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Abstract
An important challenge in parallel computing is the mapping of parallel algorithms to parallel computing platforms. This
requires several activities such as the analysis of the parallel algorithm, the definition of the logical configuration of the platform
and the implementation and deployment of the algorithm to the computing platform. However, in current parallel computing
approaches very often only conceptual and idiosyncratic models are used which fall short in supporting the communication
and analysis of the design decisions. In this article, we present ParDSL, a domain-specific language framework for providing
explicit models to support the activities for mapping parallel algorithms to parallel computing platforms. The language
framework includes four coherent set of domain-specific languages each of which focuses on an activity of the mapping
process. We use the domain-specific languages for modeling the design as well as for generating the required platform-
specific models and the code of the selected parallel algorithm. In addition to the languages, a library is defined to support
systematic reuse. We discuss the overall architecture of the language framework, the separate DSLs, the corresponding model
transformations and the toolset. The framework is illustrated for four different parallel computing algorithms.

Keywords Model-driven software development · Parallel programming · High-performance computing · Domain-specific
language · Architecture framework

1 Introduction

It is now increasingly acknowledged that the processing
power of a single processor has reached the physical limi-
tations, and serial computing has thus reached its limits. To
increase the performance, the current trend is toward apply-
ing parallel computing on multiple nodes typically including
many CPUs. In contrast to serial computing in which instruc-
tions are executed serially, in parallel computing multiple
processing elements are used to execute the program instruc-
tions simultaneously. To benefit optimally from the parallel
computing, power parallel algorithms can be used that are
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executed simultaneously on multiple nodes. However, for
optimal performance it is required that the parallel algorithm
is properly mapped to the parallel computing platform. This
requires several activities such as the analysis of the paral-
lel algorithm, the definition of the logical configuration of
the platform, and the implementation and deployment of the
algorithm to the computing platform. These activities can
be performed manually for small platforms but soon become
intractable in case the size of the platform increases.Hence, to
support these activities, it is important to adopt proper mod-
eling approaches. On the one hand, modeling is important
for representing a blueprint that can be used to support the
communication among the stakeholders, support the reason-
ing about the design decisions during the mapping process,
and for analyzing the design alternatives. On the other hand,
modeling can be also used for supporting the automation pro-
cess of the corresponding activities and as such increase the
faster development and analysis of the system.

In current parallel computing approaches, however, there
does not seem to be standard modeling approaches for
supporting the design and analysis of parallel comput-
ing design models. Most approaches seem either to adopt
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conceptual modeling approaches in which the parallel com-
puting elements are represented using idiosyncratic models
or are generally low level and machine specific [1]. Other
approaches borrow for example models from embedded and
real-time systems and try to adapt these for parallel com-
puting. The lack of a clear and precise modeling approach
with first class abstractions for parallel computing impedes
the solutions for analyzing, designing and communicating
the design decisions.

To support the deployment of parallel algorithms, it is nec-
essary to provide the appropriate precision level ofmodeling.
Models are different in nature and quality, and different clas-
sifications of models have been provided in the literature.
Mellor et al. [2] make a distinction between three kinds of
models, depending on their level of precision. Based on this,
amodel can be considered as a Sketch, as a Blueprint, or as an
Executable. According to [3], an executablemodel is amodel
that has everything required to produce the desired function-
ality of a single domain. Executable models are more precise
than sketches or blueprints and can be interpreted by model
compilers. A similar classification of models is defined by
Fowler et al. [4] who suggests a distinction based on three
levels of models, namely Conceptual Models, Specification
Models and Implementation Models. In model-driven soft-
ware development, the concept of models can be considered
as executablemodels as defined by the above characterization
of Mellor et al. [2]. Hereby, models are not mere documen-
tation but become “code” that are executable and that can be
further used to generate even more refined models or code.
This contrasts with model-based software development in
which models are used as blueprints at the most [2].

Developing domain-specific languages (DSLs) is an
important approach for supporting model-driven software
development andherewith the applicationof executablemod-
els. To model the particular concerns of parallel computing
and to support the automation of the activities, we propose
ParDSL, a domain-specific language framework consisting
of four coherent set of domain-specific languages (DSLs)
each of which focuses on a different aspect of the mapping
process. For each DSL, we describe the abstract syntax and
the concrete syntax. The DSLs are used in the generation of
platform-specific models and the code of selected parallel
algorithms that needs to be mapped on parallel computing
platforms. Both the languages and the transformations are
implemented using the Epsilon language. We illustrate the
language framework for supporting the mapping of four dif-
ferent parallel algorithms to parallel computing platforms.

The remainder of the article is organized as follows. In
Sect. 2, we describe the background on parallel comput-
ing and domain-specific languages. Section 3 discusses the
requiredmodeling concerns for parallel computing. Section 4
presents the domain-specific language framework and the
included four DSLs. Section 5 presents the model transfor-

mations using the DSLs. Section 6 discusses the toolset that
implements the language framework. Section 7 presents the
evaluation of the DSL framework. Section 8 presents the
related work, and finally we conclude the article in Sect. 9.

2 Background

2.1 Parallel computing

The famous Moore’s law states that the number of tran-
sistors on integrated circuits and likewise the performance
of processors doubles approximately every 18 months [5].
Since its introduction in 1965, the law seems to have quite
accurately described and predicted the developments of
the processing power of components in the semiconductor
industry [6]. Although Moore’s law is still in effect, cur-
rently it is recognized that increasing the processing power
of a single processor has reached the physical limitations
[1]. Hence, to increase the performance the current trend is
toward applying parallel computing onmultiple nodes. Here,
unlike serial computing in which instructions are executed
serially, multiple processing elements are used to execute
the program instructions simultaneously. To benefit further
from the parallel computing, power parallel algorithms can
be used that are executed simultaneously on multiple nodes.
In general, a parallel algorithm can be mapped in different
alternative ways to the processing nodes and research has
been carried out to optimize the algorithm and the mapping
process. This problem has gained even more attention
with the dramatic increase in the processing nodes to tens
and hundreds of thousands of nodes providing processing
performance from petascale to exascale levels [7]. Once the
feasible mapping is selected, the parallel algorithm needs to
be transformed to the target parallel computing models such
as MPI, OpenMP, MPL and CILK [8].

To define a feasible mapping, the parallel algorithm needs
to be analyzed and a proper configuration of the given paral-
lel computing platform is required to meet the corresponding
quality requirements for power consumption, efficiency and
memory usage. To illustrate this allocation problem, we will
use, as an example, the parallel matrix multiplication algo-
rithm for which the pseudo code is shown in Fig. 1a. We
have selected this algorithm since it is popular and easy to
understand in the parallel computing domain. The matrix
multiplication algorithm recursively decomposes the matrix
into subdivisions and multiplies the smaller matrices to be
summed up to find the resulting matrix. The algorithm is
actually composed of three different sections. The first serial
section is the multiplication of subdivision matrix elements
(line 3), which is followed by a recursive multiplication call
for each subdivision (line 5–15). The final part of the algo-
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(a)

(b)

(c)

(d)

Fig. 1 Matrix multiplication algorithm

rithm defines the summation of the multiplication results for
each subdivision (line 13–16).

Given a physical parallel computing platform consisting
of a set of nodes, we need to define the mapping of the
different sections to the nodes. The processing units can be
constructed within a configuration defined by the parallel
computing platform architect as the physical configuration
of nodes (Fig. 1b). The parallel algorithm is mapped to
the parallel computing platform that defines the physical
configuration of nodes. To reason about the mapping of the
parallel algorithm, we adopt the term logical configuration,
which represents a view of the physical configuration that
defines the logical communication structure among the
physical nodes (Fig. 1c). Once the logical configuration
is defined, the corresponding code is implemented and
deployed on the nodes (Fig. 1d).

For very large topologies including a large number of
cores, the logical topology cannot be drawn on the same
scale. Instead, for representing the topology in a more suc-

cinct way the topology can be defined as a regular pattern
that can be built using tiles. Tiles as such can be considered
as the basic building blocks of the logical configuration. The
tile notation is used for addressing groups of processing ele-
ments that form a neighborhood region on which processes
and communication links are mapped. The smallest part of a
tile is a processing element (core).

Tiles can be used to construct the logical configuration
using scaling that can be defined as the composition of the
larger structure from the smaller tiles. In general, we can
distinguish among different primitive tiles which can be con-
structed in different ways. The selected tiling configuration
will be dependent on the required communication patterns of
the algorithm that will be explained in the next subsection.
Examples of primitive tiles are shown in Fig. 2 [9, 10].

