Softw Syst Model (2019) 18:39-69
https://doi.org/10.1007/s10270-017-0579-8

@ CrossMark

THEME SECTION PAPER

Supporting timing analysis of vehicular embedded systems
through the refinement of timing constraints

Saad Mubeen' . Thomas Nolte! . Mikael Sjodin' - John Lundbick? -

Kurt-Lennart Lundbiick?

Received: 20 March 2016 / Revised: 31 December 2016 / Accepted: 10 January 2017 / Published online: 31 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The collective use of several models and tools
at various abstraction levels and phases during the develop-
ment of vehicular distributed embedded systems poses many
challenges. Within this context, this paper targets the chal-
lenges that are concerned with the unambiguous refinement
of timing requirements, constraints and other timing infor-
mation among various abstraction levels. Such information is
required by the end-to-end timing analysis engines to provide
pre-run-time verification about the predictability of these
systems. The paper proposes an approach to represent and
refine such information among various abstraction levels. As
a proof of concept, the approach provides a representation of
the timing information at the higher levels using the models
that are developed with EAST-ADL and Timing Augmented
Description Language. The approach then refines the timing
information for the lower abstraction levels. The approach
exploits the Rubus Component Model at the lower level to
represent the timing information that cannot be clearly spec-
ified at the higher levels, such as trigger paths in distributed

Communicated by Dr. F. Ciccozzi, J. Carlson, P. Pelliccione and
M. Tivoli.

DX Saad Mubeen
saad.mubeen @mdh.se

Thomas Nolte
thomas.nolte @mdh.se

Mikael Sjodin
mikael.sjodin@mdh.se

John Lundbick
john.lundback @arcticus-systems.com

Kurt-Lennart Lundbéck
kurt.lundback @arcticus-systems.com
Meilardalen University, Visterds, Sweden

Arcticus Systems AB, Jarfilla, Sweden

chains. A vehicular-application case study is conducted to
show the applicability of the proposed approach.

Keywords Distributed embedded systems - Component-
based development - Timing model - Component model -
End-to-end timing analysis

1 Extended version

This paper extends our previous work [1] where we have
discussed the refinement of two end-to-end delay constraints
from higher to lower abstraction levels during model- and
component-based development of vehicular embedded sys-
tems. As a proof of concept, we have selected the Timing
Augmented Description Language (TADL?2) [2] at the higher
abstraction levels, whereas at the lower level (implemen-
tation), we have selected the Rubus Component Model
(RCM) [3] which is already used in the vehicle industry for
the development of control functionality in vehicular embed-
ded systems. The work in this paper generalizes our previous
work [1] by refining various other types of timing constraints
(18 in total) from the higher to lower abstraction levels. Once
again, we consider TADL2 and RCM for the proof of con-
cept. We also conduct a detailed automotive-application case
study to validate our refinement and timing model represen-
tation approach.

2 Introduction
Due to increase in the amount of advanced computer con-
trolled functionality in vehicular distributed embedded sys-

tems, the size and complexity of embedded software has
drastically increased in the past few years. For example, the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0579-8&domain=pdf

40

S. Mubeen et al.

embedded software in heavy vehicle architectures such as a
modern truck may consist of as many as 2000 software func-
tions that may be distributed over 45 Electronic Control Units
(ECUs) [4]. In order to deal with the software complexity, the
research community has proposed model- and component-
based development of embedded real-time systems by using
the principles of model-based software engineering (MBSE)
and component-based software engineering (CBSE) [5,6].
This approach is intended to capture requirements early dur-
ing the development,! lower development cost, enable faster
turnaround times in early design phases, increase reusabil-
ity, support modeling at higher abstraction levels and provide
possibilities to automatically perform timing analysis, derive
test cases and generate code. MBSE provides the means to
use models to describe functions, structures and other design
artifacts. In contrast, CBSE supports the development of large
software systems by integration of software components. It
raises the level of abstraction for the software development
and aims to reuse software components and their architec-
tures. Model- and component-based development of software
architectures for vehicular embedded systems has had a surge
in the last few years. It is evident from several large Euro-
pean research projects that have run in close collaboration
between academia and the industry [7-11].

2.1 Problem statement

Most of the vehicular functions are developed as distributed
embedded systems with real-time requirements specified on
them. This means that the providers of the systems are
required to ensure that logically correct actions are taken
by the systems at times that are appropriate to their environ-
ment (i.e., the timing requirements are satisfied). One way
to guarantee that the system meets its timing requirements
is to perform pre-run-time analysis of it, e.g., end-to-end
response-time and delay analysis [12,13]. Such analysis can
validate the timing requirements without performing exhaus-
tive testing. Note that the timing behavior of an individual
task or a message can be determined by calculating its
response time. The response time of a task or a message is
defined as the amount of time elapsed between its activation
and completion or reception respectively. Often, vehicular
embedded systems are modeled with task chains. A task
chain consists of a number of tasks that are in a sequence
and have one common ancestor. Each task may receive an
activation trigger, a data or both from its predecessor. Any
two neighboring tasks in a chain may reside on two different
nodes, while the nodes communicate with each other via net-

! The aspect “during the development” refers to the abstraction levels
during the software development of vehicular embedded systems. Note
that this aspect does not refer to the overall automotive development
process.

@ Springer

work messages. In this case, the messages are part of the task
chain. The timing behavior of the task chain is determined by
calculating its end-to-end response time and/or delays. The
end-to-end response time of a task chain is defined as the
amount of time elapsed between the arrival of an event at the
first task and the production of the response by the last task in
the chain. If the tasks within a chain are activated by indepen-
dent sources (e.g., clocks), then different types of end-to-end
delays are also calculated to determine the timing behavior
of the chain (Sect. 4.5.3 provides a detailed discussion on the
end-to-end delays).

In order to perform the timing analysis of the system,
its end-to-end timing model should be available. The end-
to-end timing model consists of the information containing
timing properties, requirements, dependencies, control and
data flows concerning all tasks, messages and task chains
in the system. Based on this information, the timing analysis
can predict the execution behavior of the system with respect
to end-to-end timing. We refer the reader to [14] for details
about the end-to-end timing models.

The majority of existing approaches for component-based
vehicular distributed embedded systems support the repre-
sentation of such timing models at an abstraction level that
is close to their implementation [7,13—17]. An abstraction
level provides a complete definition of the system for a given
purpose during the development process. There are a few
works including [18,19] that support the end-to-end timing
analysis at the higher abstraction levels. It is shown in [18]
that the timing analysis supported by the existing approaches
at the higher abstraction levels cannot predict the end-to-
end timing behavior of the system with a high precision.
This is because the analysis is often not based on the actual
implementation of the system. The precision of the analy-
sis refers to how accurately the analysis results capture the
end-to-end timing behavior of the final systems. The low-
precision analysis results are overestimated due to educated
guesses by the expert integrators about missing timing infor-
mation at the higher abstraction levels and earlier phases
during the development, whereas the high-precision analy-
sis results do not include such overestimations. We assume,
irrespective of the precision, the analysis results are not opti-
mistic (underestimated). Recently, one of the main focuses
of several international initiatives, involving both academia
and industry, has been on supporting the timing analysis
at various abstraction levels and development phases [8—
11].

