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Abstract

Context awareness is a first-class attribute of today software systems. Indeed, many applications need to be aware of their
context in order to adapt their structure and behavior for offering the best quality of service even in case the software and
hardware resources are limited. Modeling the context, its evolution, and its influence on the services provided by (possibly
resource constrained) applications are becoming primary activities throughout the whole software life cycle, although it is
still difficult to capture the multidimensional nature of context. We propose a framework for modeling and reasoning on the
context and its evolution along multiple dimensions. Our approach enables (1) the representation of dependencies among
heterogeneous context attributes through a formally defined semantics for attribute composition and (2) the stochastic analysis
of context evolution. As a result, context can be part of a model-based software development process, and multidimensional
context analysis can be used for different purposes, such as non-functional analysis. We demonstrate how certain types of
analysis, not feasible with context-agnostic approaches, are enabled in our framework by explicitly representing the interplay
between context evolution and non-functional attributes. Such analyses allow the identification of critical aspects or design
errors that may not emerge without jointly taking into account multiple context attributes. The framework is shown at work
on a case study in the eHealth domain.

Keywords Context modeling - Context evolution - Reliability - Performance - Transient and steady-state analysis

1 Introduction

Software is increasingly pervading our daily life, as ever more
tasks that, up to few years ago, were performed by mechan-
ical devices are now delegated to software automation.
Beside this, the development of large bandwidth networks
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Context awareness is a prerequisite to enable adapta-
tion, which is the ability of an application to change its
structure and/or behavior in response to the context evolu-
tion [34], aimed at satisfying requirements. Context evolution
is the change of context information during the system life
cycle, from its requirement specification to implementation,
deployment, and execution.

In this respect, context and its evolution may affect the
quality of service (QoS) in terms of variations of non-
functional properties that may resultin (hopefully temporary)
violations of non-functional requirements (NFR) [16]. In
order to avoid such violations, a context-aware application
should be able to evaluate the QoS in the current execution
context, as well as to predict how the QoS varies with respect
to the context evolution.

The aim of this paper is the introduction of a framework
for: (1) describing and reasoning on heterogeneous context
attributes and their (isolated or combined) evolution, and (2)
modeling and analyzing non-functional properties of multi-
dimensional context-aware systems.

For the former goal, we introduce a unifying repre-
sentation of context based on a stochastic extension of
statecharts [26], where each state represents (a combination
of) context values and the probabilistic transitions represent
the context evolution. For the latter goal, we build on the
experience gained in model-based methodologies for non-
functional analysis of software systems, and we extend them
to the domain of context-aware applications.

Beyond what we show in this paper, the context modeling
approach we propose has several potential applications, both
during the software development process and after software
deployment:

— During the software development process, it can be
exploited to better allocate testing activities in order to
focus efforts on those context states where the system
stays longer, or it can be used to calibrate (hardware
and software) resources in each context state, possibly
in favor of those where the system sojourns longer.

In this paper, we show in Sect. 5 how to apply the pro-
posed context modeling to performance and reliability
analysis of software.

— After software deployment, it can allow to determine
whether the system and the underlying assumptions are
valid and conform to the stakeholder desiderata. In partic-
ular, it permits to answer questions such as: "Which is the
probability that a doctor’s device is in low-power mode
while the doctor is traveling from the surgery room to the
patient’s home?". This information can reveal, for exam-
ple, the inadequacy of the battery of the doctor device.
Or "What is the impact of the duration of the doctor’s
visit to the patients on other activities?". Just to make
another example, in the domain of cyber-physical pro-
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duction systems (CPPS), it can help to answer questions
such as: "Which is the probability that, while machine A
is in its self-maintenance phase, the operator is exactly
in the same room?", or "Which is the probability that the
human operator is in the factory and not at home while the
machine A turns its status in self-maintenance phase?".
This kind of prediction helps to understand whether the
current operator schedule is acceptable for a specific
CPPS.!

In this paper, first we provide a quantitative context anal-
ysis methodology whose results can be evaluated per se.
Second, we show how our approach can be combined with
other engineering activities like model-based NFR analyses
to answer questions like: "What happens to non-functional
attributes if context evolves along a certain trend?", or "Does
the designed adaptation strategy permit to guarantee NFR
over time?", which cannot be addressed without combining
context, design, and non-functional modeling. Our solution
raises the level of abstraction at which designers deal with
context representation and allows them to capture the interde-
pendencies between system design, non-functional analyses,
and context.

This paper is an extended version of [8], where the
extensions are: (1) the introduction of a formal composi-
tion semantics for context modeling (see Sects. 3.1 and 3.2),
(2) the transient-state and sensitivity context analyses (see
Sect. 4.2), and (3) the integration of context modeling and
analysis with an existing model-based reliability approach
(see Sect. 5.2.1).

The paper is organized as follows: Section 2 introduces
Mobile eHealth (MeH), which is a context-aware applica-
tion that will be used as a leading case study throughout
the paper. Section 3 illustrates the basic ideas behind the
proposed context modeling approach and formalizes the
whole approach with particular emphasis on a compositional
semantics for context attributes. Section 4 illustrates the con-
text evolution analysis. Section 5 shows how to combine
the proposed context model with UML as hosting nota-
tion and then with model-based performance and reliability
analysis approaches, so that interdependencies among sys-
tem design, non-functional analyses, and context can be
studied. Section 6 presents related work and points out the
novelty of this paper with respect to the state of the art. Sec-
tion 7 concludes the paper and indicates directions for future
work.

I Our ongoing work in this direction is available at: http://me-at-
big.blogspot.co.at/2016/07/context-modeling-and-analysis-of-cyber.
html.
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2 Anillustrative case study: a mobile eHealth
application

In this section, we introduce the mobile eHealth application
(MeH) that will be used throughout the paper as leading case
study.

MeH aims at providing services to support doctors’ every-
day activities. A critical one is the retrieval of mixed media
information on the assisted patients (Request Patient Data
service, RPD) that combines descriptive text with different
kinds of images referring to patients’ personal data, medical
histories, and diseases (e.g., X-ray images).

The result of the RPD service is a multimedia report that
can be displayed on the doctor’s personal digital assistant
(PDA). The application client, which is deployed on the PDA,
is capable of connecting different communication networks,
where available, and choosing the best one (e.g., the one with
the highest bandwidth) among the networks available at the
current user location.

Long and/or heavy computational tasks, like the download
of large images and/or their editing, depend on the status of
resources available on the client side, such as a sufficient
charge level of the battery. For example, the frequency of
the CPU equipping the PDA, as well as the brightness of
its display, may be limited to reduce the power consumption
when the charge level of the PDA battery is lower than a
certain threshold.

In addition, the doctor may invoke the MeH services while
moving across different physical places (e.g., at home, at
the surgery, at patients’ home, or outdoor), where differ-
ent resources may be available and/or their exploitation may
change. For example, a high-bandwidth network and a PDA
battery recharger may be available only when the doctor stays
indoors, and not in other locations.

Therefore, MeH should collect heterogeneous data from
different context sources like users (e.g., the doctor), hard-
ware components (e.g., the battery of the PDA), or the
external environment (e.g., the WiFi) in order to provide the
best QoS.

3 Context modeling through composable
context evolution models

In the literature, several approaches support the idea of mod-
eling physical or logical location awareness (referred to as
spatial context models in [13]) with state machines or similar
notations [8,20], where a state represents the current loca-
tion (of a physical device or a software component) and a
transition represents a change of location. A location is usu-
ally defined as a (logical or physical) place characterized by
the resources accessible in that place. Multiple physical or

logical places may have the same resources, and therefore,
they can be identified as the same location.

Our approach goes in the same direction, in that it applies
the idea of modeling location awareness with state machines
to any kind of context-related attribute. We have proposed
in [8] a stochastic extension of state machines, called Context
Evolution Models* (CEM), where the context is modeled as a
combination of three different Context Sources (CS), namely
the physical location of users, the logical location of software
components, and the status of hardware resources. In this
paper, we generalize the modeling in [8] to any combination
of different CSs. The assumption of our stochastic model-
ing framework is that each CS is represented by a Context
Attribute (CA) that takes a finite set of values and whose evo-
lution can be modeled through a CEM. Most importantly, we
provide the formal underpinnings of our framework by defin-
ing a composition semantics for CEMs, which is inspired by
stochastic process algebras as compositionality is a first-class
notion in those formalisms.

As Fig. 1 shows, a context is a free combination (denoted
by o) of CAs and their values (denoted by v metavariables).
In such a way, we are able to model the needed degrees of
context awareness (denoted by *), from the simplest one,
which considers only one CA (1-awareness context layer),
to the whole context awareness described by combining
all the identified CAs. Using stochastic state machines to
model the evolution of each CA and leveraging on the state
machine composition, we are able to represent the context
evolution, whatever its degree is. In the following, we call
First-Order Context Evolution Model (FOCEM) the stochas-
tic state machine modeling a single CA associated with a
known, unique CS, and Higher-Order Context Evolution
Model (HOCEM) the state machine modeling the consid-
ered context obtained by combining the FOCEMs of the CAs
forming the context itself.

In the rest of this section, we formalize the notion of
FOCEM (Sect. 3.1) and the notion of HOCEM (Sect. 3.2). We
discuss the basic concepts underlying them, their representa-
tion in terms of state machines, their composition mechanism
inspired by stochastic process algebras, and their quantitative
aspects based on continuous-time Markov chain theory, all
of which will be exemplified on the MeH case study.

3.1 Context attributes and FOCEM

A FOCEM is a state machine, where each state represents
part of the context and corresponds to a particular value in a
finite set of homogeneously typed values that can be assigned
to a specific CA. For example, percentages—whose value is

2 We replace here the original name Manager with the more appropriate
Context Evolution Model.
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Fig.1 Context as a combination of heterogeneous attributes
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Fig.2 MeH: HOCEM and FOCEMs for doctor, battery, and CPU elements

an integer number between 0 and 100—are normally used to
describe the charge level of a battery.

A transition represents a change in such a typed value.
It can be triggered by an internal action that modifies the
current value of the CA, e.g., an increment/decrement of the
percentage representing the battery charge level. A transition
can also be triggered by a remote event occurring in a differ-
ent FOCEM, e.g., a battery level change may cause a device
screen to reduce its brightness.

Instances of FOCEMs for MeH are shown in the bot-
tom layer of Fig. 2. In particular, this layer contains three
FOCEMs related to three different CAs:

— The Doctor Location FOCEM represents the possible
values (Home, Surgery, Open Air, and Patient’s Home) of
the physical location attribute for the doctor. Transitions
here represent the possible moves of the doctor among
locations [20].

— The Battery Charge FOCEM represents the charge level
evolution of the battery of the doctor’s PDA. A threshold

@ Springer

(e.g., 25%) triggers the transition from high-power state
to low-power one and vice versa.

— The CPU Mode FOCEM represents two execution
modes for the CPU of the PDA used by the doctor,
namely normal and power save. The latter is meant to
reduce the power consumption by decreasing the CPU
frequency.

Transitions are labeled with the corresponding actions and
the related quantitative information. The action set is parti-
tioned into active actions and passive actions. Although this
action classification is inspired by analogous action classifi-
cations in stochastic process algebras such as PEPA [27] and
EMPA [11] and architectural description languages based on
them [5,12] to formalize master—slave synchronizations, here
it is employed to support context dependencies in terms of
cause—effect relationships from an active action of a FOCEM
to a passive action of another FOCEM. For instance, the
transition from high power to low power within the battery—
which is labeled with an active action—induces the transition
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fromnormal to power save within the CPU—which is labeled
with a passive action.

Also, the quantitative aspects associated with actions are
inspired by stochastic process algebras and hence rely on
exponentially distributed durations coming from continuous-
time Markov chain (CTMC) theory [45]. The reason for
this choice is that it yields a simpler mathematical treatment
supported by a number of well-established steady-state and
transient-state analysis techniques. On the expressiveness
side, it turns out that exponential distributions are adequate
for modeling the timing of many real-life phenomena like
arrival processes, failure events, and chemical reactions.
Moreover, an exponential distribution is the most appropri-
ate stochastic approximation in the case in which only the
average duration of an activity is known [19]. Finally, proper
combinations of exponential distributions, called phase-type
distributions [42], can approximate most general distribu-
tions arbitrarily closely. As an example, a fixed duration d
can be rendered by a sequence of n exponential phases each
of rate A such that n/A = d; the greater the n, the better the
approximation.

Every occurrence of an active action is governed by its exe-
cutionrate A € R. . This uniquely quantifies the duration of
the action execution in terms of an exponentially distributed
random variable, whose expected value 1/ represents the
average duration of the action. According to CTMC theory,
whenever several active actions are enabled in a state, the
action that is executed is the one that samples the least dura-
tion (race policy). As a consequence, every active action has
an execution probability that is proportional to its rate. More-
over, the sojourn time in a state turns out to be exponentially
distributed, with rate given by the sum of the rates of the
active actions enabled in that state.

In contrast, every occurrence of a passive action is gov-
erned by its associated selection probability p € Ry 1j.
Whenever a state enables at least one occurrence of a certain
passive action, it must be the case that the selection probabil-
ities of all the occurrences of that passive action enabled in
that state sum up to 1. If only one occurrence is enabled, then
p = 1. This is the case with both passive actions in the CPU
states of Fig. 2, as shown in the forthcoming Table 1 where
also the rates of the various active actions are instantiated.

Definition 1 AFOCEMisatriple FOCEM =(S, A, —>)
where:

— § is a finite set of states.

- A = A, UA, is afinite set of actions, where A, is a set
of exponentially timed active actions, while Ap is a set
of probabilistic passive actions, such that A, N Ap = .

- —— CSx((Aa xR50)U(Ap xRyo,17)) x Sis a tran-
sition relation between states, in which every transition
is labeled with an action and a real number. |

3.2 Context composition and HOCEM

A HOCEM is a model resulting from the composition of a set
of FOCEMs representing the evolution of CAs of interest. It
follows that:

— Whenever a FOCEM is added to the set, deleted from
the set, or modified within the set, a new composition is
computed to rebuild the HOCEM.