Each primitive tile defines the structure among the nodes
but initially does not describe the dynamic behavior among
these nodes. Hence, after defining the primitive tiles, we need
to define the dynamic behavior among the nodes. This is
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Fig. 2 Primitive tiling examples

Fig. 3 Communication patterns
constructed with tile and
matching communication paths

defined using communication patterns for each tile config-
uration. A communication pattern includes communication
paths that consist of a source node, a target node and a route
between the source and target nodes. An example communi-
cation pattern is shown in Fig. 3.

For a given physical configuration, we can derive many
different logical configurations. Each logical configuration
will perform differently with respect to different quality con-
cerns. Hereby, important metrics are speedup and efficiency
[6]. Speedup refers to how much a parallel algorithm is
faster than a corresponding sequential algorithm. Efficiency
defines how well the processors are utilized in executing the
algorithm.

2.2 Domain-specific languages

General-purpose languages (GPL), such as C, C# and Java,
can be applied to arbitrary problem domains. In contrast, a
domain-specific language (DSL) is a tailor-made language
for a specific problem domain [11]. DSLs provide particular
abstractions that are suitable for one particular problem
domain. In the literature [12–16], several different benefits
have been described for the development and use of DSLs
among which increasing the development productivity.
Presumably the amount of DSL code that needs to be
written is substantially smaller compared to the use of
general-purpose languages. A DSL can also support the
communication among domain experts by providing a clear
and precise language focused on the particular domain. In
case a DSL abstracts away from the underlying technology
platform, it can also support platform independence [17].
Hereby, the specifications in DSLs can be used to generate
code for platform-specific execution environments. Further,
using DSLs can increase the quality of the created product
due to the removal of unnecessary degrees of freedom for
programmers, the avoidance of duplication of code, and the
consistent automation of repetitive work by the execution
DSL engineering engine [16]. Finally, since DSLs are more
semantically rich than GPL programs, a more elaborate and
precise verification and validation of the domain concerns
can be carried out. Several other benefits could be derived for
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Fig. 4 Basic elements of DSLs

adopting DSLs. In general, multiple of these listed benefits
together lead to the decision for adopting DSLs.

According to Voelter, a DSL is “a language that is
optimized for a given class of problems, called a domain.
It is based on abstractions that are closely aligned with
the domain for which the language is built” [16]. Fowler
defines a DSL as “a computer language that’s targeted to
a particular kind of problem, rather than a general-purpose
language that’s aimed at any kind of software problem” [3].
Several other definitions can be found in the literature, but
there seems to be a general agreement that a domain-specific
language is focused on a particular domain. Because of
the focus on a particular domain, DSLs are usually small
languages. The application of a systematic, disciplined,
quantifiable approach to the development, use and mainte-
nance of these languages is usually called software language
engineering [18]. A number of concepts need to be known
when considering the development of domain-specific
languages. We summarize these in Fig. 4.

A DSL runs on a target platform and is assumed to be
something we cannot change (significantly) during the DSL
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development process [16]. The execution engine bridges the
gap between the DSL and the platform and can be an inter-
preter or a generator. An interpreter is a program running on
the target platform that loads a DSL program and then acts on
it. A generator takes the DSL program and transforms it into
an artifact that can run directly on the target platform. Usu-
ally, a distinction is made between external versus internal
DSLs. An external DSL is represented in a separate language
to the main programming language it’s working with. An
internal DSL is represented within the syntax of a general-
purpose language [3, 16].

A DSL consist of the following main elements. The
abstract syntax defines the vocabulary of concepts provided
by the language and how they may be combined to create
models. The concrete syntax defines the notation that facili-
tates the presentation and construction ofmodels or programs
in the language. It can be visual or textual. Well-formedness
rules (static semantics) defines additional constraint rules on
abstract syntax that are hard or impossible to express in stan-
dard syntactic formalisms of the abstract syntax. Semantics
includes the definition of the meaning of the concepts in the
abstract syntax.

Typically, we can distinguish two different roles: the
language engineer and the language user. The language
engineer is responsible for creating the language. The lan-
guage user is the person who uses the language to develop
applications.

One important design decision when developing domain-
specific languages is the use of corresponding libraries. In
fact, most programming languages have an associated core
library which is made available by all implementations of
the language. The inclusion of libraries helps to reduce the
complexity of the language itself and in addition provides
additional reuse of recurring program structures. The library
can be considered separate from the language or be treated
as part of the integrated whole.

A languageworkbench is an environment designed to help
people create new DSLs, together with high-quality tooling
required to use those DSLs effectively [3, 16]. A language
workbench provides a set of tools for supporting the language
engineer in creating a DSL.

Transformations are defined to transform DSL code writ-
ten in a concrete syntax to another model representation or
to (programming language) code that can be executed on a
specific platform.

A platform consists of software building blocks that
provide functions to implement the DSL’s semantics in
a specific system environment. The platform consists of
generic platform artifacts, such as programming languages
and frameworks (for example based on the Enterprise Jav-
aBeans (EJB) technology or Microsoft.NET), as well as
DSL-specific platform artifacts (i.e., parts of the software
platform that need to be implemented or integrated into a

Fig. 5 Model transformation pattern

generic platform just to support the DSL). DSL-to-platform
transformations are conducted by a generator component
and result in generated artifacts (such as Java, C#, or Ruby
code for example) based on the respective platform (see, e.g.,
[19–21]). However, after transforming DSL code written in a
concrete syntax to platform-specific artifacts, the remaining
transformations are typically executed by standard tools of
the target platform, such as compilers or interpreters (exam-
ples are a C compiler or a Tcl interpreter).

DSL code written in a concrete syntax can be trans-
formed to another model representation or to code that can be
executed on a particular platform. A DSL to platform trans-
formation pattern is shown in Fig. 5. The generator takes as
input a DSL program and transforms it into a generated arti-
fact by using predefined transformation definition. The DSL
program conforms to the DSL (grammar), while the gener-
ated artifact conforms to the platform metamodel. Typically,
this is an example of a model-to-model transformation [22].
Alternatively, the generator could directly generate code, a
model-to-text transformation.

3 Modeling concerns for parallel computing

In this section, we discuss the motivation for adopting
domain-specific languages for mapping parallel algorithms
to parallel computing platforms. In Sect. 3.1, we present the
requirements formodeling in parallel computing. InSect. 3.2,
we discuss the need for automated support.

3.1 Modeling requirements for parallel computing

Usually, it is not trivial to map the parallel algorithm to the
parallel computing platform due to the size and complexity
of the algorithm and the platform on which the algorithm is
mapped. As such, the problem of mapping a parallel algo-
rithm to parallel computing platform cannot be reduced to the
level of programming only. To communicate and analyze the
design decisions regarding the mapping process, it is impor-
tant to define useful modeling and design abstractions. To
derive the requirements for modeling in parallel computing,
we need to consider the activities that are involved in parallel
computing. As shown in Fig. 6, we identify the following
important activities with respect to the mapping of parallel
algorithm to the parallel computing platform.
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2. Algorithm Analysis and 
Design

4. Map Algorithm to Logical 
Platform

3. Logical Configuration 
Platform Analysis and Design

1. Physical Platform 
Analysis and Design

Fig. 6 Lifecycle for mapping parallel algorithm to parallel computing
platform

3.1.1 Modeling the physical computing platform

Usually, the parallel computing platform is large and consists
of thousands or tens of thousands of nodes. In current prac-
tices, the parallel computing platform is rarely modeled and
usually only the scale is provided. Since the parallel comput-
ing algorithm needs to be mapped on the physical computing
platform, it is important to represent the platform explicitly
and reason about the mapping process.

3.1.2 Modeling the decomposition of parallel algorithm

The parallel computing algorithm has a direct impact on the
speedup and efficiency of the computation. Each parallel
algorithm usually includes both serial and parallel sections.
Serial sections can only run on one node, while parallel
sections can be allocated to multiple nodes and as such
executed in parallel. In this context, the Amdahl’s law
defines that the serial parts of an algorithm (program) limit
the overall speedup of the computation. Amdahl’s formula
is defined as follows [23]:

S(n) � 1

Ts + Tp/n

where T s is the time needed to execute the serial part of the
algorithm, Tp is the execution time of the parallel part of the
algorithm and n is the number of processors.

