Systems.
Springer, Berlin (2015)

66. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta:
mining temporal API rules from imperfect traces. In: Proceedings
of the 28th international conference on Software Engineering, pp.
282–291. ACM (2006)

67. Yang, N., Aslam, K., Schiffelers, R., Lensink, L., Hendriks, D.,
Cleophas, L., Serebrenik, A.: Improving model inference in indus-
try by combining active and passive learning. In: 2019 IEEE 26th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 253–263. IEEE (2019)

68. Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation
for pull-requests in GitHub: What can we learn from code review
and bug assignment? Inf. Softw. Technol. 74, 204–218 (2016)

69. Zulkernine, M., Seviora, R.: Towards automatic monitoring of
component-based software systems. J. Syst. Softw. 74(1), 15–24
(2005)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Kousar Aslam is currently final-
izing her Ph.D. study at the Soft-
ware Engineering and Technology
group of the Eindhoven Univer-
sity of Technology. The research
was conducted in close collabo-
ration with the software research
group of ASML, the world market
leader in lithography machines.
Kousar obtained her master’s
degree in computer science from
Sabanci University, Turkey. Her
research interests include software
reverse engineering, model
driven engineering and software

evolution.

Loek Cleophas is an assistant
professor in Software Engineering
Technology at Eindhoven Univer-
sity of Technology, where he
obtained his doctorate in com-
puter science and engineering, and
a research fellow at Stellenbosch
University. His work has covered
taxonomies and toolkits of (tree
and text) pattern matching
algorithms; model-driven virtual-
ization of high-tech systems; and
recently analyzing collections of
models, with a focus on extract-
ing variability and commonality

information from them. He has experience in industry in the Nether-
lands and the USA, and at universities in South Africa, Sweden and
Germany, on research funded by various national and international
projects and industrial partners.

123

1540 K. Aslam et al.

Ramon Schiffelers is leading the
Software Research Group at
ASML, world’s leading provider
of lithography systems for the
semiconductor industry, and is
assistant professor at the Depart-
ment of Mathematics and Com-
puter Science at the Eindhoven
University of Technology. He is
positioned at the interface
between scientific knowledge
from academia and its applica-
tion in the industry. Besides inno-
vative products, this resulted in
long-term collaborative research

and innovation between ASML, academia and several knowledge
institutes.

Mark van den Brand is a
full professor of Software Engi-
neering and Technology in the
Department of Mathematics and
Computer Science, and a visit-
ing professor at Royal Holloway,
University of London. His current
research activities are on model
driven engineering, domain spe-
cific languages, meta-modeling,
model management, digital twins
and automotive software engineer-
ing. His research is industry
inspired; he works with most of
the high-tech companies in the

Eindhoven (The Netherlands) region. He has been an invited lecturer

and keynote speaker at various conferences, workshops and doctoral
schools. He was and is member of PCs on workshops and confer-
ences related to software engineering language engineering, rewrit-
ing, reverse engineering, and software maintenance. He initiated the
special issues of Science of Computer Programming devoted to aca-
demic software development (Experimental Software and Toolkits)
and since 2007 has been guest editor of six of these. He is on the
editorial board of the journals Science of Computer Programming,
Open Computer Science and Computer Languages (COLA). He is
Editor-in-Chief of the Journal on Automotive Software Engineering.
He is associate Editor-in-Chief of the Software Section of the Science
of Computer Programming. He is deputy Editor-in-Chief of platinum
open access journal JOT.

123

	Interface protocol inference to aid understanding legacy software components
	Abstract
	1 Introduction
	2 Motivation
	2.1 Observer and armor
	2.1.1 Observer
	2.1.2 Armor

	2.2 Re-factoring and re-engineering
	2.3 Supervisory control synthesis

	3 Related work
	4 Background
	4.1 Definitions
	4.2 Active learning
	4.2.1 Wp-method
	4.2.2 Hybrid-ADS
	4.2.3 Cache-based oracle
	4.2.4 Log-based oracle

	4.3 LearnLib and AutomataLib
	4.4 Analytical software design (ASD)
	4.5 mCRL2

	5 Methodology
	5.1 Step 1: Learning the component's behavior and validating learned results
	5.1.1 Learning component's behavior with active learning
	5.1.2 Comparison of learned results with reference ASD design model

	5.2 Inferring and validating the interface protocol
	5.2.1 Inferring interface protocol
	5.2.2 Validation of interface protocol

	6 Example
	7 Our framework for applying active learning and inferring interface protocols
	7.1 Obtaining the SUL
	7.2 Learning the behavior
	7.2.1 Client and server stubs
	7.2.2 SUL wrapper
	7.2.3 Learning and testing algorithms

	7.3 Deriving interface protocol
	7.4 Comparison with reference models

	8 Evaluation of proposed approach
	8.1 Goal
	8.2 Study object
	8.3 Experimental setup
	8.4 Hardware setup
	8.5 Metrics
	8.6 Stability of measurements
	8.7 Results
	8.7.1 Number of components learned
	8.7.2 Time spent in active learning
	8.7.3 Statistical significance test

	9 Conclusions and future work
	Acknowledgements
	References

