
Software & Systems Modeling (2018) 17:363–364
https://doi.org/10.1007/s10270-018-0674-5

EDITORIAL

Software engineering methods in other engineering disciplines

Jeff Gray1 · Bernhard Rumpe2

Published online: 3 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Software engineers are often told from experts in systems
development that they “should develop their software in the
same systematic and predictableway as other engineers (e.g.,
mechanical engineers)”.

If we trace Software Engineering back to the 1968 NATO
Science Committee [1] conference in Garmisch, Germany,
organized by F. L. Bauer, then the discipline of Software
Engineering is approaching 50 years old. Yet, Software Engi-
neering is not a discipline that always develops products
using processes similar to traditional mechanical engineer-
ingmethods. Software developers have their own portfolio of
methods, ranging fromheavyweight documentation-oriented
approaches to the much more beloved agile and light-weight
methods. Even though there is always potential for optimiza-
tion, agile techniques have reached a level where software
developers can produce reliable products using cost effi-
cient, relatively predictable and controllable processes.What
seems to be evenmore important is that thewayof developing
software is tightly connected to innovative processes that not
only lead to novel ideas about how to implement software, but
also to new ideas about potential features and services that
can be integrated into software solutions. The tight coupling
of software development and innovation is closely related to
the strong connection between requirements elicitation and
direct implementation in agile processes, where the same
stakeholders are responsible for the innovations of devel-
opment. Furthermore, the invention of new control and data
structures in object-oriented development can drive the inno-
vation of new features.

Companies in Silicon Valley have used this mood of inno-
vation effectively. They have integrated software services
into their core business model, which has led to innovative
thinking and effective, agile development of products in other

B Bernhard Rumpe
bernhard.rumpe@sosym.org

Jeff Gray
jeff.gray@sosym.org

1 University of Alabama, Tuscaloosa, AL, USA

2 RWTH Aachen University, Aachen, Germany

domains (e.g.,medical services, autonomous driving, electric
cars, finance). Traditional companies based on fundamen-
tal engineering processes may feel threatened by the radical
change and fast rate of innovation that the new technologies
offer. There are challenges in training classical engineers to
adopt a new form of project organization, where the respon-
sibilities are given to the developers much more than to the
management hierarchies. However, this mindset is neces-
sary to improve innovation. Traditional engineering-based
companies, as well as other increasingly software-intensive
companies, are now trying to catch up. Many good examples
in these areas give us hope that change is possible.

In systems that require expertise from multiple areas of
engineering, traditional engineers are becomingmore open to
software engineering practices. Furthermore, software devel-
opment methodologies are being adopted more frequently
into traditional engineering practice. In a recent and well-
known German TV Show [2], a highly esteemed expert
in mechanical and production engineering, Günther Schuh,
was asked why he and his team were able to produce the
“StreetScooter” electric car so quickly. Schuh said, “Because
they have used computer science methods”. In particular,
Schuh mentioned agility as a key catalyst to the increased
speed of development.

The portfolio of methods that software engineering has
developed over the last two decades is effective and efficient
in multiple engineering domains, allowing innovative prod-
ucts to be created at a quick pace. After 50 years, Software
Engineering has found its toolset ofmethods, languages, con-
cepts and techniques that allow software developers to create
various forms of software products, services and embed-
ded software, which in turn enables various new business
concepts. One of our main problems now is to teach these
practices in appropriate forms to manymore computer scien-
tists and other engineers, such that there are enough people
available to deliver new innovative projects in the future.

1. Software Engineering: Report on a Conference Spon-
sored by the NATIO Science Committee, Garmisch,
Germany, October 7–11, 1968. http://homepages.cs.ncl.
ac.uk/brian.randell/NATO/nato1968.PDF.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0674-5&domain=pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF


364 J. Gray, B. Rumpe

2. Markus Lanz, February 2018, with Professor Günther
Schuh. http://bit.ly/lanz-feb2018.

Content of this issue
In this issue, we have an expert’s voice paper on “A

logical approach to systems engineering artifacts: Semantic
relationships and dependencies beyond traceability—from
requirements to functional and architectural views” written
by Manfred Broy. This contribution offers excellent insights
into amethod of developing distributed asynchronously com-
municating systems and how to precisely trace the high-level
specifications of the requirements downwell-architected and
structured units of code.

In addition to one regular paper, this volume contains the
Theme Section on “PerformanceModelling and Engineering
of Software and Systems”with Catalina Lladó andKai Sachs
as guest editors. This volume also contains the papers for the
Special Section on “Business Process Modeling, Develop-
ment and Support” with Selmin Nurcan and Rainer Schmidt
as guest editors. Both sections contain six papers and a guest
editorial describing their content.

The only regular paper is:

• “What can we learn from enterprise architecture mod-
els?An experiment comparingmodels anddocuments for
capability development” by Ulrik Franke, Mika Cohen,
and Johan Sigholm.

123

http://bit.ly/lanz-feb2018

	Software engineering methods in other engineering disciplines