Many different parallel algorithms exist which have dif-
ferent properties and different ratio of serial and parallel
parts. Figure 7 shows, for example, the speedup of four
different algorithms with different parallel sections. Since
the Amdahl’s law has a clear impact on the speedup, it is
important to analyze a parallel algorithm and represent the
decomposition including parallel and serial sections.

Fig. 7 Amdahl’s law illustrated for four different algorithms with dif-
ferent ratios of parallel sections

3.1.3 Modeling the logical computing platform

As stated before, the logical computing platform defines
the communication structure among the physical nodes. For
the same physical configuration platform, many different
logical configuration platforms can be defined. Since dif-
ferent logical configuration platforms will require different
communication structures among the physical nodes, the
communication overhead will be also different. On its turn,
this will impact the overall speedup of the computation. The
Amdahl’s law represents an upper limit of the speedup given
a parallel computing algorithmwith its parallel code ratio and
the number of nodes in the physical configuration. In practice
the real speedup will be lower than the predicted value based
on Amdahl’s formula because of the parallel communication
overhead. The challenge as such is to define a logical con-
figuration which is close to the theoretical limit as defined
by the Amdahl’s formula. Thus, separate from the model-
ing approach for physical configuration platform, it is also
important to provide models for reasoning about the possible
logical configuration platforms.

3.1.4 Modeling the mapping of parallel algorithm
to the code

Once the logical configuration has been defined, the cor-
responding code needs to be implemented. Two important
issues can be identified here. First of all, the code for the
parallel computing algorithm needs to be implemented based
on the selected logical configuration. Second, the developed
code should be allocated and deployed on the nodes of the
parallel computing platform. For developing the code, the
decomposition of the algorithm into serial and parallel parts
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will be used. Further, the allocation as defined in the logical
configuration will be used to realize the deployment over the
physical nodes. To communicate about the mapping of the
parallel algorithm to the code, it is important to represent
this explicitly.

3.2 Need for automated support

As discussed above, the mapping of the parallel algorithm
requires the analysis of the algorithm, writing the code for
the algorithm and deploying it on the nodes of the parallel
computing parallel computing platform. This mapping can
be done manually in case we are dealing with a limited num-
ber of processing nodes. However, the current trend shows
the dramatic increase of the number of processing nodes for
parallel computing platforms with hundreds of thousands of
nodes providing petascale to exascale level processing power
[7]. As a consequence, mapping the parallel algorithm to
computing platforms has become intractable for the human
parallel computing engineer. With the increased complexity
also evolution of the requirements need to be considered.
Once the mapping has been realized, in due time the parallel
computing platform might need to evolve or change com-
pletely, or different algorithms might be required. In that
case, the overall mapping process must be redone requiring
lots of time and effort.

After the code implementation,we can allocate and deploy
the developed code to the nodes of the parallel computing
platform. In our example of Fig. 1, we have assumed a simple
configuration consisting of four nodes. Here we could easily
decide on the strategy for sending, receiving and collecting
the data over the nodes. However, one can easily imagine
that the code for the larger configurations such as in petascale
and exascale becomes dramatically larger, the strategy for the
data distribution will be much more difficult [7] and likewise
the effort to implement the codewill bemuch higher. Because
of the size and complexity, implementing the code as such
is not trivial and can become easily error-prone. In case of
platform evolution or change, the whole code needs to be
substantially adapted or even rewritten from scratch.

4 Domain-specific language framework

In the previous sections, we have described the needs for
modeling in parallel computing and indicated that DSLs
substantially support the realization of these goals. To this
end, we describe ParDSL, the domain-specific language
framework that integrates four different languages and a com-
mon library for specifying physical configuration, algorithm
decomposition, logical configuration and algorithm-to-code
mapping. Each DSL addresses specific concerns of a partic-
ular domain. In the following subsections, we first describe

the adopted approach for developing theDSL framework and
then discuss each DSL in more detail.

4.1 Approach for developing DSL

It appears that the systematic development of DSLs is not
tackled in depth. Most of the DSL research seems to have
focused on case studies and experience reports for the
development of individual DSLs, design approaches and
implementation techniques for DSLs, and the integration of
DSLs with other software development approaches, such as
programming languages for embedding DSLs, model-driven
software development or component-based software devel-
opment [11].

To address the needs for a systematic development
approach for DSLs, Strembeck and Zdun [11] conducted and
analyzed many projects in which they built different types
of DSLs. From these experiences, they have identified and
described the common activities that are needed when engi-
neering a DSL. They distinguish among the following four
main activities with their sub-activities:

1. Define the core language model of the DSL

The goal of this sub-process is the identification and inte-
gration of domain abstractions that will form the basis of the
DSL. For complex domains, it is recommended to follow a
domain analysis method, such as domain-driven design for
the identification of domain abstractions [24].

2. Define the DSL language elements’ behavior

The behavior definition of a DSL determines how the lan-
guage elements of the DSL interact to produce the behavior
intended by the DSL designers. For this, languagemodel ele-
ments are selected, the required behavior of these elements
is modeled, and the DSL’s behavior is checked.

3. Define the concrete syntax(es) of the DSL

Symbols for languagemodel elements are defined together
with the DSL production/composition rules. The DSL con-
crete syntax is defined and checked with respect to correct-
ness and completeness from the point of view of domain
experts.

4. Integrate DSL artifacts with the platform/infrastructure

DSL artifacts are mapped to the platform. For this, all
features needed for the platform are identified and imple-
mented and the required DSL-to-platform transformations
are defined.

According to Strembeck and Zdun [11], these activities
form a micro-process that can be tailored to various influ-
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Fig. 8 Approach for developing DSL framework

encing factors of an actual DSL project. In essence, we have
tailored and adopted the above steps to develop the DSL
framework. The process that we have followed is shown in
Fig. 8. The DSL development was an explorative and itera-
tive process that followed after our earlier studies on parallel
computing [25, 26].

For deriving the important concerns for mapping parallel
tasks to parallel computing platforms, we have carried out
a thorough domain analysis process. Domain analysis can
be defined as the process of identifying, capturing and orga-
nizing domain knowledge about the problem domain with
the purpose of making it reusable when creating new sys-
tems [27]. Conventional domain analysis methods consist
generally of the activitiesDomain Scoping andDomainMod-
eling:Domain Scoping identifies the domains of interest, the
stakeholders, and their goals, and defines the scope of the
domain. Domain Modeling is the activity for representing
the domain, or the domain model. The domain model can be
represented in different forms such as object-oriented lan-

guage, algebraic specifications, rules, conceptual models or
a DSL. The scope of the domain that we focus on is shaped
by the four different concerns that we have described before.
Hence, the domain scope for our purposes included the liter-
ature on parallel computing in general, such as for example
[8, 28–30]. Once the domain model is ready it can be used to
develop the DSLs (Define DSL Language Models). Hereby,
each domain abstraction is selected and checked whether it
will be part of the language or a separate library. In case it
is decided to reserve its realization for the library, this will
be implemented later. Otherwise it will be part of the DSL.
The languagemodel constraints (static semantics) are defined
and the overall language model is checked with respect to
completeness and correctness. Iterations might be required
to enhance and/or complete the language model. The next
step is the definition of the DSL behavior, which determines
how the language elements of theDSL interact to produce the
behavior intended by the DSL designers. Subsequently, the
concrete syntax of the DSLs are defined, together with the
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Fig. 9 ParDSL architecture: language framework consisting of 4 core DSLs together with Library of reusable program elements

composition rules and the corresponding checks. The final
activity is the definition of the model transformations based
on the DSL.

The resultingDSL framework is shown in Fig. 9. As stated
before the framework consists of 4 DSLs and a reusable
library. In the following subsections we describe each DSL
and the library separately.

4.2 Physical configuration DSL

The Physical Configuration DSL is constructed to define the
physical parallel computing platform features for mapping
the parallel algorithm. TheDSL defines the explicit notations
for Node, ProcessingUnit, Network,MemoryBus andMem-
ory. The result of the domain analysis process and the abstract
syntax is given in Fig. 10. Physical Configuration includes
the Nodes and the Network among nodes of the comput-
ing platform. Network has attribute topology that represents

the physical architecture topology andperformance attributes
like bandwidth, throughput, and latency. Node includes Pro-
cessing Units, Memory and Bus. Processing Unit has clock
rate and precision attributes. Bus has attribute latency for
delivering data from memory to processing units. Memory
has attribute size for storage size.

