
Software & Systems Modeling (2019) 18:2313–2360
https://doi.org/10.1007/s10270-018-0675-4

REGULAR PAPER

Execution of UMLmodels: a systematic review of research and practice

Federico Ciccozzi1 · Ivano Malavolta2 · Bran Selic3

Received: 11 July 2017 / Revised: 23 March 2018 / Accepted: 31 March 2018 / Published online: 10 April 2018
© The Author(s) 2018

Abstract
Several research efforts from different areas have focused on the execution of UML models, resulting in a diverse and
complex scientific body of knowledge. With this work, we aim at identifying, classifying, and evaluating existing solutions
for the execution of UML models. We conducted a systematic review in which we selected 63 research studies and 19 tools
among over 5400 entries by applying a systematic search and selection process. We defined a classification framework for
characterizing solutions for UML model execution, and we applied it to the 82 selected entries. Finally, we analyzed and
discussed the obtained data. From the analyzed data, we drew the following conclusions: (i) There is a growing scientific
interest on UML model execution; (ii) solutions providing translational execution clearly outnumber interpretive solutions;
(iii) model-level debugging is supported in very few cases; (iv) only a few research studies provide evidence of industrial use,
with very limited empirical evaluations; (v) the most common limitation deals with coverage of the UML language. Based
on these observations, we discuss potential research challenges and implications for the future of UML model execution.
Our results provide a concise overview of states of the art and practice for UML model execution intended for use by both
researchers and practitioners.

Keywords UML · Model execution · Code generation · Model compilation · Model interpretation · Systematic review

1 Introduction

Standardized by the Object Management Group (OMG) in
1997, the Unified Modeling Language (UML)1 has emerged
and established itself as both a de facto and a de jure stan-
dard in industrial development of software systems [33].
This was due in part to its versatility, which enables its use
as general-purpose language, and also to its ability to be
customized through its profiling mechanisms [1] to directly

Communicated by Dr. Jeff Gray.

B Federico Ciccozzi
federico.ciccozzi@mdh.se

Ivano Malavolta
i.malavolta@vu.nl

Bran Selic
selic@acm.org

1 School of Innovation, Design and Engineering (IDT),
Mälardalen University, Västerås, Sweden

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

3 Malina Software Corporation, Ottawa, Canada

1 http://www.uml.org.

support concepts specific to individual domains, organiza-
tions, or projects.

There is evidence that, in industrial practice, UML mod-
els have been used primarily for problem understanding (i.e.,
analysis) and documentation [24], despite the fact that a num-
ber of tools support executable variants ofUML. These relied
on custom semantics in combination with traditional third-
generation programming languages, such as C++ or Java, for
specifying detailed action code. Consequently, they were not
fully compliant with the UML standard, forcing users into a
potentially precarious “vendor lock-in” predicament. How-
ever, the introduction of UML2 together with the definition
of (i) a formal specification of the executable semantics for a
subset of UML2, via the Foundational Subset For Executable
UML Models (fUML)2 and (ii) a textual action language,
the Action Language for Foundational UML (Alf)3, enabled
compact and complete specification of complex behaviors
including their algorithmic parts, such that the models based
on these are fully executable provided that corresponding
tools are available.

2 http://www.omg.org/spec/FUML.
3 http://www.omg.org/spec/ALF.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0675-4&domain=pdf
http://orcid.org/0000-0002-0401-1036
http://www.uml.org
http://www.omg.org/spec/FUML
http://www.omg.org/spec/ALF

2314 F. Ciccozzi et al.

As of today, a plethora of methods and techniques for exe-
cuting UML models have been proposed (e.g., [26,31,47]).
Each of these uses at least one of two possible execution
strategies: translational or interpretive (see Sect. 2). How-
ever, they do this in idiosyncratic ways, so that each is
applicable only in specific contexts, focusing on specific
concerns and problem areas. Consequently, it is currently
difficult to have a clear view of existing solutions for the exe-
cution of UML models and their characteristics. This makes
it difficult for practitioners to decide whether and how to take
advantage of executable UML models.

The goal of this study is to identify, classify, and evaluate
the states of the art and practice of solutions for executing
models based on the UML family of languages (i.e., UML2,
UML2 profiles, fUML, Alf). With this objective in mind,
we performed a systematic investigation of trends, technical
characteristics, available evidence, and limitations of current
solutions for the execution of UML models in both research
and industrial practice.

The main contributions of this study are:

• a classification framework for classifying, comparing,
and evaluating solutions for executing UML models;

• a systematic review of the states of the art and practice in
executing UML models;

• an exploration of emerging research challenges and
implications for future research and practice of executing
UML models.

The intended audience of this study includes both (i)
researchers willing to further contribute to this research area
(e.g., by defining new solutions for executing UML models
or improving existing ones) and (ii) practitionerswhowant to
better understand existing and future solutions for executing
UML models in order to select the one that best suits their
needs.

From a methodological perspective, in this study we
perform a systematic review [27,51]. As part of our system-
atic process, we first selected 82 primary studies from over
5400 candidates for answering the research questions that we
identified (see Sect. 3.1). Next, we defined a classification
framework for characterizing solutions for executing UML
models, which we applied to the 82 selected studies. Finally,
we analyzed the obtained data to produce: (i) an overview of
the states of the art and practice, and (ii) a list of emerging
and future research challenges and implications. We expect
that the results of these activities will (i) provide a concise
overview of the states of the art and practice of UML model
execution, and (ii) help researchers and practitioners in iden-
tifying the limitations of and gaps in current research as well
as the potential and applicability of UML model execution
in practice [28].

It is worth noting that, besides numerous systematic
reviews and surveys on UML-based methods and techniques
exist, we could not identify any systematic study on the
execution of UML models. The only work dealing with a
comparison of approaches for execution of UML, is repre-
sented by Gotti and Mbarki [20], where the authors only
compare four approaches selected ad hoc. Consequently, to
the best of our knowledge, this study represents the first sys-
tematic investigation of the states of the art and practice of
the execution of UML models.

Outline In Sect. 2 we review the requisite background that
provides the context of our study. Section 3 describes in detail
the choices we made in designing, conducting, and docu-
menting the study. The results of the study are discussed in
Sects. 4, 5, 6, 7, and 8. Section 9 focuses on the main find-
ings and implications for future researchers and practitioners
working on UML model execution. Section 10 provides a
brief summary of the work and conclusions reached.

2 Background

2.1 From programming toMDE

In the early 1950s, executables were written directly in
machine code language. The need for simplification by
abstracting out excessive detail about the underlying hard-
ware led to the creation of numerous programming lan-
guages, many of which are still in use. These languages used
higher-level abstractions to capture desired behaviors. Thus,
programming progressed fromfirst-generationmachine code
languages, to second-generation assembler languages, to
what are known as third-generation or high-level program-
ming languages (3GLs). Programs written using second- and
third-generation programming languages were not directly
executable, but needed to be transformed into a format (i.e.,
machine code) that the machine could execute. This could be
done in one of two ways:

• Interpretation the software program is interpreted by a
language-specific virtual machine program executing on
the target platform;

• Translation the software program is translated into object
code4 that could be executed directly on the target
machine.

However, increasing demands for ever more sophisticated
software functionality has led to calls for more powerful

4 Object code is what a compiler produces. We use this term since it
includes both machine code languages (e.g., Java bytecode) and inter-
mediate languages (e.g., LLVM intermediate representation).

123

Execution of UML models: a systematic review of research and practice 2315

and more flexible methods of programming computers. As
before, this meant moving even further away from the con-
cepts of the underlying computing machinery toward meth-
ods of expression that are closer to the problem domain—a
trend that is often referred to as “raising the level of abstrac-
tion” of programming.

The various developments grouped under the common
heading of Model-Driven Engineering (MDE)5 were con-
ceived with this goal in mind. At the core of MDE is the
notion that models should serve as primary artifacts in soft-
ware development, as opposed to being merely optional
support facilities for analysis and documentation. Abstract-
ing away unneeded (often target-related) details, models can
tame complexity and allow developers to better focus on
the key design concerns of their applications [44]. In other
words, models allow developers (i.e., not necessarily experts
in programming) to define complex functions in a more
human-centric way than if using traditional programming
languages.

Models conform to a metamodel, defined as part of a
modeling language which can be either general purpose
or domain specific. From the myriad of general-purpose
and domain-specific modeling languages (DSMLs) that have
been defined to date, UML has emerged and established
itself for industrial modeling [33]. UML is general purpose,
but it provides powerful profiling mechanisms to constrain
and extend the language to achieve DSMLs, via UML pro-
files. In this paper, we focus on execution of UML and UML
profiles. If computer-based models of software systems are
specified using an executable modeling language, it is pos-
sible to gradually evolve them starting with very abstract
models, which may be suitable for “descriptive” purposes,
into prescriptive ones that are precise and detailed enough
to be executable. However, supporting the full development
cycle with a singlemodeling language presents a very unique
language design challenge: the ability to create both highly
abstract (and potentially incomplete) descriptive models and
very detailed prescriptive ones.

One of the main goals of the MDE paradigm is to pro-
mote automation during the development process through
computer-based model manipulation of models and related
artifacts. A prominent example of this is the automatic gen-
eration of executable artifacts from design models by means
of model transformations; there is documented evidence that
the automatic production of executables frommodels is a key
feature in MDE [25].

By shifting the focus of the development from hand-
written code to models, one might reasonably expect that
corresponding execution mechanisms, namely interpretation
and translation (to object code), would be provided for mod-

5 Other terms used for this purpose include Model-Based (Software)
Engineering and Model-Driven Development.

Fig. 1 Model execution strategies

eling languages as well. However, for a number of reasons,
including the need to exploit availablemiddleware, expertise,
and development tools, translation of models has primarily
targeted high-level languages (e.g., 3GLs) instead of object
code (see Fig. 1). Translation to 3GLs can be found also in
execution of 3GLs;6 an example is Cfront, which translated
C++ to C to enable the use of C compilers.

2.2 UML as an executable modeling language

Although the initial release ofUMLhelped in raising the level
of abstraction, it was neither sufficiently powerful nor suffi-
ciently precise to produce complete executable programs.

Origins of UMLUMLwas introduced in the second half of the
1990s as an evolution of object-oriented programming. Its
origins are at the intersection of three methodologies popular
in the 1980s and early 1990s: the Booch method, Rum-
baugh’sObject-Modeling Technique (OMT), and Jacobson’s
Object-Oriented Software Engineering (OOSE). UML 1.x
was created and standardized by the OMG in 1997. With
UML 1.5, an action semantics for UML was introduced.
Nevertheless, until version 2.0, UML was still considered
ambiguous and partially inconsistent, especially in terms of
execution semantics.

UML 2.0 and aboveVersion 2.0, together with the standard-
isation of (i) the Foundational Subset For Executable UML
Models (fUML), which gives a precise execution semantics
to a subset of UML limited to composite structures, classes
and activities (inclusion of UML state machines is under for-
malization too) [48], and (ii) a textual action language, Alf,
to express complex execution behaviors, has made UML a
full-fledged implementation-capable language [45].

fUML and AlffUML is a standard that defines the execution
semantics of UML (e.g., how control structures condition-
ally execute statements); application models designed with
fUML are executable by definition. fUML is intended for the
definition of the execution semantics for anyDSMLbased on
UML profiles [48]. The work fromMayerhofer et al. [35] has
made it possible to use fUML for defining execution seman-
tics of anyDSMLbased on theMeta-Object Facility standard

6 In programming, this is called source-to-source compilation or tran-
spilation.

123

2316 F. Ciccozzi et al.

Fig. 2 Executable UML model (from [10])

too. Alf is a textual surface representation for UMLmodeling
elements, whose execution semantics is given by mapping
Alf’s concrete syntax to the abstract syntax of fUML. While
Alf maps to fUML in order to provide its execution seman-
tics, its use is not limited to the context ofmodels conforming
to the fUML subset. For example, using (f)UML and Alf, it
is possible to fully describe a software functionally, while
exploiting the UML profile for Modeling and Analysis of
Real-Time and Embedded Systems (MARTE) [34] for mod-
eling hardware components as well as allocations of software
to hardware.

Example of executable UMLmodelIn Fig. 2 we can see a por-
tion of a UML model representing the smart street lightning
system in a concrete graphical syntax, fromwhich executable
C++ code can be automatically generated [10].
More specifically, the portion represents a lamppost system
in terms of its software functionalities, physical devices and
allocations. In terms of UML, LampPost_ Functional
represents the root software composite component, which
contains six software components. Connections between
software functionalities are achieved through connectors via
ports. Behavioral descriptions of the software components
are defined in terms of UML state machines, for defining
the overall behavior by means of states and transitions, and
Alf, for specifying fine-grained actions. The state machine
diagram describing the behavior of the type ManagerR is
shown in the upper right corner of Fig. 2.

3 Researchmethod

This study has been carried out by following the process
shown in the activity diagram in Fig. 3. It can be divided into
three main phases: planning, conducting, and documenting.
This is in compliance with the well-establishedmethodology
for systematic studies [27,51]. Each phase was performed by

one or more members of the research team conducting the
study (see Appendix 10).

In order to address potential threats to validity and possi-
ble biases, we submitted the protocol describing the design of
this study and the final report to external experts for indepen-
dent review and criticism. Each review underwent a thorough
refinement iteration of the design and reporting of this study.7

To allow easy replication and verification of our study, we
made available to interested researchers a complete repli-
cation package.8 It includes a description of the review
protocol, the complete list of selected studies, extracted data,
and the R scripts we developed for summarizing and synthe-
sizing our findings.

In the following, we cover each phase of the process, high-
lighting the main activities and generated artifacts.
Planning The objective of this phase was to: (i) establish the
need for a review of UML model execution strategies, (ii)
identify the main research questions (see Sect. 3.1), and (iii)
define the protocol to be followed by the research team.
Conducting In this phase, we performed the review itself by
following all the activities defined in the review protocol:

• Search and selection we performed a combination of
automatic search and snowballing for identifying a com-
prehensive set of potentially relevant solutions for the
execution of UMLmodels.With snowballing, performed
after the automatic search, we aimed at enlarging the set
of potentially relevant solutions by considering each pre-
viously selected research study and focusing on those
articles either citing or cited by it [49]. Next, the candi-
date solutions were filtered in order to obtain the final list
of primary studies to be considered in later activities of
the review. Section 3.2 describes in detail the search and
selection process.

• Data extraction formdefinition in this activity,we defined
the set of parameters to be used for comparing pri-
mary studies based on the chosen research questions.
This activity was systematically performed by applying a
keywording process [39]. Section 3.3 describes the data
extraction in detail.

• Classification framework definition: in this activity we
organized the parameters pertaining to the technical char-
acteristics of a solution for executing UML models.
Because these were applicable to evaluating both tools
and research studies, the result was a reusable classifica-
tion framework, which can be used by both researchers
and practitioners (see Sect. 3.3).

7 Wewould like to thank the following external reviewers: Kai Petersen
(Blekinge Institute of Technology), Daniel Sundmark (Mälardalen Uni-
versity), and Jérémie Tatibouet (CEA LIST Institute).
8 http://cs.gssi.it/umlModelsExecution.

123

http://cs.gssi.it/umlModelsExecution

Execution of UML models: a systematic review of research and practice 2317

Fig. 3 Overview of the review process

• Data extraction and quality assessment in this activity
we studied the details of each primary study, and based
on that, filled in the corresponding data extraction form.
Completed forms were then collected and aggregated for
use in the next activity. More details about this activity
are presented in Sect. 3.3. Furthermore, we assessed the
quality of each selected research study according to a set
of well-defined quality criteria (see Sect. 6.4).

• Data synthesis this activity focused on a comprehensive
analysis and summary of the data extracted in the pre-
ceding activity. The main goal here was to elaborate on
the extracted data in order to answer the research ques-
tions (see Sect. 3.1). This involved both quantitative and
qualitative analysis of the extracted data. The details of
this activity are presented in Sect. 3.4.

Documenting The main activities performed in this phase
were: (i) a thorough elaboration of the data extracted in the
preceding phase in order to properly position the obtained
results in the appropriate context from both an academic and
a pragmatic point of view, (ii) an analysis of possible threats
to validity, especially those identified during the definition of
the review protocol, and (iii) the writing of a technical report
describing the performed study.

3.1 Goal and research questions

The goal of our study is to identify, classify, and evaluate the
publication trends, characteristics, provided evidence, and
limitations of existing solutions for the execution of UML
models from a researcher’s and practitioner’s points of view.

This goal was then refined into the following research
questions, each of which had a defined primary objective:

• RQ1—What are the publication trends of research stud-
ies about solutions for the execution of UML models?
Objective: to identify and classify primary studies in

order to assess interest, relevant venues, and publication
types over the years.

• RQ2—What are the technical characteristics of existing
solutions for the execution of UML models?
Objective: to classify existing solutions for executing
UML models (e.g., execution strategy used, which ele-
ments of UML are supported, application domains tar-
geted), using a systematic classification framework (see
Sect. 3.3).

• RQ3—What evidence exists to justify adoption of an exist-
ing solution?
Objective: to investigate and qualify the quality of the
evidence that could make a proposed solution applicable
in practice. This is based on explicit quality criteria, such
as the rigor and thoroughness of the validation strategies
used (e.g., controlled experiment, industrial application,
formal proofs).

• RQ4—What are the limitations of existing solutions for
the execution of UML models?
Objective: to identify current limitations with respect to
the state of the art. In this context, we focused on the
limitations (and thereby needs for improvement) of the
solutions as they were reported in the analyzed primary
studies.

3.2 Search and selection strategy

As shown in Fig. 4, our search and selection process was
composed of twomain sub-processes, each of which focused
on a specific source of information:

• Research studies search and selection this covers the
research described in peer-reviewed publications in var-
ious research-oriented venues and forums such as inter-
national journals, conferences, books, workshops;

• Tools search and selection this covers relevant open-
source and commercial tools.

123

2318 F. Ciccozzi et al.

Fig. 4 Search and selection process

Both sub-processes included a stage in which each poten-
tially relevant approach was evaluated against a set of
selection criteria (see Sects. 3.2.2, 3.2.4). To handle those
cases in a cost-effective way, we used the adaptive reading
depth [39], because it was not necessary to read the full text
of approaches that clearly did not qualify. Also, by follow-
ing the method proposed in [6], each potentially relevant
approach was classified by both the principal researcher9

and the research methodologist as relevant, uncertain, or
irrelevant according to the selection criteria described in
Sect. 3.2.2. Approaches classified as irrelevant were imme-
diately excluded, whereas all the other approaches were
discussed, when needed, with the help of the study advisor.

In the following, we give a brief description of each stage
of the two search and selection sub-processes.

3.2.1 Research studies search and selection

Before performing the actual search and selection of rele-
vant research studies, we manually selected a set of pilot
studies. These were selected based on the degree of domain
expertise of the authors, as well as on an informal prelimi-
nary screening of available literature on the topic. The chosen
pilot studies fully met our selection criteria (see Sect. 3.2.2)
and are reported in the replication package of this study.

The pilot studies were used to validate and refine our
search and selection strategy. We describe below the main
stages of the research studies search and selection activity.

9 The research team and the different roles are described in “Appendix
A”.

1. Initial search In this stage, we performed automatic
searches on electronic databases and indexing systems [27].
As suggested in [27], to cover as much potentially relevant
literature as possible, we chose four of the largest and most
complete scientific databases and indexing systems in soft-
ware engineering: IEEEXploreDigital Library,ACMDigital
Library, SCOPUS, and Web of Science.

uml
AND (execut∗ OR translat∗ OR compilat∗ OR interpret∗ OR synthes∗

OR simulat∗ OR debug∗ OR (codeAND generat∗))
AND (mdeORmdaORmdsdORmddORmodel∗ OR diagram OR

specification)
AND (software OR system OR tool)

Listing 1 Search string used for automatic research studies

To create the search string in Listing 3.2.1, we considered
the research questions in Sect. 3.1 and the set of pilot studies.
To ensure consistency, the search stringswere always applied
to the title, abstract and keywords of papers.
2. Impurity and duplicates removal Due to the nature of the
electronic databases and indexing systems, the search results
could also include items that were not research papers, such
as conference and workshop proceedings, international stan-
dards, textbooks, editorials. Consequently, in this stage we:
(i) manually removed these results in order to have a coherent
set of potentially relevant research studies, and (ii) identified
and removed duplicated entries.
3.Merging In this stage all relevant results from the different
databases and indexing systems used in the first stage were
combined.
4. Application of the selection criteria In this stage we con-
sidered all the selected studies and filtered them according to

123

Execution of UML models: a systematic review of research and practice 2319

a set of well-defined inclusion and exclusion criteria. These
criteria are described in details in Sect. 3.2.2.
5. Snowballing To mitigate a potential bias with respect to
the construct validity of the study, we complemented the
previously described automatic search with a snowballing
activity [22]. The main goal of this stage was to enlarge the
set of potentially relevant studies by considering each study
selected in the previous stages, and focusing on those papers
that either cited orwere cited by it. Technically,we performed
a closed recursive backward and forward snowballing activ-
ity [50].

