Software and Systems Modeling (2020) 19:693-720
https://doi.org/10.1007/s10270-019-00760-x

REGULAR PAPER O‘)

Check for
updates

Systematic review of matching techniques used in model-driven
methodologies

Ferenc Attila Somogyi'® - Mark Asztalos'

Received: 21 March 2019 / Revised: 25 July 2019 / Accepted: 11 October 2019 / Published online: 1 November 2019
© The Author(s) 2019

Abstract

In model-driven methodologies, model matching is the process of finding a matching pair for every model element between
two or more software models. Model matching is an important task as it is often used while differencing and merging models,
which are key processes in version control systems. There are a number of different approaches to model matching, with most
of them focusing on different goals, i.e., the accuracy of the matching process, or the generality of the algorithm. Moreover,
there exist algorithms that use the textual representations of the models during the matching process. We present a systematic
literature review that was carried out to obtain the state-of-the-art of model matching techniques. The search process was
conducted based on a well-defined methodology. We have identified a total of 3274 non-duplicate studies, out of which 119
have been included as primary studies for this survey. We present the state-of-the-art of model matching, highlighting the
differences between different matching techniques, mainly focusing on text-based and graph-based algorithms. Finally, the
main open questions, challenges, and possible future directions in the field of model matching are discussed, also including
topics like benchmarking, performance and scalability, and conflict handling.

Keywords Model matching - Model comparison - Model differencing - Version control - Text-based modeling - Systematic
literature review

1 Introduction gies is to increase productivity by requiring less attention to
detail at lower abstraction levels [155]. The models repre-

Model-driven methodologies like model-driven engineering  sent the problem and solution at a higher abstraction level,

(MDE) [131,143] or the Model-Driven Architecture (MDA)
[61] of the Object Management Group (OMG) use graph-
based models as the main artifacts during development.
Models can be used for numerous purposes, like various types
of formal analyses, design space exploration, requirements
elicitation, or source code generation [74]. In the case of
source code generation, the aim of model-driven methodolo-

Communicated by Professor Jon Whittle.

This work was performed in the frame of FIEK_16-1-2016-0007
project, implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed
under the FIEK_16 funding scheme.

B Ferenc Attila Somogyi
Somogyi.Ferenc @aut.bme.hu

Mark Asztalos
Asztalos.Mark @aut.bme.hu

Budapest University of Technology and Economics,
Muegyetem rkp. 3, Budapest 1111, Hungary

making it easier to communicate with stakeholders [107].
Model transformation is the automated process of transform-
ing a source model to a target model based on different rules.
It is often used as a way of modifying and creating mod-
els. Model transformations are at the core of model-driven
methodologies, as they are crucial in a lot of modeling tasks
[23,43,135], and thus, even model management operations
can be described using them [138]. Model-driven methodolo-
gies are increasingly more applied in the industry, although
certain problems, like model evolution management and
model versioning, impede their further spread [8,21].
Model evolution management is a difficult task and is an
active research field today [121]. The field of model evo-
lution includes multiple subfields, like version control or
metamodel evolution management. Version control systems
[15,141] are tools that support model evolution, and they
greatly improve the productivity of software development in
teamwork [22]. Model-based version control systems also
boost productivity, although graph-based models are inher-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00760-x&domain=pdf
http://orcid.org/0000-0001-5491-4412

694

F. A. Somogyi, M. Asztalos

Fig.1 Model matching
illustrated on a simple example

model 1

\\ modeIZ \

o

o Node B \‘\\ \\“\
= £ce - = “~~._|Node B
Attr. B1 |-~
Node A vEd?c? BA Attr. B2 Node A ¢chge BA /_\“f- B2
&, | o /\/:::—‘____,.
Edge CA \‘\\ /,"/ Edge CA
Node C|seesams saas sms=w=l swam s --1{Node C

o /

ently different from text-based source code, and thus, they
require different treatment during version control [9,30].
Supporting version control is one of our main motivations
behind conducting a survey on model matching algorithms.
It is worth mentioning that model matching can have other
applications than version control, like in model transforma-
tion testing [87,95].

During optimistic concurrency handling in version control
systems, differencing and merging the main artifacts is a nec-
essary and crucial task [8,42,106]. Model matching is usually
the first step of model differencing. The goal of model match-
ing is to identify pairs of model elements in the input models
that are considered to be matching, based on different consid-
erations. Later in the process, differences between the models
can be established using the matched pairs. Most matching
approaches work directly with the graph-based structure of
the models. However, there exist solutions that approach the
problem differently, i.e., by working with the textual repre-
sentations of the models. The textual notation can be mapped
to the model in many ways, for example, by using a formal
language and a parser [2], or by specifying it via a textual
language like Alloy [70]. Describing models with a textual
notation can have many advantages, such as (i) the off-line
editing of models, (ii) better focus on details, thus, easier edit-
ing, especially in the case of large models, (iii) and they can
offer a more readable serialization solution than XML-based
approaches [67,68,144].

To demonstrate the problem of model matching, Fig. 1
presents a simple example. We try to match two imaginary
models, Model 1 and Model 2, with a custom model match-
ing algorithm. Let us assume that the algorithm matches the
following model elements: Node A, Node C, Edge BA, Node
B, and Attr. B2. Thus, the output of the matching algorithm
is the list of pairs containing the aforementioned model ele-
ments from the two input models. Our imaginary algorithm
got these results by matching nodes and attributes based on
their name, and matching edges based on their name, type,

@ Springer

and the nodes they connect. We can see even in our simple
example that model matching is not a trivial task. For exam-
ple, a different matching algorithm might have matched Edge
CA with its counterpart on the basis that the type of the edge is
not as important as the nodes it connects. Let us assume that
the correct decision in the case of Edge CA in our first mod-
eling language would be to ignore the match, but in another,
similar modeling language, the correct decision would be to
match the edges in the two input models. If the matching
algorithm would focus on generality, then it would aim to
work with both modeling languages. If it also aims to be
accurate, then it could be achieved by making the algorithm
configurable in order to get the correct result for multiple
languages. If the matching algorithm would focus only on
accuracy instead, then it would likely focus on one modeling
language, but it would have no configuration cost. This is
only one example of the conflict between accuracy and gen-
erality, as there are other aspects to consider. In our survey,
we aim to further investigate this topic.

As an important note, we would like to make a distinction
between the type of model matching we are investigating in
this paper, and between (graph) pattern matching that is also
sometimes referred to as model matching in the literature.
The first case is what we described in Fig. 1, where the goal
is to find a matching pair for every model element between
two or more models. In (graph) pattern matching, the goal is
to find a homomorphic image (subgraph) of a pattern graph
in the model [154]. While the two topics somewhat overlap
in practice, due to the slightly different nature of the goals
between the two cases, we decided not to include pattern
matching in this survey, as it could possibly skew the statistics
and conclusions drawn regarding the “classic” type of model
matching.

This paper presents a systematic literature review (SLR)
that was carried out in order to present the state-of-the-art
of model matching approaches. This survey is different from
others [9,30,57,134,146] as few other studies focus on the



Systematic review of matching techniques used in model-driven methodologies 695

categorization of model matching, and even fewer use a sys-
tematic approach, or focus on text-based model matching
algorithms. We further elaborate on the differences between
this survey and others in Sect. 3.1.1. According to our find-
ings that we discuss later in this paper, there are even fewer
that deal with the analysis of text-based model matching.
Further reasoning behind the goals of this survey can be
found in Sect. 3.1.2. The main results of this survey are (i)
a collected body of research representing the state-of-the-
art in model matching, (ii) identified correlations between
different matching techniques, (iii) a summary of open ques-
tions related to the field of model matching, including topics
like benchmarking, performance and scalability, conflict res-
olution and visualization, and the position of text-based
algorithms in the literature.

The structure of the paper is as follows. Section 2 contains
detailed background information on model matching, defin-
ing important concepts that we use in the survey. In Sect. 3,
we present our SLR process in detail. We outline our motiva-
tions, detail the scope and goals of the survey, and present our
research questions and search strategy. The study selection
and data extraction processes are also discussed. Section 4
presents the results of the survey, answering the previously
defined research questions. Since every survey is inherently
subjective to a certain degree, we also discuss threats to the
validity of this survey. Section 5 concludes the paper, high-
lighting the main results of the review.

2 Background on model matching

In this section, we discuss the main concepts related to model
matching that are relevant to our survey. We use these con-
cepts later, mostly during the categorization of matching
algorithms. As we have discussed in Sect. 1, one of our main
motivations behind surveying model matching algorithms is
supporting model-based version control. In optimistic ver-
sion control, the typical scenario is that the input models that
are to be matched conform to the same metamodel. Dealing
with evolving (changing) metamodels is a different topic with
various proposed solutions [40,121,160], and is not the focus
of this survey. Therefore, the algorithms included in our sur-
vey had to satisfy this criterion, namely, they had to support
matching models that conform to the same metamodel. For-
tunately, most model matching algorithms inherently satisfy
this requirement.

Model matching is the process of finding a matching pair
for every model element between two or more models, where
the model elements can be nodes and edges, and the models
are graph-based. The input consists of two or more graph-
based models, while the output is the set of matching pairs
between the model elements.

Kolovos et al. [86] analyzed existing model matching
approaches, and split them into four categories, based on
how the matching is conducted. Their work is one of the
earliest takes on categorizing model matching algorithms,
and many later studies were influenced by it [6,30,158,159].
This categorization also serves as the basis of our survey. The
proposed categories are as follows, with the definitions being
taken from the aforementioned research work [86]:

1. Static Identity-Based Matching is based on persistent and
non-volatile unique identifiers that are associated with
the model elements. This typically means a universally
unique identifier (UUID). Static approaches are accurate,
as the matching can always be determined. However, they
are more difficult to generalize, as the reliance on unique
identifiers may cause the algorithm to not work with more
complex modeling languages.

2. Signature-Based (Dynamic) Matching approaches use a
subset of the features of the models in order to match
them. This is usually preceded by a configuration phase,
during which a user-defined function is created to cal-
culate the signature of model elements dynamically. As
opposed to static matching, individually, the various fea-
tures do not have to be unique. The downside of this form
of matching is the effort required to specify the signature
calculating functions.

3. Similarity-Based Matching differs from previous cate-
gories, as these algorithms do not give a binary yes or no
answer to the question of whether two model elements
are matching. Instead, a similarity degree is calculated,
based on arbitrary features of the model elements. Differ-
ent weighting values can be assigned to different features.
If the similarity degree is above a certain (configurable)
threshold, then the model elements are considered to be
matching. Similarly to dynamic approaches, the model
element features and weighting values can usually be
configured by a user-defined function.

4. Custom Language-Specific Matching algorithms are tai-
lored to a particular modeling language. They use the
specific semantics of the language during matching, and
thus, the process is more accurate. However, since they
are tailored to a specific language, these approaches are
not general.

During model differencing, a key difference between algo-
rithms is the way they handle changes (differences) occurring
between the input models. In the literature [69,82,83,85],
there exist two main approaches:

— State-based approaches calculate changes by match-
ing model elements in the input models with each
other. Model matching—which is the main focus of
our survey—explicitly occurs in this case. State-based

@ Springer



696

F. A. Somogyi, M. Asztalos

Fig.2 Change tracking
illustrated on our previous /

example

State-based

/ Operation-based

(Difference 1

(Difference 1

J\iJ/

( Difference 2

Node B Node B
Alr B e—>1 r; B2
Attr. B2
( Difference 2
—
Edge CA Edge CA

change type of
'Edge CA'

N

\
\
remove 'Attr. B1' J
J
=/

\\7

N

approaches usually store changes as instances of the
metamodel of the input models, or as instances of a
difference metamodel [41,127]. While there is often a
significant computational complexity overhead (see the
graph isomorphism problem [81]), these approaches are
usually tool independent.

— Change-based approaches record changes as they occur,
instead of calculating differences at a later time. There-
fore, there is no need for model matching. The changes
can often be run as model transformations on the ini-
tial model(s). In this case, we talk about operation-
based approaches. These algorithms are usually easier to
develop and comprehend [83], but are more tool depen-
dent.

To further clarify what we mean by state-based and
operation-based change tracking, let us demonstrate it using
our previous example in Fig. 1. Figure 2 illustrates the dif-
ferences our imaginary algorithm would have made if it
used state-based or operation-based change tracking. Using
a state-based approach, the algorithm would store the dif-
ferences using an instance model of the metamodel, or a
difference metamodel, as can be seen in the left side of the fig-
ure. If the algorithm would use an operation-based approach,
it would record changes as they occur (in our example, let
us assume that Model 1 was the initial model), and we get
a change log that can be applied to a model, as seen on the
right side of the figure.

The focus of a model matching algorithm can vary based
on what goals the algorithm aims to achieve. We consider
accuracy and generality to be the main goals a matching algo-
rithm can focus on, although other aspects, like performance
can also be the goal. Some argue that striking a good bal-

@ Springer

ance between accuracy and generality of an algorithm greatly
benefits the version control of models [33]. Our (informal)
definitions for accuracy and generality are as follows:

— Accuracy the algorithm focuses on making the matching
process accurate. This means finding as many correct
matches and as few incorrect matches as possible. There
are different metrics that can be used to measure accuracy.
We investigate these metrics later in Sect. 4.2.

— Generality the algorithm focuses on being general,
namely, that it can be used with as many modeling lan-
guages and tools, and with as few technology-related
modifications to the algorithm as possible.

In Sect. 1, we mentioned that in addition to using their
graph-based structure, models can also be matched, differ-
enced, and merged using their textual representations. We
consider a representation of a model text-based if (i) its nota-
tion is textual in nature and (ii) the representation is mapped
to the model via a well-defined mechanism (i.e., a formal lan-
guage with a parser [2]). We would like to stress that since
models are inherently graph-based, their structure eventually
has to be taken into account during the matching process.
Therefore, we uphold the assumptions that raw text differ-
encing tools [71] that are often used with source code, on
their own, should not be used with models [30]. Instead, the
textual representations represent another layer through which
the matching and differencing processes are conducted. We
do not consider the XML-based standard representation of
a model (e.g., XMI [167]) to be a textual representation,
unless the corresponding approach relies heavily on its tex-
tual nature, like when raw text differencing is used.



Systematic review of matching techniques used in model-driven methodologies 697

We consider a model matching algorithm to be text-based,
if it uses the textual representations of the models during the
matching process. Otherwise, we consider the algorithm to
be graph-based.

3 Systematic literature review

Systematic literature reviews have a well-defined methodol-
ogy that they follow, originating from the field of medicine
[120]. Our survey also follows the recommendations pro-
posed in the literature [25,78,79,122,168]. According to
these recommendations, the process consists of the following
phases:

1. Planning phase formulate the research questions, the
search strategy, and define the inclusion and exclusion
criteria (see Sect. 3.1).

2. Conducting phase carry out the survey based on the plan-
ning phase, and extract relevant data from the selected
primary studies (see Sect. 3.2).

3. Reporting phase report and discuss the results of the sur-
vey, and draw conclusions (see Sect. 4).

The survey was conducted in an iterative fashion. The
planning phase was constantly refined based on the results of
the conducting phase. For example, when we found new syn-
onyms of keywords we have not thought of before, we added
those to the search string that we defined in the planning
phase. Then, we examined the newly found studies found dur-
ing the conducting phase, and if we found more keywords,
we updated the search strings again. We conducted a sim-
ilarly iterative process when we defined the inclusion and
exclusion criteria, which we are discussing later.

3.1 Planning the survey

Planning is very important in systematic reviews, as the accu-
racy and repeatability of the process greatly depends on it. In
this section, we outline our motivations for conducting this
survey (see Sect. 3.1.1), define the scope and goals of the sur-
vey (see Sect. 3.1.2), formulate our research questions (see
Sect. 3.1.3), document our search strategy (see Sect. 3.1.5),
and list our inclusion and exclusion criteria (see Sect. 3.1.4).