— The full context model is given by the HOCEM resulting
from the composition of all the FOCEMs for the consid-
ered system.

Similar to CSs in Fig. 1, FOCEMs may need to be com-
bined depending on the type of context awareness suitable
for the considered application. A lumping process is then
required that combines two or more FOCEMs to raise the
context-awareness degree. Any combination of two or more
FOCEMs generates a HOCEM in which every state repre-
sents an instance of the composite context of interest for
the application, i.e., a set of heterogeneously typed values
assigned to attributes from two or more CSs. As an example,
through a HOCEM the MeH system may be aware of a doctor
who is using the PDA to invoke the RPD service (1) while
working at the surgery (2) with a low charged battery that
(3) induces the CPU of the PDA to limit its frequency so
to decrease the power consumption. The top layer of Fig. 2
represents an excerpt of a HOCEM for the MeH application.

Context dependencies are expressed across FOCEMs
through a mechanism that we call remote firing, which is
inspired by an analogous mechanism within Harel’s state-
charts [26]. A dependency that induces a remote firing is
established by binding a (firing) event on a transition of a
FOCEM to one or more (fired) events on transitions of one or
more different FOCEMs, thus building typical cause—effect
events. This mechanism can be used, for example, to model
a change in the CPU frequency (the fired event) as induced
by a change in the battery charge level (the firing event).
Such a dependency is shown in Fig. 2 by two dashed fired-by
arrows from the fired transitions of the CPU Mode FOCEM
to the firing transitions of Battery Charge FOCEM. We call
static a causal dependency explicitly declared by the mod-
eler through an expression of the form a — b, where a is an
(exponentially timed) active action of a FOCEM, while b is a
(probabilistic) passive action of another FOCEM. Although
only cause—effect pairs can be directly modeled, cause—effect
chains emerge due to the fact that FOCEMs also describe the
continuation after the execution of the actions involved in the
cause—effect pairs.

The formal definition of the composition of FOCEMs
based on remote firing relies on the classification of their
actions into (exponentially timed) active actions and (prob-
abilistic) passive actions. In the field of stochastic pro-
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cess algebras, from which it is taken, this classification is
used to enforce multiaction synchronizations according to
the generative—reactive cooperation mechanism [11]. This
means that, among the identically named actions participat-
ing in a synchronization, one of them must be active while all
the others must be passive. The overall rate of the synchro-
nization is given by the rate of the active action multiplied
by the product of the selection probabilities of the involved
passive actions, which is consistent with the fact that it is the
active action that triggers the passive ones.

However, the synchronization mechanism of stochastic
process algebras is too rigid for our purposes, because it is
based on fixed synchronization sets. For example, if we have
three processes with synchronization set {a } between any pair
of them, then all of them must synchronize on a—which is
possible only if a is enabled in all of them—thereby exclud-
ing the possibility that only two of them synchronize on a
at a certain point in time. For an adequate modeling of con-
text evolution, we need a more flexible mechanism in which
the execution of an active action a of a FOCEM with static
causal dependencies {a — b; | i € I} is not blocked by the
fact that for some j € I passive action b; is not enabled by
FOCEM j.

We call dynamic a causal dependency arising from the
statically declared ones, and we express it as a — B where
a is an active action of a FOCEM, B is a set of passive
actions each belonging to a distinct FOCEM, and for each
b € B the static causal dependency a — b has been declared.
Given a dynamic dependency a — B, when the active action
a is enabled, the execution of a induces the simultaneous
execution of the maximal subset B’ of passive actions in B,
such that all those actions are enabled at that point in time
in their respective FOCEMs. Notice that action a is executed
even if B’ = ). The execution of a — B’ causes the local
states of the FOCEMs enabling actions in {a}U B’ to advance,
while all the other FOCEMs stay idle.

Definition 2 Given n € N>, let:

— FOCEM; = (S;, A;, ——>;) be a FOCEM for all i =
L,....,n,withA; NA; =@ fori # j.

— SD; be a possibly empty set of static causal dependencies
declared for FOCEM,;, each being expressed as a > b
wherea € A;,,b € Ajp,andi # j.

The corresponding HOCEM is a quadruple HOCEM =
(S, A, DD, —— ) where:

- § =81 x---x 8, is the set of composite states.

- A = A; UA, is the set of actions, where A, =
Ul<i<y Aia While Ap = U, <, Aip-

— DD is the set of dynamic causal dependencies of the form
a — B such that:
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—a €A,

~ B C A,.

— Forallbe B,ar— bel,.;, SD;.

For all by, by € B such that by # by, if by € A;p
then by € A, with j # 1.

- —— C § x (DD x R.() x S is a transition relation

between composite states containing transitions of the
a— B\

form s ——— s/, where s = (s1,...,8,) and s/ =
(515 - -+ 8p), such that:
— There exist i, € {1,...,n}and A, € R- o such that
a, g

Sig =iy S -

— B’is amaximal subset of A, such that, forallb € B’,
there exist j, € {1, ..., n} and p, € Ry 1] such that
SJp > Jb S}b'

- A= Aq - HbeB’ Db, With the second factor being 1

when B’ = 0.
— Foralli € {1,...,n}such thati # i, and i # jp
whenever b € B, s = s;. [ |

From a HOCEM, we can easily obtain a quantitative model
in the form of a continuous-time Markov chain (CTMC) [45].
This is essentially derived by first eliminating dynamic causal
dependencies from transition labels and then merging all the
transitions between any pair of composite states into a single
transition, whose rate is the sum of the rates of the original
transitions as a consequence of the race policy. By solving
this CTMC, we can derive the distribution of the probabilities
of being in the various states of a HOCEM at a certain time.

More precisely, the aforementioned CTMC can be repre-
sented as a state-indexed matrix @ called the infinitesimal
generator. The entry g, v € R>o, h # k, represents the rate
at which it is possible to go from composite state s to com-
posite state s through a single transition, while g, 5, is set to
- Zk#h qh k thus causing all rows to sum up to 0. The solu-
tion of the CTMC in matrix form is computed as follows:

— Given the initial probability distribution 7 (0) over com-
posite states, the transient solution 5 () at time ¢t € R+
is obtained by solving the differential equation system:

dr (t)

() Q = ”

which can be done by means of standard techniques like
uniformization.

— The stationary solution & = lim;_, ., 7 (¢) is obtained (if
any) by solving the linear equation system:

T Q=0 > xls]=1

ses
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which can be done by means of standard techniques from
linear algebra.

4 Reasoning on the context

In this section, we show the reasoning capabilities on the
context and its evolution that are enabled by our framework.

For a schematic view of our approach, Fig. 3 depicts the
context reasoning workflow, whose steps will be described
in the following subsections.

The CA modeling step for two possible scenarios, which
we denote by ScA and ScB, is described in Sect. 4.1. Then,
Sect. 4.2 shows: (1) the application of context composition
semantics on FOCEMs and their parameters, as obtained
in the previous step, to generate a CTMC-based HOCEM
for each scenario, and (2) the results of the steady-state and
transient-state context scenario analyses on these HOCEMs.
Finally, Sect. 4.3 carries out a sensitivity analysis of the ScA
scenario.

4.1 Context attribute modeling

We are able to represent, through CEMs, different context
scenarios for a context-aware application. Each scenario
comprises a set of basic FOCEMs, one for each attribute
that the particular application is aware of.

For sake of illustration, we consider again the MeH case
study and we combine three FOCEMs (Doctor Location
FOCEM, Battery Charge FOCEM, and CPU Mode FOCEM)
that appear at the bottom of Fig. 2.

We assume that in both scenarios, ScA and ScB, the MeH
application is capable of sensing the same CAs, which are:
(1) the physical location of the doctor, (2) the charge level of
the battery equipping the doctor’s PDA, and (3) the execution
modes of the CPU on the same PDA.

Refined versions of the FOCEMs in the bottom layer of
Fig. 2 are depicted in Fig. 4 using a UML-like state machine
diagram notation and are detailed below:

— Doctor Location FOCEM. Figure 4a shows the states and
transitions of the FOCEM that models the evolution of

the physical location CA. The doctor stays at home while
not working or at the surgery and at the patients’ homes
while giving assistance. The doctor can move among such
places in any direction, and thus, an open air state is
placed between all pairs of locations.

— Battery Charge FOCEM. The battery charge level of the
doctor’s PDA may assume values that vary from a min-
imum of 0 to a maximum of 100. In order to limit the
number of states, we set up a threshold of 25% to distin-
guish the low-power state (0-24) from the high-power
state (25-100). In addition, a battery reaches an under
charge state when it is plugged into a power socket. Fig-
ure 4b shows the states and transitions of the FOCEM
that models the evolution of the charge level CA. In our
scenarios, we assume that the doctor can recharge the
PDA battery only at home and at the surgery. When leav-
ing these places, the PDA has to be unplugged if it is
under charge. Therefore, directed dotted lines are drawn
from the outgoing (fired) transitions of the under charge
state of the Battery Charge FOCEM and the (firing) out-
going transitions from the home and surgery states of the
Doctor Location FOCEM.

— CPU mode FOCEM. The CPU of the PDA may work in
two execution modes: normal, i.e., without any restriction
on the clock frequency, and power save, when the system
needs to reduce the power consumption because the bat-
tery has reached the low-power state. Figure 4c shows the
states and transitions of the FOCEM that models the evo-
lution of the CPU mode CA. Two directed dotted lines
are drawn from the fired transitions of the CPU Mode
FOCEM to the corresponding firing transitions of the
Battery Charge FOCEM to represent the remote firings
among them.

Transitions in Fig. 4 are labeled with action names, condi-
tions (where needed), and $-prefixed variables for rates and
probabilities. We remind that the use of rates of exponen-
tial distributions for characterizing durations is justified by a
number of reasons that are already expressed in Sect. 3.1.

The two considered scenarios, ScA and ScB, differ for the
stochastic parametrization of these three FOCEMs. There-
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Fig.4 A combined view of the FOCEMs for a doctor’s physical location, b charge level of PDA battery, and ¢ execution modes for PDA CPU

fore, the specification of the two scenarios consists of distinct
rates/probabilities for active/passive actions. Table 1 reports
such input parameters of ScA and ScB.

The rows in Table 1 are grouped in three sets, one for
each FOCEM. Each row includes an action name, an action
type (active or passive), a parameter name and type (rate or
probability), and the values for such parameters in ScA and
ScB.

Rates for Doctor Location FOCEM in ScA come from
assuming that the doctor™:

— Spends 10h at home before leaving.
— Takes half an hour to move from home to the surgery.

3 All numbers mentioned in the following represent mean values used
to obtain rates of actions.
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— Remains at work 8 h before going home.

— Leaves the surgery every 4h by ambulance to reach
patients’ homes.

— Goes to patient’s home by ambulance in 20 min.

— Gives first aid to the patient in 5 min.

— Goes back to the surgery by ambulance in 20 min.

— Goes back home at the end of the working day in 1h,
assuming that the doctor stops somewhere before arriving
at home to perform an activity (e.g., going to the gym or
shopping).

In ScB, the rates of (active) actions have been modified
to represent a doctor who spends less time at home and at
the surgery and moves more frequently, thus spending more
time on the paths in the open air connecting such places. The
assumptions that differentiate ScB from ScA consider that
the doctor:
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Table 1 Input parameters for the FOCEMs in ScA and ScB

Action name Type Parameter Type Value of rate or probability

ScA ScB

Times/h Prob. Times/h Prob.
Doctor location FOCEM
Leaving_home Active $ H_OAhs_rate Rate 0.10 0.13
Going_to_work Active $ OAhs_S_rate Rate 2.00 1.00
Leaving_surgery_to_assist_patient Active $ S_OAsp_rate Rate 0.25 0.50
Going_to_patients Active $ OAsp_P_rate Rate 3.00 3.00
Leaving_patient’s_home Active $ P_OAps_rate Rate 12.00 12.00
Going_back_to_work Active $ OAps_S_rate Rate 3.00 3.00
Leaving_surgery_to_go_home Active $ S_OAsh_rate Rate 0.13 0.25
Going_back_home Active $ OAsh_H_rate Rate 1.00 0.50
Battery charge FOCEM
Discharging Active $ HP_LP_rate Rate 0.18 0.22
Plugging Active $ LP_UC _rate Rate 0.53 0.66
Unplugging Active $ UC_HP_rate Rate 0.50 0.50
Anticipated_unplugging Passive $ UC_LP_prob Prob 1 1
CPU mode FOCEM
Switching_to_PSM Passive $ NM_PSM_prob Prob 1 1
Switching_to_NM Passive $ PSM_NM_prob Prob 1 1

Spends 8 h at home before leaving.

— Takes 1h (twice than in ScA) to move from home to the
surgery.

Remains at work 4h (half than in ScA) before going
home.

— Leaves the surgery every 2h (again, two times per day).
Goes back home at the end of the working day in 2h
(twice than in ScA).

For the Battery Charge FOCEM, we imagine two different
usages of the PDA in ScA and ScB, where the former induces
a lower power consumption than the latter.

In both scenarios, we assume that the RPD service will be
always running on the doctor’s PDA, i.e., we do not consider
the stand-by time. We also assume a linear power consump-
tion, while the RPD service is running. In ScA, a fully charged
battery is consumed in 7 h and a half, while in ScB, the auton-
omy of the PDA is reduced to 6h and 20 min. Accordingly,
we calculate the time needed to run down the battery: (1) until
a certain threshold that we set to 25% of the total capacity
of the battery and (2) from such a threshold until the battery
lasts.

The parametrization of the CPU Mode FOCEM does not
change across scenarios because the actions labeling the tran-
sitions from normal mode to power save mode and vice versa
are passive. Since each of them is the unique outgoing tran-
sition from the corresponding state, a probability equal to 1
is assigned in all cases.