3.2.2 Selection criteria for research studies

We used the following inclusion criteria for the research
studies:

IS1 Studies proposing solutions for the execution of UML
models.

IS2 Studies in which UML models are: (i) the main input
artifacts of the proposed executionmethodor technique,
and (ii) executed without any manual intervention.

IS3 Studies providing some kind of evaluation of the pro-
posed solution (e.g., via formal analysis, controlled
experiment, exploitation in industry, example usage).

IS4 Studies subjected to peer review [51] (e.g., journal
papers, book chapters, papers published as part of con-
ference or workshop proceedings will be considered,
whereas white papers will be discarded).

IS5 Studies written in English.
IS6 Studies for which the full text is available.

We used the following exclusion criteria for the research
studies:

ES1 Studies that do not provide any implementation of the
proposed solution.

ES2 Studies published before 1997 (because UML was
adopted in 1997).

ES3 Secondary and tertiary studies (e.g., systematic litera-
ture reviews, surveys).

ES4 Studies in the form of tutorial papers, short papers,
poster papers, editorials, because they do not provide
enough information.

3.2.3 Tools search and selection

In parallel with the search and selection of research stud-
ies, we also performed a search and selection of tools used
for executing UML models. The process we followed for
searching and selecting relevant tools involved the following
stages:

1. Initial search We based this stage on: (i) our personal
experiences with execution of UML models, (ii) specific
searches for querying generic web search engines with the
search string defined in Listing 3.2.1, and (iii) exploiting
knowledge garnered from existing networks of experts in the
execution of UML models, e.g., by accessing forums, mail-
ing lists.

2. Inclusion of tools from research studies During the
search and selection for research studies we stumbled upon
further tools used or referred by researchers. Those toolswere
included in the set of tools to be considered. If an included
research study described the tool’s characteristics for execu-
tion of UML models, no explicit tool entry is added to the
set of tools (to avoid duplication).

3. Consultation with experts In this stage we consulted
experts from both industry and academia to minimize the
set of selected tools. For example, this required removing
duplicates due to renaming of a tool over its lifetime.

4. Application of the selection criteria In this stage, we
considered all the selected tools and filtered them accord-
ing to well-defined inclusion and exclusion criteria. These
criteria are presented in detail in Sect. 3.2.4. In this search
and selection subprocess, we focused on tools and we col-
lected information from associated documentation (e.g.,
white papers, user guides, Web pages), rather than from
actual scientific papers.

3.2.4 Selection criteria for tools

The following tools inclusion criteria were used:

IT1 Tools proposing methods or techniques for execution
of UML models.

IT2 Tools in whichUMLmodels are themain input artifacts
of the proposed execution method or technique.

The following tool exclusion criterion was used:

ET1 Tools leveraging third-party tools for executing UML
models.

3.3 Data extraction and classification framework
definition

Themain goal of this activity was to create a data extraction
form to be used to collect data extracted from each primary
study. In our work, the data extraction form was composed
of four facets, each of which addressed a specific research
question (see Sect. 3.1). Specifically, for answeringRQ1 (i.e.,
research question about publication trends), we considered
standard information such as title, authors and publication
details of each study. As for the other research questions,
(i.e., RQ2, RQ3, RQ4), we followed a systematic process

123

2320 F. Ciccozzi et al.

Fig. 5 Keywording and data extraction process

based on keywording for: (i) defining the parameters of each
facet of the data extraction form, and (ii) extracting data from
the primary studies accordingly. The goal of the keywording
was to effectively develop an extraction form that could fit
existing studies and tools, and which took their characteris-
tics into account [39].

The activity diagram in Fig. 5 shows the process that we
followed to define the data extraction form. The following
describes the individual steps of this process:

1. Identify keywords and conceptsWe collected keywords
and concepts by reading the full text of each pilot study.

2. Cluster keywords and define parametersWe performed
a clustering operation on collected keywords and con-
cepts in order to organize them according to the
identified characteristics. The clustering operation is
very similar to the sorting phase of the grounded the-
orymethodology [13].More specifically,we considered
all the keywords and concepts collected in the previ-
ous phase and iteratively grouped them together until
a saturation of all the concepts has been achieved. The
output of this stage was the initial data extraction form
containing all the identified parameters, each of which
represented a specific characteristic of a solution for
executing UML models. The following steps were per-
formed individually for each primary study.

3. Extract data from current studyWefirst extracted infor-
mation about the current primary study to be analyzed
and then collected information based on the parameters
of the data extraction form. Finally, we collected any
kind of additional information that was deemed rele-
vant but that did not fit within the data extraction form.

4. Refine data extraction form We reviewed the collected
additional information. This could be due to any of the
following:

• the collected information was not interpreted cor-
rectly; in this case, the collected information was
refined;

• the parameters of the data extraction form were
not representative enough for the considered pri-
mary study; in this case, the data extraction form
was refined so that it better fit the collected infor-
mation; previously analyzed primary studies were
re-analyzed according to the refined data extraction
form.

The above process was complete when all primary studies
were analyzed. Oncewe had a complete data extraction form,
we isolated the facet related to the technical characteristics of
the approaches (i.e., the facet related to RQ2). This was then
analyzed further to establish any relationships between the
parameters, and also to determine the multiplicity and pos-
sible values of each parameter. This process was performed
through several iterations and led to the definition of a classi-
fication framework for solutions for UMLmodel execution.
This classification framework is described in Sect. 5. It can
be used by researchers and practitioners for classifying, com-
paring, and evaluating solutions for executing UML models
in an objective manner.

3.4 Data synthesis

We designed and executed our data synthesis activity by fol-
lowing lessons learned and findings presented by Cruzes et
al. [14]. Specifically, our data synthesis activity was divided
into two main phases: vertical analysis and horizontal anal-
ysis.

In vertical analysis (cf. Sects. 4–7), we analyzed the
extracted data to find trends and collect information about
each parameter of our data extraction form. In this case, we
applied the line of argument synthesis [51]. We present the
results of this vertical analysis in Sects. 4, 5, 6, 7. Moreover,
the complete set of extracted data for each primary study is
given in “Appendix C”.

For horizontal analysis (cf. Sect. 8), we analyzed the
extracted data to explore possible relations across differ-
ent parameters of our data extraction form. To that end, we
cross-tabulated and grouped the data and made comparisons
between two or more parameters of the data extraction form.
The main goal of the horizontal analysis was to uncover the
existence of possible interesting relations between data per-
taining to different aspects of our research. For this purpose,
we used contingency tables analysis as the strategy for eval-
uating the actual existence of those relations. The results of
the horizontal analysis are presented in Sect. 8.

In both cases, we performed a combination of content
analysis [18] (mainly for categorizing and coding approaches
under broad thematic categories) and narrative synthesis [43]
(mainly for detailed explanation and interpretation of the
findings coming from the content analysis).

123

Execution of UML models: a systematic review of research and practice 2321

3.5 Threats to validity

In this section, we discuss the main threats to validity of our
study and how we mitigated them.

External validity Concerning research studies, we employed
a search strategy consisting of both automatic search and
snowballing of selected studies. We use these two search
strategies in combination to mitigate the threat to external
validity. In both automatic search and snowballing, we did
not consider gray literature (e.g., white papers) because in
this phase we are focussing on the state of the art about
UML models execution and peer-reviewed scientific venues
are well-established publication targets for researchers. Nev-
ertheless, given the quite high number of considered primary
studies, this potential bias should not impact our study
significantly. Concerning tools, we mitigated the external
validity threat by applying a well-defined process for select-
ing relevant tools from the state of the practice. Namely, we
performed (i) an initial search based on our direct experience,
specific searches on generic web engines, and the knowl-
edge from networks of experts, (ii) an analysis of the tools
referred by selected research studies, and (iii) consultations
with experts from both industry and academia.

Finally, in our search we considered only material written
in the English language. This choice may potentially have
led us to discard some primary studies published in other
languages. However, the English language is themost widely
used language for scientific articles and tools documentation,
so this bias can be reasonably deemed to have a minimal
impact.

Internal validityWemitigated this potential threat to validity
by (i) rigorously defining the protocol of our study, and (ii)
defining our data extraction form by following awell-defined
and preliminarily piloted validated process (see Sect. 3.3).
Regarding the validity of the synthesis of collected data,
the threats are minimal, since we employed well-assessed
descriptive statistics.

Construct validity We are reasonably confident that we
have not missed any significant relevant research studies or
tools. Specifically, research studies were searched by firstly
applying an automatic search on multiple data sources. We
considered multiple electronic databases to get relevant stud-
ies independently of publishers’ policies (see Sect. 3.2). We
are reasonably confident about the construction of the search
string, since the terms used were identified by carefully
following the research questions and by analyzing the set
of pilot studies. Complementing the automatic search with
snowballing increases our confidence in our search strategy.
Tools were selected by applying the previously described
search and selection process, involving our direct experi-
ence, web search engines, knowledge from existing networks

of experts, selected research studies, and experts from both
industry and academia.

After having collected all relevant research studies and
tools, we rigorously screened them according to well-
documented inclusion and exclusion criteria (see Sect. 3.2.1).
This selection stagewasperformedby theprincipal researcher
and the research methodologist. As suggested by Wohlin et
al. [51], a random sample of 20 potentially relevant research
studies and tools was identified and the inter-researcher
agreement wasmeasured using the Cohen–Kappa coefficient
[12]. The results are very convincing, since we obtained a
Cohen–Kappa coefficient of 0.80 for research studies and
0.91 for tools.10

Conclusion validity Firstly, we mitigated potential threats
to conclusion validity by applying well-accepted systematic
processes throughout our study and we documented all of
them in our research protocol, so that this study can be repli-
cated by other researchers interested in the topic. Secondly,
the data extraction phase could have been another source of
threats to the conclusion validity of our study,mainly because
(i) other researchersmay identify parameters and dimensions
different from ours and (ii) our data extraction activity is
based on human judgement about the solutions described in
the primary studies. We mitigated this bias by (i) letting the
parameters and their facets emerge from the pilot studies and
refining them throughout the data extraction activity, (ii) per-
forming an external evaluation by independent researchers
who were not involved in our research, and (iii) having the
data extraction process conducted by the principle researcher
and validated by the secondary researcher.

4 Publication trends

In this section, we describe publication trends extracted from
the analyzed research studies. More specifically, we aim at
answering the following research question:

RQ1—What are the publication trends of research studies
pertaining to solutions for the execution of UML models?

To answer RQ1, for each analyzed research study, we
extracted thepublicationyear andvenue.The results obtained
are discussed below.

4.1 Publication year

Figure 6 presents the distribution of publications on execu-
tion of UML models over time. From the collected data,
we can observe that relatively few studies were published
until 2007. Starting with 2008, we can see a growth in

10 The result of the Cohen Kappa statistic is considered as substantial
(almost perfect) when it is above 0.60 (0.80) [30].

123

2322 F. Ciccozzi et al.

Fig. 6 Distribution of research studies by year

Fig. 7 Distribution of research studies by type of publication

the number of studies. Interestingly, this increase coincides
with the publication of the first beta version of the fUML
specification (in the OMG process, a “beta” specification is
publicly released to encourage early implementation and also
to identify possible issues which are handled by a Finaliza-
tion Task Force, leading to a finalized specification that is
formally published—in the case of fUML, this took until
2011). Indeed, the average number of publications between
1997 and 2007 is only 1 per year. Between 2008 and 2016, it
reached a value of 6. This result confirms the growing focus
on and increasing need for research in UML model execu-
tion. Given the steady rate of the number of publications per
year over the past 8 years, we expect this trend to continue
in the future.

The first research studies proposing a solution to exe-
cuting UML models were published in 2000 (P62, P63).
Specifically, the authors of (P62) presented a framework for
generating simulation programs from UML models with the
goal of predicting the performance of the system being mod-
eled. In P63 they used the Fujaba environment to specify
production control systems, generate Java code, and simu-
late their corresponding UML models.

We also analyzed the drop of the number of research stud-
ies in 2010, but did not find any clear reasons for it.

4.2 Publication venues

Weclassified the analyzed research studies to assess their dis-
tribution by (i) type of publication (i.e., journal, conference,
or workshop paper) and (ii) targeted publication venues.

Figure 7 shows the publication types of the analyzed
research studies. Themost common publication type is a con-
ference paper (38/63), followed by journal papers (19/63).
The low number of workshop papers may be an indicator of
the fact that, given the effort required for proposing a solu-

tion for UML model execution, researchers focusing on this
research topic commonly target more scientifically reward-
ing publications (e.g., journal papers). Nevertheless, this is
changing since there are now workshops and conferences
fully dedicated to the topic, creating thereby a clearly defined
dedicated research community. The first step toward this
change is the International Workshop on Executable Mod-
eling (EXE), co-located with the ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems (MODELS), which has hosted three primary stud-
ies in 2015–2016.

Table 1 shows the publication venues that hosted more
than one analyzed research study (the last row of the table
is an aggregate of all the publication venues with only one
research study).We can see that research onUMLmodel exe-
cution is spread across a large number of venues (more than
50 in total), spanning different research areas such as embed-
ded systems, reconfigurable systems, visual languages and
human–computer interaction, distributed computing. Under
this perspective, UML model execution is perceived today
as orthogonal with respect to other research areas. A conse-
quence is that researchers actually focus more on the benefits
and effects of exploiting UML model execution (e.g., a gain
in terms of system reliability or reconfigurability), rather than
on the specifics of the execution mechanisms.

Highlights—RQ1. What are the publication trends of
research studies related to solutions for the execution of
UML models?

� From 2008 there has been a growing scientific inter-
est on UMLmodel execution; this positive trend has
been more or less steady in the past 6 years;

� Conferences and journals are the most targeted
publication venues, testifying that UML model exe-
cution is becoming a significant research theme;

� Research on UMLmodel execution is spread across
a large number of heterogeneous venues, with
researchers focusing more on benefits and effects
of model execution, rather than on the specific exe-
cution techniques;

5 Technical characteristics

In this section,we describe the technical characteristics of the
analyzed solutions for executing UMLmodels. More specif-
ically, it aims at answering the following research question:

RQ2—What are the characteristics of existing solutions
for the execution of UML models?

123

Execution of UML models: a systematic review of research and practice 2323

Table 1 Publication venues
with more than one primary
research study

Publication venue Type #Studies

European Conference on Modelling Foundations and Applications (ECMFA) Conf. 3

Design, Automation and Test in Europe Conference and Exhibition (DATE) Conf. 3

Design Automation for Embedded Systems (DAES) Conf. 3

Software and System Modeling (SoSyM) Journal 3

ACM Symposium on Applied Computing (SAC) Conf. 2

Forum on Specification and Design Languages (FDL) Conf. 2

Brasilian Symposium on Computing System Engineering (SBESC) Conf. 2

Executable Modeling (EXE) Work. 3

Others – 42

Total – 63

Fig. 8 Classification framework of solutions for UML model execution

Figure 8 presents the classification framework we defined
for answering this research question. Note that this classi-
fication framework was obtained through a systematically
conducted process (i.e., the keywording activity for the data
extraction form), and it was applied to all the 80 primary
studies of this study, which strongly suggests that it provides
a general facility for evaluating and comparing approaches
for execution of UML models. For reasons of brevity, we do
not provide a fully detailed description of all the parame-
ters of the classification framework; however, we do briefly
elaborate on each of them when discussing the results of our
study in the remainder of this section.11

5.1 UMLmodeling

In this section we examine the characteristics of the analyzed
solutions with respect to the way they model a software sys-
tem with UML.

11 The interested reader can refer to our “replication” package for a
thorough and extensive discussion of all characteristics of our classifi-
cation framework.

Required UML diagrams This parameter represents the
non-empty set of UML diagrams required by the ana-
lyzed solution to be used when modeling a software system
(Fig. 9a). Class (48/82), state machine (36/82), and activ-
ity (33/82) diagrams represent the most commonly required
model representations, often in combination. Overall, the
expected trend is that both structural and behavioral mod-
els are used when defining executable models.
Used action languages To make UML models executable,
in addition to well-defined execution semantics, further lan-
guages (i.e., action languages) may be needed for specifying
fine-grained data and behaviors [36]. This parameter spec-
ifies which action languages were used by the analyzed
solutions. Figure 9b shows that there is a remarkable number
of solutions (22/82) which do not use action languages. It is
interesting to note that only 1 tool (out of 19) does not use
any form of action language, whereas the number of research
studies not using action languages is much higher (21/63).

Almost half of the solutions using an action language
(37/60) leverageUML-compliant languages, but only a small
portion employs the current standard, Alf (9/37). Most solu-

123

2324 F. Ciccozzi et al.

Fig. 9 UML modeling—analysis results (light bars: research studies, dark bars: tools)

tions (46/60) leverage popular programming languages as
action languages, although these are not semantically con-
sistent with UML.
Applied UML profiles With this parameter, we describe
whether an analyzed solution relies on any UML profile
to enable execution. Note that standard UML is not itself
executable, due to the presence of numerous variability
points and unspecified details (even fUML, a standardized
executable subset of UML, has variability points). Hence,
the execution of UML models requires additional semantic
details to be provided. This may be done explicitly, using a
suitable UML profile that defines the necessary semantics (as
in 49/82 of our primary studies), or implicitly, by solution-
specific semantics built into the model transformation or
execution technologies. With this parameter, we identify the
first case.

Among the solutions usingUML profiles (see Fig. 9c), the
most commonlyused standardprofile isMARTE(16/49). It is
interesting to note that, in a relevant number of cases (27/49),
a solution-specific profile was explicitly defined.
Modeling tool This parameter specifies the modeling tools
which are used by the analyzed solution for UML modeling
(see Fig. 9d). The most used tool appears to be Papyrus12

(19/82). The number of tool-independent solutions (14/82)
is fairly low, it is worth noting that more than half of the
solutions (51/82) leverage open-source tools.13

12 http://www.eclipse.org/papyrus/.
13 This should not be misinterpreted to mean that these tools dominate
in terms of usage volume in industrial practice, where commercial tools
still seem to be dominant.

Based on the fUML standard fUML defines an execution
semantics for a large subset of standard UML. This param-
eter identifies whether the analyzed solution conforms to
the fUML specification. Different solutions may leverage
different implementations as long as they conform to the
specification. Among the analyzed solutions (see Fig. 9e),
the majority does not conform to the semantics defined by
fUML. However, it should be kept in mind that fUML was
not available until 2011. If we consider the studies proposed
after 2011 (37/82), we note that more than one-third (13/37)
is based on fUML. Note that, in order to address the infor-
mality of UML, in approaches not based on fUML, execution
semantics is enforced at model transformation level, e.g., by
using 3GLs as action code in the models.
Covered MDA levels Inspired by the well-known MDA [29]
modeling levels, this parameter specifies whether the ana-
lyzed solution covers the platform-independent (PIM) and/or
the platform-specific (PSM) modeling levels (see Figs. 9f,
10). While the majority (80/82) exploits models at the PIM
level, only very few solutions (17/82) actually model the
hardware platform in detail (HW). A significant number of
solutions exploit both PIM and PSMmodels (20/82), or even
combine PIM, PSM, and HW (16/82).
Support for partial models This parameter specifies whether
the analyzed solution supports the execution of models with
elements that are tentative, missing or not well-formed [53].
This capability is particularly useful in early design phases
where different design approaches are proposed and eval-
uated. By supporting the execution of partial models, it is
possible to (1) significantly reduce the amount of time and

123

http://www.eclipse.org/papyrus/

Execution of UML models: a systematic review of research and practice 2325

Fig. 10 Distribution of solutions according to the MDA levels

effort required to evaluate an approach and (2) increase the
likelihood that unpromising approacheswill be identified and
discarded early in the design cycle. The analysis revealed
that, to date, only one solution for execution of UMLmodels
explicitly provides support for the execution of partial mod-
els; in P10, the authors provide semantics for elements that
are “tentative, missing or not well-formed” so that they can
support the execution of models that are still under develop-
ment.