Representation of the timing model at the higher abstrac-
tion levels is challenging mainly because not all timing
information is available at the higher levels. Moreover, a mis-
match and incompatibilities among various methodologies,
languages and tools that are used in different development
phases also add to the complexity of representing the timing
model. Since complete timing information may not be avail-

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 41

able at the higher levels, the timing analysis results can be
overestimated based on pessimistic assumptions. Hence, the
analysis results may not represent accurate timing behav-
ior of the final system. However, these results can provide
useful information to the developer to guide her in per-
forming model refinements earlier during the development
[18].

We envision the representation of the end-to-end timing
models and support for a high-precision end-to-end timing
analysis at the higher levels of abstraction to be the state of
the practice in the future. We believe the timing information
will be formally modeled at the higher abstraction levels in
the vehicle industry. In that case, we need to extract the spec-
ified timing information at the higher abstraction levels and
connect it to the implementation to generate the end-to-end
timing model. Otherwise, it can be too late to extract the
timing model at lower abstraction levels that are close to the
system implementation.

We have experienced that the timing information is mod-
eled at higher abstraction levels in the vehicle industry. This
may be carried out using, e.g., the SysML language [20].
However, it is done mostly in an informal and textual way,
which cannot be used for any formal timing analysis. Today,
the TADL2 language [2] provides the only viable formal
method for modeling of timing information using timing con-
straints at various abstraction levels in the vehicle domain.
This is evident from the fact that TADL2 has recently pro-
vided the timing model to the EAST-ADL language [21]
and AUTOSAR [7]. EAST-ADL is an architecture descrip-
tion language in the automotive domain. The industrial
members in the EAST-ADL association and the consor-
tium that has developed the TADL?2 language are shown in
Fig. 3. AUTOSAR supports the development of standard-
ized software architectures in the automotive domain. The
AUTOSAR consortium consists of over 300 industrial part-
ners including original equipment manufacturers (OEMs),
tier-1 and tier-2 suppliers in the automotive domain.

In order to represent the complete end-to-end timing
model and perform a high-precision end-to-end timing anal-
ysis, TADL?2 has to be combined with a lower abstraction
level execution modeling technology such as RCM. Since
the TADL?2 language and corresponding timing extensions
in EAST-ADL and AUTOSAR have been introduced fairly
recently, it may take some time for the automotive indus-
try to use TADL2 for the development of vehicles. Note that
TADL2 has been successfully employed for the development
of some validators and prototypes in the automotive industry,
e.g., electromechanic systems, brake-by-wire systems, steer-
by-wire systems and adaptive cruise control systems [9]. We
hope that the industry will start using TADL2 very soon. If
they do so, we can reuse that information to perform a high-
precision end-to-end timing analysis at the higher abstraction
levels.

2.2 Paper contributions

In this paper,” we propose an approach to represent the end-
to-end timing models at a higher abstraction level compared
to the level where the software architecture is implemented.
At the higher level, this approach provides a representation
of the timing information on the system models that are
developed with the EAST-ADL language using the TIMMO
methodology [22] and annotated with timing information
using TADL2. At the lower level, the approach exploits RCM
and its tool suite Rubus-ICE [23] to represent the timing
information that cannot be clearly specified at the higher
level, e.g., control paths in distributed chains. However, it
is not straightforward to combine TADL2 with RCM due
to various challenges such as providing an unambiguous
refinement of the TADL2 timing constraints in RCM and
supporting an unambiguous representation of the control and
data flows at the higher level (Sect. 5 discusses these points
in detail). The main focus of this paper is to deal with these
challenges. In order to show a proof of concept, we model a
vehicular application at the higher level and refine it along
with the timing information to the lower level. We then per-
form the end-to-end timing analysis of the system to validate
the timing constraints specified at the higher level. The main
contributions in this paper are listed as follows.

. Interpretation of all TADL?2 timing constraints in RCM.
. Extensions to RCM for unambiguous refinement of the
TADL?2 timing constraints.
3. Representation of the end-to-end timing information at
the higher abstraction level.
4. Performing a vehicular-application case study to show
the applicability and usability of the proposed refinement
and timing model representation approach.

o =

We choose RCM instead of AUTOSAR at the lower
abstraction level for two reasons. Although AUTOSAR pro-
vides a timing model in its current specification [7], it still
lacks a way to specify a few low-level details which are
needed to perform the end-to-end timing analysis, e.g., con-
trol flow is not specifiable in an unambiguous way. The
other reason is that the implementations built with RCM
have relatively smaller run-time footprints, i.e., timing and
memory overheads (Sect. 3.2 discusses this point in detail).
The work in this paper brings us one step closer to the
goal of developing a seamless tool chain for model-based
development of vehicular embedded systems and support-
ing inter-operation of various modeling and analysis tools
including the AUTOSAR-based tool chain [10].

2 A version of this paper is provided as an internal report for indus-
trial referencing at http://www.es.mdh.se/publications/3545-. It does
not represent a published work.

@ Springer

http://www.es.mdh.se/publications/3545-

42

S. Mubeen et al.

Fig. 1 Abstraction levels

. . (" YA N2 o
considered during the g RCM %% CBSE 2016 [39] RPN =
development /al TiMMO2: TADB Rubus-ICE RTCSA 2015 [40] crysTAL |-G 5

J < CORE 7 ITNG2016[12] ~ A")=
~ | SystemWeaver Pa;yTus \ é °
. = >
L (IT) MetaEdit+ GMgﬂ[g.f) g 9
A ~ No Magic V&4 -
N e ModComp 2014 [1] LVl | B s
= CRYSTAL | .=
@ % Rubus EASTJ MASE 2015 [41] ComSIS [19] 7% | @ @
_ A J O -
/[AUT@SAR [BMRational Rhapsody)
Enabling Innovation c
o . SymTA/S o
TiMM02: TADL2 cHRONSIM *1 SYMTAVISION | &
o)
2% \
RCM &2 @JPRIDE @:@pyCPA &\ ZZ Fraunhofer E
Rubus-ICE ProCom § 1 Bl o =
. Menlor yia | S g
\VECTOR > DaVinci COMDES-II e’ £ 5

2.3 Paper layout

The rest of the paper is organized as follows. Section 3
discusses the background and related work. Section 4 dis-
cusses the refinement of the TADL2 timing constraints in
RCM. Section 5 discusses other challenges and correspond-
ing solutions. Section 6 provides a case study. Finally, Sect. 7
concludes the paper and presents future work.