The values of all the above-defined parameters have been
estimated by looking at multiple real-life examples of doc-
tor behavior profiles from different sources. This observation
brought us to synthesize the mean values (i.e., times or rates)
used in this paper. These values are subject to inaccuracies,
mostly due to the variance among behaviors of profiled doc-
tors. The combination of such inaccuracies, of course, can
propagate to the analysis results. However, our approach is
intended to be used at system design phase, when the analy-
sis is aimed at taking design decisions through comparisons
of different alternatives. In this direction, the inaccuracies
of results can be mitigated by the fact that multiple sets of
values can be assigned to parameters in order to compare
analysis results and figure out relevant trends, as we will
do in Sect. 4.3. Decisions that induce unsatisfactory trends
can be highlighted as critical ones in the design process.
Therefore, our approach is not intended to take fine-grain
decisions, it is rather aimed at comparing different situations
and, on the basis of numerical results, at providing support
for context-aware system design decisions before a system is
implemented, with particular emphasis on the early phases
of its life cycle.

4.2 Context composition semantics and scenario
analysis

The given set of FOCEMs can be composed of different
HOCEMs. From a modeling perspective,a HOCEM is acom-
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Fig.5 The HOCEM for MeH parametrized with rates for ScCA

posite state machine that executes its constituting FOCEMs
in parallel. In Fig. 4, the constituting FOCEMs were repre-
sented within distinct regions delimited by dashed lines.

In Fig. 5, we show the HOCEM state machine obtained
from the context composition semantics (see Sect. 3.2)
applied to the FOCEMs in Fig. 4. This HOCEM explicitly
represents composite states and their transitions, as well as
the action rate annotations, which in Fig. 5 refer to the ScA
scenario.*

In order to illustrate the potential reasoning capabilities
of our approach, the resulting composite context states and
transitions of the HOCEM have been arranged to facilitate
both left-to-right (or right-to-left) and top-down (or bottom-
up) readings, as indicated by the dotted arrows external to
the figure.

The horizontal arrow follows the coupled evolution of
two CAs, which are the battery charge level (high power,
low power, and under charge) and the consequent execution
modes of the CPU (normal mode, power save mode), both
equipping the doctor’s PDA.

The vertical arrow follows the context evolution with
respect to the physical moves of the doctor across physi-

4 For sake of readability, we do not show any action name but only the
resulting rate.
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LP Set UC Set

cal places (i.e., home, surgery, patients’ home, and the paths
in the open air).

In Fig. 5, the context states have been horizontally and
vertically partitioned in different sets. States belonging to
the same set share a common CA value. In this respect, the
vertical sets in Fig. 5 focus on the evolution of the physical
locations of the doctor while binding the other two context
attributes (i.e., battery charge level and CPU modes):

— HP Setidentifies a high-power context set where the RPD
service is always running on a fully charged PDA, and
the only CA that varies is the physical location of the
doctor equipped with the PDA.

— LP Set identifies a set of low-power contexts where the
RPD service is always running on a PDA where the
charge level of the battery is equal to or lower than the
chosen threshold, namely in our example 25%.

— UC Set includes the two context states where the battery
is under charge. According to the remote firing depen-
dencies among the transitions of the Doctor Location and
Battery Charge FOCEMs, a recharge operation happens
only at doctor’s home or at the surgery. When the doctor
leaves such two places to go home or to patients’ homes,
the recharge is interrupted (i.e., the PDA is unplugged
from the socket plug), and according to the charge level
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of the battery, a new context state belonging to the HP
Set or LP Set is reached.

Similarly, the horizontal sets focus on the combined evo-
lution of two CAs, that are the charge level of the battery
and the execution modes of the CPU, while binding doctor’s
physical location:

— Home Set includes the context states where the doctor
stays at home.

— Surgery Set includes the context states where the doctor
works at the surgery.

— Patient’s Home Set includes the context states in which
the doctor is giving assistance to the patients at their
homes.

— Open Air Set includes the context states where the doctor
moves outdoors between the aforementioned places.

Since the states of a HOCEM are obtained from the Carte-
sian product of the corresponding FOCEMs states, the size
of the HOCEM state space quickly grows with the number
of considered CAs and the number of states of each attribute.
Therefore, the analysis of a HOCEM can become computa-
tionally infeasible due to scalability issues in case of systems
with many and complex CAs. This problem is mitigated by
the fact that, even in systems with numerous attributes, the
analysis of a complete HOCEM (i.e., the one that results
from the combination of all FOCEMs) is often meaningless,
because it is difficult to identify causes of problems when too
many attributes are considered at the same time. Indeed, our
approach is modular, as it does not mandate to consider all
attributes together, but selective combinations of attributes
can be considered to synthesize a partial HOCEM. As evi-
denced in this section, the aggregation of states allows us to
highlight the role that different attributes may have in partial
context analyses that focus only on some CAs while leaving
hidden the other ones. Without grouping states in sets as in
Fig. 5, all the context states and their attributes are instead
equally important throughout the context analysis.

In Appendix A, we show the tables containing the transi-
tion rates of the HOCEMs for both ScA and ScB scenarios.
By analyzing the CTMCs corresponding to the parametrized
HOCEMs for ScA and ScB, we obtain the steady-state and
transient-state probabilities for the context states shown in
Fig. 4. These numbers are at the basis of the computation
of performability measures. It is worth recalling that within
our framework there are also other analysis techniques that
can be applied, most notably probabilistic/stochastic model
checking [4], but they will not be described as they are outside
the scope of this paper.

In the remainder of this section, we analyze the state prob-
abilities of the HOCEM obtained for the MeH case study,
under the two previously defined scenarios. We have identi-

fied scenarios that describe two quite different situations in
terms of doctor mobility, so to demonstrate that our approach
supports the non-functional analysis of different real-life sit-
uations. Many other scenarios may need to be analyzed in
order to compare the effects of system design decisions under
different contexts, and this can incur in scalability problems.
However, since the scenarios differ in terms of transition
probabilities, this problem can be mitigated by analyzing first
extreme cases and then by generating intermediate scenar-
ios only where critical situations have been identified. For
example, critical situations may be originated by conflict-
ing results on the same HOCEM under different scenarios.
In these cases, designers and domain experts should inter-
act to take (sometime heavy) decisions, such as preventing
some context states from being reached under certain cir-
cumstances.

4.2.1 Steady-state analysis

In the rows of Table 2, we report all 16 context states of
Fig. 5. For each of them, steady-state probabilities for ScA
and ScB have been obtained by solving the CTMCs corre-
sponding to the HOCEMs, and the rightmost column shows
the differences between the two scenarios.

We have emphasized the three most visited context states
in each scenario, because they could allow to identify whether
most of the time, at the steady state, is spent in contexts
with some peculiarities. Table 2 shows this evidence for ScB,
where the three highly visited states are the ones where the
doctor stays at home. This information can be exploited for
multiple purposes, such as improving application aspects that
can be appreciated in a home environment in the ScB case.
For example, high-definition images can be shown due to the
likely availability of a HD screen. The same evidence is not
provided for ScA, where the highly visited states do not have
much in common, apart from not representing outdoor con-
texts. However, both scenarios share the most visited state,
which is the one in the first row of the table, meaning that
any improvement of the application in such a context would
be beneficial for both context scenarios.

We have also emphasized, in the rightmost column, the
three highest variations of sojourn probabilities in ScB with
respect to ScA. This observation goes in the opposite direc-
tion with respect to the latest comment on steady-state
probabilities, because the three identified rows correspond
to states that are peculiar only for one scenario. Hence, it
can be appropriate to act on the application characteristics in
these contexts only if accurate data are available about the
scenario occurrence. For example, the highest difference is
obtained for context state 06. If it can be asserted that the
application will be used in ScA, then it is worth to tailor the
application to such a context. In the opposite case, namely if
no clue is given about the occurrence of either ScA or ScB,
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Table 2 Steady-state

probabilities for ScA and ScB Context state Steady-state probability vector Diff.

No. Phy. Batt. CPU ScA ScB

01 H HP NM Ist 0.2567 Ist 0.2334 —0.0233
02 H LP PSM 0.1162 2nd 0.1223 0.0061
03 H ucC PSM 0.1033 3rd 0.1292 3rd 0.0259
4a OAhs HP NM 0.0118 0.0239 0.0121
4b OAsh HP NM 0.0195 0.0319 0.0124
4c OAsp HP NM 0.0144 0.0143 —0.0001
4d OAps HP NM 0.0134 0.0130 —0.0004
Sa OAhs LP PSM 0.0120 0.0367 0.0247
5b OAsh LP PSM 0.0281 0.0893 2nd 0.0612
Sc OAsp LP PSM 0.0173 0.0261 0.0088
5d OAps LP PSM 0.0183 0.0274 0.0091
06 S HP NM 2nd 0.1835 0.0918 3rd —0.0917
07 S LP PSM 3rd 0.1227 0.0986 —0.0241
08 S ucC PSM 0.0748 0.0520 —0.0228
09 P HP NM 0.0036 0.0035 —0.0001
10 P LP PSM 0.0044 0.0066 0.0022
Total: 1.0000 1.0000 0.0000

Table 3 Steady-state analysis for subsets of context states for ScA and
ScB

Analysis sets Steady-state probability vector Diff.
ScA ScB

Home set 0.4762 0.4848 0.0087
Open air set 0.1349 0.2626 0.1277
Surgery set 0.3810 0.2424 —0.1385
Patient’s home set 0.0079 0.0101 0.0022
Total 1.0000 1.0000 0.0000
HP set 0.5029 0.4118 —0.0911
LP set 0.3191 0.4070 0.0879
UC set 0.1780 0.1812 0.0032
Total: 1.0000 1.0000 0.0000

application improvements in this context could represent a
useless effort for application designers.

To better understand the differences between the two sce-
narios, we further split the flattened HOCEM in Fig. 5 in
different sets. We then calculate the steady-state probabili-
ties on the different subsets of the HOCEM. The results for
both scenarios are reported in Table 3, where we first observe
that the MeH system provides its services mostly when the
doctor is at home (around 0.48 both in ScA and ScB). How-
ever, in ScB the sojourn probability with respect to ScA: (1)
in the open air doubles up to 0.26, (2) in the surgery decreases
down to 0.24, and (3) it does not significantly vary at patient’s
home.
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In ScB, we also assume a higher battery consumption (see
Table 1) that, combined with the higher mobility of the doctor,
leads to increase the sojourn probability in the LP Set. This
means that the system will more likely cope with a resource-
constrained context where the charge level of the battery is
low and the computational power of the CPU is consequently
reduced.

4.2.2 Transient-state analysis

For the same scenarios ScA and ScB, we carried out a tran-
sient analysis to obtain the sojourn probabilities in the context
states of Fig. 5 at a certain instant #, and they are reported on
the charts in Figs. 6 and 7. On the x-axis, the transient-state
probabilities have been calculated 1, 6, 12, and 24 h before
the CTMC reaches the steady state. In both scenarios, the
starting context state of our transient analysis is the doctor
at home with a fully charged battery (first row in Table 2).
Sojourn probabilities of some context states are reported on
the y-axis. We grouped the sojourn probabilities sets focus-
ing on the physical location of the doctor (i.e., Home Set,
Open Air Set, Surgery Set, and Patient’s Home Set). Such
sets are identified along the y-axis on the left and right sides
of both charts to highlight their relative contribution to the
sojourn probability, while ¢ flows from left to right. Below
each set name, we reported their transient-state probabilities
at t+ = 1 (on the left) and at steady state (on the right). It
is worth noting that, as expected, the steady-state probabil-
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ities are reached around ¢ = 24h in both scenarios, as this
represents a periodical behavior of the doctor.

For ScA in Fig. 6, the Home and Surgery Sets are predom-
inant. In both sets, the doctor experiences the best possible
resource environment (i.e., high power and normal mode for

Time (hours)

battery and CPU, respectively) for most of the time. The
contribution of the Open Air Set is always lower than 13.5%,
whereas the one of the Patient’s Home Set is always negligi-
ble, so it is not represented in Fig. 6.
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The transient-state probabilities for ScB are depicted in
the chart in Fig. 7. The evolution of the sojourn probabilities
is similar to ScA, and the predominant states are still the ones
in Surgery and Home Sets. However, the contribution of the
Open Air Set increases at any time ¢ due to the higher mobil-
ity assumed in ScB, going from 13.49% in ScA to 26.26%
in ScB att+ = 24. Within the Open Air Set, the highest incre-
ment in sojourn probabilities appears on context states with
a low battery charge level (like context state 05b) since, by
assumption, the doctor cannot charge the PDA outside home
and surgery locations.

The relative relevance of the Home Set decreases, while
the sojourn times in context states belonging to the Open
Air Set continuously increase from 13.49% in ScA to
60.60% in ScB. Indeed, in ScB it may happen that a doc-
tor has to leave the surgery to assist patients at their homes
during the first hour of MeH usage, as specified by leav-
ing_surgery_to_assist_patient row in Table 1, with a 0.5
times/h rate. In contrast, the same action is not likely to hap-
pen in ScA during the first hour of usage, due to a 0.25 rate.
However, both scenarios assume that if the MeH system is
started at home, it is very likely to happen that, after 1h of
usage, the doctor is still at home (i.e., leaving_home row in
Table 1, with a 0.1-0.13 times/h rate). Therefore, it is very
likely that the charge level of the battery is higher than the
assumed threshold, i.e., 25%, during the first hour of usage;
thus, this resource will likely remain in the high-power state.
Finally, it is worth noting that the decrease in the relative
relevance of the high-power contexts during the first 6h of
usage in ScB (i.e., t = 6 in Fig. 7) is also influenced by: (1)
the 1h faster discharging time of the battery (see discharg-
ing row in Table 1, with a 0.18 times/hour rate in ScA and
0.22 rate in ScB), and (2) the lower availability of plugs for
starting a recharge (by assumption, plugging action is only
available at home and at the surgery).

4.3 Sensitivity analysis

In order to show how the context analysis results may
vary upon variations of context parameters, in this sec-
tion we report a sensitivity analysis of the ScA scenario.
The goal is to evaluate the impact of duration of doc-
tor’s activities, like assisting patients at home, and the
impact of PDA battery capacity. From a modeling perspec-
tive, it corresponds to changing rates assigned to (active)
actions leaving_patient’s_home and discharging of the Doc-
tor Location and Battery Charge FOCEMs, respectively,
whose original values appear in Table 1.