3.1.1 Motivations

While there are existing surveys that focus on model match-
ing in some form [9,30,134,146], Altmanninger et al. [9]
focused on providing a feature-based characterization of ver-
sion control systems, focusing more on the architecture of
versioning systems. They also discuss three-way merging in

more detail. Their findings include a comprehensive state-
of-the-art of version control systems, along with challenges
that need to be addressed before parallel model develop-
ment can become more applied in practice. Selonen [134]
reviewed UML model comparison techniques, and found that
most approaches aimed toward change detection, but were
lacking in change resolution. The survey established some
criteria that model comparison approaches can be compared
by, including identifier independence, customizability, reli-
ability, extensibility, and so on, most of which we are also
using in our survey. However, the paper only reviewed 5
UML-based model comparison approaches; thus, our paper
is meant to be more extensive. Stephan and Cordy [146] on
the different methods and applications of model comparison.
They differentiated between different types of models (struc-
tural, behavioral, and so on), which we are also doing in our
survey to some extent. Moreover, they extended the same
categorization system that we did, introduced by Kolovos et
al. [86]. While their discussion and categorization of existing
approaches is extensive, they covered 30 approaches, while
our survey aims to make deductions based on a bigger sta-
tistical sample, identified by a systematic method, and also
focuses on text-based model matching algorithms. Brosch et
al. [30] did a very extensive introduction to model version-
ing that we recommend to everyone who is interested in this
research field. They introduce the basic concepts of model
versioning, including model differencing and merging. They
categorize some model differencing approaches also includ-
ing conflict detection and resolution. The paper also touches
upon some open questions in the field of model matching,
which we are discussing later in this paper. The main dif-
ferences of our paper compared to this survey are again the
systematic nature of the search process, and the narrower
and more specific focus on model matching and text-based
algorithms.

Based on the most popular and biggest surveys we found
in this research field that we just discussed, we concluded
that there exist few surveys focus on the categorization of
matching techniques. Moreover, we found none that used a
systematic approach to identify its key studies, and also found
none focusing on text-based model matching algorithms.
Analyzing these matching techniques can help researchers
in identifying research trends and possible directions for
future research. Summarized, our main motivations behind
conducting this survey are as follows:

— Model matching is an important task in state-based model
differencing and is useful in other areas as well, i.e., in
model transformation testing.

— There exist few surveys that focus on the categorization of
model matching algorithms, especially considering text-
based algorithms.

@ Springer



698

F. A. Somogyi, M. Asztalos

— Finding out the reason why the number of text-based
model matching algorithms is lower, and how they com-
pare with graph-based algorithms.

— Analyzing the aforementioned topics can help
researchers in identifying trends and open questions in
the field of model matching.

3.1.2 Scope and goals

Kitchenham et al. [78] proposed that the PICO guidelines
be used in order to frame research questions and to define the
scope of the survey. This system originates from the medical
domain [120], and has been updated for other sciences [122]
like software engineering [25]. The extended version is the
PICOC criteria system. This consists of the following (the
definitions are taken from the work of Kitchenham et al.
[78]) criteria:

— The population represents who or what benefits from the
SLR. This can be a specific software engineering role, a
category of software engineers, an application area, or an
industrial group.

— The intervention is a software methodology/tool/
technology/procedure that addresses a specific issue.

— The comparison software methodology/tool/technology
/procedure with which the intervention is being com-
pared.

— Outcomes relate to factors of importance to practitioners
such as improved reliability or reduced production cost.

— The context in which the comparison takes place (e.g.,
academia or industry), the participants taking part in the
study (e.g., practitioners or academics), and the tasks
being performed (e.g., small scale or large scale).

Our PICOC criteria can be found in Table 1. Based on the
criteria and our motivations outlined in Sect. 3.1.1, the goals
of this survey are as follows:

Table 1 The PICOC criteria used in the survey

Population Researchers and practitioners using model-driven
methodologies

Intervention Analysis of existing matching approaches, with an
additional focus on text-based model matching

Comparison Differences between different matching techniques,
and the comparison of text-based and graph-based
approaches

Outcomes Better comprehension of the state-of-the-art, the
identification of current research trends and
possible avenues for future research

Context Academic research related to, and industrial

applications of model matching

@ Springer

— Present the state-of-the-art of model matching algo-
rithms.

— Discover the fundamental differences between matching
techniques in order to identify research trends and future
research directions.

— Conduct a survey on text-based model matching
approaches, and compare them to graph-based ones.

— Identify open questions and challenges in the field of
model matching.

3.1.3 Research questions

Defining the research questions is arguably the most impor-
tant task during the planning of a systematic literature review.
Research questions drive the survey process, as the goal of
the process is finding the answers to them. Inclusion and
exclusion criteria (see Sect. 3.1.4) are also partially derived
from research questions. Based on our motivations and the
presented goals and scope of this survey, we formulated some
research questions that we aimed to answer. The goal of this
survey is to provide answers to these questions. They are as
follows:

— RQI What is the state-of-the-art of model matching?

RQI.1 How common are graph-based and text-based
model matching approaches? How do they compare
with each other?

RQ1.2 What model matching techniques are most
often used? What are the main differences between
them?

RQ1.3 How often are state-based and operation-based
change tracking used? What are the main differences
between the two, with regard to the focus of the algo-
rithms using them?

— RQ2 How can model matching approaches be evaluated?
What are the main considerations for evaluation?

— RQ3 What are the main open questions related to the field
of model matching?

— RQ4 How has interest in model matching developed over
time?

3.1.4 Inclusion and exclusion criteria

Inclusion and exclusion criteria are used to identify suitable
primary studies and to exclude unsuitable ones during the
search process. A candidate study always has to fulfill these
criteria. Every inclusion criteria has to be fulfilled in order for
astudy to be included, but if one or more exclusion criteria are
violated, the study is excluded. Table 2 contains our inclusion
and exclusion criteria that we used during the search process.



Systematic review of matching techniques used in model-driven methodologies 699

Table 2 Study selection (inclusion and exclusion) criteria

Inclusion

Exclusion

Study is a peer-reviewed journal article, conference or
workshop paper, or a tech report

Study is related to model-driven methodologies

Study contains research that is related to model matching. The
presented algorithm must be able to support the matching of
models that conform to the same metamodel. Alternatively,
the study focuses on the evaluation of, or on open questions
related to model matching

Study contains research that answers at least one of our
research questions

Study is not a peer-reviewed journal article, conference or workshop paper, or
a tech report (e.g., books, masters theses, doctoral dissertations)

Study is not related to model-driven methodologies

Study does not contain research related to model matching, or it presents an
algorithm that does not support the matching of models that conform to the
same metamodel. Moreover, it does not focus on the evaluation of, or on
open questions related to model matching

Study is not related to any of our research questions

Study is not a primary study, for example, it is a survey. However, references
of related secondary studies are checked during the snowballing process

- Study is not written in English

- Study is not available online (for the authors of this survey)

3.1.5 Search strategy

During the search process, we acquired relevant primary
studies from the following sources: (i) manual search of cer-
tain conference and workshop proceedings, (ii) automatic
search of popular digital libraries, and (iii) the snowballing
process.

The manual search was conducted on the proceedings of
conferences and workshops that we knew of and contained
relevant studies. The reason we conducted the manual search
is to have an additional starting point besides the automatic
search. We aimed to expand these starting points via the
snowballing process, in order to get as many relevant papers
screened as we could. During the manual search, we screened
every paper in every year of the following conference and
workshop proceedings:

MODELS (International Conference on Model Driven
Engineering Languages and Systems)

— ME @MODELS (Models and Evolution Workshop) and
its predecessors MoDSE and MoDSE-MCCM
MODELSWARD (International Conference on Model-
Driven Engineering and Software Development)

CVSM (Comparison and Versioning of Software Mod-
els)

During the automatic search, we used the ACM Guide to
Computing Literature and IEEE Xplore. They are the largest
digital libraries, and the majority of surveys related to soft-
ware engineering use these two [168]. The ACM Guide to

Computing Literature covers most other digital libraries',

I The ACM Guide to Computing Literature contains 1,406,570 as of
the writing of this paper, see https://libraries.acm.org/digital-library/
acm-guide-to-computing-literature.

but the search strings can return more unrelated results. The
results of IEEE Xplore can be better focused with more spe-
cialized search strings, while covering less studies. Due to
this reasoning, we believe that these two databases together,
along with the previously mentioned manual search, ade-
quately covers most existing literature. Therefore, we used
different search strings for the two digital libraries, which are
as follows:

— ACM DL (+text +model +diff) OR ((keywords.author.
keyword:(+model  +match) OR  keywords.author.
keyword:(+model +merge)

OR keywords.author.keyword:(+model +difference)

OR keywords.author.keyword:(+model +compare)

OR keywords.author.keyword:(+model +comparison)

OR keywords.author.keyword:(+model +versioning)

OR keywords.author.keyword:(+model +composition)

OR keywords.author.keyword:(+model +union))

AND domain-specific model-driven model-based UML)
— IEEE Xplore ((model NEAR/2 differencing OR model

NEAR/2 comparing OR “model comparison” OR model

NEAR/2 matching OR model NEAR/2 merging OR

“model composition” OR model NEAR/2 versioning

OR model NEAR/2 union) AND (“UML” OR “model-
driven” OR “model-based engineering” OR “domain-

specific”))

@ Springer


https://libraries.acm.org/digital-library/acm-guide-to-computing-literature
https://libraries.acm.org/digital-library/acm-guide-to-computing-literature

700

F. A. Somogyi, M. Asztalos

Fig.3 Overview of the study
selection process

Automatic
Search

Manual
Search

The search strings were formulated according to our
research questions, using terms and keywords found in pre-
viously known primary studies. The search strings were also
continuously refined during the search process. It is worth
noting that due to the search term limit of IEEE Xplore, the
related search string was split into multiple search strings
when we used it in practice. Keywords like model merging or
model composition were included because during the search
process, we realized that research related to these topics often
deal with model matching in some form.

The last component of our search strategy is the snow-
balling process. The goal of the snowballing process [163]
is to analyze the reference list of every included study from
the manual and automatic search processes, and screen them
using the same inclusion and exclusion criteria. The process
is then repeated with the newly included studies, until we can
no longer include new studies. The main goal of snowballing
is to include related studies that our search strings might have
missed, but the included primary studies reference them (e.g.,
other related studies, or follow-up studies).

3.2 Conducting the survey

The second phase of the survey is conducting the search based
on the planning phase. We detail our study selection process
with results displayed for each phase and present the structure
of the data extracted from the studies.

3.2.1 Study selection process
The study selection (search) process was conducted based on

the planning presented in Sect. 3.1.5. Figure 3 summarizes
this. First, the automatic and manual searches were conducted

@ Springer

! 1179 Studies |

'
pap—

s '
. : 1)
Screening —V(_,_ _3_4-§t£1€1|_e§ B
Snowballing
pemmmm————
Screening » 20 Studies
"""""" '

'
1 2382 Studies ,

_____ [

Screening

119 Studies

(they can be run independently), which resulted in 34 and
20 included studies, respectively. The snowballing process
was started with these 54 studies and finally resulted in an
additional 65 included primary studies. Snowballing is an
essential part of our study selection process, as over half of
the included studies were included during this process. The
screening process for a candidate study is depicted in Fig. 4.
This process was applied to every study that we found during
the manual, automatic, and snowballing processes. First, we
read the title and abstract of the study, and excluded it if the
inclusion and exclusion criteria were violated. After that, we
read the full paper, and if the study was a related secondary
study (namely, a survey), we included it for snowballing, but
not as a primary study. Otherwise, if, after reading the full
paper, the study fulfilled our inclusion and exclusion criteria,
we included it as a primary study. Thus, the second inclusion
and exclusion criteria check is there to check whether the
study still fulfills the criteria after reading the paper.

Table 3 contains the detailed results of the entire study
selection process. To sum it up, out of the 4693 studies exam-
ined, 1419 were duplicates, 2930 were excluded based on
their title and abstract, and 219 were excluded after analyz-
ing the paper. At the end of the process, 119 studies were
included, with an additional 6 papers categorized as surveys
(secondary studies). These surveys are not classified as pri-
mary studies, but their references were all checked during the
snowballing process. We would like to note that for the sake
of clarity, references examined during the snowballing pro-
cess do not include studies that are not available online” and

2 This criterion was applied in a total of 39 cases (of which 22 was dur-
ing the snowballing process) and mostly consisted of situations when
the paper in question was no longer available for anyone, as the web-



Systematic review of matching techniques used in model-driven methodologies 701

Fig.4 The screening process
for one study

( start i

read title and
abstract

fulfills
|&E criteria?

fulfills
I&E criteria?

no

is related
survey?

include for
snowballing

yes

Table 3 Summary of the study selection process

Automatic ~ Manual Snowballing  Overall

search search
Total 1139 1179 2375 4693
Included 34 20 65 119
Surveys 0 1 5 6
Duplicates 95 15 1309 1419
Excluded (soft) 945 1102 883 2930
Excluded (hard) 65 41 113 219

Table 4 Extracted data structure with possible values

Type (RQI.1)

Matching (RQ1.2)
Change tracking (RQ1.3)
Focus (RQ1)

Graph/text
Static/dynamic/similarity/custom
Operation-based/state-based
Accuracy/generality/both

Evaluation (RQ2) Yes/no
Open questions (RQ3) Yes/no
Year (RQ5) -
Author(s) -
Version control systems Yes/no

are not peer-reviewed journal articles, conference or work-
shop papers, or tech reports.

3.2.2 Extracted data

For every study in the 119 included studies, we extracted
relevant data that we used to answer our research ques-
tions. Table 4 summarizes the structure of the extracted data
together with the related research questions and the potential

site containing it ceased to function. There were no significant major
publication sources that were not included for this reason.

values each data type column can take. In addition to the val-
ues depicted there, every data type can also take on the values
unknown (when we could not decipher the value based on the
paper), other (when the value is not of one listed in the table,
but otherwise valid) and none. The detailed explanations for
the potential values are as follows:

— Type (RQI.1) The main type of the matching algorithm,
namely, whether it works using the graph-based structure
or the textual representation of the models. Our definition
of a textual representation can be found in Sect. 2.

— Matching (RQI1.2) The matching technique used by
the algorithm. We use the categorization proposed by
Kolovos et al. [86] (see Sect. 2 for details).

— Change tracking (RQ1.3) State-based or operation-based
change tracking, as discussed in Sect. 2.

— Focus (RQ1) The main goal and focus of the algorithm.
We consider the main ones to be accuracy and generality
(see Sect. 2 for details). If an algorithm focuses on both
of them, the possible trade-off for doing so is also marked
during data extraction. An algorithm can also focus on
other aspects, like the performance or scalability of the
algorithm.

— Evaluation (RQ2) Whether the study contains informa-
tion on the evaluation of model matching approaches.

— Open Questions (RQ3) Whether the study contains infor-
mation regarding open questions in the field of model
matching. This excludes open questions that are only
related to the presented algorithm in the paper, like spe-
cific improvements to the mentioned algorithm.

— Year (RQ4) The year the study was published.

— Author(s) The author(s) of the paper. Also used for iden-
tifying studies that discuss the same research work (see
Sect. 4 and Table 5).

— Version Control Systems Whether the study focuses on
model matching in the context of version control systems.

@ Springer



702

F. A. Somogyi, M. Asztalos

Table5 Primary studies discussing the same algorithms

Algorithm Studies
AMOR S6, S18, S111
Chaouni et al. S16, S63

Dijkman et al.

Ehrig et al.
EMFCompare
Epsilon merging language
Fleurey et al.

Gerth et al.

Koegel et al.

Nejati et al.

Oda and Saeki

Ohst et al.

Oliveira et al.

SiDiff

Somogyi and Asztalos
UMLDiff

Zhang et al.