3 Background and related work

There are several frameworks that support the modeling
of timing information such as AADL [24], SCADE [25],
MARTE [26], MAST [27], SysML, CHESS [28,29]. In this
paper, we only target the vehicular domain, especially the
segment of construction equipment and other heavy road
vehicles, where the main focus is on EAST-ADL [21],
EAST-ADL-like models® and AUTOSAR [7]. In addition,
Rubus [30] is used complementary to EAST-ADL.

3.1 EAST-ADL

EAST-ADL is a domain-specific architecture description
language that targets the development of software architec-
tures for automotive embedded systems. Figure 3 depicts
the industrial members in the EAST-ADL association that
have been involved in the development and extension of the

3 For example, SE Tool and SystemWeaver (http://www.systemweaver.
se).

@ Springer

language. EAST-ADL is inspired by SysML which is a sys-
tem modeling language used for systems engineering [31].
It is mapped to several automotive standards including
[S026262 [32] for functional safety and AUTOSAR for the
implementation and run-time execution of the software archi-
tecture. It defines a top-down development methodology that
advocates the separation-of-concerns principle by defining
various abstraction levels for the development of vehicle soft-
ware. Each abstraction level provides a complete definition
of the system for a specific purpose. Figure 1 shows the
abstraction levels along with various methodologies, mod-
els, languages and tools used at each level. This figure also
depicts several recent works within the scope of this paper.

3.1.1 Vehicle or end-to-end level

At the vehicle level, requirements, functionality and features
of the vehicle are captured in an informal (often textual) and
solution-independent way. This level captures the informa-
tion regarding what the system should do. Within the segment
of construction equipment and other heavy road vehicles,
this abstraction level is better known as the end-to-end level
because the features and requirements on the end-to-end
functionality of the machine or vehicle are captured in an
informal way.

3.1.2 Analysis level

At the analysis level, the requirements are formally captured
in an allocation-independent way. Functionality of the sys-
tem is defined based on the requirements and features without

http://www.systemweaver.se
http://www.systemweaver.se

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 43

Fig. 2 Example of the software
architecture of a system
modeled in RCM

Input Output Trigger
Clock trigger port trigger port terrpinator
S~ \\ N 4
VehicleS; edljJ—> Brake
= OEngineTorque Throttle O Emrome

EngineTorque| OVehicleState Y

50 ms
T
-
Logger

7
Software Circuit

implementation details. A high-level analysis may also be
performed for functional verification, e.g., consistency anal-
ysis.

3.1.3 Design level

The artifacts at this level are developed in an implementation-
independent way. These artifacts are refined from the analysis
level artifacts. In addition to the software architecture com-
posed of the design-level software components, this level also
contains the middleware abstraction, the hardware architec-
ture and the software functions-to-hardware allocation.

3.1.4 Implementation level

At the implementation level, the design-level artifacts are
refined to a software-based implementation of the system
functionality. At this level, the EAST-ADL methodology
describes the system in terms of AUTOSAR elements and
their integration. However, in this work, our focus is on using
RCM and Rubus-ICE at the implementation level. Hence, the
artifact at this level consists of a software architecture of the
system that is defined in terms of Rubus software components
and their interactions.

In this work, we focus on the representation of the end-to-
end timing models mainly at the design and implementation
levels.

3.2 Rubus Component Model (RCM) and Rubus-ICE

Rubus is a collection of methods and tools for the model-
and component-based software development of dependable
embedded real-time systems. It is developed by Arcticus Sys-
tems* in close collaboration with several academic and indus-
trial partners. It has been used in the vehicle industry for over
20 years. Rubus is today mainly used for the development
of control functionality in vehicles by several international
companies, e.g., BAE Systems Higglunds,> Volvo Construc-

4 http://www.arcticus-systems.com.

> http://www.baesystems.com.

Input data port

SpeedSet

’—bsaSpeed \
\
Actuation

signal

HMI VehicleState|

®

\
Output data port Sensor signal

tion Equipment,® Knorr-Bremse,” Mecel® and Hoerbiger.’
The Rubus concept is based on RCM and its development
environment, Rubus-ICE, which includes modeling tools,
code generators, analysis tools and run-time infrastructure.
Rubus also includes a real-time operating system which has
already been certified in the ISO 26262:2011'0 safety stan-
dard according to ASIL D. The overall goal of Rubus is to
be aggressively resource efficient and to provide means for
developing predictable, timing analyzable and synthesizable
control functions in resource-constrained embedded systems.
The timing analysis supported by Rubus-ICE includes the
end-to-end response-time and delay analysis [13]. Rubus
methods and tools focus on the implementation level and
are used complementary to the EAST-ADL methodology at
the top three levels.

Rubus enables the designer to graphically describe sys-
tems as interconnected components. These interconnected
components, following a hardware paradigm called Software
Circuits (SWCs), define the structure of the application sys-
tem that can be analyzed and synthesized entirely within the
Rubus environment. An SWC is the lowest level hierarchical
element in RCM. It encapsulates basic functions. An SWC
has the run-to-completion semantics, i.e., upon receiving a
trigger (activation) on its trigger input port the SWC reads
data from its data input ports, executes its functionality, pro-
vides data on its data output ports and finally produces a
trigger on its trigger output port. Figure 2 shows an exam-
ple of the software architecture in RCM that is composed of
SWCs, interconnections between SWCs and interactions of
SWCs with external events and actuators with regard to both
data and triggering.

The Rubus run-time framework maps the SWCs to tasks
which are run-time entities. Each external event trigger in the
software architecture defines a task. The SWCs connected
through the chain of triggered SWCs (trigger chain) are allo-
cated to the corresponding task. All clock triggered chains
are allocated to an automatically generated static schedule
that fulfills the precedence order and other temporal require-

6 http://www.volvoce.com.

7 http://www.knorr-bremse.com.
8 http://mecel.se.

9 http://www.hoerbiger.com.

10 http://www.iso.org/iso/catalogue_detail?csnumber=43464.