In ScA, we assume that the doctor spends 5 min on average
at patients’ homes before leaving to move back to the surgery,
i.e., before triggering the action leaving_patient’s_home out-
going the patient’s home state (see Fig. 4). For sake of
sensitivity analysis, we extend here the visit duration up to
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Table 4 Configurations of variants

Rate for actions:
leaving_patient’s_home

Duration (h:mm)

discharging
Baseline
HOCEM ScA 12 00:05
0.18 05:30
Variants
HOCEM 1 6 00:10
0.18 05:30
HOCEM 2 4 00:15
0.18 05:30
HOCEM 3 3 00:20
0.18 05:30
HOCEM 4 12 00:05
0.13 07:30
HOCEM 5 6 00:10
0.13 07:30
HOCEM 6 4 00:15
0.13 07:30
HOCEM 7 3 00:20
0.13 07:30
HOCEM 8 12 00:05
0.1 09:30
HOCEM 9 6 00:10
0.1 09:30
HOCEM 10 4 00:15
0.1 09:30
HOCEM 11 3 00:20
0.1 09:30

20min by steps of Smin, thus obtaining four alternatives.
These variations are obtained by setting the correspond-
ing A parameter of the leaving_patient’s_home exponential
distribution to 12 (i.e., HOCEM ScA, our baseline for com-
parisons), 6, 4, and 3, respectively.

In ScA, the average time required to discharge a fully
charged PDA battery (100%) down to the given threshold
(25%) is 5h and 30min (A = 0.18). Again for sake of sen-
sitivity analysis, we increase up to 9h and 30 min the time
required to discharge the battery down to the threshold, by
steps of 2 h. We obtain three alternative durations determined
by the three values for the A parameter 0.18 (i.e., HOCEM
ScA, our baseline for comparisons), 0.13, and 0.1 assigned
to the discharging action, respectively.

The combination of these alternatives generates a total of
twelve variants of the ScA scenario, including the baseline
case, which are listed in Table 4. For sake of sensitivity anal-
ysis, we have executed twelve times the context reasoning
workflow illustrated in Fig. 3, once for each variant. From
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Fig.8 Sensitivity analysis: sojourn probability variations in ScA

a modeling perspective, we have obtained twelve triples of
FOCEMs and related parameters, and we have generated
twelve corresponding HOCEMs. Since we do not change
state, transition, and dependency sets, these HOCEMs are
structurally identical to the one in Fig. 5, but they have dif-
ferent rates that come from the semantic composition of the
FOCEMs with different parameters.

In Fig. 8, we report the analysis results. We reuse the
logical partition of HOCEM in sets, as depicted in Fig. 5, and
plot the variations in sojourn probabilities with respect to the
HOCEM ScA scenario (1) for each set as a whole (on the right
side) and (2) for each HOCEM variant, from HOCEM 1 to
HOCEM 11. For sake of readability, the bar chart highlights,
for each set, only the HOCEM x variants with the highest
positive and negative variation (in percentage) with respect
to the results of the ScA scenario (i.e., the first row in Table
4).

As expected, the sojourn probabilities in HOCEM states
belonging to the HP Set and Patient’s Home Set increase
(+74.32% and 4+14.66%) according to longer-lasting battery
capacity and higher doctor mobility, respectively. In contrast,
the sojourn probabilities in context states of complementary
sets, i.e., UC and LP Sets for battery charge, and Surgery,
Open Air, and Home Sets for doctor’s mobility, decrease.

Moreover, it is worth noting how such variations disappear if
we consider the broader Battery and Location Sets obtained
by the union of (1) UC, LP, and HP Sets and (2) Patient’s,
Surgery, Open Air, and Home Sets, respectively. Indeed,
both leaving_patient’s_home and discharging can be consid-
ered internal actions to both Location and Battery Sets. The
variation of their durations is then transparent to a coarser-
grained analysis based on Location and Battery Sets. We also
like to remark positive increments that occur for some sin-
gle HOCEM variants, up to +2.31% when the average visit
duration is set to 20 min (variants HOCEM 3, HOCEM 7,
HOCEM 11).

Note that longer visits to patients may cause disconnection
of the PDA from the power outlet and then an incomplete
charging of the battery (see the dependencies among active
and passive actions in Fig. 4) that can be charged only at
doctor’s home and at the surgery.

Moreover, we observe a larger impact of longer-lasting
batteries in HP, LP, and UC Sets. Two additional hours over
the given battery threshold increase the sojourn time in the
HP Set up to +7.05% in HOCEM 4, and up to +12.69% in
HOCEM 8 with four additional hours. Conversely, the PDA
usage with a low charged battery (LP Set) and the need for a
power outlet to charge the PDA (UC Set) decrease with more
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powerful batteries (—4.73% in HOCEM 11 and —8.11% in
HOCEM 8, respectively).

Finally, we observe a generic trend among HOCEM vari-
ants in HP, LP, and UC Sets. Given the same battery capacity
(e.g., HOCEM 4, HOCEM 5, HOCEM 6, and HOCEM 7),
the benefit of bigger batteries (i.e., longer sojourn times in
HP Set) is proportionally reduced by longer stays at patients’
homes.

The above considerations represent the typical results of
an analysis that could not be obtained without a formally
quantified approach to context modeling. This sensitivity
analysis highlights the context parameters that have the high-
est impact on sojourn probabilities. As mentioned in Sect.
4.1, such an analysis allows results to be made more robust
in the presence of inaccuracies on the estimated values of the
parameters. Although these inaccuracies could be evidenced
only by validating the results on a monitored system, such
an analysis provides a support to designers when they have
to evaluate alternative design choices.

5 Applying context modeling to
non-functional analysis

In this section, we apply our context reasoning approach to
software performance and reliability analysis.

Figure 9 depicts how the context reasoning workflow
described in Sect. 4 can be integrated with two model-based
analysis methodologies for performance [17,44] and reliabil-
ity [18] analysis purposes. The two considered methodolo-
gies share similar input artifacts, i.e., a UML model made of
several views and properly annotated for the specific analy-

sis. An additional context view, made of the FOCEM models
described in Sect. 4, is integrated into the UML model.
Thanks to this integration step, original context-agnostic non-
functional methodologies become context aware.

The next sections detail the steps and related artifacts
depicted in the bottom side of Fig. 9. In particular, in Sect. 5.1
we describe the software application modeling, in Sect. 5.2.1
the reliability analysis, and in Sect. 5.2.2 the performance
analysis.

5.1 Software application modeling

This section illustrates the design model of MeH and its inte-
gration with our context modeling approach.

We adopt UML [31] both as design notation and as host-
ing notation for the formalism introduced in Sect. 3, for the
following reasons:

— UML includes the modeling of statecharts, through its
UML StateMachines language unit, which nicely fits
our FOCEM/HOCEM modeling needs, as illustrated in
Figs. 4 and 5.

— UML is extensible through profiles. We can then annotate
the stochastic parameters (i.e., rates and probabilities) on
state transitions through stereotypes and attributes.

— UML supports modularity. Reusable model elements can
be collected in model libraries, such as FOCEMs and
HOCEMs that can thus be reused for other applications
running in similar contexts.

— Several non-functional analysis approaches accept UML-
based design models as input [6,38], thus facilitating
the integration of such an analysis methodologies with

Context
( & -
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1 ereters w».—/ Steady-State Analysis Result /
HOCEM oo
FOCEM @scrme) [T wreferstow—-—-—o______J_ - -
N ---{ Transient-State Analysis Result _/
«incluldes»
/ Context View /‘
\ Context-aware ’ Performance
) . Steady-State Analysis Result
. . «part of» -
service View / Performance Analysis #HOCEM States
Software / Component View /---:
@— Application Context-aware
Modeling Deployment View / Transient-State Reliability
— " Reliability Analysis Analysis Result
Non-Functiona # HOCEM States
Annotations
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ﬁ
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Fig.9 Context reasoning applied to model-based performance and reliability analyses
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our context modeling approach. We have exploited this
opportunity by extending two existing reliability and per-
formance analysis approaches in Sect. 5.2.

It is worth noting that our context modeling approach is
constrained neither to UML, nor to any other modeling nota-
tion. Ad hoc domain-specific languages and notations can
be devised for implementing the proposed approach through
well-known MDE techniques (mefamodeling) and tools (e.g.,
Eclipse Modeling Framework) [14]. However, this aspect is
out of the scope of this paper and left as future work.

The design and context models represent the input to
model-based non-functional analyses that will be illustrated
in Sect. 5.2.

We have organized the UML model of MeH in views:

— A Service View (SV) represents the services provided by
MeH as they are perceived and used by its external actors
(Use Case Diagrams, UCD) along with their behavioral
specifications (Sequence Diagrams, SD).

— A Component View (CV) illustrates the MeH software
architecture in terms of its constituting software compo-
nents and their provided/required interfaces (Component
Diagrams, CD).

— A Deployment View (DV) models the allocation of soft-
ware artifacts on the execution nodes. It also includes a
representation of processing, communication, and stor-
age resources of the supporting platform (Deployment
Diagrams, DD).

In addition to such application views, as mentioned
above a fourth crosscutting Context View embeds the UML
StateMachines corresponding to the FOCEMs. A FOCEM
can be associated with any UML modeling element from
the Service, Component, and Deployment Views, whose
attributes are part of the context sensed by the MeH applica-
tion.

The Context View for MeH includes the FOCEMSs shown
in Fig. 4, and it combines with the other views as follows:

— A FOCEM is assigned to the Doctor actor (in the SV)
to model the doctor mobility across different physical
places.

— Two FOCEMs are assigned to the Battery and CPU nodes
(in the DV) to model the evolution of charge—discharge
cycles and execution modes, respectively.

The envisaged UML views require several profiles, namely

— The UML Standard Profile, which specifies a set of prede-
fined standard stereotypes to identify executable artifacts
(Executable) as manifestation of their logical counterpart
in the software architecture (manifest relationship from

RequestPatientData

Doctor Patient

«include» ~ ~ «extend»
7 ~

s, %
Database Interaction Image Server Interaction

Fig. 10 The MeH use case diagram

components) deployed on execution hosts. These stereo-
types are applied to diagrams in Figs. 11 and 13 [31].

— The Mobility Profile introduced in [25] and adopted to
model logical and physical mobility and allocation of
architectural elements of mobile systems. We adopt it to
detail the physical mobility of doctors and their PDAs in
Fig. 13.

— The MARTE (Modeling and Analysis of Real Time and
Embedded systems) and its extension DAM (Dependabil-
ity Analysis Model). In particular, MARTE [32] enables
UML to support specification and analysis of non-
functional properties (NFPs) in terms of performance
attributes. Later on, the DAM [10] profile accomplished
the same tasks for dependability attributes (including reli-
ability). Indeed, DAM, being a MARTE specialization,
can be used together with MARTE in UML models to
jointly annotate performance and reliability properties,
metrics, and input parameters.

In the following four subsections, the four views of the
MeH system are separately described through a set of UML
diagrams.’

5.1.1 MeH service view

The MeH application provides the RPD service to doctors
for assisting their patients: a doctor equipped with a PDA is
able, through a distributed MeH service, to retrieve mixed
media information on patients, such as text with or without
different kinds of images that refer to their personal data,
their medical histories, and their diseases.

The RPD service is shown as a use case in Fig. 10 where
the Doctor and Patient have, respectively, an active and a
passive role. The RPD service is invoked by doctors, and it
always includes the retrieval of textual information about the
patients via interaction with a database. Moreover, depend-
ing on the current context, the same RPD service may be

3 Here the UML diagrams have been suitably tailored to preserve their
readability. However, they have been conceived to be machine readable
by means of model transformations to fully support a model-driven
approach. The complete UML model can be downloaded at https://
code.google.com/a/eclipselabs.org/p/context-manager/.
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Fig. 11 The MeH software architecture

extended by an additional interaction with an image server
that further detail patients’ reports with images.

5.1.2 MeH component view

The CD in Fig. 11 shows the software architecture of the
MeH application in terms of its component types (i.e., Client,
AppServer, Database, and ImageServer), their connectors
modeled as properly wired required/provided interfaces,
and their executable artifacts. If not explicitly modeled, we
assume a default multiplicity value of 1 for all software
resource types.®

The view is completed by the specification of service
behaviors. Figure 12 shows a Sequence Diagram associated
with the RPD. When the doctor, once logged in, invokes the
RPD service, the application server is in charge of retriev-
ing data from a local database and, if needed, from an
image server for patients’ disease-related images (e.g., X-
ray images). Finally, the result is displayed on the client. We
envisage two alternative behaviors for RPD: (1) a Standard
Behavior allows the retrieval of both text and images and
is represented by the whole Sequence Diagram of Fig. 12;
(2) a Resource-Constrained Behavior excludes the down-
load of images and is represented by the Sequence Diagram
of Fig. 12 without any interaction with ImageServer.

6 We discuss the effect of multiplicities on non-functional analysis at
the end of Sect. 5.1.5.
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5.1.3 MeH deployment view

Figures 13 and 14 show the MeH hardware platforms at two
different levels of detail.

Figure 13, which is inspired by the modeling solution
introduced in [25], shows the overall system architecture that
can be logically partitioned in two levels:

— The Hosts Level comprises the execution environments
(GaExecHost) where the executable artifacts of the soft-
ware components shown in Fig. 11 are deployed (e.g.,
Client.exe in PDA) and the communication happens
(GaCommHost).

— The Physical Locations Level includes the places in
which the execution and communication resources at the
Hosts Level may reside, while the MeH system is exe-
cuting. The AllowedNodeLocation stereotype identifies
the possible places where an execution host can physi-
cally reside. According to the locations and mobility of
doctors (see the FOCEM in Fig. 4a), this level includes
four places for the PDA (i.e., Home, Surgery, Patient’s
Home, Open Air). For non-mobile execution hosts (i.e.,
AppServer Host, Database Host, ImageServer Host), we
set a unique location (i.e., Server Room).
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Fig.12 The RPD sequence diagram

Places can provide different types of network connections (1) the containment relationships among places and (2) the
that are modeled as typed ports on them: a 3G WAN is sharing of certain resources. For example, the 3G network,
available in the Open Air, and wired LAN (e.g., 802.11g) which is available in the Open Air, is also available at doctor’s
is available both at doctor’s Home and at the Surgery. and patient’s homes as well as at the surgery. In contrast,

By reusing the nesting capability of UML Node (i.e., the ~ LANs are only accessible at doctors’ home (@Home) and
base metaclass of the Place stereotype), we can also model
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Fig. 13 The MeH dynamic deployment diagram

at the surgery (@Surgery). In the same manner, executables
located in the server room can access a LAN (@ServerSide).