Based on the abstract syntax Fig. 11 shows the provided
corresponding grammar specification (left), an example
physical configuration specification (right top), and an exam-
ple physical configuration that is put in library (right bottom).

One of the key challenges in developing a DSL is defining
the proper scope of the DSL. We have deliberately chosen to
have a generic enoughDSL that can cover a broad set of com-
puting platforms. TheDSL framework focuses on supporting
the mapping of parallel computing algorithms to parallel
computing platforms. The provided DSLs support this pro-
cess and help to find the feasible deployment alternative.
In essence for the physical computing platform, the domain
experts only need to provide the properties of computing
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Fig. 10 Physical configuration
DSL abstract syntax

PhysicalConfiguration

Node Bus
  latency: Integer

Network

  topology: TopologyType
  bandwith: Integer
  throughput: Integer
  bitErrorRate: Integer
  latency: Integer
  jitter:Integer

Memory
  size: Integer

Processing Unit
  clockRate: Integer
  precision: Integer

1..n 1..n
<<Enumeration>>

TopologyType

 Ring
 Mesh
 Torus
 Star
 Full
 Line
 Bus

<<Enumeration>>
PrecisionType

32Bit
64Bit
128Bit

Fig. 11 Grammar specification of the physical configuration DSL (left), and example specification of physical configuration using the DSL (right)
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OperationType
  name: String

Algorithm
  name: String

operation

SectionType
  name: String

sections

ParallelSectionSerialSection
  code: String

1 .. n
1 .. n

Fig. 12 Algorithm decomposition DSL abstract syntax

nodes and the network configuration. The DSL can be fur-
ther enriched with more refined computing platform details
(e.g., deep memory hierarchies, temporary buffer space and
parallel filesystems). This would make the DSL more spe-
cific and hence less reusable. If needed though the DSL can
be easily extended for this functionality. Furthermore, the
specific details or customizations of the DSL can be realized
using generators that generate the platform specific concerns.
However, it should be noted that the DSL framework has

been designed as a coherent set of DSLs that are aligned to
each other. A change to the Physical Configuration DSL or
any other DSL in the framework would require checking and
enhancing the other DSLs in the coherent language frame-
work.

4.3 Algorithm decomposition DSL

To implement a parallel algorithm, it is necessary to decom-
pose the algorithm into separate sections and define which
sections are serial and which can be run in parallel. Further,
each section of an algorithm realizes an operation, which
is a reusable abstraction of a set of instructions. For serial
sections the operation can be custom to the algorithm. Paral-
lel sections typically include common operations that can be
allocated and run on parallel on different nodes. Hereby, we
can identify for example the primitive operations Scatter for
distributing data to other nodes, Gather for collecting data
from nodes, Broadcast for broadcasting data to other nodes,
etc. Given these abstractions of serial and parallel sections,
in principle we could thus decompose each given algorithm
into these elements. Figure12 shows the correspondingAlgo-
rithm Decomposition DSL abstract syntax. Figure 13 shows

Fig. 13 Algorithm decomposition DSL and example specification

123



2918 B. Tekinerdogan, E. Arkin

Table 1 Common operations for parallel algorithms as included in the
library

Operation Description

Gather Each dominating node gets data from its dominated
nodes in a pattern

Scatter Each dominating node sends data to its dominated
nodes in a pattern

Collect A dominating node gets data from other dominating
nodes

Distribute A dominating node sends data to other dominating
nodes

Exchange All dominating nodes exchange data with each other
dominating nodes

Broadcast A dominating node sends data to all other nodes. In
general, the broadcast operation consists of
distribute and scatter operations

Serial Serial code block that runs on a single node

the grammar specification based on the abstract syntax and
an example specification for the matrix multiplication algo-
rithm.

In the abstract syntax, Algorithm consists of Sections
which are either a Serial Section or a Parallel Section. The
parallel sections are related to anOperation that is an abstrac-
tion of well-known operations (such as, for example, gather
and scatter). An analysis of the parallel algorithms in the lit-
erature shows that these use abstract well-known operations
[10] which can be used to describe the parallel algorithm. In
principle, we could define these operations also as elements
and thus keywords in the provided DSL. However, we have
chosen to provide succinct DSLs that can be easy to learn and
reuse. The various set of operations that are reusable will be
typically defined in the separate library. Table 1 shows, for
example, six operations that form part of different parallel
algorithms. These operations are predefined, implemented
and stored in the library so that these can be used when
describing existing or new parallel algorithms. Table 2 shows
an example set of parallel algorithms with the implemented
operations of Table 1. For example, the parallel algorithm
Matrix Transpose can be defined as a combination ofGather,
Exchange and Scatter operations. TheMatrix Multiply algo-
rithm consists of the operationDistribute, Serial, Collect and
Serial. Similar to these algorithms other parallel algorithms
can be in essence defined as consisting of these predefined
operations.

4.4 Logical configuration DSL

Figure 14 shows the abstract syntax of the logical con-
figuration DSL for modeling the logical configuration of
the parallel computing architecture. Logical Configuration
includes a set of Tiles which are either a Pattern or a Core.

Table 2 Example parallel algorithms expressed using abstract opera-
tions

Algorithm Operations

Matrix Transpose Gather; Exchange; Scatter

Matrix Multiply Distribute; Serial (multiply); Collect; Serial
(sum)

Array Increment Distribute; Collect; Serial (increment)

Complete Exchange Scatter; Exchange; Gather

Map Reduce Scatter; Serial (custom); Gather

Tile is an abstract class with the index values (i and j) within
the container pattern. Core includes the actual index values
for the tile. Pattern, which implements Operation defined in
the library, consists of tiles recursivelywhere someof the tiles
are labeled as dominating nodes. The recursive construction
of patterns with tiles derives larger logical configurations
with respect to the scaling process we refer to our earlier
paper [25]. For very large configurations such as in exascale
computing it is not feasible to draw this on the same scale.
Instead we define the configuration as consisting of a set of
tiles which are used to generate the actual logical configu-
ration. Pattern also includes the Communication definitions.
The speedup and efficiency values are calculated according to
the communication definitions with respect to the tiling. Fig-
ure 15 shows the grammar specification based on the abstract
syntax, and an example specification.

4.5 Algorithm-to-code DSL

Once the algorithm decomposition and the corresponding
logical configuration plan have been defined, the imple-
mentation of the algorithm can be started. In fact, the
algorithm-to-code DSL is defined as a combination of algo-
rithm decomposition and logical configuration DSLs. The
Parallel Section class includes the pattern implementations
with respect to the logical configuration. For Serial Section,
the code block is implementedmanually and inserted into the
section after generation of the parallel section patterns. Fig-
ure 16 shows the abstract syntax for the Algorithm-to-Code
DSL definitions for the algorithm-to-code DSL. Figure 17
shows the grammar specification together with the example
specification.

5 Model transformations using ParDSL

As stated before the adoption of DSLs has several benefits
including support for communication amongdomain experts,
higher productivity, support for quality validation and verifi-
cation, and automation. In essence each DSL can be used to
address one of the four corresponding concerns and likewise
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Fig. 14 Logical configuration
DSL abstract syntax LogicalConfiguration Tile

name: String

tiles

Pattern Core
Index Type
i: Integer
j: Integer

Communication
fromto

tiles

dominating

Fig. 15 Logical configuration DSL abstract syntax and EOL grammar specification

Fig. 16 Algorithm-to-code DSL
abstract syntax

Algorithm
  name: String

pattern

SectionType
  name: String

sections

ParallelSectionSerialSection
  code: String

1 .. n
1 .. n Tile

  name: String

Pattern Core

Communication
fromto

provide the benefits that a DSL in general offers. However,
since the four DSLs have been developed as a coherent set
within the DSL framework the most benefit will be achieved
in case these are used in combination. In addition, it should
be noted that we have shown the manual usage of the DSLs

to specify the four concerns and did not use the full benefit
of the DSLs enabling automated processing. For this we will
use model transformation techniques as it has been defined
in the model-driven development community [15, 16]. Fig-
ure 18 shows the process for the integrated usage of the DSLs
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Fig. 17 Algorithm-to-code DSL abstract syntax

and the adoption of model transformations for supporting the
selection of feasible parallel algorithm deployments.