5.2 Execution strategy

In this section, we provide the characteristics of the analyzed
solutions based whether they execute UML models through
translation or interpretation,14 as well as a set of parameters
independent of the execution type. We start with the set of
independent parameters and continue with parameters spe-
cific to translational and interpretive execution.
Execution tools and technologies This parameter refers to all
third-party tools and technologies used by the analyzed solu-
tions to execute UMLmodels (e.g., programming languages,
model transformation languages). From our analysis (see
Fig. 12d),wediscovered that a substantial number of the solu-
tions (40/82) employs Java as execution technology. The use
of Java varies from model transformations to execution in a
simulated environment. Note that most tools (16/19) heavily
exploit Java, while most academic solutions (41/63) leverage
technologies specifically developed for model manipula-
tion (i.e., model transformation languages). Among them,
QVT,15 Acceleo,16 and ATL.17

Model-level interactive debugging This parameter specifies
whether the analyzed solution provides some level of sup-
port for interactive debugging at the level of the source UML
model (e.g., support for specifying breakpoints in the mod-
els, step-by-step execution at the UML level.). As shown in
Fig. 12e, only a few solutions (21/82, of which 13 are tools)

14 Note that one approach can provide both translational and inter-
pretive mechanisms (e.g., for code generation and model simulation,
respectively).
15 http://www.omg.org/spec/QVT/.
16 https://eclipse.org/acceleo/.
17 https://wiki.eclipse.org/MMT/ATL_Transformation_Language_(ATL).

provide such a feature, which suggests that model execution
is (too) rarely a way to assess the model itself.
Support for simulation This parameter indicates whether the
analyzed solution supports simulation of UMLmodels. Sim-
ulation is defined as execution of a model in an environment
(e.g., an IDE) that is different from the ultimate intended
target environment (e.g., a controller board). This can be
useful for a number of reasons, including the unavailabil-
ity of the target environment, the availability of tools that are
not present or not available in the target environment (e.g.,
debugging tools), or other pragmatic or economical reasons.
Among the analyzed solutions, more than half (49/82) pro-
vide support for model simulation (see Fig. 12f).

It is important to note that in certain cases (such as in
tools like iUMLorBridgePoint) interpretive and translational
approaches live under the same hood, but they are provided
through different mechanisms and for different purposes; for
example, simulationmay be used for models validation/anal-
ysis/debugging, whereasmodel execution is used for running
the system on the target platform. Our analysis reveals that
among the 14 solutions adopting an interpretive execution
strategy, 11 of them also support models simulation. In other
words, even if we consider the support for simulation and the
interpretive execution strategy as disjoint aspects of analyzed
solutions, in the majority of the cases solutions supporting
UML models simulation provide also simulation support.
Production systemThisBooleanparameter identifieswhether
source models are executed on the ultimate target platform
(e.g., full code generation and execution), or not (e.g., mod-
els simulated/run in the modeling tool only). The significant
number of solutions (29/82) that do not provide execution on
target platform,(see Fig. 12g), suggests that model execution
is considered beneficial for early design assessment too.

5.2.1 Translational execution

Overall, Fig. 11.a shows that the number of translational solu-
tions (70/82) clearly outnumbers the number of interpretive
(14/82) solutions. From these numbers, we can conclude that
the landscape of solutions applicable in real-world scenarios
for the execution of UML models is dominated by trans-
lational approaches. This shows a trend of the community
in choosing the pragmatic solution represented by transla-
tional execution, resulting in a myriad of repetitive solutions
answering the same questions, which, considering the rele-
vant number of research studies and tools on the topic, are
not definitively answered yet.
Translation targets This parameter describes the target pro-
gramming languages of the translated source models (see
Fig. 12a). A total of 43 different languages are targeted, with
the most common being Java (26/82). We found out that 3
solutions translate UMLmodels directly to object code. Two
of them are hybrid, since they translate UMLmodels to a for-

123

http://www.omg.org/spec/QVT/
https://eclipse.org/acceleo/
https://wiki.eclipse.org/MMT/ATL_Transformation_Language_(ATL)

2326 F. Ciccozzi et al.

Fig. 11 UML model execution solutions—analysis results (light bars: research studies, dark bars: tools)

Other
Visual Basic

IEC 61131−3 code
PHP

Petri net
Python

XML
Ada
C#

VHDL
SystemC

C
C++
Java

(a) Translation − Translation targets

0 20 40 60 80

30
2
2
2
2
2
4
5
5
6
7

13
23

26

No

Yes

(b) Translation − Software platform

0 20 40 60 80

32

38

No

Yes

(c) Traceability link support

0 20 40 60 80

55

15

Other
hif

fumlvm
C

XML−based tool
xpand
XSLT
C++
QVT

Acceleo
Eclipse UML2−based tool

Java

(d) Execution tools and technologies

0 20 40 60 80

47
2
2
2
3
3
4
5
5
5

9
40

No

Yes

(e) Model−level interactive debugging

0 20 40 60 80

61

21

No

Yes

(f) Support for simulation

0 20 40 60 80

33

49

No

Yes

(g) Production system

0 20 40 60 80

29

53

Fig. 12 UML model execution strategies—analysis results (light bars: research studies, dark bars: tools)

mat that is interpreted by ad hoc virtual machines. The three
solutions leverage very limited subsets of UML; this makes
them only suitable for limited applications and can explain
their negligible impact in the community. It is interesting to
note that direct translation to object code is not provided in
any of the tools that we analyzed. Each solution employed a
specific compiler producing executables for a specific target

platform. No solutions used the same compiler nor targeted
the same platform.

More specifically, the well-known open-source Gnu Col-
lection Compiler (GCC) was used in P30 for generating a
simplified form of abstract syntax tree, which was then used
for GCC optimizations. By following a different line of rea-
soning, the authors of P55 realized a model compiler, which

123

Execution of UML models: a systematic review of research and practice 2327

takes as input UML models and compiles them into assem-
bly code, from scratch. The produced assembly code can then
be executed by a custom virtual machine called UML Vir-
tual Machine (UVM). In P58, an ad hoc compiler and target
platform were developed as well, where UML specifications
are compiled to equivalent binary representations, which are
directly executed on [an ad hoc] Abstract ExecutionPlatform
(AEP).
Software platform This Boolean parameter specifies whether
the generated executable is meant to run on a specific soft-
ware platform (e.g., OS, user-defined middleware, runtime
libraries). The landscape of solutions is balancedwith respect
to this parameter (see Fig. 12b).
Traceability links support This parameter represents whether
the analyzed solution provides mechanisms for generating
explicit traceability links [4] connecting theUMLmodels and
other artifacts being executed (e.g., the source code generated
by translation, the compiled binaries). Such links are crucial
for certification in safety-critical domains, and are useful for
a variety of purposes, including: debugging in cases where
errors are encountered during execution, errors during com-
pilation of the generated code, or for back propagation from
the execution to models [10].

Fig. 12c we can see that only a small set of solutions
(15/82), mostly tools (12/15), provide traceability links. A
consequence of this is that these solutions are not well suited,
for example, in situations where there are needs for vertical
navigation from models to code and back based on pre-
cise correspondences. An example could be execution-based
model assessment and optimization.

5.2.2 Interpretive execution

By “interpretive” execution we mean that the UML model is
interpreted to be run on the designated platform. The parame-
ter is composed of the name of the interpretation engine used
for interpreting and executing the UML models. The over-
all number of interpretive solutions was 14. Among them,
none seems to provide a solution for the execution of UML
models on the actual target platform. Instead, they focus on
higher-level execution for simulation and model-based anal-
ysis. Regarding adopted interpretation engines, none stood
out as the preferred one. (See Table 2.)

5.3 Intended benefits

This parameter identifies the benefits that the analyzed solu-
tion is intended to support explicitly. The possible values
are: correctness, meant as improving functional correct-
ness of models (e.g., through model-based analysis), quality,
meant as improving non-functional aspects of the generated
executable artifact (e.g., through optimized model compila-
tion), or production, meant as reducing the effort needed for

Table 2 Interpretation engines

Engine name Studies

Moka—Papyrus P18, T14

fUML virtual machine P24, P25

Ad hoc engine based on IBM RSA-RT P31

fUML engine based on Kermeta P32

UML interpreter engine P34

MOCAS P23

Populo P48

ACTi P49

fUML reference implementation T13

iUML T11

BridgePoint T12

producing executable artefacts from models (e.g., through
automatic code generation). As shown in Fig. 11b, in the
majority of the cases solutions aim at decreasing production
effort (47/82) or at improving model correctness (46/82).
Whilemost of the tools (13/19) focus on production, research
studies display a fairly even distribution among the three ben-
efits (29/63 on correctness, 34/63 on production, 24/63 on
quality).

5.4 Associated process

This parameter specifies whether the proposed solution is
closely associated with a specific development methodol-
ogy. As shown in Fig. 11c, from our analysis we can notice
that only a few solutions (11/82) explicitly position them-
selves within a specific methodology. The only well-known
methodology is Shlaer–Mellor’s, associated to the tools
iUML (T11) and BridgePoint (T12). Other ad hoc method-
ologies are CHESS (T4, P6), MADES (P13), GenERTiCA
(P5), MaCMAS (P54), and those unnamed provided in P4,
P14, P21, and P60.

5.5 Extensibility

This parameter showswhether the proposed executionmech-
anisms can be extended or customized with additional
components and capabilities, including those provided by
third parties (e.g., plug-in based approaches, support for
ecosystems of third-party modules). As shown in Fig. 11d,
proportionally, only a minimal part of research studies (5/63)
consider such capabilities, while more than half of the tools
(12/19) provide extensibility mechanisms.

123

2328 F. Ciccozzi et al.

5.6 Readiness level

The Technology Readiness Level (TRL18) is proposed as
a systematic metric/measurement system for assessing the
maturity of a particular technology, and is defined as an inte-
ger n where 1 ≤ n ≤ 9. Consequently, the readiness level of
an analyzed solution and can be one of: LOW if n ≤ 4 (i.e.,
if the solution was either formulated, validated or demon-
strated at most in lab), MEDIUM if 5 ≤ n ≤ 6 (i.e., if the
solution was either validated or demonstrated in the rele-
vant environment), and HIGH if n ≥ 7 (i.e., if the solution
was either completed, demonstrated, or proven in operational
environment). We assigned a TRL value depending on how
the solution was validated. It is important to note that the
TRL parameter refers to the whole proposed solution (e.g.,
the realization of the whole tool chain, if available) and on
how it has been evaluated (e.g., its feasibility has been tested
via a simple example, or it has been validated in an opera-
tional environment).

As shown in Fig. 11e, it turns out that most of the ana-
lyzed solutions (56/82) have LOW readiness level. Only two
research studies (P3, P56) have HIGH , while the remaining
(12/82) are tools.

5.7 Supported non-functional properties

This parameter represents the set of non-functional proper-
ties recognized by the analyzed solution. By “recognized”
we mean that the solution provides explicit mechanisms to
assess, optimize, and/or reason about those non-functional
properties (e.g., the solution supports analysis of the energy
consumed by the system, or its performance, security.). As
shown in Fig. 11f, more than half of the analyzed solutions
(54/82) do not focus on reasoning on specific non-functional
properties. Among the ones which do, performance is the
most addressed property (25/28).

5.8 Formal specification languages

This parameter displays the formal specification languages
(see Table 3) eventually used in conjunction with the UML
models for, e.g., proving security properties, formally ver-
ify services composition. Formal language specifications are
in some cases generated from UML models, and in others
defined along with them; nevertheless, primary studies did
not report enough details to be able to deeply categorize the
two variants. Most solutions (69/82) do not employ any for-

18 The TRL measurement system is employed by the Hori-
zon 2020 European commission for the work program of
2014/2015: https://ec.europa.eu/research/participants/data/ref/h2020/
wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf.

mal language. Among those that use formal languages, the
majority performs model checking.

Highlights—RQ2. What are the technical character-
istics of existing solutions for the execution of UML
models?

� Solutions providing translational execution clearly
outnumber interpretive solutions. Interpretive solu-
tions are mainly addressing higher-level execution
(e.g., for simulation). Solutions for translation to
object code only leverage very limited subsets of
UML;

� Class, activity, and state machine are the most used
diagrams;

� Most solutions employ 3GLs as action languages,
while only very few adopted the standardized action
language for UML (Alf);

� Currently, there is only one solution which provides
support for execution of partial models;

� Out of the analyzed translational solutions, only a
very few provide explicit traceability links, which
can be exploited for consistent navigations between
models and generated code;

� Very few solutions provide support for model-level
interactive debugging (note that on the other hand
most tools provide this feature);

� Among the very few solutions that displayHIGH as
readiness level only two are research studies;

� Avery small amount of solutions explicitly provides
mechanismswhich enable extension and customiza-
tion.

6 Provided evidence

In this section, we describe the evidence provided by the
analyzed research studies (52/70, since tools are excluded).
More specifically, it aims at answering the following research
question:

RQ3—What is the evidence that motivates the adoption of
existing solutions for the execution of UML models?

Intuitively, the goal of answering RQ3 is to assess what
is the potential for industrial adoption of research studies on
UML model execution today. The underlying assumption of
RQ3 is that research studies which have been (rigorously)
evaluated in industry and with higher quality are more likely
to be adopted in industry.

123

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

Execution of UML models: a systematic review of research and practice 2329

Table 3 Used formal specification languages

Formal language Usage Study

Petri Net [41] Translation target for performance analysis P38

Translation target for acting as reference for services orchestration P54

NuSMV [11] Generated for formally verifying the correctness of the specification P17

Translation target for verifying temporal properties P56

FFSM (ad hoc) Generated on the fly and interpreted at runtime P31

Translation target for execution and analysis P6

KIV [21] Automatically generated for proving security properties P44

Jolie [38] Translation target for formal verification of services composition P53

Lisp [46] Translation target for verification of user-defined properties and simulation P57

BHDL [7] Intermediate representation during the translation and properties verification P60

Event B [2] Action language in UML models and intermediate representation during the translation for properties verification P60

Z [42] Formal verification of user-defined properties P61

TML (ad hoc) Translation target for performance, liveness, reachability, and scheduling analysis P2

ForSyDe (ad hoc) Generated for formally verifying the behavioral of the modeled system P10

Evaluation

Validation

(a) Applied Research Method

0 20 40 60 80

12

51

Industrial evaluation

Industrial empirical experiment

Set of examples from industry

Empirical experiment in the lab

Example from industry

Set of examples

Example

(b) Type of evidence

0 20 40 60 80

2

3

4

4

6

11

33

Mathematical function
Web

Modeling language
Mobile app

Consumer electronics
Information system

Monitoring and sensing
Business processes

Manufacturing
Media converter

Mobile robotic system
Communication

Controller
Synthetic

(c) Type of system for evidence

0 20 40 60 80

1
2
2
3
4
4
4
5
5

7
7
8
10
10

Fig. 13 Provided evidence and identified limitations—analysis results

6.1 Applied researchmethod

This parameter represents the type of applied research
method used to assess the analyzed solution. Based on [40,
fig. 19], the possible values of this parameter are validation
and evaluation. Validation is done in lab, whereas evalua-
tion takes place in real-world (industrial) contexts. The latter
generally provides a higher level of evidence about the prac-
tical applicability of a proposed solution, provided that the
considered control groups are sufficiently diverse and inde-
pendent, and that the number of participants in the studies is
sufficiently large. Our analysis (see Fig. 13a) uncovered that
only a very small number of the analyzed research studies
(12/63) provided an evaluation.

6.2 Type of evidence

This parameter describes the type of evidence (e.g., example,
empirical study) exploited by the analyzed research study for

the purposes of validation and/or evaluation. The different
types of evidence are:

• Example: 1 in-house example.
• Set of examples: several in-house (not industrial) exam-
ples, several runs and comparisons of one example, even
several models for the system, e.g., with different sizes.

• Empirical laboratory: case studies, controlled experi-
ments and empirical evaluations in laboratory.

• Industrial example: example coming from industry and
performed in laboratory.

• Set of industrial examples: several industrial examples
(even several models for the system, e.g., with different
sizes).

• Empirical industrial: case studies, controlled experiments
and empirical evaluations either in industry or in real-
world scenarios.

• Industrial evaluation: evaluation performed by industrial
actors, solution used in industry.

123

2330 F. Ciccozzi et al.

Table 4 Quality assessment
criteria

ID Quality criteria

Q1 Is there a clear statement of the aims of the research?

Q2 Is there an adequate description of the context (e.g., industrial use,
laboratory-based investigation, product) in which the research was carried
out?

Q3 Is there an adequate justification and description of the research design?

Q4 Is there a clear statement of obtained findings, including data supporting
them?

Q5 Is there a critical discussion of the researchers’ roles, potential bias, and
influence on the proposed research?

Q6 Is there a critical discussion of potential limitations of the proposed research?

Figure 13b shows that the majority (44/63) of the ana-
lyzed solutions rely on the least systematic and least reliable
typology, that is, on examples. Of these, only a few (11/44)
use multiple different examples.

Out of the few that provide evidence in industrial settings
(15/63), only three rely on empirical evaluations, whereas
the majority of them (10/15) apply the proposed solutions
on examples coming from industry. Only one research study
(P6) actually performed a full-fledged industrial evaluation
of the proposed solution. These results related to industrial-
based evidence are actually making evident the perception
that academic results on UML model execution are not fully
transferred to or at least evaluated by industry. This can be
considered as an interesting research gap to be explored in
the future.

The obtained results also show that more than half of the
research studies (39/63) present the application of their pro-
posed solution using only a single example, independently of
whether the example comes from industry or not. However,
reaching conclusions about a complex topic like a solution
for UML model execution from a single (usually simplified)
example is dubious; this may negatively affect the potential
impact that a proposed solutionmay have. The research com-
munity can address this potential issue by evaluating their
proposed solutions on a set of complementary examples or
applications in order to provide different perspectives over
the proposed solutions.

6.3 Type of systems for evidence

This parameter describes the type of system used for pro-
viding evidence. Figure 13c presents the distribution of the
analyzed studies with respect to the type of system used in
obtaining evidence. The obtained results are spread across a
variety of alternatives, ranging from communication appli-
cations, consumer electronics, mobile apps. This leads to
the conclusion that there is no significant preference when it
comes to the type of system used for providing evidence.

Interestingly, one of the two most used types of sys-
tem is the synthetic one (10/63), meaning that the proposed
solution has been applied to an artificial ad hoc example
which is not grounded in any specific real system. The other
most used type is controller (10/63). Communication sys-
tems (8/63), manufacturing systems (5/63), and information
systems(4/63) are some of the types utilized (the interested
reader can refer to the figure for the complete list).

Finally, we can notice that recent technological trends are
reflected in the types of systems, such as mobile robotic sys-
tems (7/63) and mobile apps (3/63). This shows that UML
can be successfully used for modeling and executing modern
software systems.

6.4 Quality assessment results

In the context of this research, we assessed the quality of each
selected research study with the objectives to: (i) provide an
indication of the overall level of quality of academic research
on executing UMLmodels, and (ii) complement our findings
about the evidence that motivates the adoption of solutions
for executing UML models (RQ3).

We defined a set of criteria for assessing the quality of
research studies in an objective and unbiased manner. We
decided to follow the strategies already applied in [5,19],
and we based our quality assessment strategy on the assess-
ment instrument used in [17]. Specifically, we formulated the
quality score of a study according to a set of criteria formu-
lated as questions. Table 4 presents the questions we used for
our study, which were inspired by those proposed in [5,19].
Each quality assessment questionwas answered by assigning
a numerical value (1 = "yes", 0 = "no", and 0.5 = "to some
extent") [19].

It is important to note that the quality criteria reported
in Table 4 focus more on the quality of the paper (e.g., its
clarity, rigor, precision in describing aspects of the performed
research.) rather than on the quality of the research itself.
The quality of research studies is important because a badly
reported scientific article may suffer in terms of impact and

123

Execution of UML models: a systematic review of research and practice 2331

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Total quality score

Fr
eq

ue
nc

y
of

 to
ta

l q
ua

lit
y

sc
or

e

0

5

10

15

1

2

10

14

10

5

9

6

4

1 1

Fig. 14 Quality assessment—analysis results

Q1 Q2 Q3 Q4 Q5 Q6

Q
ua

lit
y

sc
or

es
 fr

eq
ue

nc
y

0

10

20

30

40

50

60 0
0.5
1

1

12

50

32

17

14

9

29

25

0

10

53 53

6
4

37

16

10

Fig. 15 Quality assessment—criteria-specific analysis results

transfer to industry, mainly because it may be difficult to
locate relevant information in the study itself and important
information may be missing.

Figure 14 shows the frequency of the total quality scores
achieved by the selected research studies. The maximum
score for a study is 6, i.e., scoring 1 for each question
of the quality criteria. By looking at the obtained data we
can tell that the majority of the studies achieved a score
between 2 and 4, with only three studies falling below a
score of 2, and 12 studies scoring above 4. The results tell
us that the majority of the studies performed well, even
though they still left something to be desired from a research
quality point of view (e.g., many studies failed in describ-
ing precisely the context of their research and its potential
limitations).

Figure 15 shows the frequencies of the scores of our
selected research studies over the six quality criteria. In this
context, the good news is that themajority of research studies

performed well when providing a clear statement of the aims
of their research (Q1) and the obtained results (Q4).Also, the
justification and description of the research design (Q3)were
described fairly well, with 25 studies doing it fully, 29 doing
it partially, and 9 that did not report them at all. However, we
can see insufficient scores with respect to the adequacy of the
description of the context in which the research was carried
out (Q2), with 32 studies not even saying anything about it.
A similar situation can be seen for the reporting of a critical
discussion of the researchers’ roles, their biases and influ-
ence on their studies (Q5), and of the potential limitations of
the proposed research (Q6). Overall, this analysis reveals
the main issues pertaining to the quality of documenting
current research on execution of UML models. Clearly, the
research community must do better on these aspects of their
work.