The inner hardware resources (CPU, Battery, Display,
WiFi Card, 3G Card) of the PDA and the networks to
which the PDA and the other execution hosts can connect
(LAN@Home, LAN@Surgery, LAN@ServerSide, WAN)
are shown in Fig. 14. For sake of readability, we omit to
draw the inner details of AppServer Host, Database Host,
and ImageServer Host nodes. However, similar to the PDA,
all the execution nodes include (at least) processing, stor-
age, and communication resources that are exploited by the
software executables deployed on them.”

5.1.4 MeH context view

The UML model described so far is agnostic of the context
evolution. A Context View has to be defined for context evo-
lution modeling; hence, the notation-independent modeling
approach described in Sect. 3 is here realized in UML. In
Fig. 4, we have shown the FOCEMs for three different CAs:
physical location of doctors, charge level of the PDA battery,
and execution modes of the PDA CPU.

Through UML mechanisms, we associate each FOCEM
with a UML element. In our case, the FOCEM in Fig. 4a
is associated with the Doctor UML actor, whereas the ones
in Fig. 4b, ¢ with the Battery and CPU UML Deployment
Nodes, respectively.

7 Note that the specification of these inner details makes hardware nodes
as elements that can be saved in UML model libraries, so that they can
be reused in other contexts or for other applications.
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In addition to the UML StateMachines representing the
FOCEMs, Context View also includes the modeling of the
context-aware behaviors of the provided services.

Figure 15 shows an Interaction Overview Diagram for the
RPD Service. A decision node precedes two boxes that refer
to the Standard and Resource-Constrained alternative behav-
iors for RPD. Alternative behaviors are chosen according to
a context condition. The latter may be expressed as a first-
order logic proposition whose variables refer to the states of
the FOCEMs.

For RPD, only the Resource-Constrained behavior (i.e.,
the one excluding the download of images) is available when
the battery reaches a low-power state, in all other cases the
Standard Behavior runs. Given the HOCEM in Fig. 5, this
means that RPD is available in any context state, but with
reduced capabilities in the states in the LP set.

It is worth noting that both the service behavioral specifi-
cation (depicted on the SD in Fig. 12) and context behavioral
alternatives (depicted on IOD in Fig. 15) are modeled via
UML Interactions. It is up to the modeler to provide a coher-
ent combined view. In this example, the same SD of Fig. 12 is
referred to by both InteractionUses (i.e., the ref boxes) of the
IOD in Fig. 15, and the same context conditions activate both
alternative flows on IOD and opt fragments on the linked SD.

5.1.5 Adding non-functional annotations

Concerning the MARTE and DAM annotations, some model
elements require the following additional information to
derive the analysis models used in the approaches illustrated
in Sect. 5.2. In particular:
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Fig. 15 Two different behavioral specifications for the RPD service

— The failure rate of each software component (DAM
DaComponent, failure attribute) shown in Fig. 11 for the
ImageServer component. This parameter is used to cal-
culate the reliability of the whole MeH system.

— The resource demand vectors [44] for the messages
exchanged among software components. A resource
demand vector annotates the amounts of high-level or
logical resources required to complete each execution
step.® In particular:

— Instr represents the number of high-level instructions
to be executed from a CPU.

— DbAx represents the number of mass memory blocks
to be accessed on a disk.

— Msg represents the number of bytes to be exchanged
through a communication network.

Figure 12 shows amodeling solution through the MARTE
profile. A getXRayImages() call message is annotated
with the PaStep stereotype demanding for a certain
amount (extOpCount attribute) of logical resource types
(extOpDemand attribute) for its execution.

— The detailed characteristics of low-level or concrete

hardware resource types for client and server hosts
as well as communication networks. For this pur-
pose, different detailed hardware resource configurations
can be modeled via MARTE stereotypes (HwEnd-
Point, Hwl/O, HwMedia, HwMemory, HwPowerSupply,
and HwProcessor in Fig. 14) and variables ($-prefixed
strings added as stereotype properties’ values).’ In
particular, MARTE variables can act as placeholders
for different input parameters like service times for
CPU ($cpu_pda_instr_service_time), access times

8 We assume that the resource units are implicitly released at the end

of each step.

9 The annotations for hardware resource configurations must be com-

Value Specification Language (VSL) included in [32].

pliant with the Hardware Resource Modeling (HRM) subprofile and the
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Table 5 Detailed characteristics of the processing, storage, and communication resources for MeH

Execution host Hw resource Attribute (MARTE variable) Value Unit
PDA CPU 1 GHz $Scpu_pda_instr_service_time 1.00E—09 S
CPU 0,67 GHz $Scpu_pda_instr_service_time 1.49E—09 S
SSD 0.1 ms $disk_pda_access_time 1.00E—04 S
AppServer Host CPU 3 GHz $Scpu_appserver_instr_service_time 3.33E—10 S
Disk 9 ms $disk_appserver_access_time 9.00E—-03 S
Database Host CPU 3 GHz $cpu_database_instr_service_time 3.33E—10 S
Disk 9 ms $disk_database_access_time 9.00E—-03 S
ImageServer Host CPU 3 GHz $Scpu_image_server_instr_service_time 3.33E—10 S
Disk 9 ms $cpu_image_server_access_time 9.00E—-03 S
WAN WAN $wan_bandwidth 4.27E4+01 MB/s
LAN@Home DSL 20 Mbps $lan_home_bandwidth 8.00E—01 MB/s
LAN@Surgery DSL 20 Mbps $lan_surgery_bandwidth 8.00E—01 MB/s
LAN@Server DSL 10 Gbps $lan_server_bandwidth 1.56E—03 MB/s

for disks ($disk_pda_access_time), and bandwidths
for communication networks (e.g., $Slan_surgery_
bandwidth). These parameters can be obtained from
the clock speed, access time to memory units,10 and
bandwidth, respectively. The properties of the hardware
resources, the corresponding MARTE variables, and the
actual values of all these resources are listed in Table 5.

It is worth noting that we assume as undefined the mul-
tiplicity value for all software and hardware resource types
(i.e., the maximum number of instances of the resource con-
sidered as available [32],11) if not otherwise modeled for
non-functional analyses. For sake of illustration, we have
assumed single multiplicity of components over all the case
study considered in this paper. The introduction of multi-
ple instances, however, does not affect the context modeling,
whereas it may affect the complexity of the non-functional
analysis, depending on the analysis approach adopted. In par-
ticular: (1) the reliability analysis adopted here would not be
affected, because the model can deal with multiple instances,
whereas (2) the performance analysis adopted here, as men-
tioned later, is not adequate for multiple instance models,
because it does not consider resource contention. In order
to address contention, more complex performance models,
such as queueing networks, should be adopted.

10 We consider memory units of 4 KB. For the solid state drive (SSD) the
data access is set to 0.1 ms, while the hard disk drive (HDD) access time
estimation derives from different parameters like average seek time, disk
spins, transfer rate, controller overhead, and average rotational delay.

I In MARTE [32], the default value for resMult is 1. For simplicity, we
do notintroduce additional MARTE variables for software and hardware
resource multiplicities to represent undefined values.
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5.2 Context-aware non-functional analysis

In this section, we build up non-functional analysis on our
context modeling approach. In particular, we tailor two
approaches to reliability and performance analysis to work
on models of context-aware applications built with our
approach. This aims to show that not only does our mod-
eling approach allow introducing all information necessary
to perform non-functional analysis, but also it enables mul-
tiple types of analysis whose results are critical to support
decisions in a context-aware domain.

We have adapted two existing approaches for reliability
and performance analysis to the case of context-aware sys-
tems, as it will be detailed in the following. However, other
state-based non-functional analyses can be adapted to our
context approach, given that they require the same mod-
eling information. Thereafter, we have used the reliability
approach for a transient-state analysis, whereas the perfor-
mance approach for a steady-state analysis. This choice (i.e.,
transient vs. steady state) has not been driven by the intrin-
sic characteristics of the approaches, as they can be easily
applied to the other case, but by the intent of illustrating that
both situations can be tackled with our context approach.

In general, the selection of a non-functional analysis
approach depends on the non-functional system require-
ments. For example, the reliability approach that we use here
does not consider error propagation (i.e., it assumes only sin-
gle points of failures), whereas in a different type of system,
such as one that adopts fault tolerant mechanisms because it
faces more stringent reliability requirements, the error propa-
gation plays a crucial role, so a different reliability modeling
approach has to be adopted. Similarly, the decision whether
transient-state or steady-state analysis is more appropriate
depends on the system scenarios of interest, namely whether
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a specific interval of time or the long-term average behavior
is of critical interest, respectively.

The analysis that we present here is not aimed, however,
at being adopted at runtime, where real-time requirements
claim for lightweight approaches that can return quick results
useful for online decisions. As we have mentioned before,
this paper target is the system design phase, when multiple
alternatives have to be considered and compared to each other
in order to support design decisions.

5.2.1 Context-aware transient-state reliability analysis

Here we consider the reliability analysis approach introduced
in [18] to study the reliability of a software architecture as a
function of the reliability of its software components.

The failure probability F' P of a system Sys attime T < ¢
can be expressed as:

FPsy(T <t)=1— ]_[ FP(T > 1) 1)

i€Cgys

where the probability that Sys fails before time # is expressed
as the complement of the probability that all software com-
ponents (composing set Cgys) do not fail before ¢. If the
component failures are exponentially distributed, then Eq.
(1) becomes:

FPsy(T <t)=1— ]_[ e it )

i€Cgys

where A; represents the failure rate of component i. We define
the system failure probability in a specific context state s;
through Eq. (2) applied to the set Cy; of components provid-
ing services in context state s ;, namely:

FP(t)=1- ]_[ e Hit (3)

ieCs.
S/

where we have simplified the notation by omitting 7.

In Table 6, we associate failure rates A; with the four MeH
software components, as they appear in the Component Dia-
gram of Fig. 11. Failure rates in Table 6 hold for both ScA
and ScB. It is worth noting that the failure rates are invariant
with respect to context states, while the number of software
components in Cy; that are involved in the provision of RPD
service varies with context states.

We assume that the Standard Behavior is chosen in con-
text states where the battery is in high-power (HP) or under

charge (UC) states, and the Resource-Constrained Behavior
is adopted in all other states. Such a contextual condition
is annotated on the decision point of the UML Interac-
tion Overview Diagram in Fig. 15. Consequently, the Image
Server component is not involved in those context states
where the Resource- Constrained Behavior is chosen, that is,
when the battery is in the low-power (LP) state. As reported
in Table 6, the Image Server component is the most unreliable
one among the servers.

Starting from Eq. (3), the transient-phase failure proba-
bility of a context-aware software system, given a set S of
possible context states (s; € §), can be obtained by sum-
ming the system failure probability in each context state s;
weighted by the corresponding sojourn probability py; () at
time ¢, namely

FPsys(t,8) = > py;(t) - FPy (1) @

SjES

where the values of Ps; (t) are shown in Figs. 6 and 7 for the
HOCEMs of both ScA and ScB.

Equation (4) is calculated for the MeH system, and the
results are shown in Fig. 16. Four distinct curves illustrate the
variation of the MeH failure probability at different instants
t during the transient phase.

Standard Behavior only and Resource-Constrained Behav-
ior only curves correspond to context-unaware cases, where
the same specific behavior for the RPD service is provided
in each context state. It is worth noting that such curves also
represent the upper and lower bounds of the failure probabil-
ity for MeH, respectively. Indeed, the Resource-Constrained
Behavior is composed by a strict subset of the interactions
required by the Standard Behavior (i.e., the former excludes
any interaction with the unreliable Image Server). And since
the failure probability of an inactive software component is
ignored in Eq. (3), bounds are obvious.

The other two curves labeled as Context-Aware Behavior
illustrate the reliability of the MeH system in the two context
scenarios ScA and ScB. In such cases, the proper alternative
behavior for the RPD service is chosen according to the con-
text state with a certain probability at a given instant during
the transient phase.

These curves appear in the figure very close, but this is
due to the need for representing in the same figure also the
bounding curves. In order to appreciate the actual differences
of reliability between ScA and ScB, we have reported their
numerical values along time on the bottom of Fig. 16.

Table 6 Reliability model

parameters Components

Client

App Server Database System Image Server

Failure rate (by year) 50

2 2 50

@ Springer
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0.28

0.26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

MeH Failure Probability (FP)

0.08
0.06
0.04
0.02

0.00
ti=1h

—e—Standard Behavior only 0.012

Resource Constrained Behavior only 0.006
~#—Context-Aware Behavior (ScA) 0.011
< Context-Aware Behavior (ScB) 0.011

Fig. 16 Transient-state reliability analysis for MeH

As expected, the failure probability in ScB is lower than
in ScA along the whole timeline. Indeed, the latter scenario
assumes a lower mobility of the RPD users, thus resulting in
a generalized lower probability to sojourn in the LP Set with
respect to ScB (—0.0879, see Table 3) and then to a lower
probability to invoke the Standard Behavior of the RPD ser-
vice that has a higher probability to fail due to the interaction
with the Image Server component.

An interesting aspect of Fig. 16 is that the gap between
the reliabilities of the mobility scenarios sensibly grows with
time, because it depends on the different trends of transient-
state probabilities in ScA and ScB, as illustrated in Figs. 6
and 7, respectively. In particular, as shown in Fig. 7, we
observe that in the second part of the day the high mobility
of RPD users brings them to locations, like Open Air ones,
where their devices cannot be easily recharged, and thus, the
Standard Behavior cannot be conveniently invoked. Hence,
with time passing, ScB gains reliability with respect to ScA
(of course, at the expense of missing patient analyses images,
as outlined in other occasions before).

