Softw Syst Model (2019) 18:7-10
https://doi.org/10.1007/s10270-017-0589-6

@ CrossMark

GUEST EDITORIAL

Editorial to theme issue on model-driven engineering
of component-based software systems

Federico Ciccozzi! - Jan Carlson! - Patrizio Pelliccione?3 - Massimo Tivoli*

Received: 16 February 2017 / Accepted: 20 February 2017 / Published online: 14 March 2017

© Springer-Verlag Berlin Heidelberg 2017

Abstract This theme issue aims at providing a forum
for disseminating latest trends in the use and combination
of model-driven engineering (MDE) and component-based
software engineering (CBSE). One of the main aims of
MDE is to increase productivity in the development of com-
plex systems, while reducing the time to market. Regarding
CBSE, one of the main goals is to deliver and then sup-
port the exploitation of reusable “off-the-shelf” software
components to be incorporated into larger applications. An
effective interplay of MDE and CBSE can bring benefits to
both communities: on the one hand, the CBSE community
would benefit from implementation and automation capabil-
ities of MDE, and on the other hand, MDE would benefit
from the foundational nature of CBSE. In total, we received
23 submissions to this theme issue, and each submission was
reviewed by at least three reviewers. Thanks to the high qual-
ity of the submissions that we received, we could eventually
accept six papers for publication.

B Federico Ciccozzi
federico.ciccozzi@mdh.se

Jan Carlson
jan.carlson@mdh.se

Patrizio Pelliccione
patrizio.pelliccione @ gu.se

Massimo Tivoli

massimo.tivoli @univaq_.it

Meilardalen University, Vistersas, Sweden

Chalmers University of Technology, Gothenburg, Sweden
University of Gothenburg, Gothenburg, Sweden
University of L’ Aquila, L’ Aquila, Italy

1 Model-driven engineering

Model-driven engineering (MDE) is an established method-
ology to increase productivity of complex systems while
reducing the time to market. MDE enables and suggests a
shift from code-centric approaches to a more human-centric
development, where models represents artifacts closer to
human understanding that can be programmatically read and
exploited for simplifying the design, implementation, and
execution of software systems.

MDE permits to systematically concentrate on differ-
ent levels of abstractions, each providing a view for spe-
cific stakeholders, for instance (i) improving usability, (ii)
enabling customizability in different and specific domains,
(iii) promoting reusability of the different algorithms, meth-
ods, and techniques, (iv) managing variability and com-
plexity both at design-time and run-time, and (v) managing
qualities like evolvability, changeability and configurability,
modifiability, scalability, power consumption, and depend-
ability.

Models and model transformations are the core develop-
ment artifacts in MDE.

Models are defined with concepts that are much less bound
to the underlying implementation technology and are closer
to the problem domain. This makes the models easier to
specify, understand, and maintain, helping the understanding
of complex problems and their potential solutions through
abstraction. More specifically, MDE promotes a shift from
code written in third generation programming languages to
models expressed in domain-specific modeling languages
(DSMLs).

DSMLs use metamodels to define the modeling concepts,
as well as the relations them, and their semantics. A meta-
model is an abstraction that highlights the characteristics
of well-formed models, which are said to conform to their

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0589-6&domain=pdf

F. Ciccozzi

metamodel like a program conforms to the grammar of its
programming language.

In MDE, development steps are automated by model
transformations. A model transformation produces a non-
empty set of target artifacts (i.e., models and/or text) from
a non-empty set of source models. For example, by focus-
ing on the software architecture domain, practitioners might
take advantage of model transformations in order to obtain
program code, alternative model descriptions, deployment
configurations, inputs for analysis tools from their soft-
ware architecture models. An important distinction of model
transformations is that a model can be transformed either
horizontally or vertically. Horizontal transformation means
that the source model is transformed into a model or another
type of artifact at the same level of abstraction. Vertical trans-
formation means that the source model is transformed into a
model or another type of artifact at another level of abstrac-
tion. It is important to highlight that the definition of model
transformations is considered to be a one-time effort done
at metamodeling level; therefore, practitioners act as users
of model transformations, which are defined by MDE tool
providers and domain experts.

2 Component-based software engineering

Component-based software engineering (CBSE) originally
emerged as a software discipline to deliver reusable “off-the-
shelf” software components to be incorporated into larger
applications. The main focus has been on effective and
general-purpose reuse of components within a large vari-
ety of different applications. Nowadays, especially with the
increasing development of cyber physical systems (CPSs)
and the Cloud, CBSE continues to attract interest and
evolve as a software approach/methodology for the rapid
and dynamic or “on-the-fly” assembly of flexible software
systems.