It is important to note that one of the reasons for hav-
ing lower quality scores may be related to the page limits of
venues where the primary studies have been submitted. In
order to better investigate on this aspect, we built a contin-
gency table between each single quality criteria Q1–Q6 and
the type of publication (i.e., journal, conference, workshop).
The analysis of the contingency tables reveals that the type
of publication has a slight influence on the Q2 and Q3 qual-
ity criteria, where we noticed that journal papers have higher
quality (i.e., a score of 1 for Q2 and Q3) with respect to
overall trends. In contrast, the publication type does not play
a significant role when considering Q1, Q4, Q5, Q6, and
their aggregation computed by summing all Q1–Q6 criteria.

Based on the results obtained, in Table 5, we list the
research studies with a quality score higher than or equal to
5. They can serve as good examples of high-quality research
that can inspire future research studies in the area.

Highlights—RQ3. What is the evidence that moti-
vates the adoption of existing solutions for the execution
of UML models?

� The majority of the analyzed studies provide val-
idation rather than evaluation (according to the
definitions in [40, fig. 19]);

� A small number of studies provides evidence by
experimentation in industrial settings; among them,
only a few rely on empirical evaluation.

� The majority of the research studies are of good
quality, althoughmanyof them fail in describingpre-
cisely the context of their research, the researchers’
roles, and potential limitations.

123

2332 F. Ciccozzi et al.

Table 5 Research studies with quality score equal or higher than 4

ID Title Year Score

P23 Environment modeling and simulation for automated testing of soft real-time embedded software 2013 6.0

P6 On the Generation of Full-Fledged Code from UML Profiles and Alf for Complex Systems 2015 5.5

P27 A Plug-in Based Approach for UML Model Simulation 2012 5.0

P56 FSMC+, a tool for the generation of Java code from statecharts 2007 5.0

P61 Deriving executable process descriptions from UML 2002 5.0

P3 On the automated translational execution of the action language for foundational UML 2016 5.0

7 Identified limitations

This section describes the limitations (and thereby need
for improvement) of the solutions as they were reported in
the analyzed research studies. More specifically, it aims at
answering the following research question:

RQ4—What are the limitations of existing solutions for
the execution of UML models?

Table 6 shows the distribution of the identified limita-
tions and needs for improvement across our primary studies.
Among them, themost common type of needed improvement
is expressiveness enhancement with respect to the coverage
of UML concepts (31/63); this result is not surprising, given
the huge number of concepts of theUMLmetamodel; indeed,
as of today the UML metamodel contains 264 classifiers
(including abstract classifiers) such as Class, Object, Activ-
ity, Transition. It is understandable that many research teams
do not have the resources for providing a complete approach
with respect to the full set of concepts related to specific
UML diagrams since they may be hundreds. In this context,
an interesting perspective is provided by the potential added
value that a dedicated company or a university spin-off may
give to provide more complete tool support. An example of
this positive synergy is the Eclipse Papyrus project, which
started as an open-source project lead by the LISE team of
a research division of the French alternative energies and
atomic energy commission (CEA) and is supported by an
industry consortium under the Eclipse Foundation umbrella
now.19

Along the same lines, another recurrent improvement
among research studies is tool enhancement (20/63). Sim-
ilarly to the case of expressiveness, we can trace the motiva-
tion behind this result to the limited resources of researchers
when considering a large language like UML. Also, it is
important to note that in some cases research groups may be
more interested in providing a prototype tool for giving evi-
dence about their scientific results, rather than in providing
an industry-ready, fully functional tool. As a natural con-
sequence of this situation, tool enhancement for a specific

19 http://projects.eclipse.org/projects/modeling.mdt.papyrus/who.

research-driven solution is one of the most common needs
for improvement. Other relevant possible improvements are
additional analysis atmodel level (12/63) and additional eval-
uation (11/63).

In order to better put into context the identified limita-
tions, we performed a detailed analysis about the potential
correlations between identified limitations and all the other
parameters of our classification framework; the results of this
analysis are presented in Sects. 8.13 to 8.16.

Highlights—RQ4.What are the limitations of existing
solutions for the execution of UML models?

� The most common limitation is represented by the
supported expressiveness in terms of covered UML
concepts.

� Another relevant limitation is related to tool
enhancement.

8 Horizontal analysis

The goal of our horizontal analysis is to investigate on
possible correlations between related parameters of the clas-
sification framework. To that end, while designing the clas-
sification framework, we kept track of potentially relevant
relationships that might exist between pairs of parameters
(the full set of potentially relevant relations is in our repli-
cation package). In this context, we checked those relations
by analyzing the contingency table [3] of each potentially
relevant pair of parameters. The results of this analysis are
described below.

8.1 Execution strategy versus UML diagrams

As discussed in Sect. 5.1, the most commonly required UML
diagrams for model execution are class diagram, activity
diagram, and state machine diagram, often in combination.
Nevertheless, it is interesting to understand which diagrams

123

http://projects.eclipse.org/projects/modeling.mdt.papyrus/who

Execution of UML models: a systematic review of research and practice 2333

Table 6 Applied type of limitations and unsolved challenges

Type of limitations and unsolved challenges #Studies Studies

Expressiveness enhancement (e.g., support for more UML constructs,
more expressive action language for behavioral specifications)

31 T5, T16, P1, P4, P5, P6, P7, P10, P12, P13, P14,
P20, P24, P26, P27, P29, P30, P31, P36, P37, P38,
P46, P49, P51, P53, P56, P57, P59, P61, P62, P63

Tool enhancement (e.g., refinement of the modeling editor, better test-
ing of prototype tools)

20 P1, P2, P4, P6, P7, P8, P9, P10, P13, P17, P22, P27,
P36, P37, P40, P45, P46, P54, P55, P60

Additional analysis of models (e.g., support for other timing and
scheduling analyses on the UML models, new analysis for checking
the conformance of the UML models to specific requirements)

12 T5, T14, T1, P9, P10, P16, P21, P24, P35, P38, P41,
P42

Additional evaluation (e.g., more extensive experimentation for eval-
uating the approach, test the approach on additional systems and/or
application domains)

11 P2, P5, P14, P16, P31, P32, P40, P45, P47, P53, P58

Execution platform improvement (e.g., more efficient scheduling of
tasks at runtime, improvement of generated Java code)

7 P2, P4, P5, P8, P47, P51, P63

Generated code optimization (e.g., generate more efficient C++ code,
generate Java code which implements Android development best prac-
tices)

6 P3, P5, P6, P8, P28, P59

Execution correctness assessment (e.g., automated consistency checks
between the models and generated code, test the simulated models to
check if they behave as expected)

4 P3, P18, P23, P26

Traceability enhancement (e.g., link error messages shown at runtime
with entities in the UMLmodels, trace and visualize the execution steps
in the simulation directly into the UML models)

4 P36, P39, P40, P57

Support for model checking (e.g., support for deadlock detection,
reachability analysis via model checking)

4 T15, P25, P33, P49

Reusability enhancement (e.g., improve the UML models repository,
ability to reuse model elements across projects)

3 P10, P21, P41

Platform-specific limitations (e.g., the UML class diagram is bound
to the Java single-inheritance constraint, only soft deadlines supported
because the code generation does not target a real-time OS)

2 P19, P23

Support for runtime models update (e.g., process definition modified
at runtime and without restarting the process execution, modification of
execution contracts at runtime)

2 P32, P33

Additional execution targets (e.g., generated code beyond the already
supported languages, like C++ code, generation of executable BPMN
specifications)

2 P3, P54

Platform independence enhancement (e.g., development of a generic
model of computation, independence with respect to the targeted pro-
gramming language when performing translation)

2 P26, P27

Execution strategies combination (e.g., combination of interpretation
and dynamic compilation)

1 P34

Scalability (e.g., avoid state space explosionwhen interpreting themod-
els at runtime)

1 P31

Portability enhancement (e.g., porting of the UML virtual machine
into other non-x86- based platforms)

1 P55

are actually translated, interpreted, or compiled.Our horizon-
tal analysis unveiled the following interesting facts. When
considering translational approaches, the most required
UML diagrams are state machine (46/70), class (41/70), and
activity (25/70), whereas the least required ones are inter-
action diagram (2/70), timing diagram (1/70), and ad hoc
diagram from a UML profile (1/70). We also report that there
are UML diagrams which are predominantly used in trans-

lational approaches and almost never used in interpretive
approaches, they are: use case (21 against 1), structure (18
against 1, since Moka (T14) provides executable structural
modeling with the Precise Semantics of UML Composite
Structures), sequence (18 against 1), component (17 against
1), deployment (11 against 0), and communication diagram
(6 against 1). Finally, state machine diagrams are (3/3) are
required in all approaches for translation to object code, fol-

123

2334 F. Ciccozzi et al.

lowed by activity diagrams (2/3); all the other diagrams are
either required in one case or not required at all.

8.2 Application domain versus required UML
profiles

From the results of our horizontal analysis, we discovered
that most of the research studies proposing a cross-domain
solution (21/24) did not use any explicit UML profile. Of
those that proposed domain-specific solutions,most relied on
ad hoc profiles, while a good portion relied on the standard
MARTE profile (13/39).

8.3 Execution strategy versus production system

Asanticipated,while themajority of translational approaches
(50/70) provides for the execution of the generated code on
the ultimate target platform, no interpretive approach does
so. This suggests that interpretation approaches are currently
primarily used for model-level simulation and model-level
analyses, but not for actual implementation.

8.4 Execution strategy versus readiness level

While most interpretive approaches, except for the Cameo
Simulation toolkit (T3), displayed a LOW readiness level, a
significant number of translational approaches (26/70) exhib-
ited higher readiness levels (eitherMEDIUM orHIGH). This
may be explained by the fact that translational execution has
historically been the preferred approach, partly because it
allowed direct reuse of existing programming language tech-
nologies (e.g., compilers) and partly because early versions
of UML were not precise or detailed enough to produce exe-
cutable code. With UML2 and the introduction of fUML and
Alf,UMLhas becomea full-fledged implementation-capable
language, which can be interpreted and directly translated to
object code. But, it will take time for these technologies to
reach the necessary maturity level.

8.5 Execution strategy versus publication year

Not surprisingly, the introduction of fUML triggered efforts
basedon interpretive solutions. In fact,most of the approaches
providing interpretation (12/14) were published after the first
formalization of fUML in February 2011. However, efforts
toward direct translation to object code are lagging. (Two-
third of themwere realized before the introduction of fUML.)
Not even the introduction ofAlf (2013) has triggered tangible
additional efforts in this direction; however, some initiatives
(e.g., [9]) toward these goals have recently started.

8.6 Readiness level versus primary study type

Among the studies with HIGH readiness level, only two
were research studies, while the remaining ones (12/14) were
tools. This is due to the fact that, for a tool to reach a HIGH
readiness level, requires significant investment in making it
dependable and usable, which are typically not a primary
concern of researchers in the domain.

8.7 Intended benefits versus publication year

There appears to be an interesting correlation between
intended benefits and publication year of the analyzed pri-
mary studies. In fact, the majority of the solutions aiming
at improving functional correctness of the modeled system
through execution were published after the first formaliza-
tion of fUML(2011). This seems to confirm thehypothesis by
which fUMLhas providedUMLwith themeans formodeling
software systems with precise execution semantics, whose
correctness can be automatically assessed.

8.8 Intended benefits versus execution strategy

Slightly more than half of the translational approaches
(29/56) sought to reduce the effort needed for producing an
executable artifact. On the other hand, the majority of inter-
pretive solutions (12/14) focused on improving the functional
correctness of the modeled software system. This supports
the view that translation of models to programming lan-
guages is preferred when generating production artifacts,
whereas interpretation is mostly used for validating and
improving functional correctness earlier in the development
cycle.

8.9 Execution strategy versus fUML standard
compliance

As of this writing, fUML has yet to become the anticipated
widely adopted reference for UML semantics for both trans-
lational and interpretive approaches. While in translational
solutions the adoption of fUML is increasing but still lagging
behind (7/36 after 2011), in interpretive solutions the trend
is much more promising (6/10 after 2011).

8.10 Simulation versus fUML standard compliance

Perhaps surprisingly, among the solutions that provide sim-
ulation, the majority (40/49) are not based on the fUML
standard. In fact, only a few solutions (3/14) out of those
published after the introduction of fUML are actually based
on fUML semantics.

123

Execution of UML models: a systematic review of research and practice 2335

8.11 Simulation versus model-level debugging

An interesting correlation seems to exist between simulation
and model-level debugging. From the horizontal analysis,
it was determined that the majority of solutions providing
model-level debugging also provide a means for simu-
lation of UML models. This could be because, in most
cases, simulation systems tend to incorporate mechanisms
formodel-level debugging to assist in determining functional
correctness. Rightly or wrongly, such mechanisms are often
perceived as excessive overhead in production-based imple-
mentations.

8.12 CoveredMDA layers versus execution strategy

We can notice that the vast majority of approaches (68/82)
consider UML models representing platform-independent
aspects of the system and apply a translational model execu-
tion strategy. This is not surprising since those two categories
are the most frequent ones in their respective parameters (see
vertical analysis). Platform- and hardware-specific aspects
are most often modeled when dealing with the translational
execution strategy (36/70 and 16/70, respectively).

The interpretive execution strategy is inmost cases applied
when consideringmodels representingplatform-independent
aspects of the system (14/14). We expected this result since
model interpretation allows designers to achieve a high level
of flexibility,which ismore naturally achievedwhen abstract,
platform-independent aspects are considered (rather than,
e.g., hardware-specific ones). Nevertheless, given the contin-
uously growing trend of cloud- and container-based solutions
[15,16], we may expect that, in the future, interpretation of
UML models will consider also platform- and hardware-
related aspects of the system (e.g., for allowing the system
to adapt its structure and behavior at runtime depending on
the currently available infrastructural resources).

8.13 Identified limitations versus execution strategy

Interestingly, there are two main limitations when consider-
ing solutions based on UML interpretation, they are: better
coverage of UML in terms of supported concepts (3/14) and
support for model checking (3/14). These results can be seen
as an indication about the need to (i) better support UML
in terms of considered concepts and (ii) complement UML
model interpretation with rigorous analysis in order to guar-
antee certain properties at runtime (e.g., safety, reliability,
correctness). No relevant trends have been identified when
considering solutions based on UML models translation.

8.14 Identified limitations versus support for
non-functional properties

As discussed in Sect. 5.7, the majority of the solutions
supporting non-functional properties focus on system per-
formance (21/25). Among them we can notice three main
identified limitations: expressiveness enhancement (13/25),
tool enhancement (12/25), and additional analysis of models
(5/25). All the other supported non-functional properties do
not exhibit any specific trend.

8.15 Identified limitations versus support for
simulation

When considering the support of simulation of UMLmodels
we noticed a certain balance with respect to solutions sup-
porting simulation and those that do not support it. However,
for the limitation related to the support of additional anal-
ysis of models this balance is not there anymore. Indeed,
solutions with simulation have the limitation of providing
additional analysis of the models in eight cases, against only
one case for solutions without simulation. This result may
be an indication of the need for complementing UML mod-
els simulation with additional analyses, along with the actual
model execution.

8.16 Identified limitations versus readiness level

The data about solutions with LOW readiness level do not
show any interesting trendwith respect to their identified lim-
itations, probably because it is the most recurrent readiness
level (56/82). On the other hand, solutions with MEDIUM
readiness level have three recurrent limitations: tool enhance-
ment (5/12), support for additional analysis of models (4/12),
and expressiveness enhancement (4/12). Finally, among the
solutions with HIGH readiness level, only two identified
some limitations (i.e., additional analysis of models, expres-
siveness enhancement, additional targets, code optimization,
and execution correctness), all the other studies do not dis-
cuss any limitation of their proposed solution.

8.17 Production system versus support for
simulation

Among the primary studies supporting simulation (49/82),
there is a certain balance between whether the UML mod-
els are also executed in the production system (23/49) or not
(26/49). This may be seen as an indication of the fact that
simulation is deemed useful in both cases. The results are
more unbalanced when considering primary studies not sup-
porting simulation (33/82), where all of them support also the
execution in production systems. This result is quite expected

123

2336 F. Ciccozzi et al.

since if an approach does not support simulation, then it is
very likely that the models are executed in production.

8.18 Production system versus software platform

According to our vertical analysis, a total of 53/82 primary
studies are able to execute models in production (e.g., full
code generation and execution). Among the approaches sup-
porting the execution in production, more than half of them
do not prescribe a specific software platform for executing
the generated code (31/53 vs. 19/53–3/53 no information
available), meaning that in those cases the generated code is
executable without any additional software such as libraries,
dedicated virtual machines. Conversely, when themodels are
not executable in production (29/82), the majority of them
requires a software platform for being executed (19/29) and
they do not only in one case (i.e., P27); in 9 studies the authors
did not provide enough information about their need of a soft-
ware platform for executing the models.

8.19 Support for simulation versus software
platform

Among the primary studies supporting simulation (49/82),
the majority of them (29/49 vs. 11/49–9/49 no information
available) generate code meant to run on a specific software
platform (e.g., in P8 the generated Java code is used as a back-
end for model simulation and communicates to the modeling
environment - Eclipse Papyrus and Moka—via a dedicated
connection layer). The 11 remaining studies where simula-
tion is performed, but the generated code does not run on
a specific platform mean that the generated code is running
stand-alone (e.g., in P41 the SystemC code is fully gener-
ated and used for simulation purposes). When considering
the primary studies not providing simulation (33/49), in the
majority of them (21/33) the generated code does not run on a
specific platform, whereas in 9 cases it does. (For the remain-
ing 3/33 cases, there was no information about whether the
approach involves a dedicated software platform.)

9 Discussion and future prospects

Based on the lessons learned in the course of this study, in this
section we give our interpretation of the obtained findings by
discussing (i) future prospects for the technical advancement
of UML models execution (Sect. 9.1) and (ii) our views on
potentially relevant research directions (Sect. 9.2).

9.1 Future prospects for technical advancement

At the time of this writing, it is evident that there has been sig-
nificant investment by both industry and academia in UML

and related methods and technologies. Consequently, as hap-
pened with some of the earliest programming languages,
such as Fortran and Cobol, it appears likely that UML will
retain its relevance in engineering practice for many years
to come, long after more modern and more advanced mod-
eling languages appear. With this in mind, the following list
captures our projections of what might be some of the dom-
inant development trends in the execution of UML models.
Needless to say, even the most carefully considered predic-
tions often turn out to be wrong,20 but regardless of how the
future unfolds, the results of our study tell us that these are
potential future developments that should be given priority
both by researchers and as tool developers:

• ability to execute abstract (high-level) and incomplete
models;

• enhanced observability of executing models;
• enhanced control of model execution;
• directly compiled model executables;
• support for UML-compliant action languages;
• support for executing models based on UML profiles;
• integrationofUMLsimulators into heterogeneous (multi-
paradigm) simulation systems;

Each of these capabilities is discussed in detail below.

9.1.1 Ability to execute abstract (high-level) and
incomplete models

Throughout the entire history of engineering, models have
been used as primary tools in support of both analysis and
design activities. In analysis, they help designers to develop
the necessary understanding of the problem and, more gen-
erally, the problem domain. In that context, an executable
model can help validate the accuracy of that understand-
ing by demonstrating that the behavior of the executing
model matches reality. For design, on the other hand, an exe-
cutable model serves to determine the degree of adequacy
of a proposed design approach. Because design space of
complex software systems can often be very large (poten-
tially infinite), for system architects it would be particularly
useful if executable models were available very early in the
design process, when most key design decisions are being
made. Effective design space exploration requires the abil-
ity to rapidly and easily evaluate multiple design alternatives
including the ability to quickly identify and discard ones that
are not promising, thereby freeing up time and resources
for greater focus on those that are. This, in turn, implies a
very lightweight modeling process at high levels of abstrac-
tion. Such an approach not only allows a greater number of

20 To quote the inimitable Yogi Berra: “It’s tough to make predictions,
especially about the future”.

123

Execution of UML models: a systematic review of research and practice 2337

alternatives to be considered and evaluated within a given
time interval, but it also reduces the effort invested in model
construction. The latter is important because, from a psycho-
logical viewpoint, it is much easier to discard unpromising
alternatives that did not require much effort to produce and
evaluate than ones that demanded significant time and effort.