In the figure, three different actors have been defined
including system engineer, parallel algorithm engineer, and
domain engineer. These actors represent roles and could
be played by one or multiple physical persons. The sys-
tem engineer is the person who will be using the physical
configuration DSL to describe the physical configuration of
the computing platform. The parallel algorithm engineer
is an expert in analyzing a parallel algorithm and describ-
ing it using the Algorithm Decomposition DSL. Finally, the
domain engineer is the person who can define reusable pro-
gramming elements to support the overall process. In the
process of Fig. 18, these are the initiating manual steps for
defining the feasible deployments. The developed models by
the three stakeholders are in fact relatively independent and
the transition overhead is minimized. However, in case the

parallel algorithm engineer requires additional reusable pat-
terns, rules or templates, then the domain engineer needs to
enhance the reusable assets with the required patterns, rules
or templates.

The subsequent activities of the process are automated
and use a set of model-to-model and model-to-text trans-
formations using the corresponding generators, including
Logical Configuration Plan Generator, Algorithm-to-Code
Model Generator and Code Generator. These support the
automated generation of the logical configuration plan, algo-
rithm to code model, and the code. We explain each of these
steps in more detail in the following subsections.

5.1 Logical configuration plan generator

The Logical Configuration Plan Generator takes as input the
Physical Configuration, Algorithm Decomposition Model

123



ParDSL: a domain-specific language framework for supporting deployment of parallel algorithms 2921

Physical 
Configuration

Algorithm 
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Model
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Library Model
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Logical Configuration Plan
Generator (M2M)

Algorithm to Code Model
Generator (M2M)

Algorithm to Code 
Model (PSM)

Code
Generator (M2T)

Code

defines defines

Fig. 18 Domain-specific language framework transformation chain

and Library Model to generate the Logical Configuration
Plan. The transformation is carried out in two steps. First, the
Algorithm Decomposition Model is merged with the Phys-
ical Configuration to generate an algorithm model which
includes the physical computing platform features like num-
ber of processing units and dimension size of the platform. In
the second step, the logical configuration is generated from
the algorithm model by using the operation patterns defined
in the library model.

The logical configuration plan defines the number of pro-
cessors and the required primitive tiles and communication
patterns that will be selected from the reusable library. The
primitive tiles and communication patterns are selected based
on the scale factors that are calculated using the logical
configuration size. The scale factor is the ratio of a logi-
cal configuration size to another logical configuration size.
For example, a 6×6 logical configuration has a scale fac-
tor of 3 to a 2×2 logical configuration. Hereby, we can
construct a 6×6 logical configuration using a 3×3 logical
configuration whereby each node consists of a 2×2 logical
configuration. To calculate all the scale factors of a logical
configuration, we adopt prime factorization. Prime factoriza-

tion is the decomposition of a composite number into smaller
primitive numbers. The primitive tiles with the primitive size
numbers canbe scaled to larger logical configuration byusing
prime factors as scale factors. For example, if we have a 12×
12 torus topology, the prime factors of 12 are 2, 2 and 3. As
such, we can use a 3×3, and two 2×2 primitive tiles to
construct the entire logical topology.

The pseudo code for the logical configuration plan gener-
ator is shown in Fig. 19. To generate the logical configuration
plan, each parallel section is processed through transforma-
tion steps. First the prime factors are calculated to get the
scale factors of the physical configuration (line 4). For each
factor the patterns which can be used for the given operation
of the section are found (line 7) from the library. According
to the scaling strategy, the logical configuration patterns are
created bottom up or top down (lines 8–13). After selecting
the scaling strategy, the pattern is scaled to the physical con-
figuration size (line 14), and then the communications are set
for the scaled pattern (line 15).

5.2 Algorithm to codemodel generator

After the generation of the logical configuration, the algo-
rithm to code model which includes the implementation
for each algorithm section must be generated. The parallel
sections are generated with respect to the logical configu-
ration plan. The serial sections are implemented manually
by the parallel algorithm engineer. Thus, this step of the
transformation step can be considered as a semi-automatic
transformation process.

Figure 20 shows the pseudo code for algorithm to code
model generator. The transformation steps are done for each
section of the algorithm. If the algorithm section is paral-
lel, the logical configuration pattern is transformed into the
algorithm code pattern (lines 4–6). The structural elements
of the algorithm code pattern are correlated to the logical
configuration plan pattern. If the algorithm section is serial,
the manual code parts are inserted to the serial section code
part (lines 8–10).

5.3 Code generator

Code generator generates the target source code of the
parallel algorithm from the algorithm-to-code model. This
transformation is a model-to-text transformation, which uses
code templates. For different platforms, we can define dif-
ferent code templates. We have used the Xtext template
language to generate the source codes for the parallel algo-
rithms. The code is generated according to the patterns
defined in the DSL framework using loop structures and the
code parts are written according to the targeted platform.
The coding effort as such may change according to the target
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Fig. 19 Pseudo code for the logical configuration plan generator

Fig. 20 Pseudo code for the algorithm to code model generator

platform; however, the required effort is less than manually
writing the code.

In this article, we adopt the MPI programming model as
an example. We could have used a different programming
model; this would only require changing the implementation
of the code templates.

The template for model-to-text transformation rules to
generate MPI code is depicted in Fig. 21. The template uses
two template operations including section code generation
(lines 13–16) and pattern code generation (lines 17–29).
The main template part includes initial definitions (lines
1–3) and MPI initializations (line 4). After the initializa-
tions, for each section the section code generation operation
is called (lines 6–9). The section code generation operation
calls pattern code generation operation. Within the pattern
code generation operation, the codes for data communica-
tions is generated usingMPI send and receive methods (lines
19–26). The serial code parts for the tiles are inserted in the
final part of the template (lines 27–29).

6 Implementation and toolset

Each DSL has two basic actors, the language engineer who
develops the DSL, and the language user who uses the devel-
oped DSL. In this section, we describe the toolset for both
the language engineer and language user. In Sect. 5.1, we
present the adopted tools for developing ParDSL by the lan-
guage engineer. Section 5.2 describes the tools that are used

by the language users, i.e., domain experts, to derive feasible
deployment alternatives.

6.1 Language engineer toolset

For developing theDSL framework,we have used theEclipse
framework [31] including the Xtext Language Generator
[32], Emfatic [33] and EuGENia [34] tools. Xtext Language
Generator is used to generate textual domain specific lan-
guage. Emfatic is used to define the visual syntax definitions,
and EuGENia is used to generate visual syntax using mod-
els from metamodels. Figure 22 shows the activities of the
Language Engineer using the Language Engineering Toolset
to create the Algorithm to Platform Mapping Toolset. To
develop a DSL, the language engineer writes first the gram-
mar using the Xtext language tool. The grammar definitions
(see Sect. 4) form an input for the Xtext Language Generator
which extracts the ecore models to be used for generating
the visual syntax. In parallel, the Xtext Language Genera-
tor generates the textual DSL plug-in for the language users
toolset. The language engineer also defines the visual syntax
using theEmfatic tool [33]. Emfatic is a text editor supporting
navigation, editing and conversion of Ecore models, using a
compact and human-readable syntax [33]. Emfatic updates
the ecoremodels using the required tag definitions forGraph-
ical Modeling Framework (GMF) [35]. The updated ecore
models are provided to EuGENia [34] and EuGENia gen-
erates the visual syntax plug-in. EuGENia is a tool that
automatically generates models needed to implement a GMF
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Fig. 21 Part of the code template for generating MPI code

Fig. 22 Activities of the language engineer

editor from a single annotated Ecore metamodel. Finally,
both the textual DSL and visual syntax is exported as Eclipse
plug-in to be used by the language users.

6.2 Language user toolset

The language user toolset includes the tools for realizing the
four concerns including modeling the physical computing
platform and modeling the algorithm decomposition. Fur-
ther it provides tools for generating the logical configuration
and the algorithm deployment code. Figure 23 shows the
conceptual model of the toolset for the language users. As it
can be observed, there are three different language users, that
is, the domain engineer, the system engineer and the parallel
algorithm engineer. The domain engineer is responsible for
defining reusable language elements and storing this in the
library using the Library Definition Tool. The system engi-
neer is responsible for defining the physical configuration
using the Physical Configuration Editor. Finally, the parallel
algorithm engineer is responsible for defining the algorithm
decomposition using the Algorithm Decomposition Editor.
The output of these activities, that is, Library Ecore Model,
Physical Configuration Model and Algorithm Decomposi-
tion Model are provided as an input to the Transformation
Chain which generates the required code. In the following,
we explain each tool in more detail.