@ Springer

t2=6h t3=12h t4 =24h
0.069 0.133 0.248
0.036 0.071 0.138
0.060 0.114 0.213
0.058 0.108 0.203

Several considerations can be inferred from these results.
A first (simple) one is that the failures of the Image Server
heavily affect the system reliability, and this is particularly
evident across different mobility scenarios. Software design-
ers are advised to spend more time on testing this server, by
possibly analyzing also the influence of remote connection
failures on its reliability.

A finer observation concerns the trade-off between the
need of RPD by doctors to get patient’s images and their tol-
erance to system failures. To investigate this aspect, designers
can collect users’ feedback about their perceived quality of
service, in order to understand whether the Standard Behav-
ior is appreciated at any time of the day from the users despite
failures. If it is not, then the adaption strategy can be modified
by providing, for example, in the hands of users the possi-
bility to activate/deactivate the interactions with the Image
Server, even when they are in contexts where their devices
can be easily recharged. The study of alternatives like this
one only implies, in our framework, to modify the context
modeling and re-execute the reliability analysis.
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Finally, we remark that, for sake of illustration, we have
here considered a simple reliability model. Equation (1)
assumes: (1) failure independence among components and
(2) that a component failure corresponds to a system-level
one (i.e., fail-and-stop mechanism). This equation can be
easily solved with a basic worksheet, as it does not require
complex solver tools. However, more complex reliability
models are still compatible with our approach because the
model complexity does not impact on the context modeling,
whereas it obviously affects: the number of UML annota-
tions, the complexity of the reliability model extraction from
the UML model, and the reliability model solution. In such
cases, more complex tools, such as SHARPE [47], can be
adopted for reliability analysis.

5.2.2 Context-aware steady-state performance analysis

Here we consider the performance analysis approach intro-
duced in [17]. In order to apply this approach, we have
transformed the annotated MeH UML model described in
Sect. 5.1 into an execution graph (EG) [44]. This is a
platform-independent model that represents the software
dynamics along with its requests of resources called resource
demand vectors. The latter may be expressed, for exam-
ple, in terms of processing, storage, and communication
resource units (like virtual machine instructions, number of
accesses to databases, and number of sent/received mes-
sages). Resource demand vectors are mapped to (more or
less powerful) devices that provide hardware counterparts of
such logical resources (e.g., CPU speed, disk access rate, and
network bandwidth).

In Fig. 17, the EG of the RPD service is shown. It is
obtained by combining the RPD sequence diagram in Fig. 12
and the RPD interaction overview diagram in Fig. 15.'% The
EG is partitioned in vertical swim-lanes, one for each lifeline
in Fig. 12, that cut blocks into subsets. The topmost labels
indicate the name of the software component executing each
subset and the execution host on which such software compo-
nent is deployed. EG blocks represent UML Call Messages,
whereas context-based behavioral variations of Fig. 15 are
represented by decision nodes that, in practice, avoid calls
to ImageServer as prescribed for the Resource-Constrained
RPD service variant, executed when the battery is in the low-
power (LP) or under charge (UC) states.

A demand vector is associated with each EG block in
light gray, and it is labeled as platform independent (PI).
They are obtained from GaAcgStep stereotypes and proper-
ties as described in [17]. In particular, they report the amounts

12 Note that the RPD interaction overview diagram considered for per-
formance analysis is slightly different from the original one in Fig. 15
because the Resource-Constrained Behavior for the RPD service is here
executed also when the battery is UC.

of resUnits and acqRes properties of GaAcgStep stereotype
applied messages in Fig. 12. Note that each block included
in both alternative RPD behaviors has two demand vectors
associated, each reporting the amount of resources required
in a specific behavior. In particular, two alternative demand
vectors have to be assigned to Multimedia Data Upload and
Multimedia Data Download blocks, representing the return
of patient data sent from the server to the doctor’s PDA, since
their demands cannot be uniquely identified and depend on
RPD behavior alternatives for the following reasons:

— The amount of bytes exchanged between AppServer and
Client components depends on the presence and dimen-
sion of the downloaded images.

— The CPU instructions and the number of accesses to the
Disk on the PDA increase with the need to process the
(possibly) downloaded images.

The characteristics of platform resources of execution
hosts are taken from the Deployment Diagram in Fig. 14,
as listed in Table 5, and they are reported in Fig. 17 as dark
gray vectors beside each EG block labeled as Platform.

The deployment of software components onto execu-
tion hosts drives the conversion of PI resource demands to
platform-specific (PS) ones, and the conversion depends on
the hardware resources equipping the target hosts. The same
EG block can be executed on different platform configura-
tions with different CPU clock frequencies (e.g., CPU with
highest frequency set to 1 GHz in normal mode or to 667
MHz in power save mode) and different communication net-
works (DSL LAN at 20 Mbps at home or UMTS WAN at
384 Kbps in open air), depending on the particular context
(see Fig. 5). Therefore, in Fig. 17 two platform configura-
tions are associated with the RPD block. As a consequence,
different PS demand vectors can be obtained from the same
PIdemand vector, as shown in Fig. 18 for the RPD invocation
on PDA.

In PS vectors, resource demands are all expressed as ser-
vice times.!3 We here assume that:

— For the Standard Behavior, the Client downloads 5 MBs
of textual data and 100 MB of images.

— When downloaded, the images are displayed and further
elaborated on the Client resulting in a processing over-
head on the client CPU.

— When downloaded, all images are saved on the local Disk
of the PDA, thereby causing several accesses.

13 The service time is the amount of time required by the particular
resource (e.g., disk) to satisfy service requests (e.g., store data by access-
ing disk sectors).
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Platform’ demands in time (ms)
CPU 1 GHz 1,00E-03 CPU CPU 1 GHz
SSD 0.1 ms - 8,00E-04 DB SSD 0.1 ms
DSL 20 Mbps 0,00E+00 NET DSL 20 Mbps
EG Block resource units X Platform Specific (PS’) '
for Standard Behavior alternative
Request 1000 instr hardware
Patient Data Pl 1 disk access — — — —— —— —— —— — configurations — -
0 Msg Platform Specific (PS”’)
for Resource Constrained Behavior
® demands in time (ms)
CRUENG2 1,24E-03 CPU CPU 667 MHz
DSSSLDZ?)JM:S = 8,00E-04 DB SSD 0.1 ms
- 0,00E+00 NET UMTS 384 Kbps
Platform”

Fig. 18 Conversion from PI to PS demand vector

1 For each service s {

2 For each context state c¢ in HOCEM ({

3 identify the platform p adopted in context state c

4 identify the EG of the behavior b executed in context state c
5 for service s

6 For each block in this EG {

7 calculate the PS demand vector

8 calculate the service time of the block by summing
9 the PS vector entries

10 }

11 calculate the service time of behavior b by combining
12 the service times of its EG blocks

13 }

14 }

Fig. 19 Context-customized EG synthesis algorithm

We then apply the EG synthesis algorithm [44] to each
of the 16 contexts identified in the HOCEM of Fig. 5
and sum up the service times of PS vectors to obtain
context-specific performance indices for both Standard and
Resource-Constrained RPD services by following the algo-
rithm in Fig. 19.

For sake of illustration, in the following we stepwise apply
the algorithm to the EG in Fig. 17. For this goal, the rows
mentioned here below refer to the algorithm in Fig. 19.

For each context state, a context-specific platform is
obtained in row 3 by selecting the CurrentNodeLocation rela-
tionships among the allowed ones in a Deployment Diagram
(see MeH DD in Fig. 13).

Resource-specific service times of PS demand vectors are
then carried out in row 7 for each EG block by multiplying
the amount of each resource, as specified in its PI demand
vector, by the service time of the corresponding resource in
the platform listed in Table 5. The service time of each EG
block is then obtained in row 8 as the sum of the resource-
specific service times carried out in row 7.

For each possible execution flow on the EG, a flow service
time is calculated in row 11 by combining the service times
of its blocks. In the MeH system, we have calculated the ser-
vice times of the two alternative execution flows of the RPD
service, which correspond to the Standard and Resource-
Constrained behaviors.

At the end of the inner loop (row 13), the service time of
a service is obtained for each context state. At the end of the
outer loop (row 14), the algorithm provides the service time
of all system services in each context state, which for the
MeH system is the RPD service only.

The outputs of this algorithm on MeH are two sets of
16 context-specific service times, one for each alternative
behavior of the RPD service (i.e., Standard and Resource-
Constrained). Table 7 illustrates these values.'*

A maximum response time of 4559.32 s is obtained when
the doctor stays outdoors (i.e., in the OpenAir Set) and at
patient’s home, the battery is in high power, and then all the

14 Note that, since no contention of resources is considered in this per-
formance analysis, the algorithm for EG synthesis has been simply
in-house developed.

@ Springer



L. Berardinelli et al.

2164

1$°261 SLINN NVM POUTEIISUOD) 90INOSTY INSd d1 d 018
* €655 SLINN NVM pIepuelg NN dH d 608

* Iy sdqI 0z "ISa A103MSONV'T POUIENSUOD) IINOSIY INSd on S 808

* Iy sdqN 0T 1Sa A103mMSONV'T pauUIenSUO)) 22IN0SIY INSd d1 S LOS

STH8I sdqIN 0T "ISa A198mMSONV'T piepuelg NN dH S 90s

157261 SLAN NVA POUIEIISUOD) 0INOSTY INSd d1 sdyvo PSOs

157261 SLNN NVA POUIBIISUOD) 0IN0STY INSd d1 dsyo 2608

15261 SLINN NVA POUIBIISUOD) 0IN0SIY INSd d1 Usvo Q508

1$°261 SLIAN NVA POUIBIISUOD) 0IN0STY INSd d1 SUVO vG0S

% €'6SSH SLIAN NVA piepuelg AN dH sdvo PH0s

% €655 SLAN NVA piepuelg NN dH dsyo 208

% €655 SLANN NVM prepuvlg NN dH Usyo ay0s

% €655 SLNN NVM piepuelg NN dH SUVO vp0s

* I sdqN 0T 1SA SWOH®NV'] POUILIISUO)) 20IN0SIY INSd on H €0s

* v sdqN 0T 1SA SWOH®NV'] PAUILIISUO)) 20IN0SY INSd d1 H 708

STY81 sdqN 0T 1SA SWOH®NV'] prepuelg NN dH H 108

ndo neq “Aud sweN

XeN 1157\¢ (S) I SIomioN ‘wwo)) I1oA1S ddy-juer) wiaoped juswioideq Jo1Aeyaq (A4 ¥ Q)e]S JXdAUO0)D)

QOTAISS (I Y3 Jo sown asuodsay 7 3|qel

pringer

Qs



Multidimensional context modeling applied to non-functional analysis of software 2165
35
30
25
20
o
@
w
15
10
5
: L] L] O ]
s01 sO4a s04b sO4c s04d s06 s09
m ScA 29,86 2,27 3,75 2,78 2,59 21,34 15,97
ScB 27,15 4,60 6,14 2,75 2,51 10,68 15,72
Fig.20 Contributions to the average response times of Standard RPD service—HP Set
20
18
16
14
12
b
2 10
8
6
4
2 . I I
0 — — — — |
s02 s03 s05a s05b s05¢ s05d s07 s08 s10
mScA 0,49 0,43 2,31 5,42 3,33 3,53 0,51 0,31 0,84
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Fig.21 Contributions to the average response times of Resource-Constrained RPD service—UC and LP Sets
images are downloaded through the only network available —
g g y s STS}'S = ns./ . STS_/ (5)

which is a WAN cellular network (e.g., UMTS).

A minimum response time of 4.11 s is obtained when the
doctor invokes the Resource-Constrained version of the RPD
service at home and at the surgery.

It is worth noting that the minimum and maximum val-
ues are invariant with respect to the scenarios ScA and ScB,
because the underlying hardware platform remains the same.

Then, we calculate the average service time of the MeH
system in a steady state across the context states. The average
service time is defined as the weighted sum of the service
times of the RPD behaviors running in each context state,
and it can be formulated as follows:

s.,'eS

where the weights 77, represent the steady-state probabilities
calculated for each context state in Table 2.

The resulting average response time is 464.28 s in ScB and
349.98 s in ScA. Note that the former is quite higher than the
latter mainly because in ScB the doctor moves more often
than in ScA and therefore can experience low bandwidth
networks.

In Fig. 20, we report the contribution to these average
response times given by each context state where the Stan-
dard Behavior runs because the battery of the doctor’s PDA is
in high-power mode (HP). Similarly we do in Fig. 21 for the
case of Resource-Constrained Behavior induced by battery
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Fig.22 New contributions to the average response times of standard RPD service—HP Set

in low-power mode (LP) or under charge (UC). As the his-
tograms show, the highest contributions to the whole average
response time across all states comes from s04a, s04b, sO4c,
and s04d that appear in Fig. 20 and that share the characteris-
tic of using UMTS network connection, as listed in Table 7.
This happens for both mobility scenarios ScA and ScB. Note
that also in s09 the system runs the standard behavior in the
presence of UMTS network connection, but, in this case, the
contribution to the average response time is mitigated by the
short stay of the doctor in that state in both scenarios, as listed
in Table 2. These considerations highlight that the adaptation
strategy is not fully adequate to guarantee good performance
in all context states. This is because the adaptation strategy
is not predicated on the network connection, but only on the
PDA battery. However, this aspect would not have emerged
without such a joint analysis.

Hence, in order to improve the performance of the sys-
tem, the adaptation strategy should include also the condition
of the network connection. To validate this result, we have
imposed that the RPD service runs the standard behavior in
all contexts where the battery is high and the network con-
nection is not UMTS. By considering this new context-aware
adaptation, the average response time for the RPD service
decreases from 349.98 to0 95.74 s in ScA, and from 464.28 to
107.07 s in ScB. In Fig. 22, we also report the new contribu-
tions to the average response time of the context states sO1,
s04a-s04d, s06, and s09, where the gain appears even more
evident.

This analysis shows that the identification of performance
degradation causes in context-aware software systems is
often not trivial and that our approach provides an automated
instrument, in the hands of software developers, aimed at
quantifying and comparing performance indices in combi-
nation with contexts and adaptation strategies.