At first glance perhaps, the idea of high-level (i.e.,
abstract) modelsmay appear to exclude the use ofmodel exe-
cution, which, after all, requires sufficient detail to be spec-
ified to make it executable. However, modeling tools such
as ObjecTime Developer,21 developed in the early 1990s,
demonstrated the feasibility and practicality of executing
abstract and incomplete models. Such models typically have
a minimum of their core behavior specified, only what is
sufficient to make them partially executable. As might be
expected, this requires specialized and sophisticated runtime
support, that allows handling of ambiguous and incompletely
specified situations that can occur during execution. For
example, choosing which execution path to follow or pro-
viding necessary detailed information required to steer the
execution can be done by transferring control to a human
operator, who can provide the necessary input. As stated in
Sect. 5.1, only one of the analyzed approaches provides exe-
cution of partial models.

9.1.2 Enhanced observability of executing models

Since one of the primary purposes of modeling languages is
to help humans understand complex problems and to under-
stand and predict the behaviors of proposed solutions, any
advances in this direction are likely to be crucial over the next
few years. Perhaps the most significant of these is enhanced
observability. As systems become increasingly more com-
plex, there is a correspondingly greater need to understand
how these systemswork and to determinewhat they are doing
in a given situation or at a point in time. This includes both
online observability—the viewing of a system’s state and
operation in real-time—as well as off-line, which is the abil-
ity to record, play back, and analyze logs or execution traces
of a system operation either in the field or in a simulator.
From the results of our study, we were not able to extrap-
olate a clear research focus on enhancing observability of
executing models; given the importance of observability in
code-based software development, if models are to replace
code, powerful observability for models is needed too.

Clearly, if facilitating understanding is the motivating
requirement here, then the human consumers of this capa-
bility must be able to view and interpret the observed
information in the form that most directly reflects their con-
cerns. In other words, what is needed is viewpoint-driven
observability. Clearly, the technology needed to support

21 https://en.wikipedia.org/wiki/ObjecTime_Developer.

this is going to be sophisticated—particularly in the online
case—involving inverse transformations of runtime data into
desired concern-specific formats. Combined with this, more
sophisticated analysis tools will be needed to scan execution
trace information to detect and flag specific phenomena of
interest. For example, it may be necessary to detect the con-
junction (either temporal or logical) between two or more
events or states that occur in physically dispersed parts of the
system.

In this context, it is important to stress the fact that exe-
cuted models shall be observed only when they are in a
consistent state (e.g., only before or after an atomic execu-
tion step), and when they have observable execution states
that conform to the observations metamodel. Indeed, if the
model being executed is observed while the execution engine
is fully reorganizing parts of its managed data (or the model
itself), then what is observed would not make sense from
the point of view of the modeler. Likewise, this reflection is
important also when considering control, as it is likely that
the model will be able to receive stimuli from its (produc-
tion or simulation) environment only when such consistent
execution states are reached.

Another very useful capability of this type is the “angio-
tracing” method devised by Hrischuk et al. [23], which is
a facility to identify causally connected event chains in a
running system. Such sophisticated functionality requires
complex instrumentation to be developed and integrated into
the executing system. Furthermore, in the online scenario,
the mechanisms involved must have very low overhead and
reporting latency. A related concern here is the ability to
dynamically select and “instrument” which elements of a
running system are to be observed. This includes issues
of scalability. For example, a “smart city” network might
involve literally tens and maybe even hundreds of thousands
of sensors, and it must be possible to easily select, with
low overhead, which particular ones (and when) are to be
observed.

9.1.3 Enhanced control of model execution

As a natural complement to execution observability is exe-
cution control of a running system. If models replace code,
powerful methods for controlling their execution are needed,
and the results of this study could not identify a strong
research effort in this direction. This can be decomposed
into two distinct capabilities:

1. The ability to start, stop, step, or reset the execution of
a running system or, what is typically even more use-
ful, to do so selectively, on individual parts of a running
system. In certain environments, it may also be of great
utility to control the rate of execution of a system; that
is, to have the ability to slow down the execution rate

123

https://en.wikipedia.org/wiki/ObjecTime_Developer

2338 F. Ciccozzi et al.

to a pace that is more amenable to direct human obser-
vation;22

2. The ability to “steer” or redirect the execution of a sys-
tem through selective human or machine intervention.
This may involve the controlled injection or suppres-
sion of key events, so that, by such means, the system
can be forced into a desired state.

The kinds of observability and controllability discussed
above are naturally desirable in a simulation environment.
However, we have already noted that online observability is
also highly useful, particularly in situations where the behav-
ior of a system diverges from what is considered acceptable
or safe norms. It is highly likely, therefore, that there will be
a strong push to provide such capabilities “in the field”, that
is, in deployed systems. This seems particularly relevant to
the coming generation of “smart” systems of systems, which
will often require fully available non-stop “24/7” operation.
Such systems will evolve dynamically in place, which means
that the traditional hard distinction between development and
field environments will be blurred.

9.1.4 Directly compiled model executables

As noted, the dominant approach to generating executable
code from models is currently based on a multi-step trans-
lational approach: the model is typically first translated into
a program in some widely used third-generation program-
ming language. This is then translated into corresponding
binary computer code in the conventional manner, using the
tools of the target programming language.Unfortunately, this
approach has two serious drawbacks:

• The translation tools, such as compilers, that are used in
the second step are carefully designed to take full advan-
tage of the semantics of their language. This allows them
to implement numerous semantics-specific optimizations
to realize time and memory savings. However, since they
are designed for their programming language, they are
unable to take advantage of UML-specific semantics.
Invariably, the result is suboptimal code;

• The intermediate step whereby the model is translated
into a programming language equivalent creates an addi-
tional barrier to the link between the executable code
and its source model. This is exacerbated by the fact
that the programming language translator is insensitive to
UML-specific semantics. (For example, it may optimize
away some aspect that is critical for the inversemapping.)
Needless to say, this complicates anymodel observability
strategies discussed above.

22 This requires the ability to control the progress of time, something
which can only be realized in simulation environments.

On reflection, we can see that the multi-step model transla-
tion process is quite analogous to the early and now outdated
Cfront approach to compiling C++ programs. Cfront was
ultimately rejected in favor of direct compilation precisely
because it resulted in suboptimal and often excessively com-
plex executable code [37]. Consequently, we expect that,
once an adequate level of language and tool maturity is
reached, we will see the emergence of UML model compil-
ers (i.e., the aforementioned compilation approach), which
translate models directly into executable code and which,
as a result, can generate better optimized code. Some early
research in this direction has already shown promise [8], and
other research efforts supported by industry have recently
started [9].

9.1.5 Support for UML-compliant action Languages

As noted, most current systems capable of executing UML
models rely on a third-generation programming language,
such asC++or Java, to specify detailed action code.However,
with the adoption of the fUML along with its correspond-
ing concrete syntax Alf, it is possible to use these standard
UML-compliant languages instead. The advantage is obvi-
ous: the semantics of fUML and Alf are based on and fully
compliant with UML itself. This precludes the ever-present
and not unlikely danger that action code specified using
a different language can violate standard UML semantics.
Consequently, we hope and expect to see increasing support
for such UML-compliant action languages.23 This poten-
tially has an additional and important benefit: the possibility
of supporting the execution of models based on UML pro-
files, as explained below.

9.1.6 Support for executing UMLmodels based on UML
profiles

Extensive practice with UML has shown that it is often used
as the base for domain-specific modeling languages through
its profile mechanism (e.g., SysML). Most such languages
involve domain-specific interpretations (specializations) of
corresponding base UML concepts. In the ideal case, it
should be possible to “plug-in” such semantics into standard
UML model execution engines in order to execute mod-
els specified in those domain-specific languages. “Injecting”
domain-specific semantics into an existing UML execution
engine in this way does not seem as far-fetched as it sounds,
when one considers that the specialized semantics of such a
language can be formally expressed in a standardized way,
using the Alf language and the underlying execution frame-
work defined within fUML (in fact, this approach was used

23 Alf is only one of potentially many possible concrete action lan-
guages that could be defined using fUML.

123

Execution of UML models: a systematic review of research and practice 2339

to define the semantics of fUML itself as well as other major
sections of standardUML).At the time of thiswriting, at least
one tool, Papyrus, already supports this type of capability.
The ability of an execution environment to adopt language-
specific semantics is part of amore general need: the capacity
to be customized to suit specific needs and situations.

9.1.7 Integration of UML simulators into heterogeneous
(multi-paradigm) Simulation Systems

With software being used increasingly to control various
physical processes (so-called cyber-physical systems [32]),
the ability to readily and correctly integrate and synchronize
the execution of UMLmodel simulators into complex multi-
paradigm (e.g., hybrid) simulation frameworks, involving
components that simulate different kinds of components has
become crucial. And, in line with the previously noted grad-
ual elimination of the boundary between design time and
deployment time execution, an enhanced ability to combine
UML simulators and/or execution systems with actual run-
ning systems is paramount.

9.2 Research perspectives for UMLmodel execution

As a by-product of our in-depth analysis, we also reached
certain conclusions about potential research directions for
executable UML models. While these are inherently subjec-
tive and speculative in nature, we feel that it is worthwhile
noting them in the expectation that they might prove useful
to researchers in this domain.

A potentially significant need we observed pertains to
what is referred to here and elsewhere as “model-level debug-
ging.” As it can be seen from Fig 12g, only a few solutions
provide support for this. Yet, what we are dealing with here
is the general ability to observe and understand the behav-
ior of an executing systems, whether it be in development or
in actual field operation. Recall that a central tenet of MDE
is to raise the level of abstraction of software specification
such that it is closer to the problem domain. Why should this
be limited just to the development environment? Given the
increasing reliance of modern society on software-intensive
systems, the ability to observe, understand, and control exe-
cuting software is gaining in significance. (Debugging, albeit
critically important, is just one specialized manifestation of
this more general but under-appreciated need.)

In concrete terms, this requirement translates into the gen-
eral ability to observe and control executing models at an
abstraction level that exactly matches the level in which
they were specified. From a practical viewpoint, this can be
decomposed into twofiner-grained requirements: (1) the abil-
ity to select what is to be observed in an executing model and
when, and (2) the ability to direct both the flow and even the
pace of execution. This requires refinedmechanisms to attach

probes at selected points in time and space, to selectively cap-
ture and record the flow and consequences of execution (or,
possibly, to slow it down to “human” rates), as well as to
steer execution in the desired direction by selective injec-
tion of inputs or setting of variable values. All of this has to
be done at the “model level,” or the benefits of raising the
level of abstraction will not only be lost, but may actually
prove to be an impediment because of the need to under-
stand the potentially complex relationship between a model
and its low-level technology-specific realization. Clearly, this
is a critical avenue of research for those working on model
execution.

Note that the ability to controlmodel execution is also crit-
ical when executable models are used during design space
exploration. In those situations, it is desirable to produce
minimal models that capture only the essence of the design
approach, without investing excessive effort in specifying
low-level implementation detail. Consequently, such models
are inherently incomplete. This means that in the course of
executing such a model, points can be reached where execu-
tion cannot proceed due tomissing information or ambiguity.
In such situation, the ability to “force” the model to proceed
down a selected execution path becomes fundamental.

To summarize, we see that there is a critical need to
research anddevelopnewand efficientmethods for observing
and controlling the execution of software systems developed
using MDE principles, including those based on executable
UML.

10 Conclusions

In this study, we reported on a systematic review focused
on identifying, classifying, and evaluating existing solutions,
both in research and industry, for the execution of models
based on the UML family of languages. The goal was to
identify and assess trends, technical characteristics, available
evidence, and limitations of current solutions for the benefit
of both researchers and practitioners, as well as to identify a
set of critical research challenges.

From over 5400 entries dealing with UML model exe-
cution, we selected 63 representative research studies and
19 tools. Research studies were selected via automatic
searches on electronic data sources and a closed recursive
backward and forward snowballing activity, whereas tools
were selected via automatic searches on generic web search
engines, from research studies, and by consultations with
experts. Next, we derived a classification framework to help
us characterize the different solutions, whichwe then applied
to the 82 selected solutions. Finally, we analyzed and dis-
cussed the obtained data to: (i) provide an overview of the
state of the art and practice in the domain and (ii) identify
emergent research challenges and associated implications.

123

2340 F. Ciccozzi et al.

From the collected data we can conclude that: (i) there is
growing scientific interest in UMLmodel execution; (ii) cur-
rently, translational execution approaches clearly outnumber
interpretivemethods; (iii) there is a lack of solutions available
for executing high-level (i.e., partial or incomplete) UML
models; (iv) there are very few solutions available for model-
level debugging; (v) very few solutions explicitly provide
mechanisms for extension and customization; (vi) there is
insufficient researchof industrial usage and associated empir-
ical methods; (vii) although most of the selected research
studies were of good technical quality, many of them fail to
adequately describe the context in which the research was
performed, the roles of the researchers, and the limitations
of their contributions; (viii) the limited degree of coverage of
UML concepts (and, hence, the expressiveness) is the most
common limitation of the analyzed solutions.

Acknowledgements This research was supported by the Knowledge
Foundation through the SMARTCore (http://www.es.mdh.se/projects/
377-SMARTCore) and MOMENTUM projects (http://www.es.mdh.
se/projects/458-MOMENTUM).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A—Research team

Three researchers carried out this study, each of them with a
specific role within the research team.

Principal researcher Dr. Federico Ciccozzi, senior
researcher with expertise in model-driven engineering and
component-based software engineering for the development
of complex systems based on domain-specific modeling

languages, both UML and EMF based. This team mem-
ber specializes in: definition of DSMLs (including UML
profiles), automatic model manipulations through transfor-
mations for code generation, analysis, model optimization,
system properties preservation (just to mention a few); he
was involved in all the activities, i.e., planning the study,
conducting it, and reporting.

Research methodologist Dr. Ivano Malavolta, senior
researcher with expertise in empirical methods applied to
software systems and systematic literature reviews; he was
mainly involved in (i) the planning phase of the study, and (ii)
supporting the principal researcher during the whole study,
e.g., by reviewing the data extraction form, the selected pri-
mary studies, the extracted data, the produced reports.

Advisor Prof. Bran Selic, senior researcher with extensive
expertise in model-driven engineering, complex systems,
UML and related profiles, simulation and execution of UML
models. He provided guidance on key decisions and dur-
ing conflicts, thereby avoiding ‘endless discussions’ [52]. He
also supported the other researchers during data and findings
synthesis activities.

From a geographical point of view, the research team is
entirely distributed thereby ensuring ‘expertise’ and reinforc-
ing ‘independence’ of the individuals’ reviews.

Appendix B—Selected primary studies

See Tables 7 and 8.

123

http://www.es.mdh.se/projects/377-SMARTCore
http://www.es.mdh.se/projects/377-SMARTCore
http://www.es.mdh.se/projects/458-MOMENTUM
http://www.es.mdh.se/projects/458-MOMENTUM
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Execution of UML models: a systematic review of research and practice 2341

Table 7 List of primary research studies

Study Title Author Venue Year

P1 Model-level, Platform-independent Debugging in the
Context of the Model-driven Development of
Real-time Systems

Bagherzadeh, M. et al. Joint Meeting on Foundations of Software
Engineering

2016

P2 Integration of UML models in FMI-Based
co-simulation

Guermazi, S. et al. Symposium on Theory of Modeling and Simulation 2016

P3 On the automated translational execution of the
action language for foundational UML

Ciccozzi, F. Software and Systems Modeling 2016

P4 A Model-Driven Engineering Methodology to
Design Parallel and Distributed Embedded Systems

Enrici, A. et al. ACM Transactions on Design Automation of
Electronic Systems

2016

P5 System-level design based on UML/MARTE for
FPGA-based embedded real-time systems

Leite, M. et al. Design Automation for Embedded Systems 2016

P6 On the Generation of Full-Fledged Code from UML
Profiles and ALF for Complex Systems

Ciccozzi, F. et al. International Conference on Information
Technology-New Generations

2015

P7 Animated simulation of integrated UML behavioral
models based on graph transformation

Ermel, C. et al. IEEE Symposium on Visual Languages and
Human-Centric Computing

2015

P8 UML model execution via code generation Dvai, G. et al. International Workshop on Executable Modeling 2015

P9 UmpleRun: A dynamic analysis tool for textually
modeled state machines using umple

Aljamaan, H. et al. International Workshop on Executable Modeling 2015

P10 A customizable execution engine for models of
embedded systems

Zurowska, K. et al. Behavior Modeling—Foundations and Applications 2015

P11 HDL code generation from UML/MARTE sequence
diagrams for verification and synthesis

Ebeid, E. et al. Design Automation for Embedded Systems 2015

P12 Model-Driven Design of Network Aspects of
Distributed Embedded Systems

Ebeid, E. et al. IEEE Transactions on Integrated Circuits and
Systems

2015

P13 Formal verification and validation of embedded
systems: the UML-based MADES approach

Baresi, L. et al. Software and Systems Modeling 2015

P14 A formal, model-driven design flow for system
simulation and multi-core implementation

Diallo, P.I. et al. IEEE International Symposium on Industrial
Embedded Systems

2015

P15 A Model-Driven Approach to Generate Mobile
Applications for Multiple Platforms

Usman, M. et al. Asia-Pacific Software Engineering Conference 2014

P16 Improving the design flow for parallel and
heterogeneous architectures running real-time
applications: The PHARAON FP7 project

Posadas, H. et al. Microprocessor and Microsystems 2014

P17 Reliable execution of statechart-generated correct
embedded software under soft errors

Ferreira, R.R. et al. Design and Diagnostics of Electronic Circuits and
International Symposium on Systems

2014

P18 Formalizing execution semantics of UML profiles
with fUML models

Tatibouet, J. et al. Model-Driven Engineering Languages and Systems 2014

P19 Textual, executable, translatable UML Dévai, G. et al. OCL@ MoDELS 2014

P20 Extending UML/MARTE to Support Discrete
Controller Synthesis, Application to
Reconfigurable Systems-on-Chip Modeling

Guillet, S. et al. ACM Transactions on Reconfigurable Technology
and Systems

2014

P21 Model-driven engineering of Manufacturing
Automation Software Projects A SysML-based
approach

Vogel-Heuser, B. et al. Mechatronics 2014

P22 A model-based framework for developing real-time
safety Ada systems

Salazar, E. et al. Reliable Software Technologies–Ada-Europe 2013

P23 Environment modeling and simulation for automated
testing of soft real-time embedded software

Iqbal, M.Z. et al. Software and Systems Modeling 2013

P24 Combining fUML and profiles for non-functional
analysis based on model execution traces

Berardinelli, L. et al. International ACM Sigsoft conference on Quality of
software architectures

2013

P25 Executing and debugging UML models: an fUML
extension

Laurent, Y. et al. ACM Symposium on Applied Computing 2013

P26 Multi-Paradigm Semantics for Simulating SysML
Models using SystemC-AMS

Chaves Cafe, D. et al. Specification and Forum on Design Languages 2013

123

2342 F. Ciccozzi et al.

Table 7 continued

Study Title Author Venue Year

P27 A Plug-in Based Approach for UML Model
Simulation

Radjenovic, A. et al. European conference on Modelling Foundations and
Applications

2012

P28 A Model Driven Approach for Android Applications
Development

Parada, A.G. et al. Brazilian Symposium on Computing System
Engineering

2012

P29 Modeling and simulation of secure wireless sensor
network

Diaz, A. et al. Forum on Specification and Design Languages 2012

P30 An Optimized Compilation of UML State Machines Charfi, A. et al. International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing

2012

P31 Symbolic execution of UML-RT state machines Zurowska, K. et al. ACM Symposium on Applied Computing 2012

P32 Achieving process modeling and execution through
the combination of aspect and model-driven
engineering approaches

Bendraou, R. et al. Journal of Software: Evolution and Process 2012

P33 Contracts for Model Execution Verification Cariou, E. et al. European conference on Modelling foundations and
applications

2011

P34 On the Performance of UML State Machine
Interpretation at Runtime

Höfig, E. et al. International Symposium on Software Engineering
for Adaptive and Self-Managing Systems

2011

P35 Framework to Simulate the Behavior of Embedded
Real-Time Systems Specified in UML Models

Wehrmeister, M.A. et al. Brazilian Symposium on Computing System
Engineering

2011

P36 Modelica code generation from ModelicaML state
machines extended by asynchronous
communication

Pohlmann, U. et al. International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools

2011

P37 Code generation for UML 2 activity diagrams:
Toward a comprehensive model-driven
development approach

Gessenharter, D. et al. European conference on Modelling foundations and
applications

2011

P38 From UML to Petri Nets: The PCM-Based
Methodology

Distefano, S. et al. IEEE Transactions on Software Engineering 2011

P39 Closing the Gap between UML-based Modeling,
Simulation and Synthesis of Combined HW/SW
Systems

Mischkalla, F. et al. Design, Automation and Test in Europe 2010

P40 Matilda: A Generic and Customizable Framework
for Direct Model Execution in Model-Driven
Software Development

Wada, H. et al. Handbook of Research on Software Engineering and
Productivity Technologies: Implications of
Globalization