S36, S48, S64, S66, S103, S106
S65, S97

S81, S90, S98

S68, S78, S116

S7, S80, S92

S33, 834, S35, S56
S87, S88, S110, S112
S58, 859

S52,S74

S42, S71

S2, S76, S86

S9, S17, S39, S43, S113
S50, S70

S44, S115

S26, S27

These data are only needed to reinforce our conception
of version control systems being one of the primary moti-
vating factors for researching model matching.

4 Results and discussion

In this section, we present the reporting phase of our sur-
vey. It contains the presentation and discussion of our results,
namely, the answers to every research question formulated in
Sect. 3.1.3. For a full list of included primary studies, please
refer to Tables 6 and 7 that list every primary study with asso-
ciated extracted data (see Sect. 3.2.2 for details). We included
119 primary studies and 6 surveys during the conduction
of our survey. A total of 105 studies contained information
regarding our firstresearch question (RQ1), which means that
the mentioned studies discuss a model matching algorithm.
There are some research works that are split into multiple
studies, for example, with the discussed algorithm being con-
tinually improved over time. The list of these algorithms can
be found in Table 5. In order to normalize the effect these
studies have in our analysis, we have decided to handle these
papers as one study. We also updated the extracted data for
every related study where the extracted values differed. For
example, when the algorithm was improved over time (i.e., its
focus changed from only accuracy to both accuracy and gen-
erality), we use the improved version in our categorization.
At the end of this process, the number of studies containing
answers to RQ1 was reduced to 72 from 105.

@ Springer

As for the statement that one of the primary motivations
behind model matching is supporting version control, we
found that 70 out of the included 119 primary studies mention
it as one of the motivations behind their research. Thus, we
believe this statement is mostly accurate. It is interesting to
note that studies dealing with model composition (of which
model matching can be a part of) and behavioral models were
less likely to include the support of version control as one of
their motivations.

4.1 State-of-the-art (RQ1)

Our firstresearch question is aimed at identifying the state-of-
the-art in model matching techniques. We split this question
into multiple subquestions, all of which we are answering
here: (i) comparison of text-based matching to graph-based
matching, (ii) discovery of differences between main match-
ing techniques, and the (iii) analysis of change tracking
approaches, with regard to the focus of the algorithm.

4.1.1 Text-based model matching (RQ1.1)

RQ1.1: How common are graph-based and text-based
model matching approaches? How do they compare
with each other?

The studies we found often refer to text-based model
matching as either raw text differencing [19,162,170] (e.g.,
GNU Diffutils [98] or KDiff [71]), or as to the XML-based
serialization of the models [30,146] (e.g., XMI [167]). The
former has very low accuracy in the case of models due to
structural differences (compared with source code), while
the latter is often dismissed due to its low abstraction level,
which also makes it less accurate. In Sect. 2, we defined
the textual representation of a model as a textual notation
that is mapped to the model by well-defined mechanisms.
We also excluded XML-based serialization from this def-
inition. During the categorization of the studies, we used
this definition to label algorithms as text-based. As we have
discussed before, there are certain advantages of using the
textual notation, like supporting off-line editing, better com-
prehensibility when focusing on details, or when compared
with XMI [67,68,144].

Out of the 72 related primary studies, the number of text-
based algorithms (8) is significantly lower than the number of
graph-based algoritms (64). We believe that this 11% to 89%
ratio is notable enough to conclude that text-based algorithms
are significantly more rare than graph-based ones in the exist-
ing literature. In the following, we give a brief summary of
every included text-based algorithm and then finish by com-
paring text-based algorithms to graph-based ones based on
our findings.



Systematic review of matching techniques used in model-driven methodologies 703

Badreddin et al. [16] presented an approach where model
matching is based on a traditional textual version control
system (SVN [149]). The models are described in a textual
form by Umple [58], which is a modeling tool and program-
ming language family that aims at combining modeling and
programming with each other. Inconsistencies (conflicting
differences) are managed by the Umple editor. The main goal
of the approach is to achieve the uniform versioning of model
and code, for which the most feasible solution is to version
models in their textual form. The authors succeeded in con-
necting raw text differencing with model-driven engineering.
However, the difference representation is at a low abstraction
level (per text-line); thus, the differences are more difficult
to comprehend by the user during the merge process.

The algorithm presented by Alwanain et al. [11] focuses
on the automated composition of sequence diagrams.
Sequence diagrams are behavioral models, which differ from
static models in that they are often more sensitive to model
semantics when differenced and merged. The models used by
the algorithm are described by Alloy [70], which is a textual
language for describing structural properties. Alloy provides
amodeling tool that uses first-order logic to define properties.
Model matching is based on defining facts in Alloy, which
is a dynamic approach to model matching. The main focus
of the algorithm is accuracy, as it was specifically developed
for sequence diagrams.

Maoz et al. [101] proposed cddiff, a semantic differenc-
ing operator for UML class diagrams. Similarly to Alwanain
et al. [11], the models are described by Alloy. The match-
ing is done using a custom, language-specific algorithm that
heavily uses the semantics of class diagrams. The algorithm
focuses on accuracy, although a future goal of the authors is
“to apply the idea of semantic differencing and the computa-
tion of diff witnesses to other modeling languages as well”.

Foucaultetal. [59] aimed to enhance traditional text-based
version control (more specifically, git [54]) with domain-
specific semantics. The textual representations are described
by a textual domain-specific modeling language using EBNF,
and the matching is done based on static identifiers. The algo-
rithm is integrated in a model-driven engineering simulation
platform. The algorithm aims to achieve both accuracy and
generality, although the use of static identifiers limits the lat-
ter.

The algorithm presented by Somogyi and Asztalos [136,
137] (previous work of the authors of this survey) differences
and merges models based on their textual representations.
The textual notation is described by an arbitrary textual lan-
guage and must be mapped to the model by an associated
parser [2]. The matching is done with a heavy reliance on the
parser. The parser has to satisfy a number of requirements
by the algorithm, which requires some effort to configure;
however, in return, the algorithm can be both accurate and
general. Thus, the algorithm aims to achieve both accuracy

and generality, at the cost of fulfilling practical requirements
that the parser has to satisfy.

The algorithm proposed by Barrett et al. [19] focuses on
merging use cases models that are given in a textual form.
Textual use cases are usually described in a natural language.
The algorithm is operation-based, and as such, it records
changes as they occur. Thus, there is no need for explicit
model matching. Finite state machines are constructed from
the textual representation, and then used during the merg-
ing process. The authors focus on the accuracy of merging
use cases models given in a textual form—a task for which
there was no proposed solution before—and present a unique
algorithm for solving the problem.

TMDiff, proposed by van Rozen and van der Storm
[157], is an algorithm that uses standard textual differencing
during the origin tracking between the textual representa-
tion and the model. The algorithm is also operation-based.
Therefore, while explicit matching is not needed due to the
operation-based change tracking used by the algorithm, raw
text differencing is still used as a means of origin tracking,
namely, the mapping mechanism between text and model.
The algorithm is implemented in Rascal [80], and the text
is parsed into an abstract syntax tree by a parser [2]. The
authors mention an interesting problem related to text-based
model matching. Namely, non-semantic information (e.g.,
comments) in the text may influence text-based algorithms,
and have to be handled appropriately.

Rivera and Vallecillo [127] chose to represent models in
a textual form with Maude, which is a “high-level inter-
preter and compiler in the OBJ algebraic specification family
[128]”. The matching in their algorithm is based on both static
identifiers and similarity metrics. Their algorithm also sup-
ports the models having different metamodels, and is highly
configurable. The focus of the algorithm is both accuracy
and generality, which comes at the cost of specifying the
Maude-based representation of the models, and configuring
the algorithm.

According to our findings, 3 text-based algorithms focused
on both accuracy and generality, 4 algorithms focused only
on accuracy, while 1 algorithm had special goals in mind
(Badreddin et al. [16]). Aiming for both accuracy and gener-
ality often comes with the compromise of needing to map the
textual representation for different modeling languages, and
also with the configuration cost of the algorithm itself. We
have seen examples of this configuration cost in two out of
three algorithms that aimed to be both accurate and general at
the same time [127,136,137]. Foucaultet al. [59] is the excep-
tion to this, as their algorithm aims to be general by using
static identifiers, which limits its practical applicability in the
case of more complex modeling languages. We did not find a
text-based algorithm which focuses only on generality. Raw
text differencing might be considered to be such an approach,
but due to the reasons explained in Sect. 2, such approaches

@ Springer



704

F. A. Somogyi, M. Asztalos

are not considered to be sufficient for graph-based models.
Since the textual notation of a model is often considered a
second-hand notation next to the graphical one, the effort
required to use these algorithms with a new modeling lan-
guage that do not already support the textual representation
can be considerably high. However, if this problem can be
efficiently solved, then text-based algorithms can provide an
alternative to graph-based ones, as they can be easily inte-
grated into existing version control systems, further bridging
the gap between modeling and coding.

Graph-based and text-based algorithms can be success-
fully combined [127]. In addition to the textual representa-
tions, text-based algorithms still have to take into account the
internal graph-based representation of the models in order to
preserve accuracy and a high level of abstraction when cal-
culating and presenting differences. Thus, often, text-based
model matching algorithms can be viewed as an extension
of graph-based algorithms. In addition, they also have the
added benefit of supporting text-based modeling by solving
the model matching problem on the textual representations
[67].

As a final note, we found no text-based algorithms that
relied on similarity-based matching, but found examples for
every other matching technique. This can be explained by
the fact that text-based algorithms often rely on the under-
lying mechanism that maps the model to text. This usually
requires a higher configuration cost (dynamic matching), but
there is no need for similarity-based matching if the under-
lying mechanism can give an exact answer to the question
of whether or not two model elements are considered to be a
match.

Due to space limitations, we do not summarize each of the
64 graph-based studies we included in our survey. Instead,
we briefly summarize our findings. Figure 5 contains the
summary of graph-based algorithms with regard to their
focus. Statistically, we can conclude that graph-based algo-
rithms are more varied than text-based ones. In contrast to
text-based algorithms, similarity-based approaches are also
more common among graph-based algorithms. Some of these
graph-based algorithms will be discussed in more detail in
later sections (e.g., when discussing open questions), as they
have increased relevancy there.

Summarized, our key findings on comparing text-based
model matching algorithms with graph-based ones are as
follows:

— Lack of text-based algorithms There is a lack of text-
based model matching algorithms, and an even greater
lack of general text-based algorithms.

— Motivations behind using text-based algorithms The
main motivations we found behind text-based model
matching are (i) using the simplicity of raw text dif-
ferencing and enhancing it to be suitable for models

@ Springer

other 7

11% accuracy 27
both 14 42%

22% )

generality 16
25%

Fig.5 Summary of the focus of graph-based algorithms

[16,59,157], (ii) aiming for better accuracy at a higher
configuration cost [127,136], and (iii) supporting the tex-
tual notation of the models by solving a related, specific
problem [19,157].

— Generality comes with configuration cost Text-based
model matching algorithms tend to focus either on accu-
racy, or on both accuracy and generality. This often comes
with a compromise in the form of an increased config-
uration cost of the algorithm and the mapping of the
textual representation. Only when these costs are accept-
able that text-based algorithms can be reliable used in
a more general way in practice. Thus, they are either
accurate (usually with a single language in mind), or
have a higher configuration cost to be used generally.
However, more research is needed on the analysis of the
trade-off between the configuration cost and the general-
ity/accuracy of the text-based algorithm, as no study we
found dealt with this problem in detail. As a final note,
the idea of supporting both accuracy and generality at a
higher configuration cost is also present in graph-based
algorithms.

— Quantifying the configuration cost? What metrics can
we use to express the effort required to use a text-based
matching algorithm with a particular modeling language?
Can it be expressed using standard metrics? The studies
we found did not discuss this problem.

4.1.2 Matching techniques (RQ1.2)

RQ1.2: What model matching techniques are most
often used? What are the main differences between
them?

Figure 6 summarizes the main matching techniques used
by the algorithms we found, according to the categorization
detailed in Sect. 2. We would like to note that the sum of the



Systematic review of matching techniques used in model-driven methodologies 705

Matching algorithms - summary
Unknown 1 Static 15

18%

None 14
17%

Other 6
8% .

Custom 9
11%

1%

Similarity 22
27%

Dynamic 15
18%

Matching algorithms - behavioral models

None 1 Static 1
11% 11%

Custom 2
m’

\

Similarity 5
56%

Fig.6 Summary of the matching techniques used by identified model matching algorithms

numbers on the figure is greater than the number of unique
algorithms. This is due to the fact that algorithms using more
than one matching technique are counted multiple times
for every used technique. We can see that similarity-based
matching is the most popular, followed by static and dynamic
matching. Operation-based algorithms usually use no match-
ing technique (hence the category none on the figure). Please
note that the number of operation-based algorithms (15, as
detailed in Sect. 4.1.3) is higher than the number of algo-
rithms using no matching technique (14), as one particular
operation-based algorithm we found [157] uses raw text
matching as a form of origin tracking between model and
text.

We identified six studies that used matching techniques
that did not fit into our categorization. Schwigerl et al. [132],
vanden Brand et al. [159], Kehrer and Kelter [73], and Barrett
et al. [17] all use configurable matching, which means that
any matching technique can be used as long as it fulfills
specific criteria. Badreddin et al. [16], along with van Rozen
and van der Storm [157], use raw text differencing in some
form. Thus, there were two categories that did not fit our
existing categorization based on the work of Kolovos et al.
[86]: (i) configurable matching algorithms, and (ii) raw text
differencing.

Figure 6 also presents matching techniques used by algo-
rithms working with behavioral models. Behavioral models
describe a process, like state charts [75,108], or business
process models (BPM) [49,50,93]. We found that the seman-
tics of the models greatly influence the model matching, as
opposed to static models. In the case of behavioral mod-
els, similarity-based matching is the most popular. Moreover,
algorithms focusing on behavioral models tend to focus on
accuracy instead of generality.

Figure 7 depicts the different matching techniques with
regard to the main focus of the algorithm. Static match-
ing is often used in achieving both accuracy and generality,
although the use of static identifiers usually severely lim-

its the latter. Similarity-based matching is often employed
when the accuracy of the algorithm is the main focus. It
is also worth mentioning that behavioral algorithms con-
tribute greatly to this statistic, as seen in Fig. 6. In the case of
dynamic matching, custom, and other algorithms, we found
no distinguishable correlations.

4.1.3 Change tracking (RQ1.3)

RQ1.3: How often are state-based and operation-based
change tracking used? What are the main differences
between the two, with regard to the focus of the algo-
rithms using them?

Out of the 72 algorithms the survey identified, the majority
(75%) were state-based, some were operation-based (~21%),
while a small number of algorithms (~4%) used both change
tracking approaches. Figure 8 depicts the main focus of
state-based and operation-based algorithms. Contrary to our
preliminary expectations, the operation-based algorithms we
found are split evenly with regard to the focus of the algo-
rithm. State-based algorithms tend to focus more often on
accuracy (50%). Thus, in general, we can draw two main
conclusions from these results: (i) state-based approaches
are more commonly used, and (ii) there are no significant
correlations between the used change tracking method and
the main focus of the algorithm.

Regarding behavioral models, Soto and Miinch [140]
argue that operation-based approaches are not suitable for
process models, stressing that manual change logs are espe-
cially difficult to use. Our findings support their claims, as the
number of state-based behavioral algorithms (7) we found
significantly outweighs the number of operation-based (1)
algorithms, even if we count the number of approaches where
both change tracking methods were used (1).

@ Springer



706

F. A. Somogyi, M. Asztalos

Fig.7 Correlations between 10
matching types and the main
focus of the algorithm

9
8
7
Accuracy
6 Accuracy
Generality
Both
5
4
3
2
1
0

Static
Focus of operation-based algorithms

Other 4
27%

Accuracy 4
26%

Both 3

0,
20% Generality 4

27%

Generality Generality
Both
I Other

Accuracy

Both

Generality
Accuracy | Both Accuracy

Generality
Other Other

Dynamic Similarity Custom Other
Focus of state-based algorithms
Other 3
6%
Both 12

22%

N\

Generality 12
22%

Accuracy 27
50%

Fig.8 Summary of the main focus of operation-based and state-based algorithms

4.2 Evaluation techniques (RQ2)

RQ2: How can model matching approaches be evalu-
ated? What are the main considerations for evaluation?