@ Springer

6 Related work

In [30], Hong et al. proposed a literature review and classi-
fication framework for publications related to context-aware
systems. They identify five layered macro areas, namely
(1) Concept&Research, (2) Network Infrastructure, (3) Mid-
dleware, (4) Application, and (5) User Infrastructure. The
Concept&Research area, in particular, covers categories
like overview, algorithm, development guideline, framework,
context data management, evaluation, and privacy and secu-
rity.

The framework that we have presented in this paper con-
tributes to this area by proposing a context modeling and
reasoning approach based on CEMs. We then have fur-
ther combined the Concept&Research area with the one
concerning model-based non-functional analyses of soft-
ware systems. In this respect, our main contribution lies in
the intersection of these two areas. Indeed, we started our
research activities with the aim of adapting existing non-
functional analyses methodologies (i.e., for performance [44]
and for reliability [18]) that were adopted in previous works
on context-agnostic software systems.

The next two sections illustrate the related work concern-
ing context modeling and reasoning approaches (Sect. 6.1)
and non-functional analyses applied to context-aware soft-
ware systems (Sect. 6.2).

6.1 Context modeling and reasoning

Surveys on approaches in the Concept&Research [30] are
provided in [46] and [13].
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In [46], the approaches with respect to the data structures
used for representing and exchanging contextual information
are classified as follows:

— Key-Value Models represent the simplest data structure
for context modeling.

— Markup-Scheme Models use a hierarchical data struc-
ture consisting of markup tags with attributes and content
(e.g., XML).

— Graphical Models provide diagrams where context-
related information can be shown in an ad hoc manner
and/or annotated on preexisting shapes.

— Object-Oriented Models encapsulate context in reusable
objects so that the access to context information and pro-
cessing logic can be provided by well-defined interfaces.

— Logic-Based Models have a high degree of formality
and represent context in terms of facts, expressions, and
rules. A logic-based system is then used to manage the
aforementioned terms and allows new facts to be added,
updated, or removed. The inference process can be used
to derive new facts based on existing rules in the systems.

— Ontology-Based Models are formal representations of
knowledge as a set of concepts within a domain, and
the relationships between those concepts.

A newer classification of context modeling and reasoning
approaches appeared in [13], where the authors identified a
set of requirements that a context modeling approach should
satisfy.

Different from [46], in [13] context models are distin-
guished with respect to their level of abstraction, so that
high-level context model includes situational context (e.g.,
at home or at work) that are derived by reasoning about
low-level context data [22]. Situations are external semantic
interpretations of low-level context data that inject meaning
into the application so that possible adaptation actions, like
the selection of alternative service behaviors, are triggered
only when low-level context data correspond to situation
changes.

Following the classification framework in [13], we have
evaluated our context modeling and reasoning approach
based on CEMs. A detailed description is reported in
Appendix B. According to [13], our approach is capable of
identifying contextual situations, since it provides a means
for representing and composing different types of higher-
level contexts or situations represented by state machines, as
we did with our CEMs. Other approaches support the idea of
modeling physical or logical places as states and movements
as state transitions [20,24]. Our approach extends this usage
of the state machine notation to possibly any kind of context
information.

A general formal framework for modeling contexts as sit-
uations using graph-based models is presented in [22], where

the context, its evolution, and relationships with context-
aware systems are modeled through situational graphs,
context model, and fibrations concepts. Our approach may
be classified as a detailed and concrete instantiation of such
generic concepts, in particular:

— A context evolution model is a kind of situational graph,
further enriched with rates and probabilities on arcs for
sake of context reasoning.

— A UML model represents a very detailed type of con-
text model since, potentially, any model element with its
attributes can describe part of the context.

— The combination of UML model with CEMs’ states cor-
responds to fibrations, i.e., system configurations that in
the proposed MeH case study correspond to alternative
behavioral specifications available when predefined if-
context-is conditions are verified.

However, different from our approach, no reasoning capa-
bilities adopting fibrations models are proposed in [22].

In [1], Afanasov et al. present both a context-oriented
design concept based on state machines and a corresponding
programming model based on the nesC language, expressly
conceived for resource-constrained platforms. In particular,
their context design approach introduces two key concepts,
contexts and context groups, which can be reasonably com-
pared to our CEMs, FOCEM and HOCEM, respectively.
Indeed, different from [1], we are not binding our approach
to a specific programming model, but we extend context
design capabilities by formalizing a stochastic extension of
state-based context models (FOCEM and HOCEM), and
its integration with UML models and model-based analysis
methodologies [18,44].

Our idea of managing all context-related aspects with state
machines can be also compared to solutions for the modeling
and analysis of adaptable software systems where the notion
of context was not explicitly identified as a first-class domain
concept as in [28,32,48]. In [28], Uchitel et al. proposed
the concept of modes to extend the Darwin architectural
description language for modeling service-oriented com-
puting systems. Modes are also language primitives in the
Architecture&Analysis Description Language (AADL) [48]
for modeling real-time and embedded systems. In both cases,
they can be used to model the structural evolution of a soft-
ware architecture at runtime. AADL, in particular, also allows
the modal characterization of all its modeling elements (e.g.,
system, connectors, and properties). Thus, our logical and
hardware FOCEM can be modeled as AADL component
modes, whereas the overall HOCEM as system modes. In
AADL, it is also possible to model the physical mobility
by means of system modes. However, in this case, it cannot
be associated with a system user as we do by associating
the FOCEM to UML actors. More recently, the concept of
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mode has been introduced in the context of cyber-physical
systems [15] to take into account the level of uncertainty in
the context change mechanism.

In this respect, we have adopted the concept of state-based
notation for modes from [28,32,48] and broadened its appli-
cation to represent heterogeneous context information. We
have concretely generalized the concepts of modes by intro-
ducing CEMs. In addition, thanks to the extensibility and
widespread adoption of UML, our approach can be (1) sized
for different definitions of context and (2) used as a general
modal-based modeling approach for context-aware software
systems in multiple domains.

In [39], the authors propose a modeling approach and a
visual modeling notation for context-aware social collabo-
ration processes. Here, the context includes document and
people information. This work shares with ours the idea of
modeling and formalizing context through a state-machine-
like notation. However, different from our approach, [39]
aims at providing a context model for a specific applica-
tion domain (i.e., context-aware social collaboration business
processes) that is merged with the software specification
in [39].

In [36], the authors describe a data collection campaign
that shows how actual values of CAs can be collected from
user-centric CSs and how such data allow the calculation
of sojourn probabilities in predefined context states to be
used for further analysis steps. In this respect, our context
modeling and reasoning approach may be used to formal-
ize such monitored data as distinct FOCEMs and combine
them in different HOCEMs for sake of alternative and/or
refined context reasoning results (i.e., sojourn times in differ-
ent FOCEMs and HOCEMs). This work shows how to exploit
context reasoning results for context-aware non-functional
analyses.

6.2 On combining context reasoning and
model-based analysis

The problem of representing and reasoning on context may
be tackled in isolation, as in the work surveyed in [46]
and [13], or in combination with other issues (e.g., the design
and development of context-aware middleware) that shift the
focus on other context-related research areas [30].

In this paper, we have combined context modeling and
reasoning activities with non-functional analyses of software
systems. We explicitly model and analyze context through
CEMs whose steady- and transient-state probability vec-
tors have been reused as a new additional input to existing
methodologies for non-functional analyses.

In this respect, a comparable framework, namely Context-
aware Quality Model Driven Architecture (CQ-MDA), was
proposed in [2]. It is an extension of MDA [37] that
can be used for quality control in pervasive comput-
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ing environments. Software architecture, hardware plat-
form, and context are explicitly defined within a modular
metamodel, Contextual ArchRQMM. Two different metrics,
namely Time Behavior Metric (TBM) and Minimum archi-
tectural Adaptive Cost (MaAC), are calculated on context-
specific platform-independent models (CPIM) through sim-
ulation and assuming different user workloads. CQ-MDA
stresses the need for separation of concerns among context,
software architecture, and hardware platform. This approach,
however, seems to be lacking a clear semantics for Contex-
tualArchRQMM. Therefore, it is unclear whether and how
both context reasoning and simulation can be directly carried
out on CPIMs and the proposed quality metrics obtained. In
our approach, we have chosen to reuse UML without creating
any new language with the potential benefit from the reuse
and extension of UML-based approaches for the design and
analysis of software systems.

To the best of our knowledge, [2] is the only one focusing
only on the modeling and reasoning on context in combi-
nation with the non-functional analysis of software systems.
Indeed, the research focus is usually shifted on software adap-
tation as effect of context analysis results. The work presented
by Grassi et al. in [23] is representative of this research area.
They proposed a modeling framework for QoS-aware self-
adaptive software applications that presents some similarities
with our work.

The framework in [23] is based on the definition of an
intermediate pivot language, called D-KLAPER, aimed at
providing instruments to transform software models into
non-functional ones and analyze QoS characteristics when
changes occur in the application and/or its execution con-
text. This approach includes the generation of Markov reward
models to analyze non-functional properties even in non-
steady states of the system, as we have done for reliability
analysis. Context evolution is then modeled as sets of trig-
ger events. However, no state machines are provided relating
these triggers to context state and transitions, as we have done
with CEMs. Consequently, no dependencies among trigger-
ing events can be modeled in D-KLAPER while we have
modeled them through remote firings among CEMs. How-
ever, the approach in [23] presents some advantages, such
as the explicit representation of adaptation actions and the
analysis of non-functional costs of such actions.

Modeling and reasoning on context tasks have been usu-
ally tackled by international projects like [21,35].

In [35], Eliassen et al. proposed a combined resource and
context model using the OMG General Resource Model [3].
The defined model is included in the MUSIC middleware [43]
that monitors the context and the resources to catch their
changes and adapts the application to fulfill the users’ QoS
requirements. The approach is based on QoS predictors and
utility functions. The adaptation is based on the concept of
service plan [40], which is a platform-independent specifi-
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cation containing information on service configurations, its
dependencies on the environment, and its QoS character-
istics. The work in MUSIC is mostly aimed at providing
primitives and functions supporting self-adaptation in ubiq-
uitous and service-oriented environments.

As in the MUSIC project, we have adopted UML pro-
files (MARTE [32] and DAM [10]) to annotate parameters
to be used for performance and reliability analyses. Con-
cerning the context-related attributes, they are annotated on
UML structural elements like Classes and Ports without any
additional information about their evolution. Differently, our
state-based approach emphasizes the evolutionary nature of
context and allows a higher degree of flexibility and mod-
ularity in modeling with respect to MUSIC. The dynamic,
heterogeneous, and hierarchical nature of context informa-
tion is modeled through separated and hierarchical sets of
CEMs. Our approach allows a higher degree of flexibility
and modularity while designing context (1) through the pos-
sibility of directly associating CEMs with different UML
modeling elements (i.e., Actors, Components, and Nodes)
and (2) by combining them through remote firing dependen-
cies, if required.

Finally, MUSIC middleware does not provide any sup-
port to model and analyze non-functional properties of such
systems before their implementation and deployment. In this
respect, it would be possible, with our framework, the gener-
ation of service plans and the provision of QoS models that
work as predictors of context-specific reliability and perfor-
mance indexes.

Another interesting project is DiVA [21], which aims at
providing an integrated framework for managing dynamic
variability in adaptive systems. Different from other
approaches where the dynamic adaptation is handled at code
level, DiVA exploits both model-driven and aspect-oriented
technologies to define an architectural model (including base,
variant, and adaptation models) at design time. The compo-
sition and validation at runtime of alternative models allow:
(1) the choice of the system configuration that best adapts
to the changed execution context and (2) the deployment
and execution of the chosen configuration supported by a
reflective middleware [41]. However, this approach does not
provide any support for non-functional analysis.

7 Discussion and conclusions

In this paper, we have introduced an approach to model multi-
dimensional software contexts, which can deal with any type
of context that can be modeled with a set of state machines.
Being based on a clear separation of concerns between soft-
ware and context modeling, our approach is independent
of the application domain. Here, we consider the eHealth
domain as a case study, but we are currently investigating its

usage in the cyber-physical production system domain.!> The
semantic formalization of a context composition operator has
provided a formal instrument for context-dependent software
analysis. We have shown how context-aware steady-state
performance analysis and transient-state reliability analysis
can be carried out by combining our approach with existing
non-functional model generation techniques. This combi-
nation has demonstrated that our modeling approach (1)
allows introducing all information necessary to perform non-
functional analysis and (2) enables multiple types of analysis
whose results effectively support the decision process in the
development of context-aware systems.

Moreover, non-functional analysis combined with context
analysis reveals critical aspects and design errors that may
not emerge without such a joint analysis, thus confirming that
the identification of software quality degradation causes in
context-aware software systems is often not trivial. Hence,
our approach provides an automated instrument, in the hands
of software developers, aimed at quantifying and comparing
characteristics of software systems in combination with con-
texts and adaptation strategies.

The validity of our approach relies on the main assump-
tion that context and its evolution can be represented as a
Markov chain. In particular, the Markov property is required
for reasoning on the context. Although we have uniformly
applied our approach to the modeling of physical mobility
and hardware configuration awareness (i.e., two CAs of very
different nature), the Markovian property assumption turns
out to be more or less strict depending on the particular kind
of awareness. For example, the memoryless property does not
perfectly match on the transition of a full battery to an empty
battery, since the longer the battery is in the high-power state,
the more likely is that it moves to the low-power one. The
property works instead very well for modeling the physi-
cal movements of users from one place to another, with the
exception of predefined paths (e.g., for a traveling salesman).
The extent to which the Markov property assumption influ-
ences the accuracy of our approach in predicting the whole
context evolution should be evaluated case by case, depend-
ing on the particular type of context that best fits the software
application. In any case, it is worth reminding that suitable
combinations of exponential distributions can approximate
arbitrarily well basically any distribution.

In order to show how the context analysis results may
vary upon variations of context parameters, we carried out
a sensitivity analysis to discuss expected analysis results
while changing the parameterization of FOCEMs and result-
ing HOCEMs.