6.2.1 Library definition toolset

Figure 24 shows theLibraryDefinitionToolset including four
panels: (1) Primitive Tile Definition Panel, (2) Pattern Defi-
nition Panel, (3) Operation Definition Panel and (4) Review
Panel. The Primitive Tile Definition Panel shows the prim-
itive tile that is being defined or selected from the library.
The Pattern Definition Panel shows the communication pat-
terns defined for each primitive tile. TheOperationDefinition
Panel shows the adopted operations for the selected primitive
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Fig. 23 Conceptual model of the tools for realizing ParDSL

Fig. 24 Library definition toolset

tile and at the bottom the assigned communication pattern.
Finally, the Review Panel shows the visual representation of
either the selected primitive tile or selected communication
pattern. The example shows the selection of the primitive tile
named “A3,” for which the “A3E” communication pattern
has been selected. The Review Panel shows the visual rep-
resentation of the A3E communication pattern. The defined
primitive tiles, patterns and operations can be stored in the
library so that these can be reusedwhen defining themapping
of parallel algorithm to a configuration.

6.2.2 Physical configuration editor

Figure 25 shows the Physical Configuration Editor with its
four panels: (1) Project Explorer, (2) Outline Overview, (3)

Editor Panel and (4) Palet Panel. Project Explorer shows the
defined projects to define different physical configuration
models. Outline Overview shows the outline of the editing
physical configuration. In the Editor Panel, System Engineer
can edit the physical configuration using the DSL structures
which can be selected and easily added to the model by drag
and drop. The Palet Panel includes these DSL structures. In
the example, a physical configuration with two nodes and a
network is defined. Each node has 4 processing units and a
memory with a bus. The DSL framework that we present is
mainly textual, so that the scalability can be handled easily by
changing the number of elements in the DSL specification.
The tool, however, also provides a visual editor for defin-
ing the physical configuration which can be used if found
practical.

6.2.3 Algorithm decomposition editor

Algorithm Decomposition Editor is used to define the algo-
rithm decomposition by the parallel algorithm engineer.
The Eclipse Ecore Exeed Editor [36] is used to define the
algorithm decomposition. Figure 26 shows the Algorithm
Decomposition Editor. The figure shows the Matrix Multi-
ply algorithm consists of twomain sections. The first section,
named as MultiplyBlock, includes a parallel section that
implements Scatter operation in library, and a serial section
which a serial multiplication code will be implemented man-
ually. The second section, named as SumBlock, includes a
parallel section that implements Gather operation in library,
and a serial section which the results will be summed to gen-
erate the result.
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Fig. 25 Physical configuration
editor

Fig. 26 Algorithm
decomposition editor

6.2.4 Transformation toolset

After the definition of the Algorithm Decomposition Model
and the Physical Configuration Model, the transformation
chain is executed. Transformation Toolset implements the
model transformations explained in Sect. 4. The Epsilon
Transformation Language (ETL), Epsilon Merging Lan-
guage (EML) and Epsilon Generation Language (EGL)
[37] are used for defining the transformation rules. In the
transformation chain, the Logical Configuration Model and
Algorithm-To-Code Model are generated in order. The Log-
ical Configuration Model includes the patterns that are used
in the parallel sections of the algorithm decompositionmodel
with respect to the physical configuration model. The core
definitions and communication definitions are generated for
each parallel section operation. In a subsequent transforma-
tion, Algorithm-To-Code model is generated including the
code implementation for each serial section together with
the pattern definitions for each parallel section. This model

is ready for the model-to-text transformation to generate the
final parallel code.

When we transform the Algorithm-To-Code model to the
final code, a C code using MPI [38] is generated as shown
in Fig. 27. Before starting the code, it is required to initial-
ize the MPI configuration and related variables (line 3). For
succinctness, we have omitted the code in the figure. The
algorithm will run in parallel on four nodes. To distinguish
among the nodes, the variable rank defines four different ids
including 0, 1, 2, and 3. From lines 4 to 8, the code for node 0
is defined which sends the sub-matrices to the other nodes (1,
2, 3). Lines 9–14 define the code for receiving the matrices in
node 1. A similar code is implemented for the nodes 2 and 3
(not shown in the figure). Line 16 defines a so-called barrier
to let the process wait until all the sub-matrices have been
distributed and received by all the nodes. After the distribu-
tion of the sub-matrices to the nodes, each node runs the code
as defined in line 17–18 and, as such, multiplies, the received
sub-matrices. Once the multiplication is finalized the results
are submitted to node 0, which is shown in line 19–22 for
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Fig. 27 Example parallel code
of the matrix multiplication
algorithm code

node 1 (code for node 2 and 3 is not shown). Line 23–25
defines again the collection of the results in node 0. Line 27
defines again a barrier to complete this process. Finally, in
line 28–33 the results are summed in node 0 to compute the
resulting matrix C.

7 Evaluation of the DSL framework

In our earlier studies, we have presented the problem of
the deployment of parallel algorithms to parallel comput-
ing platforms [25, 26]. Hereby, we have evaluated several
algorithms to execute on multicore computer, a grid simula-
tion environment and a real-world grid platform. We have
used the Turkish Science e-Infrastructure (TRUBA) High
Performance and Grid Computing platform.We have run our
algorithms on 16 nodes which has Intel Xeon i5-2690 pro-
cessors. The physical platform is configured with a total 64
cores using Simple Linux Utility for Resource Management
(SLURM). The logical configuration alternatives of the algo-
rithms are generated using the physical configuration size of
64 cores (8×8). The results of the measured values for eval-
uation of four different algorithms are shown in Fig. 28. The
implementation codes are generated using the transforma-
tion rules explained in Sect. 5. To achieve the results, we
have run the program 10 times for each alternative and took
the mean value of these runs [26]. The implementation codes
are verified to run on such a grid system, but still it is needed
to evaluate for larger physical configuration sizes. For this

reason, we have also created a simulation environment using
SimGrid [19] and verified the generated codes.

The focus of these studies was on the allocation problem
itself, and we did not introduce any domain specific lan-
guage. Thereby we have evaluated our approach with respect
to the model transformations and effectiveness of the derived
feasible deployment alternatives. These studies showed that
the presented approach was feasible and is beneficial for
deriving feasible deployment alternatives. In this article, we
have explicitly focused on the design and development of
DSLs and the overall integration of these languages, which
we introduced for the first time. The evaluation of the DSL
framework requires a separate discussion independent of the
overall deployment approach. The main question here is to
which extent the DSL framework is effective and supports
the end user in describing the required models for solving
the algorithm deployment problem.

We have used the matrix multiplication algorithm during
the development of ParDSL. In addition, we have applied
our approach to three other representative set of parallel
computing algorithms to justify the external validity. These
algorithms are Array Increment [8], N-Body All Pair [10]
andMatrix Transpose [39] algorithms. The pseudo codes for
these algorithms are shown in Fig. 29.

Figure 30 shows the example library specifications for
physical configuration library, logical configuration library
and algorithm library. The specifications for the physical
configuration and algorithm decompositions are shown in
Fig. 31. The physical configuration and algorithm decom-
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Fig. 28 Measured execution time for four different algorithms with generated alternative implementations

Fig. 29 Parallel computing algorithms that were used to test ParDSL

position specifications are used to transform into algorithm
to code specifications and real code as shown in the trans-
formation chain of Fig. 18. After the transformations, the
algorithm to code DSL specification and real code is gen-

erated. The example representation for the array increment
algorithm of algorithm to code specification and MPI code
is shown in Fig. 32.
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Fig. 30 Library specifications (M1)

An important aspect in the evaluation of the DSL frame-
work is also the end-user perspective. However, since the
DSL framework is novel it does not have yet a sufficient
number of trained users to provide a statistical valid result.
As such, we have not been able to conduct formal interviews
with questionnaires to assess the effectiveness of the DSLs.
Instead, we have looked at theoretical studies in the literature
that provide an approach for evaluating DSLs from multi-
ple aspects. There are indeed a number of relevant studies
which can be used to assess novel DSLs [14, 18, 40, 41].
We applied the Framework for Qualitative Assessment of
DSLs (FQAD) which has been recently published [18]. The
framework is based on the ISO/IEC 25010:2011 standard,
and defines a set of quality characteristics for evaluating a
DSL including: Functional suitability, Usability, Reliability,
Maintainability, Productivity, Extensibility, Compatibility,
Expressiveness, Reusability, and Integrability. We have con-
sidered each perspective and evaluated each DSL of ParDSL.