@ Springer

http://www.arcticus-systems.com
http://www.baesystems.com
http://www.volvoce.com
http://www.knorr-bremse.com
http://mecel.se
http://www.hoerbiger.com
http://www.iso.org/iso/catalogue_detail?csnumber=43464

44

S. Mubeen et al.

Fig. 3 Industrial
members/partners in the
EAST-ADL, TIMMO and

TIMMO2USE
consortia/projects
“}5 Arcticus Systems Mecel 4S Group DeLPHI ;9\ '| IFEEV
nnnnnnnnnnnnnnnnnnnnnnnnnn Autoliv
Z Fraunhofer CARMEQ. BRACE CORE SYSTEMITE [cyCARGOTEC

Industrial Members of the EAST-ADL Association

@ BOSCH (= & GMsn

HASRED @ .MetaCase mcraren”

& BOSCH

. Industrial Members of the TIMMO Project (TADL Language) .
Auoi

SIEMENS DENSO

SYMTA VISION GMSH| ETAS TrTech

& BOSCH

Industrial Members of the TIMMO2USE Project (TADL2 Language)

’i:i‘;\r('li(‘us Systems

oy <
@ INCHRON @ M= 3 IaW SYMTA VISION w=—ipe
‘‘‘‘‘‘‘‘‘‘‘‘‘‘ RAPITA RealTima-at-Work TIME CRITICAL NETWORKS ©

er,eHi CiAbsint dSPACE

ments. Within the trigger chains, inter-SWC communication
is aggressively optimized to use the most efficient means of
communication for each communication link. For example,
there is no use of semaphores in point-to-point communica-
tions within a trigger chain. Another example is sharing of
memory buffers between ports. This means that a buffer can
be shared between two ports belonging to different SWCs if
it can be guaranteed that these ports will never use the buffer
space at the same time. This is applicable in the case of a trig-
ger chain because a task early in the chain can never be active
at the same time as a task late in the chain (assuming that the
deadline of each task is smaller than or equal to its period).
Allocation of SWCs to tasks and construction of schedule
can be subject to different optimization criteria to minimize,
e.g., response times for different types of tasks, or memory
usage. The run-time framework executes all tasks on a shared
stack, thus eliminating the need for static allocation of stack
memory to each individual task.

3.3 AUTOSAR

AUTOSAR [7] is an industrial initiative to provide a
standardized software architecture for the development of
embedded software. It is used at the implementation level
in Fig. 1. It describes the software development at a higher
abstraction compared to RCM. Unlike RCM, it does not sep-
arate control and data flows among components within a
node. AUTOSAR does not differentiate between the model-
ing of intra- and inter-node communication which is unlike
RCM. The timing model in AUTOSAR has been intro-
duced fairly recently compared to that in RCM. There are
some similarities between AUTOSAR and RCM, e.g., the
sender—receiver communication in AUTOSAR resembles the
pipe-and-filter communication in RCM. AUTOSAR is more
focussed on the functional and structural abstractions, hiding

@ Springer

the implementation details about execution and communica-
tion. AUTOSAR hides the details that RCM highlights.

3.4 TIMMO, TIMMO2USE, MARTE, TADL and
TADL?2

TIMMO [8] is an initiative to provide AUTOSAR with
a timing model [33]. It is based on a methodology and
the TADL language [34] which is used to express timing
requirements and constraints. It is inspired by MARTE [26]
which is a UML profile for model-driven development of
real-time and embedded systems. The TIMMO methodol-
ogy uses the EAST-ADL language for structural modeling
and AUTOSAR for the implementation. TIMMO and EAST-
ADL focus on the top three levels in Fig. 1. TADL is redefined
andreleased in the TADL?2 specification of the TIMMO2USE
project [9]. TADL2 can specify timing-related information
at all abstraction levels shown in Fig. 1. The industrial mem-
bers in the TIMMO and TIMMO2USE projects are shown in
Fig. 3. Most of these initiatives lack the support for express-
ing the low-level details at the higher levels such as linking
information in distributed chains. It is important to extract
these details from the software architecture for the repre-
sentation of the end-to-end timing model. These initiatives
do not provide sufficient support for representing this infor-
mation or performing the end-to-end timing analysis. In our
view, the end-to-end timing model includes enough infor-
mation from the system to be able to perform the end-to-end
response-time and delay analysis.

3.5 Other related models and approaches

There are several other related component models and mod-
eling approaches such as COMDES-II [16], ProCom [15]
and TECS [35]. ProCom supports timing analysis at the
implementation level [36]. According to [13], the analysis

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 45

supported by ProCom is not performed with such a high
precision as it is done in Rubus-ICE. To the best of our
knowledge, none of these models support the representation
of the end-to-end timing models at the higher abstraction
levels. This is because these models are developed to model
the software architecture only at the implementation level.
These models rely on EAST-ADL at the higher abstraction
levels. The end-to-end timing models cannot be completely
represented at the higher abstraction levels of EAST-ADL
mainly for two reasons: (1) EAST-ADL does not differenti-
ate between the control and data flows and (2) EAST-ADL
cannot express the low-level details at the higher levels such
as linking information in distributed chains [14].

There are middleware development technologies such
as real-time CORBA, minimum CORBA and CORBA
lightweight services for distributed embedded systems [17].
CUTS [37], based on CORBA, provides an execution mod-
eling support to validate quality-of-service properties of the
system. The downside of using CORBA-based development
is that the run-time framework is heavyweight. Hence, it is
not suitable for resource-constrained embedded systems that
require a small run-time footprint. On the other hand, RCM
has a small run-time footprint.

3.6 Modeling tools

DaVinci!! is a tool for the software development of
AUTOSAR applications. However, this tool does not sup-
port the representation of the end-to-end timing models at
the higher abstraction levels. The Palladio tool'? allows
for modeling of the software architecture and its analysis
based on several quality attributes including response times.
However, this tool does not support the end-to-end timing
analysis [13,38]. The refinement of timing constraints and
representation of the end-to-end timing models to facili-
tate such analysis is the main focus (and contribution) of
our work. There are several other tools that support model-
ing of the systems using the methodology shown in Fig. 1,
e.g., Papyrus, Mentor Graphics VSA, Rubus-EAST, EATOP,
MetaEdit+, Enterprise Architect, No Magic, System Weaver
and SE Tool to name a few [39]. These tools are usable at
the first three levels in Fig. 1. None of these tools support
the representation and refinement of the end-to-end timing
models from the higher levels to the implementation level.

3.7 Authors’ previous work
In our previous work [14,40], we have presented a method
to represent the end-to-end timing models at the implemen-

tation level. However, this method is not applicable at the

1 http://vector.com/vi_davinci_developer_en.html.