The evaluation and benchmarking of model matching,
differencing, and merging algorithms is considered to be a
difficult task in the literature [8,152]. Most approaches that
we found focus on the accuracy of the matching process
in some way [1,4-7,27,44,47,48,108,109,152,158,161,169].
Metrics like precision, recall, or F-measure that are known
from pattern recognition and machine learning [26] are often
used to measure accuracy. Precision is usually the measure of
exactness or fidelity; it is equivalent to the ratio of correctly
detected matching pairs to all detected pairs. Recall is often
used as the measure of completeness; it is equivalent to the

@ Springer

ratio of correctly detected matching pairs to the number of
all correct matching pairs. Instead of these values, the mean
average precision and recall are often used [47,48]. These
metrics are regularly used in the case of structural models,
but they can also be defined for behavioral models. In addition
to being used to measure matching accuracy, these metrics
can also be used for measuring the accuracy of conflict detec-
tion or resolution. The concept is similar, finding the ratio of
correctly identified matching pairs or conflicts [169]. As a
final note on the topic of conflict detection, Koegel et al. [84]
evaluated operation-based conflict detection approaches by
running the changes in a batch-mode on predefined models,
and evaluating their results manually. Conflicting and non-
conflicting changes were separated in their approach.



Systematic review of matching techniques used in model-driven methodologies 707

Another common consideration regarding the evaluation
of matching algorithms is the runtime of the algorithm
[1,47,152,158]. Scalability—based on the number of model
elements in the input models—is also an important factor that
mostly influences large models. Runtime performance can
be expressed with a simple time metric, i.e., in milliseconds.
Scalability can be expressed by using space and time com-
plexity [14], which, similarly to other fields where algorithms
are considered, are used in the field of model matching as well
[108,109]. As with most algorithms in computer science, the
dilemma of whether to focus on accuracy or performance is
also present with model matching. This is especially relevant
when matching large-scale models, although few studies that
we found focused on this problem [151].

Benchmarking algorithms is considered to be an area
where further research is required in this field [8,123]. Hav-
ing standardized benchmark model datasets that can be used
to evaluate algorithms is beneficial to researchers, as it is
then possible to compare different algorithms objectively,
regardless of their inner workings or the technology used to
implement the algorithm. Unfortunately, there are very few
such benchmark datasets available. It would also be useful
if such benchmark datasets could automatically be gener-
ated instead of creating them manually, especially in the case
of large-scale test models. The benchmark dataset used by
van den Brand et al. [158] contains both manually and auto-
matically created EMF [145] models. Using the datasets,
the authors successfully compare EMFCompare [111] and
RCVDiff [156] with each other, based on performance and
accuracy. However, using the dataset with algorithms that are
incompatible with EMF models by default would be difficult,
as the implementation is technology dependent. Dijkman et
al. [47] used the SAP reference model, while Koegel et al.
[84] used two manually defined real projects during their
evaluation. Both datasets have the same problems when we
try to extend them for more general use—they are technology
dependent. Dijkman et al. [44,47] compared different match-
ing algorithms used with business process models, based on
accuracy and performance. Both experiments concluded that
the greedy algorithm was the best in both accuracy and per-
formance. The testing models were derived from the local
government domain and from the SAP reference model. To
conclude, the automatic generation of sufficient benchmark
datasets remains to be a problem in the field of model match-
ing.

Another way we can evaluate matching algorithms is the
conduction of user studies in order to gather empirical infor-
mation on various aspects of an algorithm. Melnik et al. [104]
carried out a user study in order to find out how the different
parameters of their algorithm affected matching results, and
how much overall manual labor was saved when using the
algorithm. De Lucia et al. [97] conducted an empirical study
carried out by students in order to evaluate the effective-

ness of their algorithm with regard to the automatic conflict
resolution and the manual intervention required. Although
proven to be efficient in evaluating certain aspects of algo-
rithms that would otherwise be difficult to quantify, we found
that empirical user studies are few in number in the literature.

We identified frameworks whose purpose is the evalu-
ation of model matching/differencing/merging algorithms
[62,152]. MCTest [62] evaluates Eclipse-based model match-
ing algorithms. The framework is implemented in Java,
highly configurable, and homogenizes results for every
approach. The accuracy and performance of the algorithms
can be evaluated with the framework. The framework pro-
posed by Uhrig and Schwigerl [152] is also an Eclipse-based
framework for the evaluation of matching algorithms. The
framework accounts for user involvement, has automatic
error calculation (based on a manually defined match model),
and evaluates the accuracy and performance of the matching
algorithms.

Although slightly out-of-scope for our survey, evaluat-
ing the correctness of the merge process is a direction that
some approaches take [108]. This evaluation often includes
mapping the model to a mathematical formalism, i.e., map-
ping behavioral models to labeled transition systems (LTS).
On the topic of merging, La Rosa et al. [93] examined
some basic properties of their merge operator: idempotence,
commutativity, and associativity. They also analyzed their
compression factor (size of the merged model compared
with the input models), and evaluated the scalability of the
merging process as opposed to manual man-hours needed to
accomplish the merge.

To sum it up, the two main problems we found regarding
evaluation during our survey are (i) the technology depen-
dence of benchmark data sets and evaluation tools (which
are mostly Eclipse-based), and (ii) the manual verification
of the result of the matching algorithm compared with the
optimal result [44,50,62,152,161]. The latter is especially
problematic in the case of large-scale models, for which we
found a lack of solutions regarding evaluation.

Summarized, our key findings on the evaluation of model
matching algorithms are as follows:

— Measuring metrics are established Matching accuracy
is often used to evaluate matching algorithms. It can
be measured with metrics borrowed from pattern recog-
nition: precision, recall, and F-score. The accuracy of
conflict detection and resolution can also be measured
using these metrics. Performance and scalability are also
common factors, although large-scale models are some-
what neglected in this regard.

— Lack of automated benchmarking Benchmarking is often
mentioned as one of the main challenges in the field of
model matching. We found that there is a need for the

@ Springer



708

F. A. Somogyi, M. Asztalos

automatic generation of technology-independent bench-
marking model datasets.

— Lack of empirical studies Empirical user studies are rare,
although they can be used to verify certain aspects of an
algorithm (e.g., human effort required to use) that would
otherwise be difficult to quantify.

— Lack of technology-independent evaluation frameworks
There are some existing evaluation frameworks for model
matching algorithms, but they are usually technology
dependent [62,152].

4.3 Open questions (RQ3)

RQ3: What are the main open questions related to the
field of model matching?

In the earlier years of research in model differencing and
merging, there was a clear need for general algorithms that
did not rely on static identifiers [3,8]. Our findings confirmed
that this is no longer the case, as there are numerous algo-
rithms that focus only on generality and do not rely on static
identifiers (16 that we found, see Sect. 4.1.2 for details).

Although loosely connected to model matching, the most
frequently mentioned open questions that we found were (i)
the lack of reliable automatic conflict resolution [3,8,16,33]
and (ii) the need for better difference and conflict visualiza-
tion [8,33,95,102]. The former problem is important, since
introducing manual user choice can make the algorithm be
more prone to errors, as user input is now a factor. Although it
can be argued that knowledge from domain experts is useful
in supplementing the algorithm, a more automatic, and also
reliable conflict resolution can greatly ease the process. How-
ever, a faulty automatic conflict resolution mechanism can
lead to inconsistencies in the model. Therefore, reliable and
accurate automatic conflict resolution is important in model
differencing and merging. A frequently mentioned solution
to the latter problem is the specification of differences and
conflicts in the concrete syntax of the model in question.
Our findings confirmed that these problems are still open
questions, as we found few approaches that focused on them
[37,97,114,142].

Brosch et al. [30] conducted an extensive survey that
serves as an introduction to the model versioning research
field. The main open questions they identified are (i)
intention-aware and (ii) semantics-aware model version-
ing. The former problem is related to model merging. The
authors argue that ideally, the merged version should rep-
resent the summary of the intentions each developer had
in mind when performing their operations. Essentially, this
means the preservation of the original goals the develop-
ers had, instead of merely automatically combining every
non-conflicting operation. The solution proposed by the
authors is detecting the application of composite operations

@ Springer

like refactoring, allowing developers to annotate intention.
Moreover, Barrett et al. [18] also argue that there is no
clear definition on what should happen during model merge.
The second problem states that non-conflicting syntactical
operations can still cause semantical conflicts (e.g., dead-
locks in behavioral models). Also, at the time, there were
no currently accepted formal semantics for often-used lan-
guages like UML. > Moreover, the authors argue that existing
approaches are specific to modeling languages and language
constructs.

Semantic model matching and differencing is a relatively
new research direction [10,55,99-102,119]. It tries to incor-
porate the semantic meaning of the model elements during
the matching process. Maoz et al. [102] identified several
open questions related to semantic model differencing: (i)
semantic diff witness computation is algorithmically diffi-
cult and the witnesses may be sound, but incomplete, (ii)
diff witness presentation is language-specific (see previous
open questions), (iii) integration with syntactic differencing
is lacking [95]. As for the integration, the authors propose
that semantic matching should use the results of the previ-
ously ran syntactic matching in order to localize and improve
its performance.

Badreddin et al. [16] identified several open questions and
challenges in the field of model matching. They are as fol-
lows: (i) model entities and diagram layouts are not separated
sufficiently, (ii) low tool adoption of existing approaches
(lack of mature tools), (iii) existing approaches are not
suitable for large-scale models (few approaches consider
them), and (iv) the non-determinism and unpredictability of
matching, especially for similarity-based approaches. The
first problem refers to standard model representations (i.e.,
XMI [167]) containing diagram-specific information, like
the coordinates of model elements on the diagram. This
could inherently influence the matching process. A way
to solve this is to avoid using only the XMI representa-
tion for the matching process. For example, the algorithm
could work with an abstract graph built from the XMI that
omits diagram layout data, or with a structure built from
a textual representation. The second problem, namely, lack
of tool support, is still a relevant problem. The proposed
algorithms usually have a working prototype, but accord-
ing to our findings, industrial tools are much more rare.
The third problem, large-scale model matching, is still an
open question. Since the graph isomorphism problem is NP-
complete [81], algorithms that deal with large-scale models
have to be heavily optimized [34,151]. This results in a
heavy focus on performance, which could come at the cost
of accuracy. The last stated problem is the non-determinism
of existing approaches. As the authors stated, this often

3 Regarding UML, this is no longer the case, see https://www.omg.org/
spec/FUML/.


https://www.omg.org/spec/FUML/
https://www.omg.org/spec/FUML/

Systematic review of matching techniques used in model-driven methodologies 709

occurs when the matching algorithms are configurable or
similarity-based. Indeed, two separate configurations can
lead to different results on the same input. However, it can
also be argued that the strength of these approaches is in
their high degree of configuration, which makes them more
general. Therefore, we do not consider this a huge prob-
lem.

The question of how we can measure the quality of model
differences can arise, i.e., what can be considered a “good”
model difference [123]. There is also a clear need of standard-
ized benchmark model sets [8,123], as we have discussed in
Sect. 4.2.

We examined the differences between the matching of
structural and behavioral models in Sect. 4.1.2. In the case
of structural models, a wide variety of matching approaches
were used in the primary studies we found. However, in the
case of behavioral models, we found that general approaches
are much more rare. We concluded that the reason for
this is that behavioral models rely on semantics more than
structural models [75]. Thus, more specific matching algo-
rithms are needed for behavioral models in order to achieve
an acceptable degree of accuracy. Soto and Miinch [140]
identified several open questions related to process model
matching and differencing. They are as follows: (i) filter-
ing and representing results for multiple user groups (i.e.,
developers, managers) is difficult, (ii) process models are
often specific to organizations; thus, algorithms have to
respect their schema, and (iii) the problem of whether state-
based or operation-based approaches are better in the case
of process models. The first question is similar to the dif-
ference representation found in the case of static models.
The second problem further reinforces the fact that gen-
eral approaches are less useful in the case of behavioral
models. We discussed the third problem in Sect. 4.1.3, dur-
ing our discussion on change tracking. As a final note on
process model matching, Soto and Miinch also argue that
raw text differencing is useful for process models, but only
for certain parts of the model, like long text-based descrip-
tions.

Finally, we found the following recurring questions that
we aimed to answer in our survey: (i) what criteria can be
used to identify correspondences between models, and how
these criteria can be quantified [55], (ii) how should model
elements be identified [18], (iii) what are the fundamental
limitations of the matching process (i.e., complexity) [95],
and (iv) are published model differencing approaches sub-
stantially different [95]. We believe that the answers to our
research questions in this section cover these questions.

Summarized, the major open questions and challenges in
the field of model matching that we identified are as follows:

— Relatively low industrial appliance Low tool adop-
tion of existing algorithms. Most algorithms have a

working prototype, although industrial applications are
rare.

— Inadequate change visualization Although loosely related
to the field of model matching, difference and conflict
visualization is not adequate enough, the concrete syntax
of the model should more often be used for this pur-
pose.

— Intention-aware model versioning Intention-aware model
versioning is a possible future research direction where
the result of a model merge is based on the intentions of
the developers committing the changes.

— Semantic model matching Semantic model matching is
a relatively new research direction with multiple prob-
lems: algorithmic complexity, difference representation,
and integration with syntactic matching.

— Lack of benchmarking datasets Benchmarking datasets
are uncommon and are usually technology dependent.
Automatically generated and technology-independent
datasets are needed in order to more objectively evaluate
algorithms.

— Large-scale model matching Large-scale model match-
ing needs more research. The trade-off between perfor-
mance and accuracy also merits further research.

— General algorithms for behavioral models? General
model matching algorithms do not seem to perform well
regarding accuracy, as behavioral models seem to rely
too heavily on semantics. Can more general algorithms
be developed for behavioral models?

— Further analysis of text-based algorithms The investi-
gation of the differences between text-based and graph-
based algorithms, and identifying and quantifying the
aspects that they differ in merits further research. This
also includes the analysis of the correlation between the
configuration cost and accuracy/generality of the text-
based algorithm discussed in Sect. 4.1.1.

4.4 Interest in model matching (RQ4)

RQ4: How has interest in model matching developed
over time?

Figure 9 illustrates every included primary study per year,
from the earliest published paper (2001) to the latest one
(2018). We can see that the apex of research related to model
matching was between 2007 (16 studies) and 2009 (20 stud-
ies). From then, a steady decline in the frequency of published
papers can be observed. Nevertheless, we believe that the
open questions and challenges we identified in this survey
are still relevant and merit further research.

Figure 10 contains every graph-based and text-based algo-
rithm, on a per-year basis. This excludes primary studies that
do not present a particular algorithm. Text-based algorithms
are significantly fewer in number. They started to emerge

@ Springer



710

F. A. Somogyi, M. Asztalos

Fig.9 Number of included 20
primary studies per year
18

16

n.o. studies

2001 2003

later as well, from 2008. Moreover, the steady decline that is
present in the case of graph-based algorithms is not present
here. This can mean that although interest in text-based model
matching algorithms is low, it is not declining. However, due
to the low sample size of text-based algorithms, we are not
confident in this conclusion.

As a final note, in previous charts, multiple studies that
discuss the same algorithm were handled separately, and are
not merged into one study like we discussed in Sect. 4. We
believe this represents interest in model matching more accu-
rately, as iterations on existing algorithms are also important
in this regard.

4.5 Threats to validity

Systematic literature reviews follow well-defined guidelines
in order to be accurate and repeatable. However, even when
closely following these guidelines, every survey is inherently
subjective to some degree. In this subsection, we list the main
threats to the validity of our survey, and what steps we took
to mitigate them.