From the original design needs, mostly focused on pro-
moting effective and efficient! reuse of available third-party
pieces of software, the attention of software engineers moved
toward the definition of approaches and development of
methods to add, remove, replace, modify, and assemble com-
ponents dynamically, during operation. For instance, in the
domain of CPSs, the strong connection between the compu-
tational and physical entities has been recognized, leading
to the development of hybrid component frameworks. Such
frameworks aim to be capable to take into account and reason
on both the event-based and discrete properties of computa-
tional entities and the time-based and continuous properties
of physical entities.

1 With respect to time-to-market, integration costs, quality attributes,
etc.

@ Springer

From facing challenges introduced by the limitations of
the previously leveraged object-oriented technologies, such
as loose coupling, independent software reuse, seamless inte-
gration of heterogeneous software, and so on and so forth,
CBSE evolved, and indeed is still evolving, to address issues
related to support the dynamicity, high interaction, and safety
and dependability concerns of modern software systems.
Very often, this led to rethinking widely adopted CBSE devel-
opment processes to relax the traditional division among
development phases by moving some activities from design-
time to deployment- and run-time. In this new and more
dynamic development settings, the use of models at run-time
has been found a key factor. In this direction, recent research
focused on the definition of novel software development pro-
cesses and methods to build highly dynamic and evolvable
component-based systems.

The kind of systems targeted ranges from component-
based systems structured through component-connector styl-
es to service-oriented and thing-based systems composed
by means of either orchestration or choreography. For both
kinds of systems, MDE technologies are deeply exploited,
as well as the usage of models at run-time, to support anal-
ysis and automated synthesis methods for the production of
the correct (with respect to functional and extra-functional
properties) component/services integration and coordination
logic. These recent streams of research show that the inter-
play of MDE and CBSE is becoming ever more important
to address the complexity and high dynamicity of modern
software systems, and their dependability as well.

3 Interplay of MDE and CBSE

MDE and CBSE can be considered as two orthogonal ways
of reducing development complexity: the former shifts the
focus of application development from source code to models
in order to bring system reasoning closer to domain-specific
concepts; the latter breaks down the set of desired features
and their intricacy into smaller sub-modules, called com-
ponents, from which the application can be built-up and
incrementally enhanced.

When exploiting these development approaches, numer-
ous different modeling notations and consequently several
software models may be involved during the software life
cycle, from requirements to specification, from analysis to
code. On the one hand, effectively dealing with all the hetero-
geneous modeling notations that describe software systems
needs to bring component-based principles at the level of the
software model landscape. This is achieved by supporting,
e.g., the specification of model interdependencies, and their
retrieval, as well as enabling interoperability between the
different notations used for specifying the software. On the
other hand, MDE techniques can bring to the CBSE process

Editorial to theme issue on model-driven engineering of component-based software systems 9

the possibility to effectively reuse and integrate third-party
model entities as well as to boost automation in the develop-
ment process through powerful model transformations.

An effective interplay of CBSE and MDE approaches
would bring benefits to both research communities. On the
one hand, the research results of CBSE would benefit from
the implementation and automation capabilities of MDE.
This will permit to scale up best practices of CBSE to large-
scale systems. On the other hand, MDE would benefit from
the foundational nature of CBSE approaches. Summarizing,
an effective interplay of CBSE and MDE approaches could
help in handling the intricacy of modern software systems,
thus reducing costs and risks by: (i) enabling efficient mod-
eling and analysis of functional as well as extra-functional
properties such as, for instance, safety, reliability, availability
and dependability, (ii) improving reusability through the def-
inition and implementation of components loosely coupled
into assemblies, (iii) providing automation where applicable
(and favorable) in the development process. In the last fifteen
years, such a cooperation has been covered by a large number
of works and recognized as extremely promising; tools and
frameworks have been developed for supporting this kind of
integrated development process.

Nevertheless, when exploiting interplay of MDE and
CBSE, clashes arise due to misalignments in the related ter-
minology but also, and more importantly, due to differences
in some of their basic assumptions and focal points.

4 In this issue

The papers in this issue address a wide range of challenges
related to the combination or interplay of component-based
and model-driven software engineering, but there are also
themes that appear in several of the papers, including mod-
eling and ensuring extra-functional properties, in particular
timing, code generation, and model transformations.