12 http://www.palladio-simulator.com/tools/quality_dimensions.

higher abstraction levels. We have recently targeted the vehi-
cle level by developing a modeling technique (denoted by
CBSE2016 [41] in Fig. 1). We have developed a method to
extract the end-to-end timing models from the extended mod-
els of legacy systems (previously developed) to support the
end-to-end timing analysis at the vehicle level (denoted by
RTCSA2015 [19] in Fig. 1). Moreover, we have developed a
method to refine timing requirements using early timing anal-
ysis at the vehicle level (denoted by ITNG2016 [18] in Fig. 1).
Note that these techniques rely on the reuse of software archi-
tectures from the legacy systems. Hence, these techniques are
not applicable when the system is developed from the scratch
using the top-down development approach. Moreover, these
techniques are not applicable at the design level which is the
main focus of this paper. Another work (denoted by MASE
2015 [42] in Fig. 1) uses model transformations to anticipate
design-level decisions to support the end-to-end timing anal-
ysis. It results in one-to-many implementation-level models
corresponding to a single design-level model. However, it
does not support the representation and refinement of the
end-to-end timing models from the higher to lower abstrac-
tion levels. In [43], we have discussed the basic idea for the
representation of the timing models at the design level. We
have discussed the refinement of two end-to-end delay con-
straints from the higher to the lower abstraction levels in [1].
In this paper, we generalize our previous work [1] by refining
various other types of timing constraints (18 in total) from
the higher to the lower abstraction levels. These constraints
are concerned with synchronization, repetition, patterns and
various types of delays. As a proof of concept, we select the
EAST-ADL and TADL?2 languages at the higher abstraction
levels, whereas RCM is selected at the implementation level.

4 Interpretation of TADL?2 timing constraints in
RCM

In the first subsection, we present the model of constraints
and events. In the following subsections, we discuss various
timing constraints in TADL2. We also discuss the semantics
of each timing constraint according to the specification of
TADL2 [2]. Moreover, we interpret and refine these timing
constraints in RCM.

4.1 Model of constraints and events

In TADL2, timing requirements are specified by means of
timing constraints on events and event chains [22]. Con-
straints are used to put restrictions on, e.g., repetition of an
event, delays between a pair of events and synchronicity of a
set of events. An event denotes a distinct form of state change
in a running system. It takes place at distinct points in time
which are called its occurrences. There can be any number of

@ Springer

http://vector.com/vi_davinci_developer_en.html
http://www.palladio-simulator.com/tools/quality_dimensions

46

S. Mubeen et al.

Fig. 4 Event occurrences
modeled with colors in the

Clock

Software Circuit (SWC) |

N A 16 ms . | 4ms 16 ms
multi-rate chains ~lriggerport
3 |) or I or
Data_IN | DataN DIP1 DOP1 DIP2 DOP2 Data_OUT
1 SWC_1 swcC_2
(a) Data port I (d)
Period = 16 Period = 4 1 Period=4 Period = 16
— Task 1
/, I
() (7) | O (7)
_ _ RSN 1 _ _
WCET =1 WCET =1 . WCET =1 WCET =1
(b) Register | (e)
1
1
Stimulus events I Stimulus events 5 1 T T T T
activating T, 1 T I activating T, T
16 time 1 4 8 12 16 20 24 28 tjme
! 1
Response events, I' Response events
activating?, | T T T T T T T T : activating?, 1 T 1
i - : -
(C) time | ! (f) time

occurrences of an event. The set of all the occurrences of an
eventis called the sequence of the event. A subsequence of the
event is a subset of its sequence. For example, if there are ten
occurrences of an event within a given time interval, then the
size of the event sequence is ten. Any set of two consecutive
occurrences within this sequence represents a subsequence
of the event within the given time interval. Similarly, any set
of three consecutive occurrences within this sequence also
represents a subsequence of the event within the given time
interval. An event is used to trigger an analysis- or design-
level function. When the function is triggered, input data are
consumed followed by processing and transformation of the
data and then production of the data at the output. A function
can also be time triggered.

A timing constraint is denoted by TC. The constraint can
be specified on the occurrences of a single event or a set
of events. In the former case, the sequence or any subse-
quence of the single event is constrained. In the later case,
the occurrences of the set of events are constrained. In order to
clarify the notations that are used to define timing constraints
in the following subsections, consider the following exam-
ple. Consider two events that are denoted by source and
target. We use the object-oriented notation to define the
attributes of the constraint. For example, TC . source refers
to the source event on which TC is specified. Let us denote
an occurrence of the event TC. source by an attribute s.
The value of this attribute is basically a time point when an
instance of the event occurs. These time points can be added,
subtracted and compared. A constraint often puts limits on
the occurrences of events. These limits can be specified in
terms of time distances using upper and lower attributes.
In that case, the occurrences of the events are required to hap-
pen within these limits. The following provides an example
for the semantics of constraint TC.

A system behavior satisfies a specified timing constraint
denoted by TC if and only if (iff) for every occurrence

@ Springer

of TC.source at time s, there is an occurrence of
TC.target at time t such that

TC.lower < (t — s) < TC.upper (1)

This means that the timing constraint TC is satisfied if
both of the following conditions are satisfied: (1) if the time
distance between time points t and s is greater than or equal
to the time distance specified by the 1 ower attribute and (2)
if the time distance between time points t and s is smaller
than or equal to the time distance specified by the upper
attribute.

It should be noted that the software components in an event
chain can be triggered by independent clocks with different
activating periods as shown in Fig. 4a, d. This phenomenon
is common in multi-rate systems which are frequently found
in the vehicular domain [13,38]. Due to different activat-
ing periods along the chain, there can be multiple response
occurrences corresponding to a single occurrence of the stim-
ulus in an event chain. For example, the two components
in Fig. 4a are activated independently with different peri-
ods. Figure 4b shows the task chain that corresponds to the
component chain in Fig. 4a at run-time. In this chain, there
are four occurrences of the response event corresponding to
each occurrence of the stimulus event as shown in Fig. 4c.
In such a chain, multiple response occurrences due to each
consecutive stimulus occurrence are differentiated by means
of colors. For example, assume that the current occurrence
of the stimulus is at time O in Fig. 4c. All the occurrences of
the response event that occur after the current occurrence but
before the next occurrence of the stimulus event are rep-
resented with the same color (black) as that of the color
of the current occurrence of the stimulus. We use a similar
approach to associate colors to the event occurrences when
there is a single occurrence of the response event correspond-

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 47

P = == |
10 LsdTp TOP [—>i¢ TIP TOP 1>~ pser=
SDIP 1 DOP._1 DIP 1 DOP_1& ..]Data_Out
OHDIP2 DOP2 DIP_2 End
SWC_C SWC_D
target SWC
source SWC
Fig. 5 Proposed objects to specify the Delay constraint in RCM
ing to several occurrences of the stimulus events as shown in lower .
Fig. 4df. < |
source A UPPeT) 1\ 1\
¥ ; time
4.2 Delay constraint
target | i 4 4 i\ time

4.2.1 TADL?2 description

This constraint constrains the distance between occurrences
of the source and target events. It does not matter if the
matching target occurrence is caused by the correspond-
ing source occurrence or not.

4.2.2 Semantics

A system behavior satisfies the specified DelayCons
traint DC iff for every occurrence s of DC.source,
there is an occurrence t of DC. target such that

DC.lower < (t - s) <DC.upper 2)

4.2.3 Interpretation in RCM

RCM does not offer any support for the specification of this
constraint.