In order to reduce context modeling errors, automated
procedures can be introduced to synthesize FOCEMs from

15 http://me-at-big.blogspot.co.at/2016/07/context-modeling-and-
analysis-of-cyber.html.
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sensing data. Such procedures sense the context variables of
interest and, by analyzing the stored data, can produce the
relative FOCEM. An example of such a procedure can be
found in [9], where a prototype tool is proposed to collect
data from a RESTful web service with the aim of publishing
and then retrieving battery consumption data and thus very
close to build a Battery Charge FOCEM.

Since our approach does not allow CEMs to change state
during the execution of a service, but only between one invo-
cation and another, as a short-term future direction we intend
to introduce this characteristic in our framework without any
heavyweight extension of the UML metamodel.

Besides, we intend to address more complex forms of
adaptation that, for example, completely replace the inter-
nal structure and behavior of a certain component when
needed [33].

Another future direction is the application of our approach
to more complex performance and reliability analyses (e.g.,
performance under resource contention, reliability under
error propagation) and/or to other non-functional attributes
(such as availability and security).

Finally, an interesting direction could be to evaluate the
proposed approach w.r.t. other similar approaches in terms
of design guidance and quality of results.
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Appendix A: Case study detailed data

In Tables 8 and 9, we report the state transition matrices of
the HOCEMs for ScA and ScB.
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Rows and columns have been partitioned to identify three
subsets:

— HP Set identifies a powerful context where the RPD ser-
vice is always running on a fully charged PDA and the
only CA that varies is the physical location of the doctor
equipped with the PDA.

— LP Set, similar to the HP Set, identifies a set of resource
constrained contexts where the RPD service is always
running on a PDA where the charge level of the included
battery is always equal to or lower than the chosen thresh-
old, in our example 25%.

— UC Set includes the two context states that correspond
to the invocation of the RPD service while the bat-
tery is under charge. According to the remote firing
dependencies among the transitions of the Doctor Phys-
ical Location and the Battery Hardware Configuration
FOCEM, the recharge happens only at the doctor’s home
and at the surgery. When the doctor leaves these two
places to go home or to a patient’s home, the recharge is
interrupted (i.e., the PDA is unplugged from the socket
plug) and, according to the charge level of the battery,
a new context state belonging to the HP or LP Sets is
reached.

In Tables 10 and 11, several transient-state probabilities
vectors are shown as they are obtained by setting different
execution times ¢ (expressed in hours) of the MeH system.
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Table 8 Transition rates of the HOCEM for ScA

target s01 s04a s04b s04c s04d s06 s09 s02 s05a s05b s05¢ s05d s07 s10 s03 s08
§ doc |H OAhs OAsh OAsp OAps S P H OAhs OAsh OAsp OAps S P H S
g rate batt|HP HP HP HP HP HP HP LP LP P LP LP Lp LP uc uc
cpu |NM NM NM NM NM NM NM PSM PSM PSM PSM PSM PSM PSM PSM PSM
doc |batt| cpu Doctor's physical mobility with powerful battery only battery consumption then mode change in CPU
s01 [H HP |NM 0.100 0.177
s04a |OAhs [HP [NM 2.000 0.177
s04b [OAsh [HP [NM 1.000 0.177
s04c |OAsp [HP [NM 3.000 0.177
s04d |OAps |[HP [NM 3.000 Q77
s06 |s HP [NM 0.125| 0.250 0.177
s09 |p HP [NM 12.000 0177
doc batt cpu Doctor's physical mobility with limited battery Start recharging
s02 |H LP_|PSM 0.100 0.533
s05a |OAhs |LP |PSM 2.000
s05b |OAsh |LP |PSM 1.000
s05c |OAsp |LP |PSMm 3.000
s05d |OAps |LP |PSM 3.000
s07_|s LP_|[PSM 0.125| 0.250 0.533
s10 |p LP |PSM 12.000
doc batt cpu Stop Recharging (Battery Full Charged) then mode change in CPU Stop Recharging (Battery Level < Low Level Treshold)
s03 [H ucC [Psm 0.500 0.100
s08 |s uc |Psm 0.500 0.125| 0.250

Table 9 Transition rates of the HOCEM for ScB

target s01 s04a s04b s04c soad s06 s09 s02 s05a s05b s05¢ s05d s07 s10 s03 s08
g doc |H OAhs OAsh OAsp OAps S P H OAhs OAsh OAsp OAps S P H S
E rate batt _|HP HP HP HP HP HP HP LP LP LP LP LP LP LP uc uc
cpu NM NM NM NM NM NM NM PSM PSM PSM PSM PSM PSM PSM PSM PSM
doc |batt| cpu Doctor's physical mobility with powerful battery only battery consumption then mode change in CPU
s01 [H HP |NM 0.125 0.220
s04a |OAhs|HP [NM 1.000 0.220
s04b |OAsh|HP [NM 0.500 0.220
s04c |OAsp|HP [NM 3.000 0.220
s04d |OAps|HP [NM 3.000 0.220
s06 S HP |NM 0.250| 0.500 0.220
s09 |p HP |NM 12.000 0.220
doc batt cpu Doctor's physical mobility with limited battery Start recharging
s02 |H LP _|PSM 0.125 0.660
s05a |OAhs|LP |PSM 1.000
s05b |OAsh|LP |PSM 0.500
s05c |OAsp|(LP [PSM 3.000
s05d |OAps|LP [PSM 3.000
s07 |s LP |PSM 0.250| 0.500 0.660
s10 |P LP [PSM 12.000
doc batt cpu Stop Recharging (Battery Full Charged) then mode change in CPU Stop Recharging (Battery Level < Low Level Treshold)
s03 |H uc [Psm 0.500 0.125
s08 |s ucC |Psm 0.500 0.250| 0.500
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Table 10 Transient-state

e Context state
probability vectors for ScA

Transient-state prob. vector ScB

No. Phy Batt. CPU 1 6 12 24 Steady (infinity)
01 H HP NM 0.7636 0.3633 0.2839 0.2585 0.2567
02 H LP PSM 0.1132 0.1348 0.1205 0.1165 0.1162
03 H ucC PSM 0.0287 0.1214 0.1092 0.1037 0.1033
4a OAhs HP NM 0.0341 0.0173 0.0132 0.0119 0.0118
4b OAsh HP NM 0.0016 0.0141 0.0179 0.0194 0.0195
4c OAsp HP NM 0.0021 0.0109 0.0134 0.0144 0.0144
4d OAps HP NM 0.0001 0.0099 0.0124 0.0134 0.0134
Sa OAhs LP PSM 0.0065 0.0145 0.0127 0.0121 0.0120
Sb OAsh LP PSM 0.0003 0.0158 0.0251 0.0279 0.0281
Sc OAsp LP PSM 0.0004 0.0109 0.0158 0.0172 0.0173
5d OAps LP PSM 0.0002 0.0109 0.0165 0.0182 0.0183
06 S HP NM 0.0406 0.1413 0.1712 0.1826 0.1835
07 S LP PSM 0.0068 0.0856 0.1137 0.1221 0.1227
08 S ucC PSM 0.0010 0.0437 0.0673 0.0743 0.0748
09 P HP NM 0.0005 0.0027 0.0033 0.0035 0.0036
10 P LP PSM 0.0001 0.0027 0.0040 0.0044 0.0044
Total: 1.0000 1.0000 1.0000 1.0000 1.0000
;?(I))l!zgi}it):rf/zr(l::(i)irslt;;aéecB Context state Transient-state prob. vector ScB

No. Phy Batt. CPU 1 6 12 24 Steady (infinity)
01 H HP NM 0.7157 0.3023 0.2402 0.2334 0.23339
02 H LP PSM 0.1265 0.1210 0.1208 0.1223 0.12231
03 H ucC PSM 0.0407 0.1324 0.1269 0.1291 0.12916
4a OAhs HP NM 0.0592 0.0338 0.0250 0.0239 0.02391
4b OAsh HP NM 0.0024 0.0295 0.0327 0.0319 0.03188
4c OAsp HP NM 0.0028 0.0143 0.0146 0.0143 0.01426
4d OAps HP NM 0.0012 0.0129 0.0134 0.0131 0.01304
Sa OAhs LP PSM 0.0143 0.0406 0.0365 0.0367 0.03669
5b OAsh LP PSM 0.0006 0.0510 0.0849 0.0893 0.08933
Sc OAsp LP PSM 0.0007 0.0203 0.0257 0.0261 0.02615
5d OAps LP PSM 0.0003 0.0203 0.0269 0.0274 0.02736
06 S HP NM 0.0282 0.0930 0.0939 0.0919 0.09182
07 S LP PSM 0.0059 0.0813 0.0974 0.0986 0.09856
08 S ucC PSM 0.0009 0.0387 0.0511 0.0520 0.05204
09 P HP NM 0.0006 0.0035 0.0036 0.0035 0.00350
10 P LP PSM 0.0001 0.0051 0.0065 0.0066 0.00660
Total: 1.0000 1.0000 1.0000 1.0000 1.0000

Appendix B: Characterization of our approach
within a context modeling classification

In [13], a set of requirements that need to be taken into
account when modeling context information has been intro-

duced, as reported in the following.

@ Springer

Heterogeneity and mobility. Context information models
have to deal with a large variety of context information
sources that differ in their update rate and their semantic
level. Some context information is sensed or derived from
existing context information. A context model should be
able to express those different types of context informa-
tion, and the context management system should provide



Multidimensional context modeling applied to non-functional analysis of software

2173

management of the information depending on its type.
Many context-aware applications are also mobile (i.e.,
running on a mobile device) or depend on mobile con-
text information sources (e.g., mobile sensors). This adds
to the problem of heterogeneity, as the context infor-
mation provisioning must be adaptable to the changing
environment. In addition, location and spatial layout of
the context information play important roles due to this
requirement.

Relationships and dependencies. There exist various rela-
tionships between types of context information that have
to be captured to ensure correct behavior of the appli-
cations. One such relationship is dependency whereby
context information entities/facts may depend on other
context information entities. For example, a change to
the value of one property (e.g., network bandwidth) may
affect the values of other properties (e.g., remaining bat-
tery power).

Timeliness. Context-aware applications may need access
to past states and future states (prognosis). Therefore,
timeliness (context histories) is another feature of context
information that needs to be captured by context models
and managed by the context management system. The
management of context histories is difficult if the num-
ber of updates is very high. It may not be feasible to store
every value for future access, and therefore, summariza-
tion techniques need to be applied (e.g., the aggregation
of position updates to a movement function using inter-
polation techniques, or the use of historical synopses of
data).

Imperfection. Due to its dynamic and heterogeneous
nature, context information may be of variable quality.
In fact, it may even be incorrect. Most sensors feature
an inherent inaccuracy (e.g., a few meters for GPS posi-
tions), and the sensed values age if the physical world
changes, so that this inaccuracy increases over time. In
addition, the context information may be incomplete or
conflicting with other context information. Thus, a good
context modeling approach must include modeling of
context information quality to support reasoning about

— Usability of modeling formalisms. Context information

models are created by designers of context-aware appli-
cations and are also used by the context management
systems and context-aware applications to manipulate
context information. Therefore, the important features of
modeling formalisms are the ease with which designers
can translate real-world concepts to the modeling con-
structs and the ease with which the applications can use
and manipulate context information at runtime.
Efficient context provisioning. Efficient access to con-
text information is needed, which can be a difficult
requirement to meet in the presence of large models and
numerous data objects. To select the relevant objects,
attributes for suitable access paths have to be represented
in the context modeling. These access paths represent
dimensions along which applications often select con-
text information, typically supported by indexes. These
dimensions are often referred to as primary context, in
contrast to secondary context, which is accessed using
the primary context. Commonly used primary CAs are
the identity of context objects, location, object type, time,
or activity of user. Since the choice of primary CAs is
application dependent, given an application domain, a
certain set of primary CAs is used to build up efficient
access paths (e.g., spatial indexes if location is a primary
context).

In Table 12, we position our approach with respect to the

above requirements.

— Heterogeneity and mobility. Our approach is able to

express different types of context information by sep-
arately modeling distinct FOCEMs and combining them
in HOCEMs.

— Relationships and dependencies. Our approach leaves the

freedom of creating the best combination of CAs for any
application domains. Dependencies among events trig-
gering transitions on FOCEM can be expressed through

context. Table 12 Evaluation of the CEM modeling approach

— Reasoning. Context-aware applications use context infor-
mation to evaluate whether there is a change to the user
and/or computing environment context; taking a decision
whether any adaptation to that change is necessary often

Requirements FOCEM Approach

Heterogeneity and mobility Fully supported

Relationships and dependencies Fully supported (remote firings)

requires reasoning capabilities. It is therefore important ~ 1imeliness P"te“;ially supported but not
. . use

that the context modeling techniques are able to support Imoerfecti Not ed
both consistency verification of the model and context fmpertection ot supporte

. : . Reasoning Stochastic processes (Markov
reasoning techniques. The latter can be used to derive new chains)
context facts from existing conte)'(t facts and/or reason Usability of modeling Inherited by Harel's statecharts
about high-level context abstractions that model real- formalism

world situations. The reasoning techniques should be
computationally efficient.

Efficient context provisioning Not applicable
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remote firings [26]. The combination of FOCEMs into
HOCEMs is independent from the particular CAs.
Timeliness. FOCEM and HOCEM could support the
modeling of context histories through the history mech-
anism defined in Harel’s statecharts [26] and inherited
by UML StateMachines [31]. However, due to the mem-
oryless property of Markov chains, i.e., the formalism
underlying FOCEM and HOCEM, timeliness is not taken
into account in context reasoning.

Imperfection. Not supported. The quality of the CAs
cannot be discriminated using FOCEM and HOCEM.
However, imperfections are higher for approaches deal-
ing with low-level context data like those monitored by
sensors. It is lower for approaches using higher-level
context abstractions like situations [13] as we do with
FOCEM and HOCEM.

Reasoning. The reasoning capability is based on Markov
chains.

Usability of modeling formalism. The usability is inher-
ited from Harel’s statecharts [26]. FOCEMs can be easily
created by designers with a generic Markov chain editor
(e.g., JMT! or SHARPE'?) without the need of learning
a new domain-specific language.

Efficient context provisioning. This is a context manage-
ment system-specific requirement and goes beyond the
scope of our approach.
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