Functional suitability refers to the degree to which a DSL
is fully developed and likewise includes all the necessary
functionality. On the other hand, DSL should not include
functionality that is not in the domain. According to the mul-
tiple case studies that we have carried out, we can claim that

ParDSL scores satisfactory on this point. We have been able
to specify all the problem specific functionality that is needed
for deriving feasible deployment alternatives for all the four
parallel algorithms that we have considered (Matrix Multi-
plication, ArrayIncrement, All-Pair and MatrixTranspose.).

Usability of a DSL is the degree to which a DSL can be
used by specified users to achieve specified goals. To analyze
usability, we have conducted informal interviews with mem-
bers at the company including senior engineers and senior
faculty members who are working in the domains related to
parallel computing. These persons were asked to assess the
overall usability of the four DSLs of ParDSL. It was indi-
cated that the languages are relatively simple but expressive
and can be relatively easily learned. The users mentioned
that the separation of the languages for addressing different
concerns was helpful. The current users were using a single
language in which they have to cope with the different con-
cerns in the same program which increased the complexity
and reduced the understandability and maintainability. The
provided DSLs of ParDSL by themselves were found easy to
understand, and it was indicated that these could indeed be
adopted by different stakeholders. This was considered as an
important benefit. Yet, the lack of documentation, besides of
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Fig. 31 Algorithm implementations (M1)

a corresponding PhD thesis, was found weak. For the shift to
a new but better platform, such as ParDSL additional training
and planning the organization will be required. We plan to
improve the usability in our future work by addressing the
required documentation concerns.

Reliability of a DSL is defined as the property of a lan-
guage that aids producing reliable programs. ParDSL has
been developed using the Eclipse environment. Each lan-
guage has an editorwith the default editing features including
autocomplete. The languages are defined according to the
well-defined principles [16] and the languages have precise
semantics. TheEclipse editor provides all the required instru-
ments for debugging and handling code errors. In our earlier
studies, we have already provided a full quantitative analysis
on the reliability of the allocation process [25, 26].

Extensibility refers to the degree to which a language has
mechanisms for adding new features. The language frame-
workwith the separateDSLs thatwe have presented has a low
degree of extensibility because we do not provide embedded
mechanisms to users for extending the languages with new
functionality. In case of novel functionality that requires the
change of a DSL then the DSL needs to be redeveloped. This
by itself is not a very difficult problem for language devel-
oper, but it is a concern for language users. On the other
hand, since we believe that the functionality of the language

framework is high the need for extendibility will be low. The
library that we have provided however has high extendibility
because predefined patterns and code can be stored easily in
the library thereby extending the overall functionality.

Integrability defines how easily a DSL can be integrated
with other languages and modeling tools. We have devel-
oped the language framework as a plug-in within the Eclipse
framework. The Eclipse platform allows the developer to
extend Eclipse applications like the Eclipse IDE with addi-
tional functionalities via plug-ins. Integration of the language
with other languages can be done using the Exlipse IDE and
the overall OSGI component model.

Extensibility defines the degree to which a language has
generalmechanisms for users to add new features. For adding
new features to the languages, the language developer toolset
can be used and the language can be easily extended. This is
of course also the benefit of the Eclipse and the related tools
that we used as a language workbench.

Maintainability defines the degree to which a language
is easy to maintain. DSLs can be altered and new concepts
and concept extensions can be added. The language frame-
work has been carefully design regarding the separation of
concerns principle. This has led to a modular structure of
the overall language framework as well as within the DSLs.
Maintenance also requires that the languages are understand-
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Fig. 32 Algorithm-to-code and generated code DSL implementations for array increment algorithm

able. The DSLs in the language framework directly model
the concepts as defined in parallel computing and hence can
be easily understood. For maintainability, it is also important
that new features can be added easily. This relates also the
extensibility criteria that we have discussed above.

Productivity of a DSL refers to the degree to which a lan-
guage promotes programming productivity. Productivity is
a characteristic related to the amount of resources expended
by the user to achieve specified goals. Productivity can be
increased because of different reasons in ParDSL. First of
all, the languages are high-level domain-specific languages

that adopt the concepts as defined in the parallel computing
domain. Hence, the required physical computing and the par-
allel computing algorithm can be developed quite quickly.
Further, ParDSL provides the generators that automate the
development of the logical configurations as well as the code
that is required. Deriving the space of possible logical con-
figurations for a larger physical computation platform would
take a lot of time and in general simply be not tractable for
the human engineer. Productivity in this context is largely
achieved. Finally, productivity is also supported since an
important aspect of the ParDSL framework is the adoption
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of a library that includes reusable patterns and code for mod-
eling the parallel computing system.

Compatibility defines the degree to which a DSL is com-
patible to the domain and development process. The language
framework that we have provided is agnostic to the develop-
ment process. In fact, after the physical computing platform
and the decomposition of the parallel algorithm are defined,
most of the process is automated.

Reusability is defined as the degree to which a language
constructs can be used in more than one language. The spec-
ifications that are defined in ParDSL can be reused in the
overall environment. This counts also for the generated arti-
facts. In addition, the library includes the elements that can
be imported and reused in the specifications of the four dif-
ferent languages. If needed, new elements can be added to
the library for increasing the number of reusable elements.

Expressiveness is defined as the degree towhich a problem
solving strategy can be mapped into a program naturally.
In other words, expressiveness is the relation between the
program and what the programmer has in mind. Hereby it is
important that there is a one-to-one correspondence between
concepts and their representation in the language. Further
the right abstraction level must be selected so as not to use
too generic or too specific concepts. The DSLs that have
been developed are based on a thorough domain analysis
wherebywe havemodeled each concept in the corresponding
metamodels of the languages.Wecan state that there is indeed
a one-to-one correspondence between the identified concepts
and the representations in the language. The abstraction level
of the elements has been carefully defined to be usable for
the developer. The language elements are expressive enough
to specify the problem, while too specific details are handled
by the generators.

8 Related work

There are several modeling approaches for parallel comput-
ing. Some of the approaches adopt existing UML profiles
which are used for similar computing platforms like embed-
ded systems, real-time systems. Gamatié et al. [29] define a
model-driven design framework, named as GASPARD, that
generates code from MARTE models for massively parallel
embedded systems. GASPARD supports the engineers for
formal verification, simulation and hardware synthesis. Etien
et al. [42] presents a model-driven transformation approach
to design large-scale parallel systems with large languages
by decomposing the complex transformations into smaller
transformations within GASPARD framework. They use the
separation of concerns principle and define a notation of
localized transformations. Yu et al. [21] use GASPARD2
framework to model high-performance embedded systems.
They address the correctness of the design using a formal

validation tool. Model transformations are used as a bridge
betweenUMLmodels and validationmethods. Baklouti et al.
[43] defines a solution to generate VHDL parallel configura-
tion from a model using MARTE profile (MARTE2VHDL).
Elhaji et al. [44] describe a methodology to model system
level Network-on-Chip (NoC) design. They use MARTE to
VHDL transformation (MARTE2VHDL) to generate source
code. Rodrigues et al. [45] give an approach to generate
OpenCL code from models using MARTE profile.