We consider the following to be the main threats to the
objectivity and repeatability of our survey: (i) the study selec-
tion strategy we used and (ii) researcher bias. To mitigate the
first one, we followed the guidelines for systematic litera-
ture reviews presented in the literature as closely as possible
[78,79,163]. We aimed for the best coverage of included stud-
ies by using broader search terms during automatic search,
and by manually searching venues that we knew had promis-
ing studies we can include. The goal of the snowballing

@ Springer

2005 2007 2009 2011 2013 2015 2017

Year

process was to find related studies that we missed during the
previous two searches. That said, we do acknowledge that
there may be some missing studies that our search strategy
did not manage to find. Furthermore, by also doing a manual
search process, the selected venues might be overrepresented
in the final result of the survey. We concluded that this was an
acceptable compromise to increase the number of included
primary studies.

Out of the two main threats mentioned, we consider
researcher bias to be the primary threat to the validity of
our survey, since it was conducted by two researchers. Dif-
ferent researchers might interpret a given study differently,
especially regarding some aspects that had to be examined
for our research questions. Although we aimed to give the
exact definitions and instructions for extracting data from the
included studies in Sect. 3.2.2, some values might be subjec-
tive to researcher bias. We acknowledge that there may be
misinterpretations during the analysis of these approaches,
especially due to the low number of researchers conducting
the survey. For example, determining the focus of a model
matching algorithm can be subjective when little information
is given in the examined study. However, since we conducted
the survey based on the guidelines and planning presented in
Sect. 3.1, we believe that our survey is repeatable, and the
repeated results would closely resemble the ones we got.

Moreover, research works that discuss the same algorithm
can be splitinto multiple studies, for example, if the algorithm
has improved over time. In order to handle cases like this as
objectively as possible, we merged these studies into one
study. Therefore, when answering relevant research ques-



Systematic review of matching techniques used in model-driven methodologies 711

Fig. 10 Number of identified 14
graph-based and text-based

model matching algorithms per

year 12

10

n.o. studies
(oo}

2001 2003

tions, statistics are less skewed as opposed to handling them
as multiple studies. Section 4 and Table 5 discuss and summa-
rize these merged studies. In the case of improving algorithms
(for example, when an algorithm focused only on accuracy,
but was improved to also be general in the next study), we
used the improved properties of the later publications. Thus,
we believe that we have managed to minimize the impact of
this threat to our survey.

5 Conclusions

This survey consists of a systematic literature review (SLR)
on matching techniques used in model-driven methodolo-
gies. We conducted the survey as a planned, well-defined
process. It was carried out to acquire the state-of-the-art
of model matching approaches in the existing literature.
We identified the boundaries of the research field of model
matching in model-driven methodologies. We focused on
discovering differences between matching techniques, and
on comparing text-based model matching approaches with
graph-based ones. We have identified a total of 4693 studies,
of which 1419 were duplicates, and 119 were included as
primary studies, with an additional 6 papers categorized as
relevant survey papers”*. After thoroughly analyzing the data
extracted from the selected primary studies, we identified
research trends in model matching along with possibilities

4 The extracted data (including relevant venues of publications) can
be found here: https://github.com/Fsomogyi/Systematic-Review-of-
Matching-Techniques-Used-in-Model-Driven-Methodologies.

Graph
Text
2005 2007 2009 2011 2013 2015 2017
Year

for future research. We also identified the main open ques-
tions related to the field of model matching, and summarized
the state-of-the-art of evaluating model matching, differenc-
ing, and merging approaches. We compared text-based and
graph-based algorithms and concluded that the former are
much more rare, and usually require a higher configuration
cost to use. The conclusions presented in the survey can help
researchers and practitioners in the field of model matching
in identifying gaps in existing research and in focusing their
future work.

Acknowledgements Open access funding provided by Budapest Uni-
versity of Technology and Economics (BME). The authors would like
to thank the anonymous reviewers. Their insightful comments led to a
much improved paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

See Tables 6 and 7.

@ Springer


https://github.com/Fsomogyi/Systematic-Review-of-Matching-Techniques-Used-in-Model-Driven-Methodologies
https://github.com/Fsomogyi/Systematic-Review-of-Matching-Techniques-Used-in-Model-Driven-Methodologies
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

712 F. A. Somogyi, M. Asztalos

Table 6 Categorization of

selected primary studies (pt. I) ID Type Matching Change Focus Eval. Open Q. VCS

S1[129] G C S B - - Y
S2 [55] G D+SI S B - Y

S3[12] G C S O - - -
S4 [51] G N (0)% B - - Y
S5 [100] G N oP G - - Y
S6 [148] G ST+SI B B - - Y
S7[56] G D S B - - -
S8 [103] G ST S G - - Y
S9 [76] G D+SI S G - - Y
S10[132] G (0} S A - - Y
S11 [124] G N OP G - - Y
S12[118] G D S A - - -
S13[102] - - - - - Y -
S14 [16] T (0} S (¢} - Y Y
S15[110] G ST S G - - Y
S16 [35] G C S A - - -
S17[72] G D+SI S G - - -
S18[31] G ST+SI B B - - Y
S19 [99] G C S A - - Y
S20 [44] - - - - Y - -
S21 [123] - - - - - Y -
S22 [158] - - - - Y - -
S23[11] T D S A - - -
S24 [101] T C S A - - Y
S25 [75] - - - - - Y -
S26 [37] G N oP A - - Y
S27 [169] G N oP A Y - Y
S28 [27] G SI S A Y - -
S29 [97] G ST S A Y - Y
S30 [147] G C B B - - Y
S31 [20] G N OoP A - - -
S32[92] G N OoP (¢} - - Y
S33 [91] G C S B - - Y
S34 [65] G C S B - - Y
S35 [63] G C S B - - Y
S36 [46] G SI S A - - -
S37[77] G ST S A - - Y
S38 [3] G ST S A - Y Y
S39 [151] G D+SI S G Y - Y
S40 [66] G D+SI S A - - Y
S41[114] G ST+D S G - - Y
S42 [115] G ST+D S A - - Y
S43 [24] G D+SI S G - - Y
S44 [166] G SI S A - - Y
S45 [86] - - - - Y — Y
S46 [96] G ST+SI S G - - Y

@ Springer



Systematic review of matching techniques used in model-driven methodologies 713

Table 6 continued

ID Type Matching Change Focus Eval. Open Q. VCS
S47 [59] T ST S B - - Y
S48 [45] G ST S A - - -
S49 [159] G 0] S G - - -
S50 [136] T D S B - - Y
S51[28] G D S B - - -
S52 [112] G N OP B - - Y
S53 [47] - - - - Y - -
S54 [130] G N OoP (0] - - Y
S55 1331 - - - - - Y Y
S56 [64] G C S B - - Y
S57 [41] G unknown S G - - Y
S58 [108] G ST S A Y - -
S59 [109] G ST S A Y - -
S60 [153] G N OoP (0] - - -

G graph; T text; B both; O other; N none; ST static; S/ similarity; D dynamic; C custom; S state-based; OP
operation-based; A accuracy; G generality; Y yes

Table 7 Categorization of

selected primary studies (pt. IT) ID Type Matching Change Focus Eval. Open Q. VCS
S61 [4] G SI S A Y - -
S62 [62] - - - - Y - Y
S63 [36] G C S A - - -
S64 [49] G SI S A - - -
S65 [50] G SI S A Y - -
S66 [93] G SI S A Y - -
S67 [170] G ST S A - - Y
S68 [88] G D S B - - -
S69 [19] T N OoP A - - Y
S70 [137] T D S B - - Y
S71[116] G ST+D S A - - Y
S72 [126] G D A - - -
S73 [133] G C S G - - Y
S74 [113] G N OP B - - Y
S75[17] G (0} S A - - Y
S76 [119] G D+SI S B - Y -
S77 [165] G SI S B - - -
S78 [871] G D S B - - -
S79 [95] - - - - - Y Y
S80 [125] G D S A - - -
S81[111] G SI S G - - Y
S82 [18] - - - - - Y Y
S83 [38] G N OP o - - -
S84 [89] G ST+D S B - - -
S85 [94] G SI o - - -
S86 [117] G D+SI S B - - -
S87 [84] G N oP B Y - Y

@ Springer



714

F. A. Somogyi, M. Asztalos

Table7 continued

ID Type Matching Change Focus Eval. Open Q. VCS
S88 [82] G N OP B - - Y
S89 [157] T (¢} OP A - - Y
S90 [150] G ST S G - - Y
S91 [140] - - - - - Y Y
S92 [60] G D S A - - -
S93 [127] T ST+SI S B - - Y
S94 [90] G N OP G - - Y
S95 [105] G SI S G - - Y
S96 [34] G SI S (0] - - -
S97 [29] G SI S A - - -
S98 [1] G SI S G Y - Y
S99 [10] G D S B - - Y
S100 [5] G ST S A Y - -
S101 [6] G ST S A Y - -
S102 [104] G ST S G Y - -
S103 [48] G ST S A Y - -
S104 [53] G C S A - - -
S105 [142] G ST S A - - Y
S106 [161] G ST S A Y - -
S107 [152] - - - - Y - -
S108 [39] G N (0)3 G - - Y
S109 [13] G D S G - - -
S110 [69] G N OP B - - Y
S111[32] G ST+SI B B - - Y
S112 [85] G N OP B - - Y
S113 [162] G D+SI S G - - Y
S114[7] G SI S A Y - -
S115 [164] G SI S A - - Y
S116 [52] G D S B - - Y
S117 [139] G ST S B - - Y
S118 [73] G (0] S A - - Y
S119[8] - - - - - Y Y

G graph; T text; B both; O other; N none; ST static; S similarity; D dynamic; C custom; S state-based; OP
operation-based; A accuracy; G generality; Y yes

References

1.

Addazi, L., Cicchetti, A., Rocco, J.D., Ruscio, D.D., Iovino, L.,
Pierantonio, A.: Semantic-based model matching with emfcom-
pare. In: Mayerhofer, T., Pierantonio, A., Schitz, B., Tamzalit,
D. (eds.) 10th Workshop on Models and Evolution, pp. 40—49.
CEUR-WS (2016). http://www.es.mdh.se/publications/4468-
Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1986)

Alanen, M., Porres, I.: Difference and union of models. In:
Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003—The Uni-
fied Modeling Language. Modeling Languages and Applications,
pp. 2—-17. Springer, Berlin (2003). https://doi.org/10.1007/978-3-
540-45221-8_2

Al-Khiaty, M.A.R., Ahmed, M.: Matching uml class diagrams
using a hybridized greedy-genetic algorithm. In: 2017 12th

@ Springer

International Scientific and Technical Conference on Computer
Sciences and Information Technologies (CSIT), vol. 1, pp. 161-
166 (2017). https://doi.org/10.1109/STC-CSIT.2017.8098759

. Al-Khiaty, M.A.R., Ahmed, M.: Similarity assessment of uml

class diagrams using a greedy algorithm. In: 2014 International
Computer Science and Engineering Conference (ICSEC), pp.
228-233 (2014). https://doi.org/10.1109/ICSEC.2014.6978199

. Al-Khiaty, M.A.R., Ahmed, M.: Similarity assessment of uml

class diagrams using simulated annealing. In: 2014 IEEE 5th
International Conference on Software Engineering and Ser-
vice Science, pp. 19-23 (2014). https://doi.org/10.1109/ICSESS.
2014.6933505

. Al-Rhman Al-Khiaty, M., Ahmed, M.: Uml class diagrams: sim-

ilarity aspects and matching. Lect. Notes Softw. Eng. 4, 41-47
(2016). https://doi.org/10.7763/Inse.2016.v4.221

. Altmanninger, K., Brosch, P., Kappel, G., Langer, P., Seidl, M.,

Wieland, K., Wimmer, M.: Why model versioning research is


http://www.es.mdh.se/publications/4468-
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1109/STC-CSIT.2017.8098759
https://doi.org/10.1109/ICSEC.2014.6978199
https://doi.org/10.1109/ICSESS.2014.6933505
https://doi.org/10.1109/ICSESS.2014.6933505
https://doi.org/10.7763/lnse.2016.v4.221

Systematic review of matching techniques used in model-driven methodologies

715

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

needed!? an experience report. In: Proceedings of the MoDSE-
MCCM 2009 Workshop @ MoDELS 2009 (2009)
Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model
versioning approaches. Int. J. Web Inf. Syst. 5(3),271-304 (2009).
https://doi.org/10.1108/17440080910983556

Altmanninger, K., Schwinger, W., Kotsis, G.: Semantics for accu-
rate conflict detection in smover: specification, detection and
presentation by example. Int. J. Enterp. Inf. Syst. 6(1), 68-84
(2010). https://doi.org/10.4018/jeis.2010120206

Alwanain, M., Bordbar, B., Bowles, J.K.F.: Automated compo-
sition of sequence diagrams via alloy. In: 2014 2nd International
Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD), pp. 384-391 (2014). https://doi.org/
10.5220/0004715003840391

Anwar, A., Dkaki, T., Ebersold, S., Coulette, B., Nassar, M.: A
formal approach to model composition applied to vuml. In: 2011
16th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 188-197 (2011). https://doi.org/10.1109/
ICECCS.2011.26

Anwar, A., Ebersold, S., Nassar, M., Coulette, B., Kriouile,
A.: Towards a generic approach for model composition. In:
2008 The Third International Conference on Software Engineer-
ing Advances, pp. 83-90 (2008). https://doi.org/10.1109/ICSEA.
2008.38

Arora, S., Barak, B.: Computational Complexity: A Modern
Approach, 1stedn. Cambridge University Press, New York (2009)
Babich, W.A.: Software Configuration Management: Coordina-
tion for Team Productivity. Addison-Wesley Longman Publishing
Co., Inc., Boston (1986)

Badreddin, O., Lethbridge, T.C., Forward, A.: A novel approach
to versioning and merging model and code uniformly. In: 2014
2nd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), pp. 254-263 (2014).
https://doi.org/10.5220/0004699802540263

Barrett, S.C., Butler, G., Chalin, P.: Mirador: a synthesis of
model matching strategies. In: Proceedings of the 1st International
Workshop on Model Comparison in Practice, IWMCP 10, pp.
2-10. ACM, New York (2010). https://doi.org/10.1145/1826147.
1826151

. Barrett, S.C., Chalin, P., Butler, G.: Model merging falls short of

software engineering needs. In: MoDSE ’08: International Work-
shop on Model-Driven Software Evolution (2008)

Barrett, S., Sinnig, D., Chalin, P., Butler, G.: Merging of use case
models: semantic foundations. In: 2009 Third IEEE International
Symposium on Theoretical Aspects of Software Engineering, pp.
182-189 (2009). https://doi.org/10.1109/TASE.2009.34

Bartelt, C.: Consistence preserving model merge in collaborative
development processes. In: Proceedings of the 2008 International
Workshop on Comparison and Versioning of Software Models,
CVSM °08, pp. 13-18. ACM, New York (2008). https://doi.org/
10.1145/1370152.1370157

Bendix, L., Emanuelsson, P.: Diff and merge support for model
based development. In: Proceedings of the 2008 International
Workshop on Comparison and Versioning of Software Models,
CVSM °08, pp. 31-34. ACM, New York (2008). https://doi.org/
10.1145/1370152.1370161

Berczuk, S.P., Appleton, B.: Software Configuration Management
Patterns: Effective Teamwork, Practical Integration. Addison-
Wesley Longman Publishing Co., Inc., Boston (2002)
Bergmann, G., David, 1., Hegediis, A., Horvéth, A., Réth, L.,
Ujhelyi, Z., Varrd, D.: Viatra 3 : a reactive model transformation
platform. In: 8th International Conference on Model Transfor-
mations. Springer, L’ Aquila(2015). https://doi.org/10.1007/978-
3-319-21155-8_8

Berlik, S., Fathi, M.: Differences of structured documents—
improving their quality. In: 2007 IEEE International Conference