We propose the addition of a new timing constraint with
the above semantics, denoted by Delay, in RCM. Since
this constraint corresponds to the distance between occur-
rences of the source and target events, we associate two
objects with it, namely Delay Startand Delay Endas
shown in Fig. 5. The Delay Start object can be speci-
fied at the data input port (DIP) of the source SWC. The
triggering of trigger input port (TIP) of the source SWC cor-
responds to a new occurrence of the source event. The
triggering can be done by a clock or an event in RCM. The
Delay End object can be specified at the data output port
(DOP) of the target SWC. A trigger produced at the trigger
output port (TOP) of the target SWC corresponds to a new
occurrence of the target event. In order to express the
lower and upper values of the constraint, we associate
two parameters with the same names to the Delay End
object.

Fig. 6 Event sequence satisfying a Delay constraint

The occurrences of the target event (data in DOP_1
of SWC_D) may correspond to the input data at DIP_1 of
SWC_A or DIP_1 of SWC_B or both depending upon how
the SWCs are triggered. In the example shown in Figs. 5
and 6, the occurrences of the target event correspond to
the input data either from SWC_B or from both SWC_A
and SWC_B. The upward arrows in Fig. 6 symbolize occur-
rences of the events. The 1lower and upper attributes for
the Delay constraint are also identified in Fig. 6. Assum-
ing the priority of the task corresponding to SWC_A to be
higher than the priority of SWC_B, the first occurrence of the
target event matches the first occurrences of both SWC_B
and the source event, whereas the second occurrence of the
target event is due to only SWC_B. As discussed earlier,
the matching occurrence of the target event with respect to
the occurrences of the source event does not matter in this
constraint. This implicitly implies that the activation periods
of the source and target events may or may not be equal as
shown in Fig. 5.

4.3 Strong delay constraint

4.3.1 TADL?2 description

This constraint constrains the distance between each indexed
occurrence of the source event and the corresponding iden-
tically indexed occurrence of the target event. Matching

of the target occurrence caused by the corresponding
source event occurrence is vital for this constraint.

4.3.2 Semantics

A system behavior satisfies the specified StrongDelay-
Constraint SDC iff the number of occurrences of SDC .

@ Springer

48

S. Mubeen et al.

Sensor B[© ©DIP_1 DOP_1
0DIP_2 DOP—2

TIP TOP T~ SDeiay ‘-
DI 1 DOP_1¢ -- &]Data_Out

20 ms
Sensor A ©

Fig. 7 Proposed objects to specify the Strong Delay constraint in RCM

source and SDC. target events is equal; and for each
index 1, if there is an ith occurrence of SDC.source at
time s there also is an ith occurrence of SDC.target at
time t such that

SDC.lower < (t - s) < SDC.upper 3)

4.3.3 Interpretation in RCM

RCM does not offer any support for the specification of this
constraint.

We propose the addition of a new timing constraint with
the above semantics, denoted by S-Delay, in RCM. Since
this constraint corresponds to the distance between two
matching occurrences of the source and target events,
we associate two objects with it, namely S-Delay Start
and S-Delay End as shown in Fig. 7. As the number of
occurrences of the source and target events for each
index is not equal in the example in Fig. 5, S-Delay con-
straint cannot be used in place of the Delay constraint.
However, it can be used on the same system if the source
SWC is changed as shown in Fig. 7. The S-Delay Start
object can be specified at the DIP of the source SWC. The
triggering of the TIP of the source SWC corresponds to a
new occurrence of the source event. The S-Delay End
object can be specified at the DOP of the target SWC. The
production of a trigger at the TOP of the target SWC cor-
responds to the new occurrence of the target event. In
order to express the 1ower and upper values of the con-
straint, we associate two parameters with the same names
to the S-Delay End object. These values are identified
in Fig. 8. The figure also shows that the occurrences of the
target event match with the occurrences of the source
event. This implicitly implies that the activation periods of
the source and target events must be equal as shown in Fig. 7.

4.4 Order constraint
This constraint is a special case of the Strong Delay

constraint (see Sect. 4.3). It constrains an order between the
occurrences of any two events. The order constraint is equiv-

@ Springer

SWC_C SWC_D
target SWC
lower
>« :
3 N
source 4 upper
: : 1\ 1‘ time
target : 't‘ ' T fime

Fig. 8 Event sequence satisfying a Strong Delay constraint

alent to the Strong Delay constraint after the following
three variations:

1. SDC. lower in Eq. 3 is set to zero,

2. SDC.upper in Eq. 3 is set to infinity,

3. the matching occurrences of the source and target
events in Eq. 3 denoted by s and t, respectively, cannot
coincide.

4.5 Reaction constraint
4.5.1 TADL?2 description

This constraint constrains the occurrence of a response
event after the occurrence of a corresponding stimulus
event in an event chain. Basically, the constraint specifies
“how long after the occurrence of a stimulus the correspond-
ing response must occur” [2]. This constraint differs from
the Delay constraint in a way that it can only be applied to
event chains and not to individual events. In the multi-rate
event chains, multiple response occurrences due to each con-
secutive stimulus occurrence are differentiated by means of
colors. In order to satisfy this constraint, the earliest occur-
rence of the response with the same color as that of the
stimulus must take place within the limits specified by
this constraint as shown in Fig. 9.

4.5.2 Semantics

A system behavior satisfies the ReactionConstraint
ReacCifandonlyifforeach occurrence of ReaC.stimulus
at time s, there is an occurrence of ReaC.response at
time r such that

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 49

_ maximum _ maximum
< <

minimum iminimum
S| I S—]

stimulus T /If‘
: ; : ! time

response T T T T AL A AA
i | Pt L Fosies

Fig. 9 Event sequence satisfying a Reaction constraint

(r.color = s.color)
and
(z is time of the earliest occurrence of ReaC.response
with color s.color)
and
(ReaC.minimum < (r — s) < ReaC.maximum)

4.5.3 Interpretation in RCM

RCM offers the support to specify the reaction constraint.
This constraint is denoted by DataReaction (DR for
short). This constraint can be specified on an event chain, an
event chain segment or a distributed event chain (distributed
over more than one node) by means of the DR Start and
DR End objects as shown in Fig. 10. The DR End object
supports the specification of a maximum value by means of
a deadline parameter associated with it. However, the min-
imum parameter is considered to be zero. In order to be
consistent with the TADL2 React 1ion constraint, we asso-
ciate a new parameter with the DR End object to specify the
nonzero minimum value of the constraint.