Some of the approaches are defined based on a domain-
specific language for parallel computing. Palyart et al. [46]
introduces MDE4HPC approach and the High Performance
Computing Modeling Language (HPCML) to help in deal-
ing with the complexity of the design by abstracting platform
dependent details. The structural and behavioral aspects are
defined and the code generation is done with metamodels
that conform to these aspects. I a another study Palyart et al.
[30] use MDE4HPC approach for high-performance numer-
ical computations. Zhen et al. [47] introduce the graphical
model-driven toolset, called ParDT, which enables modeling
the parallel application and transforming the model to source
code. The toolset supplies an Eclipse-based graphical model-
ing environment and translator to generateMPI source codes.
Mengmeng et al. [48] introduces a visual modeling toolset
for parallel application development. The Parallel Applica-
tion Visual Modling (PAVM) toolset is based on DSL tools
and supported by a model checker and code generator. Arora
et al. [49] define an approach to develop message passing
applications. They developed generative programming tools
with a domain-specific language, named Hi-PaL. The source
codes are compared to the manually written codes. Jacob
et al. [50] discuss a framework PPModel which is designed
and implemented as a graphical modeling tool for Eclipse
users and a domain-specific language named as tPPModel for
non-Eclipse users to facilitate the separation, mapping and
execution. Hernandez et al. [51] use domain-specific model-
ing for automating the development of scientific applications.
Pazel and Tibbitts [52] developed a visual development envi-
ronment tool BladeRunner to generate MPI applications.
They provide notations representing higher level abstractions
of MPI artifacts. DeVito et al. [53] defined Liszt, a domain-
specific language, for generating parallel code that run on
clusters, SMP and GPU. The solution is specialized for par-
tial differential equation solving and can transform model to
text to generate source code to support portability to hetero-
geneous computer platforms. SPIRAL [54] is another tool for
code generation using model-to-text transformations. SPI-
RAL introduces a model-driven code generation approach
rather than a DSL framework and is specialized for digital
signal processing algorithms. Franchetti et al. [55] used the
approach to generate discrete Fourier transformation algo-
rithm that run on multicore platforms.
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Table 3 Comparison of
modeling approaches

Modeling approach Property

Representation
format

Adopted
viewpoints

Model maturity Model
transformation

GASPARD Visual 7 viewpoints Executable M2M, M2T

MDE4HPC Visual 4 viewpoints Executable M2M, M2T

MARTE2VHDL Visual 3 viewpoints Executable M2M, M2T

MARTE2OpenCL Visual 7 viewpoints (2
customized)

Executable M2M, M2T

ParDT Visual 3 viewpoints Executable M2T

PAVM Visual 1 viewpoint Executable M2T

Hi-PaL Textual 1 viewpoint Executable M2M, M2T

PPModel Visual 1 viewpoint Executable M2T

BladeRunner Visual 1 viewpoint Executable M2T

Liszt Textual 1 viewpoint Executable M2T

SPIRAL Textual 1 viewpoint Executable M2T

SIMPAR Visual 1 viewpoint Blueprint M2T

ParDSL Visual, textual 4 viewpoints Executable M2M, M2T

Some approaches adopt UML-based modeling method-
ologies. Prasad and Gupta [56] have presented a UML-based
modeling framework, SIMPAR, for performance evaluation,
estimation and prediction of HPC systems. They use UML
activity diagrams to model the computation, communication
and operations of the parallel applications. They have stated
that the UML is insufficient for all HPC modeling needs.
Pllana and Fahringer [57] defined a custom UML profile
for performance oriented parallel systems. They extended
the UML building blocks to describe the important message
passing and shared memory paradigms in parallel program-
ming. Fahringer et al. [58] propose the Teuta toolset for
UML-based performance modeling of distributed and paral-
lel applications. The tool also supports semantic-basedmodel
checking and model traversing for generation of different
model representations. The performance predictions are done
by using a simulation model.

Table 3 shows the comparison of themodeling approaches
that we have described above. Hereby four different prop-
erties are distinguished including representation format,
adopted viewpoints, model maturity and model transforma-
tion. The representation format can be either textual or visual.
Adopted viewpoints represent the number of viewpoints that
is used in the approach. A viewpoint represents the template
for defining models based on particular concerns. Model
maturity can be either blueprint or executable. A blueprint
is a detailed model that can be used by human engineers
to derive more refined models. An executable is a model
that can be compiled and used by model compilers. Finally
model transformations can be model-to-model or model-to-
text transformations.

From the table, we can observe that the approaches except
Hi-Pal, Liszt and SPIRAL adopt a visual representation
format. For large-scale physical configurations however a
textual executable representation would be required. ParDSL
provides both a textual and visual representations which can
be transformed to each other easily. Hi-PaL, Liszt and SPI-
RAL provide textual representation format, but only adopt a
single viewpoint.

In the ParDSL framework,we have separated the four con-
cerns for mapping parallel algorithms to parallel computing
platforms and likewise developed four smaller DSLs. Each
DSL can be used by the corresponding stakeholder. The sys-
tem engineer will be responsible for developing the physical
configuration model, the library engineer for developing the
DSL library and the transformation modules, and finally, the
parallel algorithm engineer is the high-level end user will
define the decomposition of the parallel algorithm. Separat-
ing the concerns and the roles in the corresponding DSLs
substantially increases the usability and the productivity.

Almost all of the approaches focus on executable models
to generate source code, some of them also use model-
to-model transformations to generate intermediate level
models. In this sense, ParDSL is complementary to the other
approaches.

9 Conclusion

An important challenge in parallel computing is the mapping
of parallel algorithms to parallel computing platforms. This
requires several activities such as the analysis of the paral-
lel algorithm, the definition of the logical configuration of
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the platform and the implementation and deployment of the
algorithm to the computing platform. However, in current
parallel computing approaches very often only conceptual
and idiosyncraticmodels are usedwhich fall short in support-
ing the communication and analysis of the design decisions.

In this article, we present a domain-specific language
framework for providing explicit and precise models to sup-
port the activities for mapping parallel algorithms to parallel
computing platforms. The language framework includes a
coherent set of four domain-specific languages each of which
focuses on a particular activity of the mapping process. The
languages can be used by different stakeholders to model
the physical configuration, the decomposition of the parallel
algorithm, the logical configuration and the mapping of the
algorithm to the code. In essence each DSL can be used to
address one of the four corresponding concerns and likewise
provide the benefits that a DSL in general offers. The four
DSLs however are also a coherent set of DSLs to support
the overall purpose of optimizing and easing the deployment
of parallel algorithms to parallel computing platforms. As
such, the most benefit will be achieved in case the four DSLs
are used in combination. For this, we have defined logical
configuration plan generator, the algorithm to code model
generator and the code generator. With these generators we
were able to automate the overall process thereby supporting
the selection of a feasible deployment alternative. The frame-
work has been evaluated using four different representative
set of parallel algorithms and a qualitative analysis based on
aDSL evaluation framework. The presentedDSL framework
has covered all the important concerns for mapping parallel
algorithms to parallel computing platforms and also paved
the way for further research.

The DSL framework that we have presented considers
algorithms that are general purposewhich have not been opti-
mized for a particular computation platform yet. The DSL
framework thatwe present, the provided systematic approach
and the corresponding tools help to support the finding of the
feasible deployment of the given parallel algorithm to the
computation platform. The approach does not directly focus
on specific algorithms like the Canon’s algorithmwhich have
been specifically developed as an optimized parallel algo-
rithm that can be used on torus topologies. The generalmatrix
multiplication algorithm, for example, does not consider a
specific computing platform. With our approach, given the
details of the computation platform, the parallel algorithm,
can be analyzed and decomposed into serial and parallel
sections, which are then mapped to the given physical com-
putation platform. A future research that can be considered
is the more advanced analysis of algorithms that also take
communication patterns into account. This would be a con-
tribution by its own which we think is complementary to our
work.

In the presented approach, the selection of the feasi-
ble deployment configuration is defined at the application
development time. This is because we generate code that is
customized for the provided parallel algorithm and the prop-
erties of the parallel computation platform. In the code, the
adopted physical configuration parameters are fixed, but if
needed the code can be easily regenerated. An interesting
issue would be perhaps to decide on the number of nodes
or cores to use during run-time. This could be considered
complementary to our approach.

In this paper, we did not consider the application domain
context but focused on mapping parallel algorithms to
parallel computing platforms in particular. The selected algo-
rithms are well known in the parallel computing domain and
helped to understand the application of domain-specific lan-
guages formapping parallel algorithms to parallel computing
platforms. In the future, we will also focus on the broader
application domain context [59, 60] and also enhance our
framework to model more precise metrics like hybrid com-
munication environments and power consumption concerns.

This article has applied the DSL development and model-
driven development domains to the parallel computing
domain to solve a particular problem, that is, the deploy-
ment of parallel algorithms to parallel computing platforms.
Similar to the development of any other DSL or DSL frame-
work, we have scoped the domain for our purposes and it
is hard to conclude that the DSLs in the framework that we
have proposed are fixed. Different requirements might have
a different impact on each of the DSLs and the overall design
of the DSL framework as a coherent set of DSLs. Thus, in
this perspective our work could be considered as a selected
focus and experience in developing a DSL framework in the
parallel computing domain. On the other hand, we believe
that the DSL and model-driven framework should be defi-
nitely further explored and applied in the parallel computing
domain to refine the problems that we have addressed and to
elaborate and solve other problems in the parallel computing
domain.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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