2009

P41 SystemC/C-Based Model-Driven Design for
Embedded Systems

Riccobene, E. et al. ACM Transactions on Embedded Computing
Systems

2009

P42 Performance evaluation of UML2-modeled
embedded streaming applications with
system-level simulation

Arpinen, T. et al. EURASIP Journal on Embedded Systems 2009

P43 A co-design approach for embedded system
modeling and code generation with UML and
MARTE

Vidal, J. et al. Design, Automation and Test in Europe 2009

P44 SecureMDD: A Model-Driven Development Method
for Secure Smart Card Applications

Moebius, N. et al. International Conference on Availability, Reliability
and Security

2009

P45 Realization of UML class and state machine models
in the C# code generation and execution framework

Derezinska, A. et al. Informatica 2009

P46 eUDEVS: Executable UML with DEVS Theory of
Modeling and Simulation

Risco-Martin, J.L. et al. Simulation 2009

P47 Model-driven development of composite
context-aware web applications

Kapitsaki, G.M. et al. Information and Software Technology 2009

P48 Execution and Simulation of (Profiled) UML Models
using Pópulo

Fuentes, L. et al. International workshop on Models in software
engineering

2008

P49 Toward a UML virtual machine: implementing an
interpreter for UML 2 actions and activities

Crane M.L. et al. Conference of the center for advanced studies on
collaborative research: meeting of minds

2008

P50 Automatic Performance Model Transformation from
UML to C++

Pllana, S. et al. International Conference on Parallel
Processing—Workshops

2008

123

Execution of UML models: a systematic review of research and practice 2343

Table 7 continued

StudyTitle Author Venue Year

P51 An Execution Framework for MARTE-based ModelsMraidha, C. et al. International Conference on Engineering of
Complex Computer Systems

2008

P52 UJECTOR: A Tool for Executable Code Generation
from UML Models

Usman, M. et al. Advanced Software Engineering and Its Applications2008

P53 MDD4SOA: Model-Driven Service Orchestration Mayer, P. et al. International IEEE Enterprise Distributed Object
Computing Conference

2008

P54 Enabling the Evolution of Service-Oriented
Solutions Using an UML2 Profile and a Reference
Petri Nets Execution Platform

Fabra, J. et al. International Conference on Internet and Web
Applications and Services

2008

P55 A Model-Based Approach for Platform-Independent
Binary Components with Precise Timing and
Fine-Grained Concurrency

Schattkowsky, T. et al. Hawaii International Conference on System Sciences2007

P56 FSMC+, a tool for the generation of Java code from
statecharts

Tiella, R. et al. International Symposium on Principles and Practice
of Programming in Java

2007

P57 MDA-based approach for embedded software
generation from a UML/MOF repository

Do Nascimento, F.A.M. et al.Symposium on Integrated Circuits and Systems
Design

2006

P58 A Model-Based Approach for Executable
Specifications on Reconfigurable Hardware

Schattkowsky, T. et al. Design, Automation and Test in Europe 2005

P59 Automatic Code Generation from a UML model to
JEC 61131-3 and system configuration tools

Vogel-Heuser, B. et al. International Conference on Control and Automation2005

P60 Embedded System Design Using Formal Model
Refinement: An Approach Based on the Combined
Use of UML and the B Language

Voros, N.S. et al. Design Automation for Embedded Systems 2004

P61 Deriving executable process descriptions from UMLDi Nitto, E. et al. International Conference on Software Engineering 2002

P62 A UML tool for an automatic generation of
simulation programs

Arief, L.B. et al. International Workshop on Software and
Performance

2000

P63 Testing and simulating production control systems
using the Fujaba environment

Niere, J. et al. Applications of Graph Transformations with
Industrial Relevance

2000

Table 8 List of primary tools

Tool Name URL

T1 ARTISAN Studio Sysim http://www.atego.com/products/sysim/

T2 BOUML http://www.bouml.fr/

T3 Cameo Simulation toolkit http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html

T4 CHESS https://www.polarsys.org/projects/polarsys.chess

T5 Fujaba http://www.fujaba.de/

T6 IBM Rational Rhapsody (family) http://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/

T7 IBM Rational Rose (family) http://www-03.ibm.com/software/products/en/ratirosefami

T8 IBM Rational Software Architect http://www-03.ibm.com/software/products/en/ratisoftarch

T9 IBM RSARTE http://www-01.ibm.com/support/docview.wss?uid=swg27041556

T10 IBM Rational Tau http://www-03.ibm.com/software/products/en/ratitau

T11 Abstract Solutions iUML http://www.abstractsolutions.co.uk/PRODUCTS/iuml/

T12 One Fact BridgePoint https://xtuml.org/

T13 fUML implementation http://fuml.modeldriven.org

T14 Moka https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

T15 Qompass https://wiki.eclipse.org/Papyrus_Qompass

T16 Papyrus-RT https://www.eclipse.org/papyrus-rt/

T17 Quantum Leaps QM http://www.state-machine.com/qm/

T18 Sparx Enterprise Architect http://www.sparxsystems.com/

T19 Syntony http://www7content.cs.fau.de/syntony/

123

http://www.atego.com/products/sysim/
http://www.bouml.fr/
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
https://www.polarsys.org/projects/polarsys.chess
http://www.fujaba.de/
http://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/
http://www-03.ibm.com/software/products/en/ratirosefami
http://www-03.ibm.com/software/products/en/ratisoftarch
http://www-01.ibm.com/support/docview.wss?uid=swg27041556
http://www-03.ibm.com/software/products/en/ratitau
http://www.abstractsolutions.co.uk/PRODUCTS/iuml/
https://xtuml.org/
http://fuml.modeldriven.org
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus_Qompass
https://www.eclipse.org/papyrus-rt/
http://www.state-machine.com/qm/
http://www.sparxsystems.com/
http://www7content.cs.fau.de/syntony/

2344 F. Ciccozzi et al.

AppendixC—Extracteddata for eachprimary
study

Legend for Table 9.UML diagrams (UC: Use case, T: Tim-
ing, STRUCT: Comp. structure, SM: State machine, SEQ:
Sequence, P: Package, O: Object, INT: Interaction, DEP:
Deployment, C: Component, COMM: Communication, CL:
Class, ACT: Activity, COLLAB: Collaboration, AH: Ad
hoc). Action lang. (ADA: ADA, UAL: UAL, C#: C#, C:
C, ALF: ALF, J: Java, C++: C++, UA: UML actions, ✗: Not
supported). Profiles (MOD:ModelicaML, ✗: Not supported,
PA: UML-PA, SPT: UML-SPT, SC: SystemC UML profile,
RT: UML-RT, SYS: SysML,M:MARTE, AH: Ad hoc UML
profile). Tool (I: Tool independent, C: CHESS, S: Sparx
Enterprise Architect, RR: IBM Rational Rose, A: Artisan
Real-Time Studio, RSA: IBM Rational Software Architect,
EU: Eclipse UML2, P: Eclipse Papyrus). fUML (�: yes, ✗:
no). MDA levels (PIM: platform-independent model, PSM:
platform-specific model, HW: hardware).
Legend for Table 10. Execution strategy (I: interpretation,
T: translation). Intended benefits (C: correctness, P: pro-
duction, Q: quality). Associated process (�: yes, ✗: no).
Extensibility (�: yes, ✗: no). Readiness level (H: high, M:
medium, L: low). Non-functional properties (C: code size,
P: performance, A: adaptability, S: safety, SE: security, ✗: not
supported). Formal languages (B: Event B, BHDL: BHDL,
FFSM: Finite state machine (ad hoc), Jolie: jolie, KIV: KIV,
Lisp: Lisp, NuSMV: nusmv, Z: Z, ✗: not supported).

Legend for Table 11. Traceability (�: yes, ✗: no). Model
debugging (�: yes, ✗: no). Simulation (�: yes, ✗: no). Pro-
duction system (�: yes, ✗: no).
Legend for Table 12. Software platform (�: yes, ✗: no).
Legend for Table 13. Research method (V: Validation, E:
Evaluation). Type of evidence (E: Example, ES: Set of
experiments, EXS: Set of examples, EL: Empirical exper-
iment in the lab, EXI: Example from industry, EXSI: Set of
examples from industry, EI: Industrial empirical experiment,
EVI: Industrial evaluation). Type of systems for evidence
(W: Web, S: Synthetic, SE: Monitoring and sensing, MR:
Mobile robotic system, A: Mobile app, MC: Media con-
verter, MA: Mathematical function, MAN: Manufacturing,
L: Modeling language, IS: Information system, C: Con-
troller, CE: Consumer electronics, COM: Communication,
B: Business processes). Identified limitations (T: Trace-
ability enhancement, TO: Tool enhancement, S: Scalability,
R: Support for runtime models update, RE: Reusability
enhancement, P: Portability enhancement, PI: Platform inde-
pendence enhancement, EP: Execution platform improve-
ment, MC: Support for model checking, E: Expressiveness
enhancement, EC: Execution strategies combination, ECO:
Execution correctness assessment, O: Generated code opti-
mization, COV: Better coverage of UML, EV: Additional
evaluation,AN:Additional analysis ofmodels, PS: Platform-
specific limitations) (Table 14).

123

Execution of UML models: a systematic review of research and practice 2345

Ta
bl
e
9

Te
ch
ni
ca
lc
ha
ra
ct
er
is
tic

s
(R

Q
2)
—

U
M
L
m
od

el
in
g

St
ud
y

U
M
L
di
ag
ra
m
s

A
ct
io
n
la
ng
.

Pr
ofi

le
s

To
ol

fU
M
L

M
D
A
le
ve
ls

P0
1

C
,S

M
U
A

R
T

P
✗

PI
M

P0
2

C
,A

C
T,

C
L

U
A

A
H

P
�

PI
M

P0
3

C
L

A
L
F,
C
+
+

✗
P

�
PI
M

P0
4

SE
Q
,A

C
T,

P,
D
E
P,
C

U
A

SY
S,

A
H

O
th
er

✗
PI
M
,P

SM
,H

W

P0
5

C
L
,S

E
Q

U
A

M
O
th
er

✗
PI
M
,P

SM

P0
6

C
,S

T
R
,C

L
,D

E
P,
SM

A
L
F

M
,O

th
er

C
,P

�
PI
M
,P

SM
,H

W

P0
7

C
L
,O

,S
M
,C

O
M
M
,U

C
U
A

✗
O
th
er

✗
PI
M

P0
8

C
L
,S

M
A
L
F

✗
P

�
PI
M

P0
9

C
L
,S

M
U
A

✗
O
th
er

✗
PI
M

P1
0

C
,S

M
U
A

R
T

P
✗

PI
M

P1
1

SE
Q

✗
M

P
✗

PI
M
,P

SM

P1
2

D
E
P

✗
SC

,O
th
er

P,
I

✗
PS

M
,H

W

P1
3

C
L
,S

E
Q
,S

M
✗

M
,A

H
I

✗
PI
M
,P

SM

P1
4

C
L
,S

T
R
,S

M
C
,C

+
+
,U

A
A
H

O
th
er

✗
PI
M
,P

SM
,H

W

P1
5

C
L
,S

M
A
L
F

A
H

E
U

✗
PI
M

P1
6

C
,S

T
R
,D

E
P

✗
M

E
U

✗
PI
M
,P

SM
,H

W

P1
7

SM
U
A

✗
O
th
er

✗
PI
M

P1
8

A
C
T

A
L
F

✗
P

�
PI
M

P1
9

SM
O
th
er

✗
P

✗
PI
M

P2
0

C
,S

T
R
,S

M
✗

M
,O

th
er

P
✗

PI
M

P2
1

A
H

✗
SY

S,
O
th
er

O
th
er

✗
PI
M
,P

SM
,H

W

P2
2

C
,S

T
R
,C

L
,S

E
Q

✗
M

R
SA

✗
PI
M
,P

SM

P2
3

C
L
,S

M
J

M
,A

H
I

✗
PI
M

P2
4

C
L
,A

C
T,

O
U
A

M
E
U

�
PI
M
,P

SM
,H

W

P2
5

C
L
,A

C
T

U
A

✗
E
U
,P

�
PI
M

P2
6

ST
R
,S

M
✗

SY
S

E
U

✗
PI
M

P2
7

SM
,C

L
O
th
er

✗
O
th
er

✗
PI
M

P2
8

C
L
,S

E
Q

✗
✗

I,
P

✗
PI
M

P2
9

C
,S

T
R

✗
M

–
✗

PI
M
,P

SM

P3
0

SM
,A

C
T

U
A

✗
P

�
PI
M

123

2346 F. Ciccozzi et al.

Ta
bl
e
9

co
nt
in
ue
d

St
ud
y

U
M
L
di
ag
ra
m
s

A
ct
io
n
la
ng
.

Pr
ofi

le
s

To
ol

fU
M
L

M
D
A
le
ve
ls

P3
1

SM
C
+
+

R
T

R
SA

✗
PI
M

P3
2

A
C
T,

C
L

U
A

O
th
er

E
U

✗
PI
M

P3
3

SM
✗

✗
E
U

✗
PI
M

P3
4

SM
✗

✗
E
U

✗
PI
M

P3
5

A
C
T,

SM
,S

E
Q

U
A

M
I

✗
PI
M

P3
6

SM
,C

,S
T
R

O
th
er

M
O
D

P
✗

PI
M

P3
7

C
L
,A

C
T

U
A

✗
E
U

✗
PI
M

P3
8

U
C
,O

,A
C
T,

D
E
P

U
A

SP
T

O
th
er

✗
PI
M
,P

SM
,H

W

P3
9

A
C
T,

ST
R

C
+
+

SY
S,

A
H

A
✗

PI
M
,P

SM
,H

W

P4
0

C
L
,S

E
Q

✗
O
th
er

I
✗

PI
M
,P

SM

P4
1

C
L
,C

,S
T
R
,S

M
,O

,D
E
P

C
,C

+
+
,O

th
er

SC
,A

H
S

✗
PI
M
,P

SM
,H

W

P4
2

A
C
T,

ST
R

U
A

M
,A

H
I

✗
PI
M
,P

SM
,H

W

P4
3

C
L
,C

,S
T
R
,S

M
,O

C
+
+

M
,S

Y
S

O
th
er

✗
PI
M
,P

SM
,H

W

P4
4

C
L
,A

C
T,

D
E
P

U
A

A
H

O
th
er

✗
PI
M
,P

SM

P4
5

C
L
,S

M
✗

✗
I

✗
PI
M

P4
6

P,
C
L
,C

,S
T
R
,S

E
Q
,S

M
,T

✗
✗

R
SA

✗
PI
M

P4
7

C
L
,A

C
T,

SM
✗

A
H

E
U

✗
PI
M

P4
8

C
L
,A

C
T

U
A

✗
I

✗
PI
M

P4
9

A
C
T

U
A

✗
O
th
er

✗
PI
M

P5
0

A
C
T

C
+
+

✗
O
th
er

✗
PI
M

P5
1

C
L
,S

M
U
A

M
O
th
er

✗
PI
M

P5
2

C
L
,S

E
Q
,A

C
T

U
A

✗
O
th
er

✗
PI
M

P5
3

A
C
T

U
A

O
th
er

I
✗

PI
M
,P

SM

P5
4

SM
,C

O
L
L
A
B

U
A

A
H

O
th
er

✗
PI
M

P5
5

A
C
T,

SM
,I
N
T

U
A

O
th
er

O
th
er

✗
PI
M
,P

SM

P5
6

SM
J

✗
I

✗
PI
M

P5
7

C
O
M
M
,S

E
Q

✗
SP

T
I

✗
PI
M
,P

SM

P5
8

C
L
,S

M
,S

E
Q

U
A

O
th
er

O
th
er

✗
PI
M
,P

SM
,H

W

P5
9

C
L
,C

O
M
M
,S

E
Q
,D

E
P

✗
PA

A
✗

PI
M
,P

SM
,H

W

P6
0

P,
C
L
,S

M
O
th
er

A
H

R
R

✗
PI
M
,P

SM
,H

W

123

Execution of UML models: a systematic review of research and practice 2347

Ta
bl
e
9

co
nt
in
ue
d

St
ud
y

U
M
L
di
ag
ra
m
s

A
ct
io
n
la
ng
.