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

on Information Reuse and Integration, pp. 486491 (2007).
https://doi.org/10.1109/IR1.2007.4296667

Biolchini, J., Mian, P.G., Natali, A.C.C., Travassos, G.H.: Sys-
tematic review in software engineering. Technical report. Systems
Engineering and Computer Science Department, COPPE UFRIJ,
Rio de Janeiro (2005)

Bishop, C.M.: Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer, Berlin (2006)
Bogdanov, K., Walkinshaw, N.: Computing the structural dif-
ference between state-based models. In: 2009 16th Working
Conference on Reverse Engineering, pp. 177-186 (2009). https://
doi.org/10.1109/WCRE.2009.17

Boronat, A., Carsi, J.A., Ramos, I., Letelier, P.: Formal model
merging applied to class diagram integration. Electron. Notes
Theor. Comput. Sci. 166, 5-26 (2007). https://doi.org/10.1016/
j-entcs.2006.06.013

Brockmans, S., Ehrig, M., Koschmider, A., Oberweis, A., Studer,
R.: Semantic alignment of business processes. In: Proceedings
of the Eighth International Conference on Enterprise Information
Systems—Volume 3: ICEIS, pp. 191-196. INSTICC, SciTePress
(2006). https://doi.org/10.5220/0002495601910196

Brosch, P., Kappel, G., Langer, P, Seidl, M., Wieland, K., Wim-
mer, M.: An introduction to model versioning. In: Proceedings
of the 12th International Conference on Formal Methods for the
Design of Computer, Communication, and Software Systems:
Formal Methods for Model-driven Engineering, SFM’12, pp.
336-398. Springer, Berlin (2012). https://doi.org/10.1007/978-
3-642-30982-3_10

Brosch, P., Kappel, G., Seidl, M., Wieland, K., Wimmer, M.,
Kargl, H., Langer, P.: Adaptable model versioning in action.
In: Modellierung 2010, 24.-26. Mirz 2010, Klagenfurt, Oster-
reich, pp. 221-236 (2010). http://subs.emis.de/LNI/Proceedings/
Proceedings161/article5545.html

Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards end-user
adaptable model versioning: the by-example operation recorder.
In: Proceedings of the 2009 ICSE Workshop on Comparison and
Versioning of Software Models, CVSM 09, pp. 55-60. IEEE
Computer Society, Washington (2009). https://doi.org/10.1109/
CVSM.2009.5071723

Brosch, P.: Improving conflict resolution in model versioning
systems. In: 2009 31st International Conference on Software
Engineering—Companion Volume, pp. 355-358 (2009). https://
doi.org/10.1109/ICSE-COMPANION.2009.5071020

Byrne, B., Fokoue, A., Kalyanpur, A., Srinivas, K., Wang, M.:
Scalable matching of industry models: a case study. In: Proceed-
ings of the 4th International Conference on Ontology Matching—
Volume 551, OM’09, pp. 1-12. CEUR-WS.org, Aachen (2009)
Chaouni, S.B., Fredj, M., Mouline, S.: A rules-based system for
model composition. In: 2015 IEEE/ACS 12th International Con-
ference of Computer Systems and Applications (AICCSA), pp.
1-8 (2015). https://doi.org/10.1109/AICCSA.2015.7507217
Chaouni, S.B., Fredj, M., Mouline, S.: MDA based-approach for
UML models complete comparison. Int. J. Comput. Sci. Issues
(IJCSI) (2011). arXiv:1105.6128

Chong, H., Zhang, R., Qin, Z.: Composite-based conflict res-
olution in merging versions of uml models. In: 2016 17th
IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Com-
puting (SNPD), pp. 127-132 (2016). https://doi.org/10.1109/
SNPD.2016.7515890

Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Model patches in
model-driven engineering. In: Proceedings of the 2009 Interna-
tional Conference on Models in Software Engineering, MOD-
ELS’09, pp. 190-204. Springer, Berlin 2010). https://doi.org/10.
1007/978-3-642-12261-3_19

@ Springer


https://doi.org/10.1108/17440080910983556
https://doi.org/10.4018/jeis.2010120206
https://doi.org/10.5220/0004715003840391
https://doi.org/10.5220/0004715003840391
https://doi.org/10.1109/ICECCS.2011.26
https://doi.org/10.1109/ICECCS.2011.26
https://doi.org/10.1109/ICSEA.2008.38
https://doi.org/10.1109/ICSEA.2008.38
https://doi.org/10.5220/0004699802540263
https://doi.org/10.1145/1826147.1826151
https://doi.org/10.1145/1826147.1826151
https://doi.org/10.1109/TASE.2009.34
https://doi.org/10.1145/1370152.1370157
https://doi.org/10.1145/1370152.1370157
https://doi.org/10.1145/1370152.1370161
https://doi.org/10.1145/1370152.1370161
https://doi.org/10.1007/978-3-319-21155-8_8
https://doi.org/10.1007/978-3-319-21155-8_8
https://doi.org/10.1109/IRI.2007.4296667
https://doi.org/10.1109/WCRE.2009.17
https://doi.org/10.1109/WCRE.2009.17
https://doi.org/10.1016/j.entcs.2006.06.013
https://doi.org/10.1016/j.entcs.2006.06.013
https://doi.org/10.5220/0002495601910196
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-30982-3_10
http://subs.emis.de/LNI/Proceedings/Proceedings161/article5545.html
http://subs.emis.de/LNI/Proceedings/Proceedings161/article5545.html
https://doi.org/10.1109/CVSM.2009.5071723
https://doi.org/10.1109/CVSM.2009.5071723
https://doi.org/10.1109/ICSE-COMPANION.2009.5071020
https://doi.org/10.1109/ICSE-COMPANION.2009.5071020
https://doi.org/10.1109/AICCSA.2015.7507217
http://arxiv.org/abs/1105.6128
https://doi.org/10.1109/SNPD.2016.7515890
https://doi.org/10.1109/SNPD.2016.7515890
https://doi.org/10.1007/978-3-642-12261-3_19
https://doi.org/10.1007/978-3-642-12261-3_19

716

F. A. Somogyi, M. Asztalos

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

Cicchetti, A., Muccini, H., Pelliccione, P., Pierantonio, A.:
Towards a framework for distributed and collaborative model-
ing. In: 18th IEEE International Workshops on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises, WETICE
2009, Groningen, Proceedings. The Netherlands, 29 June—1 July
2009, pp. 149-154 (2009). https://doi.org/10.1109/WETICE.
2009.48

Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automat-
ing co-evolution in model-driven engineering. In: 2008 12th
International IEEE Enterprise Distributed Object Computing
Conference, pp. 222-231 (2008). https://doi.org/10.1109/EDOC.
2008.44

Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing model
conflicts in distributed development. In: Czarnecki, K., Ober, I.,
Bruel, J.M., Uhl, A., Volter, M. (eds.) Model Driven Engineering
Languages and Systems, pp. 311-325. Springer, Berlin (2008).
https://doi.org/10.1007/978-3-540-87875-9_23

Conradi, R., Westfechtel, B.: Version models for software configu-
ration management. ACM Comput. Surv. 30(2), 232-282 (1998).
https://doi.org/10.1145/280277.280280

Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621-645 (2006). https://
doi.org/10.1147/sj.453.0621

Dijkman, R., Dumas, M., Garcia-Banuelos, L., Kaarik, R.: Align-
ing business process models. In: Proceedings of the 2009 IEEE
International Enterprise Distributed Object Computing Confer-
ence, EDOC 09, pp. 45-53. IEEE Computer Society, Washington
(2009). https://doi.org/10.1109/EDOC.2009.11

Dijkman, R.M.: Feedback on differences between business pro-
cesses. Technical report. Eindhoven University of Technology,
The Netherlands (2007)

Dijkman, R.: Diagnosing differences between business process
models. In: Dumas, M., Reichert, M., Shan, M.C. (eds.) Busi-
ness Process Management, pp. 261-277. Springer, Berlin (2008).
https://doi.org/10.1007/978-3-540-85758-7_20

Dijkman, R., Dumas, M., Garcia-Bafiuelos, L.: Graph matching
algorithms for business process model similarity search. In: Dayal,
U., Eder, J., Koehler, J., Reijers, H.A. (eds.) Business Process
Management, pp. 48—63. Springer, Berlin (2009). https://doi.org/
10.1007/978-3-642-03848-8_5

Dijkman, R., Dumas, M., van Dongen, B., Kéirik, R., Mendling,
J.: Similarity of business process models: metrics and evalua-
tion. Inf. Syst. 36(2), 498-516 (2011). https://doi.org/10.1016/].
i5.2010.09.006

Dongen, B., Dijkman, R., Mendling, J.: Measuring similar-
ity between business process models. In: Proceedings of the
20th International Conference on Advanced Information Systems
Engineering, CAiSE °08, pp. 450-464. Springer, Berlin (2008).
https://doi.org/10.1007/978-3-540-69534-9_34

Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity
between semantic business process models. In: Proceedings of
the Fourth Asia-Pacific Conference on Comceptual Modelling—
Volume 67, APCCM °07, pp. 71-80. Australian Computer
Society, Inc., Darlinghurst (2007). http://dl.acm.org/citation.cfm?
1d=1274453.1274465

Ehrig, H., Ermel, C., Taentzer, G.: A formal resolution strategy for
operation-based conflicts in model versioning using graph modi-
fications. In: Giannakopoulou, D., Orejas, F. (eds.) Fundamental
Approaches to Software Engineering, pp. 202-216. Springer,
Berlin (2011). https://doi.org/10.1007/978-3-642-19811-3_15
Engel, K.D., Paige, R.F., Kolovos, D.S.: Using a model merg-
ing language for reconciling model versions. In: Proceedings of
the Second European Conference on Model Driven Architecture:
Foundations and Applications, ECMDA-FA’06, pp. 143-157.
Springer, Berlin (2006). https://doi.org/10.1007/11787044_12

@ Springer

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

. Eshuis, R., Grefen, P.: Structural matching of bpel processes. In:

Fifth European Conference on Web Services (ECOWS’07), pp.
171-180 (2007). https://doi.org/10.1109/ECOWS.2007.22
Evans, S.: GIT: For Starters. CreateSpace Independent Publishing
Platform, Scotts Valley (2016)

Farias, K., Breitman, K.K., de Oliveira, T.C.: A flexible strategy-
based model comparison approach: bridging the syntactic and
semantic gap. J. Univers. Comput. Sci. 15, 2225-2253 (2009).
https://doi.org/10.3217/jucs-015-11-2225

Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach
for automatic model composition. In: Giese, H. (ed.) Models in
Software Engineering, pp. 7-15. Springer, Berlin (2008). https://
doi.org/10.1007/978-3-540-69073-3_2

Fortsch, S., Westfechtel, B.: Differencing and merging of soft-
ware diagrams—state of the art and challenges. In: Proceed-
ings of the Second International Conference on Software and
Data Technologies—Volume 2: ICSOFT, pp. 90-99. INSTICC,
SciTePress (2007). https://doi.org/10.5220/0001342900900099
Forward, A., Badreddin, O., Lethbridge, T.C., Solano, J.: Model-
driven rapid prototyping with umple. Softw. Pract. Exp. 42(7),
781-797 (2012). https://doi.org/10.1002/spe.1155

Foucault, M., Barbier, S., Lugato, D.: Enhancing version con-
trol with domain-specific semantics. In: Proceedings of the 5th
International Workshop on Modeling in Software Engineering,
MiSE ’13, pp. 31-36. IEEE Press, Piscataway (2013). https://doi.
org/10.1109/mise.2013.6595293. http://dl.acm.org/citation.cfm?
id=2662737.2662745

France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Provid-
ing support for model composition in metamodels. In: 11th IEEE
International Enterprise Distributed Object Computing Confer-
ence (EDOC 2007), pp. 253-253 (2007). https://doi.org/10.1109/
EDOC.2007.55

Frankel, D.: Model Driven Architecture: Applying MDA to Enter-
prise Computing. Wiley, New York (2002)

Garcia-Diaz, V., G-Bustelo, B.C.P., Sanjuan-Martinez, O., Valdez,
E.R.N., Lovelle, J.JM.C.: Mctest: towards an improvement of
match algorithms for models. IET Softw. 6(2), 127-139 (2012).
https://doi.org/10.1049/iet-sen.2011.0040

Gerth, C., Luckey, M., Kiister, J.M., Engels, G.: Detection of
semantically equivalent fragments for business process model
change management. In: 2010 IEEE International Conference on
Services Computing, pp. 57-64 (2010). https://doi.org/10.1109/
SCC.2010.38

Gerth, C., Kiister, J.M., Engels, G.: Language-independent change
management of process models. In: Schiirr, A., Selic, B. (eds.)
Model Driven Engineering Languages and Systems, pp. 152—
166. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-
04425-0_12

Gerth, C., Kiister, J.M., Luckey, M., Engels, G.: Detection and res-
olution of conflicting change operations in version management
of process models. Softw. Syst. Model. 12(3), 517-535 (2013).
https://doi.org/10.1007/s10270-011-0226-8

Girschick, M.: Difference detection and visualization in uml class
diagrams. Technical report. Department of Computer Science, TU
Darmstadt (2006)

Gronniger, H., Krahn, H., Rumpe, B., Schindler, M., Volkel, S.:
Text-based modeling (2014). arXiv:1409.6623

Heijstek, W., Kiihne, T., Chaudron, M.R.V.: Experimental anal-
ysis of textual and graphical representations for software archi-
tecture design. In: 2011 International Symposium on Empirical
Software Engineering and Measurement, pp. 167-176 (2011).
https://doi.org/10.1109/ESEM.2011.25

Herrmannsdoerfer, M., Koegel, M.: Towards a generic operation
recorder for model evolution. In: Proceedings of the Ist Inter-
national Workshop on Model Comparison in Practice, IWMCP


https://doi.org/10.1109/WETICE.2009.48
https://doi.org/10.1109/WETICE.2009.48
https://doi.org/10.1109/EDOC.2008.44
https://doi.org/10.1109/EDOC.2008.44
https://doi.org/10.1007/978-3-540-87875-9_23
https://doi.org/10.1145/280277.280280
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1109/EDOC.2009.11
https://doi.org/10.1007/978-3-540-85758-7_20
https://doi.org/10.1007/978-3-642-03848-8_5
https://doi.org/10.1007/978-3-642-03848-8_5
https://doi.org/10.1016/j.is.2010.09.006
https://doi.org/10.1016/j.is.2010.09.006
https://doi.org/10.1007/978-3-540-69534-9_34
http://dl.acm.org/citation.cfm?id=1274453.1274465
http://dl.acm.org/citation.cfm?id=1274453.1274465
https://doi.org/10.1007/978-3-642-19811-3_15
https://doi.org/10.1007/11787044_12
https://doi.org/10.1109/ECOWS.2007.22
https://doi.org/10.3217/jucs-015-11-2225
https://doi.org/10.1007/978-3-540-69073-3_2
https://doi.org/10.1007/978-3-540-69073-3_2
https://doi.org/10.5220/0001342900900099
https://doi.org/10.1002/spe.1155
https://doi.org/10.1109/mise.2013.6595293
https://doi.org/10.1109/mise.2013.6595293
http://dl.acm.org/citation.cfm?id=2662737.2662745
http://dl.acm.org/citation.cfm?id=2662737.2662745
https://doi.org/10.1109/EDOC.2007.55
https://doi.org/10.1109/EDOC.2007.55
https://doi.org/10.1049/iet-sen.2011.0040
https://doi.org/10.1109/SCC.2010.38
https://doi.org/10.1109/SCC.2010.38
https://doi.org/10.1007/978-3-642-04425-0_12
https://doi.org/10.1007/978-3-642-04425-0_12
https://doi.org/10.1007/s10270-011-0226-8
http://arxiv.org/abs/1409.6623
https://doi.org/10.1109/ESEM.2011.25

Systematic review of matching techniques used in model-driven methodologies

717

70.