The analysis engines [13] provided by Rubus-ICE sup-
port the calculations for the corresponding React ion delay.
Consider the example of an event chain in a multi-rate sys-
tem in Fig. 10. In Fig. 11, we show the time line when this
chain is executed (assuming each SWC corresponds to a task
denoted by t at run-time). It should be noted that task 75 is
deliberately given an offset of 15 ms to maximize the delays.
An offset is an externally imposed time interval between
the arrival of the activating event and release of the task
for execution. Often, an offset is used to specify temporal
dependency among the releases of a set of tasks. The reac-
tion delay is equal to the time elapsed between the previous
non-overwritten release of task t4 (input of the chain) and
the first response of task t¢ (output of the chain) correspond-

8ms

stimulus [0

SWC_A

ing to the current non-overwritten release of task t4. Assume
that a new value of the input is available in the input buffer of
task 4 “just after” the release of the second instance of task
74 (at time 8 ms). Hence, the second instance of task 74 “just
misses” the read of the new value from its input buffer. This
new value has to wait for the next instance of task t4 to travel
toward the output of the chain. Therefore, the new value is
read by the third and fourth instances of task 74. The first out-
put corresponding to the new value (arriving just after 8 ms)
appears at the output of the chain at 34 ms. This results in the
delay of 26 ms as shown in Fig. 11. This phenomenon is more
obvious in the case of distributed embedded systems where a
task in the receiving node may just miss to read fresh signals
from the message arriving from the network. The analysis
engines calculate the Reaction delay as shown in Fig. 11
and compare it with the specified constraint parameters.

4.6 Age constraint
4.6.1 TADL?2 description

This constraint constrains the occurrence of a stimulus
from the occurrence of the corresponding response look-
ing back through the event chain. Basically, the constraint
specifies “how long before each response the correspond-
ing stimulus must have occurred” [2]. In order to satisfy this
constraint, the latest occurrence of the stimulus with the
same color as that of the response must lie within the
limits specified by this constraint as shown in Fig. 12. This
constraint differs from the Delay constraint in a way that
it can only be applied to event chains and not to individual
events.

4.6.2 Semantics

A system behavior satisfies the specified AgeConstraint

AgecCifandonly if for each occurrence of AgeC . response
at time r, there is an occurrence of AgeC.stimulus at

time s such that

(s.color = r.color)
and
(s is time of the latest occurrence of AgeC.stimulus
with color r.color)
and
(AgeC.minimum < (r - s) < AgeC.maximum)

Eng PP_Jac_sig

SWC_C

Fig. 10 Existing objects in RCM that are used to specify the Reaction constraint

@ Springer

50

S. Mubeen et al.

Fig. 11 Demonstration of the
Reaction and Age delay
calculations by analysis engines.

’L'A

L 0
Note that the time is expressed
in ms
B
0 5

|

[
]

:<—Reaction delay. = 26—»: I

stimulusT TT A A A
1 —— =i

maximum maximum
1 minimum
response

minimum T

Fig. 12 Event sequence satisfying an Age constraint

A

time

4.6.3 Interpretation in RCM

RCM supports the specification of the Age constraint
denoted by DataAge. This constraint can be specified on
an event chain, an event chain segment or a distributed event
chainby means of the Age Startand Age End objectsas
shown in Fig. 13. The Age End object supports the specifi-
cation of a maximum value by means of a deadline parameter
associated with it. However, the minimum parameter is con-
sidered to be zero. In order to be consistent with the TADL2
Age constraint, we associate a new parameter with the Age
End object to specify the nonzero minimum value of the
constraint.

The analysis engines support the calculations for the corre-
sponding Age delay. Consider the example of an event chain
in a multi-rate system shown in Fig. 13. Figure 11 shows the
time line when this chain is executed. The analysis engines
calculate the Age delay as shown in Fig. 11 and compare it
with the specified constraint parameters.

4.7 Repetition constraint
4.7.1 TADL2 description

This constraint constrains the distribution of occurrences
of a single event that may also experience jitter before its

@ Springer

40 45 50

40 45 | 50

IR
15 20 125 30 | 35 40 45 | 50

le———Age delay = 22—»:

activation. Jitter represents the maximum variation in time
with which the event can be delayed. The span attribute
associated with this constraint determines which repeated
occurrence will be constrained.

4.7.2 Semantics

A system behavior satisfies the specified RepetitionCons
traint RC iff the following two are simultaneously satis-
fied for each subsequence X of RC. event:

1. if X contains span + 1 occurrences, then d is the distance
between the outer- and inner-most occurrences in X and

RC.lower < d < RC.upper

2. for each index i, if there is an ith occurrence of X at time
s, there also is an ith occurrence of RC . event at time
t such that

0<(t—s)<RC.jitter

If the span attribute is equal to one, jitter is equal to zero and
the upper attribute is equal to the 1ower attribute, then
the behavior becomes strictly periodic. Figure 14 graphically
illustrates this constraint.

4.7.3 Interpretation in RCM

In RCM, an SWC can be time triggered or event triggered by
means of the TrigClockTT or TrigClockET objects,
respectively. The TrigClockTT object generates periodic
trigger signals with a period specified on it, whereas the
TrigClockET object generates sporadic trigger signals
with a minimum inter-arrival time between any two consec-
utive occurrences. These two objects are shown in Fig. 15.
Another objectin RCM, denotedby TrigJitterPeriod,

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 51

8ms 16 ms

TIP TOP
DIP_1 DOP_1
SWC_A

stimulus [0 th‘;

TP TOP
DIP_1 DOP_1
SWC_B

4ms

TIP
DIP_1

SWC_C

TOP A
ge ;
DOP_1 End ac_sig

Fig. 13 Existing objects in RCM that are used to specify the Age constraint

upper

span = 1 1‘ event
— coati
upper . lower | activation
> b | event
4 lower 4 i arrival
I L 1. time
jitter jitter jitter

Fig. 14 Event sequence satisfying a Repetition constraint

provides the allowance for jitter to the trigger generating
objects. Figure 15 contains two of these objects with jitter
values equal to 1 millisecond and 100 microseconds.

Note that we associate a new parameter, denoted by
the maximum inter-arrival time, with the TrigClockET
object. This attribute specifies the maximum amount of
time that can elapse between the occurrence of any two
consecutive arrivals of the sporadic activation events. With
this extension, any two consecutive triggers produced by
the TrigClockET object cannot happen in less than the
minimum inter-arrival time and more than the maximum
inter-arrival time.

The TrigClockTT or TrigClockET objects can
be combined with the TrigJitterPeriod object to
represent the TADL2 Repetition constraint. In order
to be consistent with the TADL2 Repetition constraint,
we add the span parameter to the TrigClockTT and
TrigClockET objects. When the TrigClockTT object
is combined with the TrigJitterPeriod object, it rep-
resents the TADL2 Repetition constraint that has the
upper attribute equal to the 1lower attribute. When the
TrigClockET object is combined with the TrigJitter
Period object, it represents the TADL2 Repetition
constraint with its 1ower and upper values assigned to the
minimum and maximum inter-arrival time attributes, respec-
tively.