In A Framework to Specify System Requirements using
Natural Interpretation of UML/MARTE Diagram, Aamir M.
Khan, Frédéric Mallet, and Muhammad Rashid propose a
framework where early informal natural language compo-
nent specifications can be represented in a graphical form
with well-defined semantics to reduce ambiguity. The graphi-
cal formalism, based on UML and MARTE, is complemented
by a set of primitive property patterns providing support
for correctly expressing common temporal properties. The
framework is implemented in an Eclipse-based tool in the
form of a model transformation plugin with analysis and code
generation capabilities.

In Supporting Timing Analysis of Vehicular Embedded
Systems through the Refinement of Timing Constraints, Saad
Mubeen, Thomas Nolte, Mikael Sjodin, John Lundbick, and
Kurt-Lennart Lundbick, address the representation of tem-

poral specifications from another perspective. Based on the
EAST-ADL and TADL2 modeling languages and the Rubus
Component model, they describe how timing information can
be refined between abstraction levels and how the underlying
component model can be exploited to specify additional tim-
ing relevant details. The approach allows end-to-end timing
analysis at a higher abstraction level and in earlier develop-
ment phases.

In Synthesis of Verifiable Concurrent Java Components
from Formal Models, Julio Marifio, Rail N. N. Alborodo,
Lars-Ake Fredlund, and Angel Herranz present a method-
ology for semi-automated generation of concurrent Java
components from high-level models of component behavior
and interaction. They describe and compare three realization
alternatives: one based on synchronized methods, one using
priority monitors to achieve a more fine-grained control over
the synchronization and one based on a third-party message
passing library. Moreover, they describe the integration of the
proposed approach with state-of-the-art program verification
techniques, by which the correctness of the code templates
can be ensured.

In Multi-Objective Exploration of Architectural Designs
by Composition of Model Transformations, Smail Rahmoun,
Asma Mehiaoui-Hamitou, Etienne Borde, Laurent Pautet,
and Elie Soubiran propose an automated approach that allows
the construction of new model transformations as a compo-
sition of existing ones. The approach is used in the domain
of real-time embedded systems, where the early analysis of
Extra-Functional Properties (EFPs) is of paramount impor-
tance. In this context, the early validation of EFPs often
results in facing a multi-objective optimization problem with
a very large number of potential solutions, each of them
corresponding to a model transformation alternative. To over-
come the issue to write all the possible model transformation
alternatives, the proposed approach is used to automate the
production of architectural alternatives, each of them fulfill-
ing specific EFPs. Each alternative is produced by following
a component-based approach where the basic components
are basic transformation alternatives and added value archi-
tectural alternatives are built by performing a more complex
transformation obtained as a composition of the basic ones.
This approach allows us to deal also with conflicting EFPs,
hence making the process of finding a suitable architec-
tural solution tractable. The approach has been prototyped
in RAMES, and the experimental results shown in the paper
are promising.

In Using Internal Domain-Specific Languages to inherit
Tool Support and Modularity for Model Transformations,
Georg Hinkel, Thomas Goldschmidt, Erik Burger, and Ralf
Reussner analyze important issues related to the adoption of
model transformation in industry. In particular, the conducted
study aims to establish: (i) what type of tool support can be
reused from model transformation languages implemented

@ Springer

10

F. Ciccozzi

as internal DSLs; (ii) the impact of embedding model trans-
formation concepts into object-oriented ones on the quality
of the derived tool support; and (iii) how to reuse modular-
ization constructs from object-oriented languages in model
transformation languages. The study has been carried on by
considering the NET Modeling Framework Transformation
Language.

In Transactional Execution of Hierarchical Reconfigu-
rations in Cyber-Physical Systems, Christian Heinzemann,
Steffen Becker, and Andreas Volk present an extension
of the MechatronicUML component model conceived to
support safe reconfiguration of encapsulated hierarchical
component-based CPSs. The proposed solution allows us

@ Springer

to deal with both real-time and ACI properties and allows
the preservation of the continuous nature of the physical
system environment by introducing feedback controller com-
ponents. That is, reconfiguration can be performed without
interrupting the execution of the system. For CPSs, this is a
key aspect. The effectiveness of the approach is shown by
applying it at work on a RailCab system.

Acknowledgements We would like to thank all authors who submit-
ted papers, and the reviewers for their efforts and high quality reviews.
Finally, we would like to thank Martin Schindler for his excellent sup-
port throughout the process of putting together this theme issue.

	Editorial to theme issue on model-driven engineering of component-based software systems
	Abstract
	1 Model-driven engineering
	2 Component-based software engineering
	3 Interplay of MDE and CBSE
	4 In this issue
	Acknowledgements