71.
72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

’10, pp. 76-81. ACM, New York (2010). https://doi.org/10.1145/
1826147.1826161

Jackson, D.: Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol. 11(2), 256-290 (2002). https://doi.
org/10.1145/505145.505149

KDiff3 (2003). http://kdiff3.sourceforge.net/

Kehrer, T., Kelter, U., Pietsch, P., Schmidt, M.: Adaptability of
model comparison tools. In: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering,
ASE 2012, pp. 306-309. ACM, New York (2012). https://doi.
org/10.1145/2351676.2351731

Kehrer, T., Kelter, U.: Versioning of ordered model element sets.
Softwaretechnik-Trends 34(2) (2014)

Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. Wiley, New
York (2007)

Kelter, U., Schmidt, M.: Comparing state machines. In: Proceed-
ings of the 2008 International Workshop on Comparison and
Versioning of Software Models, CVSM °08, pp. 1-6. ACM, New
York (2008). https://doi.org/10.1145/1370152.1370154

Kelter, U., Wehren, J., Niere, J.: A generic difference algorithm
for uml models. Softw. Eng. 64(105-116), 4-9 (2005)

Kindler, E., Kénemann, P., Unland, L.: Diff-based model synchro-
nization in an industrial mdd process. Technical report. Technical
University of Denmark, DTU Informatics (2008)

Kitchenham, B.A., Charters, S.M.: Guidelines for performing
systematic literature reviews in software engineering. Technical
report. School of Computer Science and Mathematics, Keele Uni-
versity, Keele, United Kingdom and Department of Computer
Science, University of Durham, Durham (2007)

Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-based soft-
ware engineering. In: Proceedings of the 26th International Con-
ference on Software Engineering, ICSE *04, pp. 273-281. IEEE
Computer Society, Washington (2004). https://doi.org/10.1109/
ICSE.2004.1317449. http://dl.acm.org/citation.cfm?id=998675.
999432

Klint, P., van der Storm, T., Vinju, J.J.: Rascal: a domain specific
language for source code analysis and manipulation. In: Ninth
IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 168—177.IEEE Computer Society
(2009). https://doi.org/10.1109/SCAM.2009.28

Kobler, J., Schoning, U., Tordn, J.: The Graph Isomorphism Prob-
lem: Its Structural Complexity. Birkhauser Verlag, Basel (1993)

Koegel, M., Helming, J., Seyboth, S.: Operation-based conflict
detection and resolution. In: Proceedings of the 2009 ICSE Work-
shop on Comparison and Versioning of Software Models, CVSM
’09, pp. 43—48. IEEE Computer Society, Washington (2009).
https://doi.org/10.1109/CVSM.2009.5071721

Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J., David, J.:
Comparing state- and operation-based change tracking on models.
In: 2010 14th IEEE International Enterprise Distributed Object
Computing Conference, pp. 163172 (2010). https://doi.org/10.
1109/EDOC.2010.15

Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., Helm-
ing, J.: Operation-based conflict detection. In: Proceedings of the
Ist International Workshop on Model Comparison in Practice,
IWMCP ' 10, pp. 21-30. ACM, New York (2010). https://doi.org/
10.1145/1826147.1826154

Kogel, M.: Towards software configuration management for uni-
fied models. In: Proceedings of the 2008 International Workshop
on Comparison and Versioning of Software Models, CVSM ’08,
pp. 19-24. ACM, New York (2008). https://doi.org/10.1145/
1370152.1370158

Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Dif-
ferent models for model matching: An analysis of approaches to
support model differencing. In: Proceedings of the 2009 ICSE
Workshop on Comparison and Versioning of Software Models,

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

CVSM 09, pp. 1-6. IEEE Computer Society, Washington (2009).
https://doi.org/10.1109/CVSM.2009.5071714

Kolovos, D.S., Paige, R.F., Polack, F.A.: Model comparison: a
foundation for model composition and model transformation test-
ing. In: Proceedings of the 2006 International Workshop on Global
Integrated Model Management, GaMMa ’06, pp. 13-20. ACM,
New York (2006). https://doi.org/10.1145/1138304.1138308
Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging models with
the epsilon merging language (eml). In: Nierstrasz, O., Whittle, J.,
Harel, D., Reggio, G. (eds.) Model Driven Engineering Languages
and Systems, pp. 215-229. Springer, Berlin (2006). https://doi.
org/10.1007/11880240_16s

Konemann, P.: Model-independent differences. In: Proceedings
of the 2009 ICSE Workshop on Comparison and Versioning of
Software Models, CVSM ’09, pp. 37-42. IEEE Computer Soci-
ety, Washington (2009). https://doi.org/10.1109/CVSM.2009.
5071720

Kuryazov, D., Winter, A.: Representing model differences by
delta operations. In: 2014 IEEE 18th International Enterprise Dis-
tributed Object Computing Conference Workshops and Demon-
strations, pp. 211-220 (2014). https://doi.org/10.1109/EDOCW.
2014.39

Kister, .M., Gerth, C., Forster, A., Engels, G.: Detecting and
resolving process model differences in the absence of a change
log. In: Dumas, M., Reichert, M., Shan, M.C. (eds.) Business
Process Management, pp. 244-260. Springer, Berlin (2008).
10.1007/978-3-540-85758-7_19

Kiister, .M., Gerth, C., Engels, G.: Dependent and conflicting
change operations of process models. In: Paige, R.F., Hartman,
A., Rensink, A. (eds.) Model Driven Architecture—Foundations
and Applications, pp. 158-173. Springer, Berlin (2009). https://
doi.org/10.1007/978-3-642-02674-4_12

LaRosa, M., Dumas, M., Uba, R., Dijkman, R.: Merging business
process models. In: Meersman, R., Dillon, T., Herrero, P. (eds.)
On the Move to Meaningful Internet Systems: OTM 2010, pp.
96-113. Springer, Berlin (2010). https://doi.org/10.1007/978-3-
642-16934-2_10

Li, C.,Reichert, M., Wombacher, A.: On measuring process model
similarity based on high-level change operations. In: Li, Q., Spac-
capietra, S., Yu, E., Olivé, A. (eds.) Conceptual Modeling—ER
2008, pp. 248-264. Springer, Berlin (2008). https://doi.org/10.
1007/978-3-540-87877-3_19

Lin, Y., Zhang, J., Gray, J.: Model comparison: a key challenge
for transformation testing and version control in model driven
software development. In: Control in Model Driven Software
Development. OOPSLA/GPCE: Best Practices for Model-Driven
Software Development, pp. 219-236. Springer (2004)

Lin, Y., Gray, J., Jouault, F.: Dsmdift: a differentiation tool for
domain-specific models. Eur. J. Inf. Syst. 16(4), 349-361 (2007).
https://doi.org/10.1057/palgrave.ejis.3000685

Lucia, A.D., Fasano, F., Scanniello, G., Tortora, G.: Concurrent
fine-grained versioning of uml models. In: 2009 13th European
Conference on Software Maintenance and Reengineering, pp. 89—
98 (2009). https://doi.org/10.1109/CSMR.2009.35

MacKenzie, D., Eggert, P., Stallman, R.: GNU Diffutils Reference
Manual. Samurai Media Limited, London (2015)

Maoz, S., Ringert, J.O., Rumpe, B.: Addiff: semantic differencing
for activity diagrams. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pp. 179-189. ACM, New
York (2011). https://doi.org/10.1145/2025113.2025140

Maoz, S., Ringert, J.O.: A framework for relating syntactic and
semantic model differences. Softw. Syst. Model. 17(3), 753-777
(2018). https://doi.org/10.1007/s10270-016-0552-y

Maoz, S., Ringert, J.O., Rumpe, B.: Cddiff: semantic differencing
for class diagrams. In: Mezini, M. (ed.) ECOOP 2011—Object-

@ Springer


https://doi.org/10.1145/1826147.1826161
https://doi.org/10.1145/1826147.1826161
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
http://kdiff3.sourceforge.net/
https://doi.org/10.1145/2351676.2351731
https://doi.org/10.1145/2351676.2351731
https://doi.org/10.1145/1370152.1370154
https://doi.org/10.1109/ICSE.2004.1317449
https://doi.org/10.1109/ICSE.2004.1317449
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/CVSM.2009.5071721
https://doi.org/10.1109/EDOC.2010.15
https://doi.org/10.1109/EDOC.2010.15
https://doi.org/10.1145/1826147.1826154
https://doi.org/10.1145/1826147.1826154
https://doi.org/10.1145/1370152.1370158
https://doi.org/10.1145/1370152.1370158
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.1145/1138304.1138308
https://doi.org/10.1007/11880240_16s
https://doi.org/10.1007/11880240_16s
https://doi.org/10.1109/CVSM.2009.5071720
https://doi.org/10.1109/CVSM.2009.5071720
https://doi.org/10.1109/EDOCW.2014.39
https://doi.org/10.1109/EDOCW.2014.39
https://doi.org/10.1007/978-3-642-02674-4_12
https://doi.org/10.1007/978-3-642-02674-4_12
https://doi.org/10.1007/978-3-642-16934-2_10
https://doi.org/10.1007/978-3-642-16934-2_10
https://doi.org/10.1007/978-3-540-87877-3_19
https://doi.org/10.1007/978-3-540-87877-3_19
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1109/CSMR.2009.35
https://doi.org/10.1145/2025113.2025140
https://doi.org/10.1007/s10270-016-0552-y

718

F. A. Somogyi, M. Asztalos

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Oriented Programming, pp. 230-254. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-22655-7_12

Maoz, S., Ringert, J.O., Rumpe, B.: A manifesto for seman-
tic model differencing. In: Dingel, J., Solberg, A. (eds.) Models
in Software Engineering, pp. 194-203. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-21210-9_19

Mehra, A., Grundy, J., Hosking, J.: A generic approach to support-
ing diagram differencing and merging for collaborative design. In:
Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE *05, pp. 204-213. ACM,
New York (2005). https://doi.org/10.1145/1101908.1101940
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a
versatile graph matching algorithm and its application to schema
matching. In: Proceedings of the 18th International Conference
on Data Engineering, ICDE ’02, p. 117. IEEE Computer Society,
Washington (2002). https://doi.org/10.1109/ICDE.2002.994702.
http://dl.acm.org/citation.cfm?id=876875.879024

Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming
platform for generic model management. In: Proceedings of the
2003 ACM SIGMOD International Conference on Management
of Data, SIGMOD °03, pp. 193-204. ACM, New York (2003).
https://doi.org/10.1145/872757.872782

Mens, T.: A state-of-the-art survey on software merging. IEEE
Trans. Softw. Eng. 28(5), 449-462 (2002). https://doi.org/10.
1109/TSE.2002.1000449

Mohagheghi, P., Aagedal, J.: Evaluating quality in model-driven
engineering. In: Proceedings of the International Workshop on
Modeling in Software Engineering, MISE ’07. IEEE Computer
Society, Washington (2007). https://doi.org/10.1109/MISE.2007.
6

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.:
Matching and merging of statecharts specifications. In: Proceed-
ings of the 29th International Conference on Software Engineer-
ing, ICSE ’07, pp. 54-64. IEEE Computer Society, Washington
(2007). https://doi.org/10.1109/ICSE.2007.50

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave,
P.: Matching and merging of variant feature specifications. IEEE
Trans. Softw. Eng. 38(6), 1355-1375 (2012). https://doi.org/10.
1109/TSE.2011.112

Nguyen, T.N.: A novel structure-oriented difference approach for
software artifacts. In: 30th Annual International Computer Soft-
ware and Applications Conference (COMPSAC’06), vol. 1, pp.
197-204 (2006). https://doi.org/10.1109/COMPSAC.2006.13
Obeo, C.B., Pierantonio, A.: Model differences in the eclipse mod-
eling framework. UPGRADE Eur. J. Inf. Prof. 9(2), 29-34 (2008)
Oda, T., Saeki, M.: Generative technique of version control sys-
tems for software diagrams. In: 21st IEEE International Confer-
ence on Software Maintenance (ICSM’05), pp. 515-524 (2005).
https://doi.org/10.1109/ICSM.2005.49

Oda, T., Saeki, M.: Meta-modeling based version control system
for software diagrams. IEICE Trans. 89(D), 1390-1402 (2006)
Ohst, D., Welle, M., Kelter, U.: Difference tools for analysis and
design documents. In: Proceedings of the International Confer-
ence on Software Maintenance, ICSM ’03, p. 13. IEEE Computer
Society, Washington (2003). https://doi.org/10.1109/icsm.2003.
1235402. http://dl.acm.org/citation.cfm?id=942800.943567
Ohst, D., Welle, M., Kelter, U.: Differences between versions
of uml diagrams. In: Proceedings of the 9th European Software
Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-11, pp. 227-236. ACM, New York (2003). https://
doi.org/10.1145/940071.940102

Ohst, D., Welle, M., Kelter, U.: Merging uml documents. Techni-
cal report, University of Siegen (2004)

Oliveira, K., Breitman, K., Oliveira, T.: Ontology aided model
comparison. In: 2009 14th IEEE International Conference on

@ Springer

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Engineering of Complex Computer Systems, pp. 78-83 (2009).
https://doi.org/10.1109/ICECCS.2009.55

Oliveira, K.S.F,, de Oliveira, T.C.: A guidance for model com-
position. In: International Conference on Software Engineering
Advances (ICSEA 2007), pp. 27-27 (2007). https://doi.org/10.
1109/ICSEA.2007.5

Oliveira, K.S.F., de Oliveira, T.C.: Model comparison: a strategy-
based approach. In: Proceedings of the Twentieth International
Conference on Software Engineering & Knowledge Engineering
(SEKE’2008), San Francisco, CA, USA, July 1-3, 2008, pp. 912—
917 (2008)

Pai, M., Mcculloch, M., Gorman, J.D., Pai, N.P.,, Enanoria,
W.T.A., Kennedy, G.C., Tharyan, P., Colford, J.M.: Systematic
reviews and meta-analyses: an illustrated, step-by-step guide.
Natl. Med. J. India 17(2), 86-95 (2004)

Paige, R.F.,, Matragkas, N., Rose, L.M.: Evolving models in
model-driven engineering. J. Syst. Softw. 111(C), 272-280
(2016). https://doi.org/10.1016/].jss.2015.08.047

Petticrew, M., Roberts, H.: Systematic Reviews in the Social Sci-
ences: A Practical Guide, 1stedn. Blackwell Publishing, Hoboken
(2006)

Pietsch, P., Shariat Yazdi, H., Kelter, U., Kehrer, T.: Assessing the
quality of model differencing engines. Softwaretechnik-Trends
32,47-48 (2013)

Rajbhoj, A., Reddy, S.: A graph-pattern based approach for meta-
model specific conflict detection in a general-purpose model
versioning system. In: Moreira, A., Schitz, B., Gray, J., Valle-
cillo, A., Clarke, P. (eds.) Model-Driven Engineering Languages
and Systems, pp. 422-435. Springer, Berlin (2013). https://doi.
org/10.1007/978-3-642-41533-3_26

Reddy, R., France, R., Ghosh, S., Fleurey, F., Baudry, B.: Model
composition—a signature-based approach. In: Proceedings of the
AOM Workshop at MODELS’05, Montego Bay (2005)
Rhouma, T.B., Tessier, P., Terrier, F.: Merging uml2 compos-
ite structures of software product lines. In: 2012 IEEE 17th
International Conference on Engineering of Complex Computer
Systems, pp. 77-85 (2012)

Rivera, J.E., Vallecillo, A.: Representing and operating with
model differences. In: Paige, R.F.,, Meyer, B. (eds.) Objects,
Components, Models and Patterns, pp. 141-160. Springer, Berlin
(2008). https://doi.org/10.1007/978-3-540-69824-1_9

Romero, J.R., Rivera, J.E., Durén, F., Vallecillo, A.: Formal and
tool support for model driven engineering with maude. J. Object
Technol. 6(9), 187-207 (2007). https://doi.org/10.5381/jot.2007.
6.9.a10

Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A category-
theoretical approach to the formalisation of version control
in mde. In: Chechik, M., Wirsing, M. (eds.) Fundamental
Approaches to Software Engineering, pp. 64—78. Springer, Berlin
(2009). https://doi.org/10.1007/978-3-642-00593-0_5

Schmidt, M., Wenzel, S., Kehrer, T., Kelter, U.: History-based
merging of models. In: Proceedings of the 2009 ICSE Workshop
on Comparison and Versioning of Software Models, CVSM ’09,
pp. 13-18. IEEE Computer Society, Washington (2009). https://
doi.org/10.1109/CVSM.2009.5071716

Schmidt, D.C.: Guest editor’s introduction: model-driven engi-
neering. Computer 39, 25-31 (2006). https://doi.org/10.1109/
MC.2006.58

Schwigerl, F., Uhrig, S., Westfechtel, B.: A graph-based algo-
rithm for three-way merging of ordered collections in emf models.
Sci. Comput. Program. 113(P1), 51-81 (2015). https://doi.org/10.
1016/j.scico.2015.02.008

Selonen, P., Kettunen, M.: Metamodel-based inference of inter-
model correspondence. In: Proceedings of the 11th European
Conference on Software Maintenance and Reengineering, CSMR


https://doi.org/10.1007/978-3-642-22655-7_12
https://doi.org/10.1007/978-3-642-21210-9_19
https://doi.org/10.1145/1101908.1101940
https://doi.org/10.1109/ICDE.2002.994702
http://dl.acm.org/citation.cfm?id=876875.879024
https://doi.org/10.1145/872757.872782
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/MISE.2007.6
https://doi.org/10.1109/MISE.2007.6
https://doi.org/10.1109/ICSE.2007.50
https://doi.org/10.1109/TSE.2011.112
https://doi.org/10.1109/TSE.2011.112
https://doi.org/10.1109/COMPSAC.2006.13
https://doi.org/10.1109/ICSM.2005.49
https://doi.org/10.1109/icsm.2003.1235402
https://doi.org/10.1109/icsm.2003.1235402
http://dl.acm.org/citation.cfm?id=942800.943567
https://doi.org/10.1145/940071.940102
https://doi.org/10.1145/940071.940102
https://doi.org/10.1109/ICECCS.2009.55
https://doi.org/10.1109/ICSEA.2007.5
https://doi.org/10.1109/ICSEA.2007.5
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1007/978-3-642-41533-3_26
https://doi.org/10.1007/978-3-642-41533-3_26
https://doi.org/10.1007/978-3-540-69824-1_9
https://doi.org/10.5381/jot.2007.6.9.a10
https://doi.org/10.5381/jot.2007.6.9.a10
https://doi.org/10.1007/978-3-642-00593-0_5
https://doi.org/10.1109/CVSM.2009.5071716
https://doi.org/10.1109/CVSM.2009.5071716
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1016/j.scico.2015.02.008
https://doi.org/10.1016/j.scico.2015.02.008

Systematic review of matching techniques used in model-driven methodologies

719

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.
150.

151.

’07, pp. 71-80. IEEE Computer Society, Washington (2007).
https://doi.org/10.1109/CSMR.2007.31

Selonen, P.: A review of uml model comparison approaches.
In: Staron, M. (ed.) Workshop Proceedings of the 5th Nordic
Workshop on Model Driven Engineering. Research report, 27-29
August 2007, Ronneby, Sweden. Blekinge Institute of Technol-
ogy, pp- 37-51 (2007)

Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw. 20(5),
42-45 (2003). https://doi.org/10.1109/MS.2003.1231150
Somogyi, F.A., Asztalos, M.: Formal description and verifica-
tion of a text-based model differencing and merging method.
In: Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development—Volume 1:
AMARETTO, pp. 657-667. INSTICC, SciTePress (2018).
https://doi.org/10.5220/0006728006570667

Somogyi, F.A.: Merging textual representations of software mod-
els. In: Kékesi, T. (ed.) The Publications of the MultiScience—
XXX. microCAD International Multidisciplinary Scientific Con-
ference. Miskolc (2016)

Song, G., Zhang, K., Kong, J.: Model management through
graph transformation. In: 2004 IEEE Symposium on Visual
Languages—Human Centric Computing, pp. 75-82 (2004).
https://doi.org/10.1109/VLHCC.2004.37

Soto, M., Miinch, J.: Using model comparison to maintain model-
to-standard compliance. In: Proceedings of the 2008 International
Workshop on Comparison and Versioning of Software Models,
CVSM °08, pp. 35-40. ACM, New York (2008). https://doi.org/
10.1145/1370152.1370162

Soto, M., Miinch, J.: Process model difference analysis for
supporting process evolution. In: Richardson, I., Runeson, P.,
Messnarz, R. (eds.) Software Process Improvement, pp. 123-134.
Springer, Berlin (2006). https://doi.org/10.1007/11908562_12
Spinellis, D.: Version control systems. IEEE Softw. 22(5), 108—
109 (2005). https://doi.org/10.1109/MS.2005.140

Sriplakich, P., Blanc, X., pierre Gervais, M.: Supporting collabo-
rative development in an open mda environment. In: 2006 22nd
IEEE International Conference on Software Maintenance, pp.
244-253 (2006). https://doi.org/10.1109/ICSM.2006.64

Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley,
New York (2006)

Steel, J., Raymond, K.: Generating human-usable textual nota-
tions for information models. In: Proceedings Fifth IEEE Interna-
tional Enterprise Distributed Object Computing Conference, pp.
250-261 (2001). https://doi.org/10.1109/EDOC.2001.950444
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional, Boston (2009)

Stephan, M., Cordy, J.R.: A survey of methods and applications
of model comparison. Technical report, School of Computing,
Queens University, Kingston, Ontario, Canada (2012)

Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict detec-
tion for model versioning based on graph modifications. In: Ehrig,
H., Rensink, A., Rozenberg, G., Schiirr, A. (eds.) Graph Trans-
formations, pp. 171-186. Springer, Berlin (2010). https://doi.org/
10.1007/978-3-642-15928-2_12

Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: A fundamental
approach to model versioning based on graph modifications: from
theory to implementation. Softw. Syst. Model. 13(1), 239-272
(2014). https://doi.org/10.1007/s10270-012-0248-x

Tortoise SVN (2004). http://tortoisesvn.net/

Toulmé, A.: Presentation of emf compare utility. In: Eclipse Mod-
eling Sympossium, pp. 1-8 (2006)

Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computa-
tion of large models. In: Proceedings of the the 6th Joint Meeting

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engi-
neering, ESEC-FSE ’07, pp. 295-304. ACM, New York (2007).
https://doi.org/10.1145/1287624.1287665

Uhrig, S., Schwigerl, F.: Tool support for the evaluation of
matching algorithms in the eclipse modeling framework. In: Pro-
ceedings of the 1st International Conference on Model-Driven
Engineering and Software Development—Volume 1: MODEL-
SWARD,, pp. 101-110. INSTICC, SciTePress (2013). https://doi.
org/10.5220/0004310801010110

Uhrig, S.: Matching class diagrams: with estimated costs towards
the exact solution? In: Proceedings of the 2008 International
Workshop on Comparison and Versioning of Software Models,
CVSM 08, pp. 7-12. ACM, New York (2008). https://doi.org/
10.1145/1370152.1370155

Valiente, G., Martinez, C.: An algorithm for graphpattern-
matching. In: Proceedings of the 4th South American Workshopon
String Processing, Volume 8 of International Informatics Series,
pp- 180-197. Carleton University Press (1997)

Vallecillo, A.: A journey through the secret life of models. In:
ASmann, U., Bézivin, J., Paige, R., Rumpe, B., Schmidt, D.C.
(eds.) Perspectives Workshop: Model Engineering of Complex
Systems (MECS), no. 08331 in Dagstuhl Seminar Proceedings.
Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2008). http://drops.dagstuhl.de/opus/volltexte/2008/
1601

van den Brand, M., Protic, Z., Verhoeff, T.: Rcvdiff—a stand-
alone tool for representation, calculation and visualization of
model differences. In: ME 2010—International Workshop on
Models and Evolution (Oslo, Norway, October 3,2010; co-located
with ACM/IEEE 13th International Conference on Model Driven
Engineering Languages and Systems). Association for Comput-
ing Machinery, Inc, New York (2011)

van Rozen, R., van der Storm, T.: Origin tracking $$+$$+ text dif-
ferencing $$=$$= textual model differencing. In: Proceedings of
the 8th International Conference on Theory and Practice of Model
Transformations—Volume 9152, pp. 18-33. Springer, New York
(2015). https://doi.org/10.1007/978-3-319-21155-8_2

van den Brand, M., Hofkamp, A., Verhoeff, T., Proti¢, Z.: Assess-
ing the quality of model-comparison tools: a method and a
benchmark data set. In: Proceedings of the 2nd International
Workshop on Model Comparison in Practice, IWMCP 11, pp.
2-11. ACM, New York (2011). https://doi.org/10.1145/2000410.
2000412

van den Brand, M., Proti¢, Z., Verhoeff, T.: Fine-grained
metamodel-assisted model comparison. In: Proceedings of the
1st International Workshop on Model Comparison in Practice,
IWMCP 10, pp. 11-20. ACM, New York (2010). https://doi.org/
10.1145/1826147.1826152

Wachsmuth, G.: Metamodel adaptation and model co-adaptation.
In: Proceedings of the 21st European Conference on Object-
Oriented Programming, ECOOP’07, pp. 600-624. Springer,
Berlin  (2007).  http://dl.acm.org/citation.cfm?id=2394758.
2394797

Weidlich, M., Dijkman, R., Mendling, J.: The icop frame-
work: identification of correspondences between process mod-
els. In: Proceedings of the 22nd International Conference on
Advanced Information Systems Engineering, CAiSE’10, pp.
483-498. Springer, Berlin (2010). https://doi.org/10.1007/978-
3-642-13094-6_37. http://dl.acm.org/citation.cfm?id=1883784.
1883832

Wenzel, S., Hutter, H., Kelter, U.: Tracing model elements.
In: 2007 IEEE International Conference on Software Mainte-
nance, pp. 104-113 (2007). https://doi.org/10.1109/ICSM.2007.
4362623

@ Springer


https://doi.org/10.1109/CSMR.2007.31
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.5220/0006728006570667
https://doi.org/10.1109/VLHCC.2004.37
https://doi.org/10.1145/1370152.1370162
https://doi.org/10.1145/1370152.1370162
https://doi.org/10.1007/11908562_12
https://doi.org/10.1109/MS.2005.140
https://doi.org/10.1109/ICSM.2006.64
https://doi.org/10.1109/EDOC.2001.950444
https://doi.org/10.1007/978-3-642-15928-2_12
https://doi.org/10.1007/978-3-642-15928-2_12
https://doi.org/10.1007/s10270-012-0248-x
http://tortoisesvn.net/
https://doi.org/10.1145/1287624.1287665
https://doi.org/10.5220/0004310801010110
https://doi.org/10.5220/0004310801010110
https://doi.org/10.1145/1370152.1370155
https://doi.org/10.1145/1370152.1370155
http://drops.dagstuhl.de/opus/volltexte/2008/1601
http://drops.dagstuhl.de/opus/volltexte/2008/1601
https://doi.org/10.1007/978-3-319-21155-8_2
https://doi.org/10.1145/2000410.2000412
https://doi.org/10.1145/2000410.2000412
https://doi.org/10.1145/1826147.1826152
https://doi.org/10.1145/1826147.1826152
http://dl.acm.org/citation.cfm?id=2394758.2394797
http://dl.acm.org/citation.cfm?id=2394758.2394797
https://doi.org/10.1007/978-3-642-13094-6_37
https://doi.org/10.1007/978-3-642-13094-6_37
http://dl.acm.org/citation.cfm?id=1883784.1883832
http://dl.acm.org/citation.cfm?id=1883784.1883832
https://doi.org/10.1109/ICSM.2007.4362623
https://doi.org/10.1109/ICSM.2007.4362623

720

F. A. Somogyi, M. Asztalos

163. Wohlin, C.: Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: Proceedings
of the 18th International Conference on Evaluation and Assess-
ment in Software Engineering, EASE " 14, pp. 38:1-38:10. ACM,
New York (2014). https://doi.org/10.1145/2601248.2601268

164. Xing, Z., Stroulia, E.: Umldiff: an algorithm for object-oriented
design differencing. In: Proceedings of the 20th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE
’05, pp. 54-65. ACM, New York (2005). https://doi.org/10.1145/
1101908.1101919

165. Xing, Z.: Model comparison with genericdiff. In: Proceedings of
the IEEE/ACM International Conference on Automated Software
Engineering, ASE 10, pp. 135-138. ACM, New York (2010).
https://doi.org/10.1145/1858996.1859020

166. Xing, Z., Stroulia, E.: Differencing logical uml models. Autom.
Softw. Eng. 14(2), 215-259 (2007). https://doi.org/10.1007/
$10515-007-0007-3

167. XML Metadata Interchange (XMI) Specification (2007). https://
www.omg.org/spec/ XMI/

168. Zhang, H., Babar, M.A., Tell, P.: Identifying relevant studies in
software engineering. Inf. Softw. Technol. 53(6), 625-637 (2011).
https://doi.org/10.1016/j.infsof.2010.12.010. http://www.
sciencedirect.com/science/article/pii/S0950584910002260.
Special Section: Best papers from the APSEC

169. Zhang, Z., Zhang, R., Qin, Z.: Composite-level conflict detection
in uml model versioning. Math. Prob. Eng. 2015, 1-9 (2015).
https://doi.org/10.1155/2015/650748

170. Ziindorf, A., Wadsack, J.P., Rockel, I.: Merging graph-like object
structures. In: Proc. of the 10th International Workshop on Soft-
ware Configuration Management (SCM-10), Toronto, Canada.
(ICSE 2001 Workshop 14) (2001)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Ferenc Somogyi has received
his master’s degree in 2016 from
Budapest University of Technol-
ogy and Economics and is cur-
rently working on his Ph.D. His
main topics of interest are com-
piler and programming language
design, model-based software
development, and multi-level
modeling.

@ Springer

Mark Asztalos has received his
master’s degree in 2007 and his
Ph.D. in 2013 from Budapest Uni-
versity of Technology and Eco-
nomics. Now, he is an associate
professor at the same university.
His main topics of interest are
model-based software developm-
ent including automated model pro-
cessing and code generation, pro-
gramming language design and
static analysis of code.


https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1145/1858996.1859020
https://doi.org/10.1007/s10515-007-0007-3
https://doi.org/10.1007/s10515-007-0007-3
https://www.omg.org/spec/XMI/
https://www.omg.org/spec/XMI/
https://doi.org/10.1016/j.infsof.2010.12.010
http://www.sciencedirect.com/science/article/pii/S0950584910002260
http://www.sciencedirect.com/science/article/pii/S0950584910002260
https://doi.org/10.1155/2015/650748

	Systematic review of matching techniques used in model-driven methodologies
	Abstract
	1 Introduction
	2 Background on model matching
	3 Systematic literature review
	3.1 Planning the survey
	3.1.1 Motivations
	3.1.2 Scope and goals
	3.1.3 Research questions
	3.1.4 Inclusion and exclusion criteria
	3.1.5 Search strategy

	3.2 Conducting the survey
	3.2.1 Study selection process
	3.2.2 Extracted data


	4 Results and discussion
	4.1 State-of-the-art (RQ1)
	4.1.1 Text-based model matching (RQ1.1)
	4.1.2 Matching techniques (RQ1.2)
	4.1.3 Change tracking (RQ1.3)

	4.2 Evaluation techniques (RQ2)
	4.3 Open questions (RQ3)
	4.4 Interest in model matching (RQ4)
	4.5 Threats to validity

	5 Conclusions
	Acknowledgements
	Appendix
	References