Pr
ofi

le
s

To
ol

fU
M
L

M
D
A
le
ve
ls

P6
1

A
C
T,

C
L
,S

M
✗

✗
I

✗
PI
M

P6
2

C
L
,S

E
Q

✗
✗

O
th
er

✗
PI
M

P6
3

C
L
,A

C
T,

C
O
M
M
,S

M
U
A
,J
,O

th
er

✗
O
th
er

✗
PI
M

T
01

–
–

SY
S

A
✗

–

T
02

C
L
,S

M
,A

C
T,

D
E
P

J,
C
+
+
,O

th
er

✗
O
th
er

✗
PI
M

T
03

SM
,A

C
T

O
th
er

SY
S

O
th
er

�
PI
M

T
04

C
L
,C

,S
T
R
,S

M
,D

E
P,
O

A
L
F

M
,O

th
er

C
,P

�
PI
M
,P

SM
,H

W

T
05

C
L
,A

C
T,

C
O
M
M
,S

M
U
A
,J
,O

th
er

✗
O
th
er

✗
PI
M

T
06

A
C
T,

SM
,C

L
A
L
F,
J,
C
+
+
,C

,C
#,
A
D
A

SY
S

O
th
er

✗
PI
M
,P

SM

T
07

C
L

U
A
L
,A

D
A
,C

+
+
,O

th
er
,J

✗
R
R

✗
PI
M
,P

SM

T
08

A
C
T,

IN
T,

SM
,C

L
,S

E
Q

U
A
L
,J
,C

+
+
,C

#
✗

R
SA

✗
PI
M
,P

SM

T
09

A
C
T,

SE
Q
,C

,S
T
R
,C

L
,S

M
U
A
L
,J
,C

+
+
,C

R
T

O
th
er

✗
PI
M
,P

SM

T
10

C
L
,A

C
T,

SM
O
th
er
,J
,C

,C
+
+
,C

#
✗

O
th
er

✗
PI
M
,P

SM

T
11

C
L
,S

M
,U

C
,S

E
Q
,C

O
M
M

O
th
er

O
th
er

O
th
er

✗
PI
M

T
12

C
L
,S

M
O
th
er

O
th
er

O
th
er

✗
PI
M
,P

SM

T
13

C
L
,A

C
T

A
L
F

✗
I

�
PI
M

T
14

C
L
,A

C
T,

SM
A
L
F

✗
P

�
PI
M

T
15

C
,S

M
,S

T
R
,D

E
P

C
+
+
,O

th
er

M
,A

H
P

✗
PI
M
,P

SM
,H

W

T
16

C
L
,C

,S
T
R
,S

M
C
+
+

O
th
er

P
✗

PI
M
,P

SM

T
17

SM
,A

C
T

C
,C

+
+

✗
O
th
er

✗
PI
M
,P

SM

T
18

C
L
,S

M
,S

E
Q
,A

C
T

J,
C
,C

+
+

✗
S

�
PI
M
,P

SM

T
19

C
,S

T
R
,S

M
,A

C
T

✗
A
H

O
th
er

✗
PI
M
,P

SM

123

2348 F. Ciccozzi et al.

Ta
bl
e
10

Te
ch
ni
ca
lc
ha
ra
ct
er
is
tic

s
(R

Q
2)
—

M
od

el
in
g
ex
ec
ut
io
n
so
lu
tio

ns

St
ud

y
E
xe
cu
tio

n
st
ra
te
gy

In
te
nd

ed
be
ne
fit
s

A
ss
oc
ia
te
d
pr
oc
es
s

E
xt
en
si
bi
lit
y

R
ea
di
ne
ss

le
ve
l

N
on

-f
un

ct
io
na
lp

ro
pe
rt
ie
s

Fo
rm

al
sp
ec
ifi
ca
tio

n
la
ng
ua
ge
s

P0
1

T
P

✗
✗

L
✗

✗

P0
2

I
C
,P
,Q

✗
✗

L
✗

✗

P0
3

T
P

✗
✗

H
✗

✗

P0
4

T
P,
Q
,C

�
✗

L
P,
A

O
th
er

P0
5

T
P,
Q

�
✗

L
P,
O
th
er

✗

P0
6

T
C
,Q

,P
�

✗
M

P
✗

P0
7

T
C

✗
✗

L
✗

✗

P0
8

T
C

✗
✗

L
✗

✗

P0
9

T
C

✗
✗

L
✗

✗

P1
0

T
C

✗
�

L
✗

O
th
er

P1
1

T
C
,P

✗
✗

L
✗

✗

P1
2

T
Q

✗
✗

L
P

✗

P1
3

T
C
,Q

,P
�

✗
M

P
L
is
p

P1
4

T
P,
C

�
✗

L
✗

O
th
er

P1
5

T
P

✗
✗

M
✗

✗

P1
6

T
C
,Q

,P
✗

✗
M

P
✗

P1
7

T
C

✗
✗

L
✗

N
uS

M
V

P1
8

I
C

✗
✗

L
✗

✗

P1
9

T
C

✗
✗

L
✗

✗

P2
0

T
P

✗
✗

L
P

✗

P2
1

T
P

�
✗

M
✗

✗

P2
2

T
Q
,P

✗
✗

M
P

✗

P2
3

T
C

✗
✗

M
P

✗

P2
4

I
Q

✗
✗

L
P

✗

P2
5

I
C

✗
✗

L
✗

✗

P2
6

T
C

✗
✗

L
✗

✗

P2
7

T
C
,Q

✗
�

M
S

✗

P2
8

T
P

✗
✗

L
✗

✗

P2
9

T
Q

✗
✗

L
SE

,P
✗

P3
0

T
P,
Q

✗
✗

L
C

✗

123

Execution of UML models: a systematic review of research and practice 2349

Ta
bl
e
10

co
nt
in
ue
d

St
ud

y
E
xe
cu
tio

n
st
ra
te
gy

In
te
nd

ed
be
ne
fit
s

A
ss
oc
ia
te
d
pr
oc
es
s

E
xt
en
si
bi
lit
y

R
ea
di
ne
ss

le
ve
l

N
on

-f
un

ct
io
na
lp

ro
pe
rt
ie
s

Fo
rm

al
sp
ec
ifi
ca
tio

n
la
ng
ua
ge
s

P3
1

I
C

✗
✗

L
✗

O
th
er

P3
2

I
C

✗
✗

L
✗

✗

P3
3

I
C

✗
✗

L
✗

✗

P3
4

I
P,
Q

✗
✗

L
P,
A

✗

P3
5

T
C

✗
✗

L
✗

✗

P3
6

T
C

✗
✗

L
✗

✗

P3
7

T
P

✗
✗

L
✗

✗

P3
8

T
Q

✗
✗

L
P

O
th
er

P3
9

T
P

✗
✗

L
✗

✗

P4
0

T
Q

✗
�

M
P

✗

P4
1

T
P,
Q

✗
✗

M
P

✗

P4
2

T
Q

✗
�

L
P

✗

P4
3

T
P

✗
✗

L
✗

✗

P4
4

T
Q
,C

✗
✗

L
SE

K
IV

P4
5

T
P,
C

✗
✗

L
✗

✗

P4
6

T
C

✗
✗

L
✗

✗

P4
7

T
P

✗
✗

L
✗

✗

P4
8

I
C

✗
�

L
✗

✗

P4
9

I
C

✗
✗

L
✗

✗

P5
0

T
Q

✗
✗

L
P

✗

P5
1

T
P

✗
✗

L
P

✗

P5
2

T
P

✗
✗

L
✗

✗

P5
3

T
P

✗
✗

L
✗

Jo
lie

P5
4

T
O
th
er
,P

�
✗

L
✗

O
th
er

P5
5

T
Q

✗
✗

L
P

✗

P5
6

T
P

✗
✗

H
✗

N
uS

M
V

P5
7

T
Q
,P

✗
✗

L
P

✗

P5
8

T
Q

✗
✗

L
P

✗

P5
9

T
P

✗
✗

L
✗

✗

P6
0

T
Q
,P
,C

�
✗

L
P

B
,B

H
D
L

123

2350 F. Ciccozzi et al.

Ta
bl
e
10

co
nt
in
ue
d

St
ud

y
E
xe
cu
tio

n
st
ra
te
gy

In
te
nd

ed
be
ne
fit
s

A
ss
oc
ia
te
d
pr
oc
es
s

E
xt
en
si
bi
lit
y

R
ea
di
ne
ss

le
ve
l

N
on

-f
un

ct
io
na
lp

ro
pe
rt
ie
s

Fo
rm

al
sp
ec
ifi
ca
tio

n
la
ng
ua
ge
s

P6
1

T
P

✗
✗

L
✗

Z

P6
2

T
C
,Q

✗
✗

L
P

✗

P6
3

T
P,
C

✗
�

L
✗

✗

T
01

T
C

✗
✗

H
✗

✗

T
02

T
P

✗
�

L
✗

✗

T
03

T
C

✗
✗

H
✗

✗

T
04

T
C
,P
,Q

�
✗

M
P

✗

T
05

T
P,
C

✗
�

M
✗

✗

T
06

T
P,
C

✗
�

H
✗

✗

T
07

T
P

✗
�

H
✗

✗

T
08

T
P,
C

✗
�

H
✗

✗

T
09

T
P,
C

✗
�

H
✗

✗

T
10

T
P,
C

✗
�

H
✗

✗

T
11

T,
I

P,
C

�
�

H
✗

✗

T
12

T,
I

P,
C

�
�

H
✗

✗

T
13

I
C

✗
✗

L
✗

✗

T
14

I
C

✗
�

L
✗

✗

T
15

T
P

✗
✗

L
✗

✗

T
16

T
P,
Q
,C

✗
�

H
P,
O
th
er

✗

T
17

T
P

✗
✗

H
✗

✗

T
18

T
P,
C

✗
�

H
✗

✗

T
19

T
C

✗
✗

L
✗

✗

123

Execution of UML models: a systematic review of research and practice 2351

Ta
bl
e
11

Te
ch
ni
ca
lc
ha
ra
ct
er
is
tic

s
(R

Q
2)
—

M
od

el
in
g
ex
ec
ut
io
n
st
ra
te
gi
es

St
ud
y

In
te
rp
r.
en
gi
ne

Ta
rg
et
pl
at
fo
rm

T
ra
ce
ab
ili
ty

lin
ks

E
xe
cu
tio

n
to
ol
s

M
od
el
de
bu
gg
in
g

Si
m
ul
at
io
n
su
pp
or
t

Pr
od
uc
tio

n
sy
st
em

P0
1

–
–

�
E
cl
ip
se
U
M
L
2,
O
th
er
,C

+
+

�
�

✗

P0
2

A
d
ho
c

–
–

O
th
er
,E

cl
ip
se
U
M
L
2

✗
�

✗

P0
3

–
–

✗
O
th
er
,E

cl
ip
se
U
M
L
2

✗
�

�
P0

4
–

–
✗

O
th
er

✗
�

�
P0

5
–

–
✗

–
✗

✗
�

P0
6

–
–

�
X
Pa
nd
,Q

V
T

✗
✗

�
P0

7
–

–
✗

G
ra
ph

T.
,G

en
ge
d

✗
�

✗

P0
8

–
–

✗
O
th
er
,E

cl
ip
se
U
M
L
2

�
�

✗

P0
9

–
–

�
O
th
er

✗
�

✗

P1
0

–
–

✗
A
T
L
,O

th
er

✗
�

✗

P1
1

–
–

✗
H
IF

✗
✗

�
P1

2
–

–
✗

H
IF
,C

+
+

✗
�

✗

P1
3

–
–

�
O
th
er

✗
�

✗

P1
4

–
–

✗
C
+
+
,X

SL
T

✗
�

�
P1

5
–

–
✗

O
th
er

✗
✗

�
P1

6
–

–
✗

E
cl
ip
se
U
M
L
2

✗
�

�
P1

7
–

–
✗

C
✗

�
�

P1
8

M
ok
a

–
–

O
th
er

✗
�

✗

P1
9

–
–

✗
O
th
er

�
�

�
P2

0
–

–
✗

O
th
er

✗
✗

�
P2

1
–

–
✗

M
O
FM

2T
�

✗
�

P2
2

–
–

✗
Q
V
T,

M
T
L
,R

SA
✗

✗
�

P2
3

–
–

✗
M
O
FS

cr
ip
t

✗
�

✗

P2
4

fU
M
L

–
–

fU
M
L
,O

th
er

✗
�

✗

P2
5

fU
M
L

–
–

fU
M
L
,O

th
er

�
�

✗

P2
6

–
–

✗
A
T
L
,A

cc
el
eo

✗
�

�
P2

7
–

–
✗

Pr
ol
og
,C

as
sa
nd
ra

✗
�

✗

P2
8

–
–

✗
G
en
C
od
e

✗
✗

�
P2

9
–

–
✗

A
cc
el
eo

✗
�

✗

P3
0

–
G
im

pl
e

✗
A
cc
el
eo
,G

C
C

✗
✗

�

123

2352 F. Ciccozzi et al.

Ta
bl
e
11

co
nt
in
ue
d

St
ud
y

In
te
rp
r.
en
gi
ne

Ta
rg
et
pl
at
fo
rm

T
ra
ce
ab
ili
ty

lin
ks

E
xe
cu
tio

n
to
ol
s

M
od
el
de
bu
gg
in
g

Si
m
ul
at
io
n
su
pp
or
t

Pr
od
uc
tio

n
sy
st
em

P3
1

R
SA

–
–

FF
SM

✗
�

✗

P3
2

K
er
m
et
a

–
–

K
er
m
et
a

✗
✗

�
P3

3
M
oc
as

–
–

O
th
er
,M

oc
as
,E

cl
ip
se
U
M
L
2

�
�

✗

P3
4

A
d
ho
c

–
–

O
th
er
,E

cl
ip
se
U
M
L
2,

M
V
Fl
ex

✗
✗

�
P3

5
–

–
✗

O
th
er

✗
�

✗

P3
6

–
–

✗
A
cc
el
eo
,D

ym
ol
a,
C
,S

an
z

✗
�

✗

P3
7

–
–

✗
O
th
er
,E

cl
ip
se
U
M
L
2

�
✗

�
P3

8
–

–
✗

O
th
er

✗
�

✗

P3
9

–
–

✗
A
rt
is
an
,T

D
K
,D

SL
,S

ha
do
w
ac
s,
A
gi
lit
y
SC

✗
�

�
P4

0
–

–
✗

O
th
er

✗
✗

�
P4

1
–

–
�

V
B

✗
�

�
P4

2
–

–
✗

O
th
er

✗
�

✗

P4
3

–
–

✗
M
D
W
or
kb
en
ch

✗
✗

�
P4

4
–

–
✗

Q
V
T,

X
Pa
nd

✗
✗

�
P4

5
–

–
✗

O
th
er

✗
✗

�
P4

6
–

–
✗

X
M
L
,O

th
er
,X

SL
T

✗
�

✗

P4
7

–
–

✗
O
th
er
,E

cl
ip
se
U
M
L
2,

A
pa
ch
e
V
el
oc
ity

✗
✗

�
P4

8
Po

pu
lo

–
–

Po
pu
lo

�
�

✗

P4
9

A
C
T
i

–
–

O
th
er

✗
�

✗

P5
0

–
–

✗
Pe
rf
or
m
an
ce

Pr
op
he
t

✗
�

✗

P5
1

–
–

✗
A
cc
or
d
U
M
L

✗
✗

�
P5

2
–

–
✗

O
th
er

✗
✗

�
P5

3
–

–
✗

O
th
er

✗
✗

�
P5

4
–

–
✗

X
M
L
,O

th
er
,X

SL
T

✗
�

�
P5

5
–

U
V
M

✗
U
pa
d

✗
✗

�
P5

6
–

–
✗

FS
M
C
+

✗
✗

�
P5

7
–

–
✗

Q
V
T

✗
✗

�
P5

8
–

A
d
ho
c

✗
A
E
P
V
M
,O

th
er

✗
✗

�
P5

9
–

–
✗

–
✗

✗
�

123

Execution of UML models: a systematic review of research and practice 2353

Ta
bl
e
11

co
nt
in
ue
d

St
ud
y

In
te
rp
r.
en
gi
ne

Ta
rg
et
pl
at
fo
rm

T
ra
ce
ab
ili
ty

lin
ks

E
xe
cu
tio

n
to
ol
s

M
od
el
de
bu
gg
in
g

Si
m
ul
at
io
n
su
pp
or
t

Pr
od
uc
tio

n
sy
st
em

P6
0

–
–

✗
A
te
lie

r
B

✗
�

�
P6

1
–

–
✗

X
SL

T
✗

✗
�

P6
2

–
–

✗
O
th
er

✗
�

✗

P6
3

–
–

✗
O
th
er

�
�

�
T
01

–
–

✗
C
##

✗
�

✗

T
02

–
–

✗
Q
T

✗
✗

�
T
03

–
–

✗
C
am

eo
,O

th
er

�
�

✗

T
04

–
–

�
X
Pa
nd
,Q

V
T,

O
th
er

✗
✗

�
T
05

–
–

�
O
th
er

�
�

�
T
06

–
–

�
O
th
er

�
�

�
T
07

–
–

�
O
th
er

�
✗

�
T
08

–
–

�
O
th
er

�
�

�
T
09

–
–

�
O
th
er

�
�

�
T
10

–
–

�
O
th
er

�
�

�
T
11

O
th
er

–
�

O
th
er
,A

SL
�

�
�

T
12

O
th
er

–
✗

O
th
er
,X

M
L

�
�

�
T
13

fU
M
L

–
–

O
th
er
,f
U
M
L

✗
✗

�
T
14

M
ok
a

–
–

O
th
er

�
�

✗

T
15

–
–

✗
O
th
er
,A

cc
el
eo

✗
✗

�
T
16

–
–

✗
C
+
+

✗
✗

�
T
17

–
–

�
C
+
+

✗
✗

�
T
18

–
–

�
O
th
er

�
�

�
T
19

–
–

✗
O
th
er
,O

m
ne
t+
+

�
�

✗

123

2354 F. Ciccozzi et al.

Ta
bl
e
12

Te
ch
ni
ca
lc
ha
ra
ct
er
is
tic

s
(R

Q
2)
—

tr
an
sl
at
io
n-
sp
ec
ifi
c
da
ta

St
ud

y
T
ra
ns
la
tio

n
st
ep
s

In
te
rm

ed
ia
te
ar
tif
ac
ts

T
ra
ns
fo
rm

at
io
n
ta
rg
et
s

Pl
at
fo
rm

P0
1

2
U
M
L
m
od
el

O
th
er

�
P0

2
–

–
–

–

P0
3

1
O
th
er

C
+
+

✗

P0
4

2
D
SL

m
od
el

C
,C

+
+
,O

th
er

✗

P0
5

1
O
th
er

O
th
er

✗

P0
6

2
D
SL

m
od
el

C
+
+

✗

P0
7

1
–

O
th
er

�
P0

8
1

O
th
er

J
�

P0
9

1
O
th
er

J
�

P1
0

1
O
th
er

O
th
er

�
P1

1
1

O
th
er

Sy
st
em

C
,V

H
D
L

�
P1

2
2

O
th
er

Sy
st
em

C
�

P1
3

2
Ja
va

O
th
er

�
P1

4
2

D
SL

m
od
el

C
+
+
,S

ys
te
m
C
,X

M
L
,V

H
D
L

�
P1

5
1

O
th
er

J,
C
##

✗

P1
6

3
X
M
L
fil
e,
Te
xt
ua
lfi

le
C
,C

+
+
,O

th
er

�
P1

7
1

O
th
er

C
✗

P1
8

–
–

–
–

P1
9

1
O
th
er

J
✗

P2
0

3
O
th
er
,J
av
a

C
✗

P2
1

1
O
th
er

O
th
er

✗

P2
2

2
O
th
er
,U

M
L
m
od
el

A
D
A
,O

th
er

✗

P2
3

1
O
th
er

J
�

P2
4

–
–

–
–

P2
5

–
–

–
–

123

Execution of UML models: a systematic review of research and practice 2355

Ta
bl
e
12

co
nt
in
ue
d

St
ud

y
T
ra
ns
la
tio

n
st
ep
s

In
te
rm

ed
ia
te
ar
tif
ac
ts

T
ra
ns
fo
rm

at
io
n
ta
rg
et
s

Pl
at
fo
rm

P2
6

2
D
SL

m
od
el

Sy
st
em

C
,V

H
D
L

✗

P2
7

2
O
th
er

O
th
er

✗

P2
8

1
O
th
er

J
✗

P2
9

1
O
th
er

X
M
L

�
P3

0
1

O
th
er

O
th
er

✗

P3
1

–
–

–
–

P3
2

–
–

–
–

P3
3

–
–

–
–

P3
4

–
–

–
–

P3
5

1
O
th
er

O
th
er

�
P3

6
1

O
th
er

O
th
er

�
P3

7
2

U
M
L
m
od
el

J
✗

P3
8

2
O
th
er

O
th
er

�
P3

9
2

O
th
er

V
H
D
L

✗

P4
0

1
O
th
er

J
�

P4
1

1
O
th
er

Sy
st
em

C
,C

,C
+
+

✗

P4
2

2
O
th
er

Sy
st
em

C
,X

M
L

�
P4

3
1

O
th
er

V
H
D
L
,O

th
er

✗

P4
4

3
U
M
L
m
od
el

J
✗

P4
5

1
O
th
er

O
th
er

�
P4

6
1

X
M
L
fil
e,
Ja
va

O
th
er

�
P4

7
1

O
th
er

J,
X
M
L

✗

P4
8

–
–

–
–

P4
9

–
–

–
–

P5
0

2
X
M
L
fil
e

C
+
+

�

123

2356 F. Ciccozzi et al.

Ta
bl
e
12

co
nt
in
ue
d

St
ud

y
T
ra
ns
la
tio

n
st
ep
s

In
te
rm

ed
ia
te
ar
tif
ac
ts

T
ra
ns
fo
rm

at
io
n
ta
rg
et
s

Pl
at
fo
rm

P5
1

1
O
th
er

C
+
+

✗

P5
2

1
O
th
er

J
✗

P5
3

3
D
SL

m
od
el

B
PE

L
,W

SD
L
,J
,O

th
er

✗

P5
4

1
O
th
er

O
th
er

�
P5

5
1

O
th
er

O
th
er

�
P5

6
2

O
th
er

J,
O
th
er
,H

T
M
L

�
P5

7
3

D
SL

m
od
el

J
✗

P5
8

1
O
th
er

O
th
er

�
P5

9
1

O
th
er

O
th
er

✗

P6
0

2
Fo

rm
al
sp
ec
ifi
ca
tio

n
C
,C

+
+
,V

H
D
L
,S

ys
te
m
C

✗

P6
1

2
X
M
L
fil
e

J
�

P6
2

2
D
SL

m
od
el

J
�

P6
3

1
O
th
er

J
✗

T
01

O
th
er

–
.n
et

�
T
02

1
O
th
er

C
+
+
,J
,P

H
P,
Py

th
on
,O

th
er

✗

T
03

O
th
er

–
O
th
er
,J

�
T
04

3
U
M
L
m
od
el
,D

SL
m
od
el

A
D
A
,C

+
+

✗

T
05

1
O
th
er

J
✗

T
06

O
th
er

O
th
er

J,
C
+
+
,C

,C
##

,A
D
A

�
T
07

O
th
er

O
th
er

A
D
A
,C

+
+
,O

th
er
,J
,V

B
�

T
08

O
th
er

O
th
er

J,
C
+
+
,C

##
�

T
09

O
th
er

O
th
er

O
th
er
,J
,C

+
+
,C

�
T
10

O
th
er

O
th
er

J,
C
,C

+
+
,C

##
�

T
11

3
D
SL

m
od
el

C
,C

+
+
,A

D
A
,J

�
T
12

1
O
th
er

C
,C

+
+
,S

ys
te
m
C

�
T
13

–
–

–
–

T
14

–
–

–
–

T
15

2
U
M
L
m
od
el

C
+
+

✗

T
16

2
O
th
er

C
+
+

�
T
17

1
O
th
er

C
,C

+
+

✗

T
18

O
th
er

–
C
,C

+
+
,C

##
,A

ct
io
nS

cr
ip
t,
D
el
ph
i,
J,
PH

P,
Py

th
on
,V

B
,V

H
D
L
,S

ys
te
m
C
,O

th
er

�
T
19

1
O
th
er

C
+
+

�

123

Execution of UML models: a systematic review of research and practice 2357

Table 13 Provided evidence and quality assessment scores (RQ3),
identified limitations (RQ4)

Study Research
method

Type of
evidence

Type of sys-
tems
for evidence

Identified
limitations

P01 V EL S, C, MR, MAN, COM TO, E

P02 V E S EP, TO, EV

P03 E EXSI MR O, ECO, O, Other

P04 V E COM E, EP, TO

P05 V EL MR, CE, C E, O, EP, EV

P06 E EVI COM E, O, TO

P07 V E B E, TO

P08 V – – O, EP, TO

P09 V E C TO, AN

P10 V EL C TO, E, AN, RE

P11 E EXS SE –

P12 V EXS SE E

P13 E EXI SE TO, E

P14 V E MC EV, E

P15 E EXI A –

P16 E EXI MC, COM AN, EV

P17 V EXI C TO

P18 V E L ECO

P19 V E S PS

P20 V E MC E

P21 E EI MAN AN, RE

P22 E EXS COM TO

P23 E EI MAN, SE, S PS, ECO

P24 V E IS AN, E

P25 V E MR MC

P26 V E C E, ECO, PI

P27 E EXSI C E, PI, TO

P28 V E A O

P29 V E COM E

P30 V E C E

P31 V EXS A S, EV, E

P32 V EXI B EV, R

P33 V E CE R, MC

P34 V EXS S EC

P35 V EXS MR AN

P36 V E C E, TO, T

P37 V E IS E, TO

P38 V EL W AN, E

P39 V EXSI MC T

P40 E EXS S TO, T, EV

P41 V EXSI COM AN, RE

Table 13 continued

Study Research
method

Type of
evidence

Type of sys-
tems
for evidence

Identified
limitations

P42 V E MC AN

P43 V E MC –

P44 V E CE –

P45 V EXS IS, L EV, TO

P46 V E S TO, E

P47 V EXS W EV, EP

P48 V E MR –

P49 V E S MC, E

P50 V E S –

P51 V E C E, EP

P52 V E CE –

P53 V E B E, EV

P54 V E B TO, Other

P55 V E MC TO, P

P56 E EI IS E

P57 V E MR E, T

P58 V EXS MA EV

P59 V E MAN E, O

P60 V EXI COM TO

P61 V E B E

P62 V EXS S E

P63 V E MAN EP, E

T01 – – – AN

T02 – – – –

T03 – – – –

T04 – – – –

T05 – – – AN, E

T06 – – – –

T07 – – – –

T08 – – – –

T09 – – – –

T10 – – – –

T11 – – – –

T12 – – – –

T13 – – – –

T14 – – – AN

T15 – – – MC

T16 – – – E

T17 – – – –

T18 – – – –

T19 – – – –

123

2358 F. Ciccozzi et al.

Table 14 Quality assessment scores (RQ3)

Study Q1 Q2 Q3 Q4 Q5 Q6 Total

P01 1 1 1 1 0 0.5 4.5

P02 1 0.5 0.5 0.5 0 0 2.5

P03 1 1 1 1 0.5 0.5 5

P04 1 1 0.5 1 0 0 3.5

P05 1 0.5 1 1 0 1 4.5

P06 1 1 1 1 1 0.5 5.5

P07 0.5 0 0.5 0.5 0 0 1.5

P08 1 1 0.5 1 0.5 0.5 4.5

P09 1 0.5 1 1 0 0 3.5

P10 1 0 1 1 0 0 3

P11 1 0 0.5 1 0 0 2.5

P12 1 0 1 1 0 0 3

P13 1 1 1 1 0 0 4

P14 1 0 0.5 1 0 0 2.5

P15 1 0.5 0.5 1 0 0 3

P16 1 1 1 1 0.5 0 4.5

P17 0.5 0 0.5 1 0 0 2

P18 1 0 0.5 1 0 1 3.5

P19 1 0 0 1 0 0.5 2.5

P20 1 0 0.5 1 0 0.5 3

P21 1 1 1 1 0 0.5 4.5

P22 0.5 0.5 0 1 0 0 2

P23 1 1 1 1 1 1 6

P24 1 0.5 1 1 0 0.5 4

P25 1 0 1 1 0 0 3

P26 1 0 0 0.5 0 1 2.5

P27 1 1 1 1 1 0 5

P28 0.5 0 0.5 0.5 0 0 1.5

P29 1 0 0.5 0.5 0 0 2

P30 1 0.5 1 1 0.5 0 4

P31 1 0.5 0.5 1 0 1 4

P32 1 0.5 0 1 0 1 3.5

P33 0.5 0 0 0.5 0 0 1

P34 1 1 1 1 0 0 4

P35 1 1 1 1 0 0 4

P36 1 0 0.5 1 0 0.5 3

P37 0.5 0 0.5 1 0 1 3

P38 1 0.5 0.5 1 0 0 3

P39 1 0.5 1 1 0 0.5 4

P40 1 0.5 1 1 0 0 3.5

P41 1 1 1 1 0 0.5 4.5

Table 14 continued

Study Q1 Q2 Q3 Q4 Q5 Q6 Total

P42 1 0 0.5 1 0 0 2.5

P43 0.5 0 0.5 1 0 0 2

P44 1 0 0 1 0 0 2

P45 1 0 0.5 1 0 0.5 3

P46 0.5 0 1 1 0.5 1 4

P47 1 0 1 1 0 0 3

P48 1 0 0.5 0.5 0 0 2

P49 1 0 0 1 0 0.5 2.5

P50 1 0 0.5 1 0 0 2.5

P51 1 0 0 1 0 0.5 2.5

P52 1 0.5 0.5 0.5 0 0 2.5

P53 1 0 0.5 1 0 0 2.5

P54 1 0.5 0.5 0.5 0 0 2.5

P55 0.5 0 0.5 1 0 0 2

P56 1 1 1 1 1 0 5

P57 0.5 0 0.5 1 0 0 2

P58 0.5 0 0.5 1 0 0 2

P59 1 0.5 0.5 0.5 0 0 2.5

P60 1 0.5 1 1 0 0.5 4

P61 1 0.5 1 1 0.5 1 5

P62 0.5 0 0 1 0 1 2.5

P63 0 0 0.5 1 0 0.5 2

T01 N/A N/A N/A N/A N/A N/A N/A

T02 N/A N/A N/A N/A N/A N/A N/A

T03 N/A N/A N/A N/A N/A N/A N/A

T04 N/A N/A N/A N/A N/A N/A N/A

T05 N/A N/A N/A N/A N/A N/A N/A

T06 N/A N/A N/A N/A N/A N/A N/A

T07 N/A N/A N/A N/A N/A N/A N/A

T08 N/A N/A N/A N/A N/A N/A N/A

T09 N/A N/A N/A N/A N/A N/A N/A

T10 N/A N/A N/A N/A N/A N/A N/A

T11 N/A N/A N/A N/A N/A N/A N/A

T12 N/A N/A N/A N/A N/A N/A N/A

T13 N/A N/A N/A N/A N/A N/A N/A

T14 N/A N/A N/A N/A N/A N/A N/A

T15 N/A N/A N/A N/A N/A N/A N/A

T16 N/A N/A N/A N/A N/A N/A N/A

T17 N/A N/A N/A N/A N/A N/A N/A

T18 N/A N/A N/A N/A N/A N/A N/A

T19 N/A N/A N/A N/A N/A N/A N/A

123

Execution of UML models: a systematic review of research and practice 2359

References

1. Abouzahra,A., Bézivin, J., Del Fabro,M.D., Jouault, F.:A practical
approach to bridgingdomain specific languageswithUMLprofiles.
In: Proceedings of the Best Practices for Model Driven Software
Development at OOPSLA, vol. 5. Citeseer (2005)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engi-
neering. Cambridge University Press, Cambridge (2010)

3. Agresti, A., Kateri,M.: Categorical DataAnalysis. Springer, Berlin
(2011)

4. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.:
Model traceability. IBM Syst. J. 45(3), 515–526 (2006)

5. Ali,M.S.,Babar,M.A.,Chen,L., Stol,K.-J.:A systematic reviewof
comparative evidence of aspect-oriented programming. Inf. Softw.
Technol. 52(9), 871–887 (2010)

6. Ali, N.B., Petersen, K.: Evaluating strategies for study selection
in systematic literature studies. In: International Symposium on
Empirical Software Engineering and Measurement. ACM (2014)

7. Aljer, A., Devienne, P., Tison, S., Boulanger, J.-L., Mariano, G.:
BHDL: Circuit design in B. In: Proceedings. Third International
Conference on Application of Concurrency to System Design,
2003, pp. 241–242. IEEE (2003)

8. Charfi, A., Mraidha, C., Gérard, S., Terrier, F., Boulet, P.: Toward
optimized code generation through model-based optimization. In:
Proceedings of the Conference on Design, Automation and Test in
Europe, pp. 1313–1316 (2010)

9. Ciccozzi, F.: Unicomp: a semantics-aware model compiler for
optimised predictable software. In: International Conference on
Software Engineering (ICSE) 2018—New Ideas and Emerging
Results (NIER),May 2018.UML,Alf, fUML, compilation,model-
driven engineering, predictability, semantics

10. Ciccozzi, F., Cicchetti,A., Sjödin,M.:Round-trip support for extra-
functional property management in model-driven engineering of
embedded systems. Inf. Softw. Technol. 55(6), 1085–1100 (2013)

11. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore,
M., Roveri, M., Sebastiani, R., Tacchella, A.: Nusmv 2: an open-
source tool for symbolic model checking. In: Brinksma, E., Larsen,
K.G. (eds.) Computer Aided Verification, pp. 359–364. Springer,
Heidelberg (2002)

12. Cohen, J.: Weighted kappa: nominal scale agreement provision for
scaled disagreement or partial credit. Psychol. Bull. 70(4), 213
(1968)

13. Corbin, J.M., Strauss, A.: Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory. Sage
Publications, Thousand Oaks (2014)

14. Cruzes,D.S.,Dybå, T.: Research synthesis in software engineering:
a tertiary study. Inf. Softw. Technol. 53(5), 440–455 (2011)

15. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting
microservices: trends, focus, and potential for industrial adoption.
In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 21–30. IEEE (2017)

16. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Mon-
tesi, F., Mustafin, R., Safina, L.: Microservices: yesterday, today,
and tomorrow. In: Mazzara, M., Meyer, M. (eds.) Present and Ulte-
rior Software Engineering, pp. 195–216. Springer, Cham (2017)

17. Dybå, T., Dingsøyr, T.: Empirical studies of agile software devel-
opment: a systematic review. Inf. Softw. Technol. 50(9), 833–859
(2008)

18. Franzosi, R.: Quantitative Narrative Analysis, vol. 162. Sage,
Thousand Oaks (2010)

19. Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P.:
Variability in software systems: systematic literature review. IEEE
Trans. Softw. Eng. 40(3), 282–306 (2014)

20. Gotti, S., Mbarki, S.: UML executable: a comparative study of
UML compilers and interpreters. In: 2016 International Confer-

ence on Information Technology for Organizations Development
(IT4OD), pp. 1–5 (March 2016)

21. Grandy, H., Bischof, M., Stenzel, K., Schellhorn, G., Reif, W.:
Verification ofMondex electronic purses with KIV: from a security
protocol to verified code. In: Woodcock, J. (ed.) FM 2008: Formal
Methods, pp. 165–180. Springer (2008)

22. Greenhalgh, T., Peacock, R.: Effectiveness and efficiency of search
methods in systematic reviews of complex evidence: audit of pri-
mary sources. BMJ 331(7524), 1064–1065 (2005)

23. Hrischuk, C., Rolia, J., Woodside, C.M.: Automatic generation of
a software performance model using an object-oriented prototype.
In: Proceedings of the Third International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication
Systems, 1995. MASCOTS’95, pp. 399–409. IEEE (1995)

24. Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engi-
neering practices in industry: social, organizational andmanagerial
factors that lead to success or failure. Sci. Comput. Program. 89,
144–161 (2014)

25. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment ofMDE in industry. In: Proceedings of ICSE.
ACM (2011)

26. Iqbal,M.Z.,Arcuri,A., Briand, L.: Environmentmodeling and sim-
ulation for automated testing of soft real-time embedded software.
Softw. Syst. Model. 14(1), 483–524 (2015)

27. Kitchenham, B., Brereton, P.: A systematic review of systematic
review process research in software engineering. Inf. Softw. Tech-
nol. 55(12), 2049–2075 (2013)

28. Kitchenham, B.A., Charters, S.: Guidelines for performing system-
atic literature reviews in software engineering. Technical Report
EBSE-2007-01,KeeleUniversity andUniversity ofDurham (2007)

29. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained—The Model
Driven Architecture: Practice and Promise. Addison-Wesley Pro-
fessional, Reading (2003)

30. Landis, J.R., Koch, G.G.: The measurement of observer agreement
for categorical data. Biometrics 33, 159–174 (1977)

31. Laurent, Y., Bendraou, R., Gervais, M.-P.: Executing and debug-
gingUMLmodels: an fUML extension. In: Proceedings of the 28th
Annual ACMSymposium on Applied Computing, pp. 1095–1102.
ACM (2013)

32. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A
Cyber-Physical Systems Approach. MIT Press, Cambridge (2011)

33. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.:What
industry needs from architectural languages: a survey. IEEE Trans.
Softw. Eng. 39(6), 869–891 (2013)

34. MARTE profile. http://www.omg.org/spec/MARTE/1.1/. Latest
access: 20 Nov 2017

35. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: Exe-
cutable DSMLs based on fUML. In: Proceedings of SLE (2013)

36. Mellor, S.J., Tockey, S., Arthaud, R., Leblanc, P.: An action lan-
guage for UML: proposal for a precise execution semantics. In:
Bezivin, J. (ed.) TheUnifiedModeling Language.UML98: Beyond
the Notation, pp. 307–318. Springer (1998)

37. Meyes, S.: The Most Important C++ Software...Ever (2006)
38. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with

JOLIE. In: Fifth European Conference on Web Services, 2007.
ECOWS’07, pp. 13–22. IEEE (2007)

39. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic
mapping studies in software engineering. In: Proceedings of the
12th International Conference on Evaluation and Assessment in
Software Engineering, EASE’08, pp. 68–77, Swinton, UK (2008)
British Computer Society

40. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conduct-
ing systematic mapping studies in software engineering: an update.
Inf. Softw. Technol. 64, 1–18 (2015)

41. Peterson, J.L.: Petri Net Theory and the Modeling of Systems.
Prentice-Hall, Englewood Cliffs (1981)

123

http://www.omg.org/spec/MARTE/1.1/

2360 F. Ciccozzi et al.

42. Potter, B., Till, D., Sinclair, J.: An Introduction to Formal Specifi-
cation and Z. Prentice Hall PTR, Englewood Cliffs (1996)

43. Rodgers, M., Sowden, A., Petticrew, M., Arai, L., Roberts, H.,
Britten, N., Popay, J.: Testing methodological guidance on the
conduct of narrative synthesis in systematic reviews effectiveness
of interventions to promote smoke alarm ownership and function.
Evaluation 15(1), 49–73 (2009)

44. Schmidt, D.C.:Guest editor’s introduction:model-driven engineer-
ing. Computer 39(2), 25–31 (2006)

45. Selic, B.: The less well known UML. In: Bernardo, M., Cortel-
lessa, V., Pierantonio, A. (eds.) Formal Methods for Model-Driven
Engineering. Volume 7320 of Lecture Notes in Computer Science,
pp. 1–20. Springer, Berlin (2012)

46. Steele, G.: CommonLISP: The Language. Elsevier, London (1990)
47. Tatibouët, J., Cuccuru, A., Gérard, S., Terrier, F.: Formalizing

execution semantics of UML profiles with fUML models. In:
Model-Driven Engineering Languages and Systems, pp. 133–148.
Springer (2014)

48. Tatibouët, J., Cuccuru, A., Gérard, S., Terrier, F.: Formalizing
execution semantics of UML profiles with fUML models. In: Pro-
ceedings of MODELS, pp. 133–148 (2014)

49. Wohlin, C.: Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: Proceedings
of the 18th International Conference onEvaluation andAssessment
in Software Engineering, p. 38. ACM (2014)

50. Wohlin, C.: Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: Proceedings
of the 18th International Conference onEvaluation andAssessment
in Software Engineering, EASE ’14, pp. 38:1–38:10. ACM, New
York (2014)

51. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B.,
Wesslén, A.: Experimentation in Software Engineering. Computer
Science. Springer, Berlin (2012)

52. Zhang, H., Babar, M.A.: Systematic reviews in software engi-
neering: an empirical investigation. Inf. Softw. Technol. 55(7),
1341–1354 (2013)

53. Zurowska, K., Dingel, J.: A customizable execution engine for
models of embedded systems. In: Roubtsova, E., McNeile, A.,
Kindler, E., Gerth, C. (eds.) BehaviorModeling—Foundations and
Applications, pp. 82–110. Springer, Berlin (2015)

Federico Ciccozzi is an Asso-
ciate Professor (Docent in com-
puter science) at Mälardalen Uni-
versity, Västerås, Sweden, where
he is involved in model-based
engineering for embedded
systems and industrial software
engineering groups. His research
focuses on several aspects of
model-driven engineering (MDE)
and component-based software
engineering (CBSE) for the devel-
opment of complex (often embed-
ded) systems based on domain-
specific modeling languages

(DSMLs), both UML- and EMF-based. Among them, he special-
izes in: definition of DSMLs, automatic model manipulations through
transformations, and system properties preservation. Moreover, he
conducts research in the area of multiparadigm modeling, model ver-
sioning, (co)evolution and synchronization, and the application of
MDE and CBSE techniques to mobile multi-robot systems. He has
(co-)authored over 60 publications in international journals, interna-
tional conference, and workshop proceedings.

Ivano Malavolta is Assistant Pro-
fessor at the Vrije Universiteit
Amsterdam, The Netherlands. His
research focuses on software archi-
tecture, model-driven engineering
(MDE), and mobile-enabled sys-
tems, especially how MDE tech-
niques can be exploited for archi-
tecting complex and mobile-
enabled software systems at the
right level of abstraction. He is
program committee member and
reviewer of international confer-
ences and journals in his fields of
interest. He is applying empirical

methods to assess practices and trends in the field of software engi-
neering. He authored more than 70 papers in international journals
and peer-reviewed international conferences proceedings. He received
a Ph.D. in computer science from the University of L’Aquila in 2012.
He is a member of ACM and IEEE. More information is available at
http://www.ivanomalavolta.com.

Bran Selic Mag.Ing., is Presi-
dent and Founder of Malina Soft-
ware Corp., a Canadian company
providing IT consulting and train-
ing services. He is also Director
of Advanced Technology at Zelig-
soft (2009) Limited in Canada and
a Visiting Scientist at Simula
Research Laboratories in Norway.
On the academic side, Bran is
currently an adjunct professor of
software engineering at Monash
University (Australia), a visiting
researcher at the University of Syd-
ney (Australia), and an invited

industry lecturer at INSA in Lyon (France). In the course of his 45-
year career in industry, he has pioneered the development of model-
based methods, technologies, and standards for the real-time and
embedded systems domain.

123

http://www.ivanomalavolta.com

	Execution of UML models: a systematic review of research and practice
	Abstract
	1 Introduction
	2 Background
	2.1 From programming to MDE
	2.2 UML as an executable modeling language

	3 Research method
	3.1 Goal and research questions
	3.2 Search and selection strategy
	3.2.1 Research studies search and selection
	3.2.2 Selection criteria for research studies
	3.2.3 Tools search and selection
	3.2.4 Selection criteria for tools

	3.3 Data extraction and classification framework definition
	3.4 Data synthesis
	3.5 Threats to validity

	4 Publication trends
	4.1 Publication year
	4.2 Publication venues

	5 Technical characteristics
	5.1 UML modeling
	5.2 Execution strategy
	5.2.1 Translational execution
	5.2.2 Interpretive execution

	5.3 Intended benefits
	5.4 Associated process
	5.5 Extensibility
	5.6 Readiness level
	5.7 Supported non-functional properties
	5.8 Formal specification languages

	6 Provided evidence
	6.1 Applied research method
	6.2 Type of evidence
	6.3 Type of systems for evidence
	6.4 Quality assessment results

	7 Identified limitations
	8 Horizontal analysis
	8.1 Execution strategy versus UML diagrams
	8.2 Application domain versus required UML profiles
	8.3 Execution strategy versus production system
	8.4 Execution strategy versus readiness level
	8.5 Execution strategy versus publication year
	8.6 Readiness level versus primary study type
	8.7 Intended benefits versus publication year
	8.8 Intended benefits versus execution strategy
	8.9 Execution strategy versus fUML standard compliance
	8.10 Simulation versus fUML standard compliance
	8.11 Simulation versus model-level debugging
	8.12 Covered MDA layers versus execution strategy
	8.13 Identified limitations versus execution strategy
	8.14 Identified limitations versus support for non-functional properties
	8.15 Identified limitations versus support for simulation
	8.16 Identified limitations versus readiness level
	8.17 Production system versus support for simulation
	8.18 Production system versus software platform
	8.19 Support for simulation versus software platform

	9 Discussion and future prospects
	9.1 Future prospects for technical advancement
	9.1.1 Ability to execute abstract (high-level) and incomplete models
	9.1.2 Enhanced observability of executing models
	9.1.3 Enhanced control of model execution
	9.1.4 Directly compiled model executables
	9.1.5 Support for UML-compliant action Languages
	9.1.6 Support for executing UML models based on UML profiles
	9.1.7 Integration of UML simulators into heterogeneous (multi-paradigm) Simulation Systems

	9.2 Research perspectives for UML model execution

	10 Conclusions
	Acknowledgements
	Appendix A—Research team
	Appendix B—Selected primary studies
	Appendix C—Extracted data for each primary study
	References