4.8 Repeat constraint

This constraint is a special case of the Repetition con-
straint (see Sect. 4.7). It constrains the distribution of the
occurrences of a single event that does not experience any
jitter. It is similar to the Repetition constraint without
allowance for any jitter. Hence, the semantics and refine-

ment for the Repeat constraint are the same as that of the
Repetition constraint with jitter set to zero.

4.9 Sporadic constraint

4.9.1 TADL?2 description

This constraint constrains the occurrence of a sporadic event.
4.9.2 Semantics

This constraint is a special type of the Repetition con-
straint whose span is equal to 1. Moreover, any two
subsequent activations of the event in this constraint must
be separated by the minimum inter-arrival time (MIT). This
constraint is graphically illustrated in Fig. 16.

4.9.3 Interpretation in RCM

The TrigClockET object can be combined with the
TrigditterPeriod object to represent the TADL2
Sporadic constraint as shown in Fig. 17. In order to con-
sistently interpret this constraint, we set the span parameter
to 1 and the MIT value equal to the period associated with
the TrigClockET object. The 1ower and upper values
can be assigned to the minimum and maximum inter-arrival
times. If the maximum inter-arrival time is not specified, it
can be considered equal to infinity.

4.10 Burst constraint
4.10.1 TADL? description

The BurstConstraint constrains an event with bursty
occurrences.

4.10.2 Semantics

This constraint is a special type of the Sporadic constraint
with the following extensions.

1. There is no allowance for jitter.

2. There is a maximum number of occurrences of the event,
denoted by MaxOccurrences, in an interval. The size
of the interval is denoted by length.

@ Springer

52

S. Mubeen et al.

Fig. 15 Existing objects in

RCM that are used to specify 10 ms
triggers and jitter 1ms
sensor_A
5ms
100 us
sensor_B
upper
span = 1 EP 4 event
upper < lower 55 activation
ﬁ: | event
1‘ ower. | 1‘ 4 arrival
L L i time
jitter Jitter jitter
owir T MIT

Fig. 16 Event sequence satisfying a Sporadic constraint

3. Two subsequent activations in the interval must be sepa-
rated by the minimum inter-arrival time (MIT).

Two event sequences satisfying the same BurstCons
traint are shown in Fig. 18.

4.10.3 Interpretation in RCM

The Sporadic constraint in RCM is extended to represent
the TADL2 Burst constraint by setting the TrigJitter
Period to zero and associating the length and Max
Occurrences attributes to the TrigClockET object
shown in Fig. 17.

4.11 Periodic constraint

4.11.1 TADL? description

This constraint constrains the occurrence of a periodic event.

4.11.2 Semantics

This constraint is a special type of Sporadic constraint
whose lower and upper attributes are equal. These
attributes are assigned the value of the period. This constraint
is graphically illustrated in Fig. 19.

@ Springer

TIP TOP
DIP_1 stimulus1
Sensor_A TrigClockeT [5
TIP TOP
DIP_1 stimulus2
Sensor_B TrigditterPeriod

4.11.3 Interpretation in RCM

The TrigClockTT object can be combined with the
TrigJitterPeriod object to represent the TADL2
PeriodicConstraint as shown in Fig. 20. In order
to consistently interpret this constraint, we set the span
parameter to 1. The upper and 1ower parameters are equal
and are assigned the value of the period. The MIT value is
assigned to the period associated with the TrigClockTT
object unless specified otherwise.

4.12 Pattern constraint
4.12.1 TADL?2 description

This constraint constrains the occurrences of an event that
follows a certain pattern with respect to some periodic tem-
poral points.

4.12.2 Semantics

A system behavior satisfies the specified PatternCons
traint PC iff there is a set of times X such that the same
system behavior simultaneously satisfies the following con-
ditions:

1. PeriodicConstraint with its period equal to PC.
period. This constraint corresponds to the periodic rep-
etition of the pattern shown in Fig. 21.

2. For each PC.offset index i, there is an occurrence x;
of X such that

PC.offset; <x; < (PC.offset;+PC.jitter)

3. If X contains two occurrences, then d is the distance
between the outer- and inner-most occurrences in X and

PC.minimum < d

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 53

Fig. 17 Equivalent of the

Sporadic constraint specified 5ms BII; 1 " -II’O[; % TrigClockET E*
i stimuius
nREM 100 us -
Sensor_B
sensor_B e i
- TrigJitterPeriod
Fig. 18 Event sequences MaxOccurrences = 4 ! MaxOccurrences =4
satisfying the [A 1 A \
BurstConstraint ! Event
T 1 1 T i T T T 1 activation
1
MIT”MIT MIT MIT i MIT ™MIT MIT™ MIT
length i length
span = 1 eters with the corresponding parameters in the transactional
. period period . 4 event P gp
: 1‘ 5 1‘ ; 1\ activation model.
' ' I time 4.13 Arbitrary constraint
jitter iiﬁ:er jitter event L.
! MIT MIT arrival 4.13.1 TADL? description

Fig. 19 Event sequence satisfying a Periodic constraint

Note that x; represents all the occurrences of the event within
each period shown in Fig. 21.

The Pattern constraint is graphically illustrated in
Fig. 21. In each period of event patterns, the event occur-
rences happen at the predefined temporal points, called
offsets, with respect to the starting reference point in that
period. Each occurrence of the event can be influenced by
the specified jitter.

4.12.3 Interpretation in RCM

This constraint is similar to the transactional model of tasks
with offsets which is inherent to the time-triggered execution
in RCM. At run-time, all time-triggered tasks (assuming an
SWC corresponds to a task at run-time) from a node are com-
bined into one big periodic transaction. The tasks within the
transaction have offsets and jitter. The period of the transac-
tion is the least common multiple of the periods of all tasks
in the transaction.

We propose the addition of a new timing constraint with
the above semantics, denoted by the Pattern constraint,
in RCM as shown in Fig. 22. The parameters associated
with this object are period, minimum inter-arrival time, jit-
ter, number of event occurrences during the period time and
a set of offsets. The analysis engines are responsible for
checking this constraint by comparing the specified param-

This constraint constrains an event that occurs irregularly.
The constraint contains a set of pairs consisting of a minimum
inter-arrival time (denoted by min) and a maximum inter-
arrival time (denoted by max).

4.13.2 Semantics

A system behavior satisfies the specified ArbitraryCons
traint AC iff for each AC.min index i, the same system
behavior satisfies, for each subsequence X of AC. event, if
X contains i + 1 occurrences then d is the distance between
the outer- and inner-most occurrences in X and

AC.min; < d < AC.max; “4)

The constraint is graphically illustrated in Fig. 23. In
this figure, minl, min2 and min3 represent the minimum
inter-arrival time between/among two, three and four sub-
sequent occurrences of the event, respectively. Similarly,
maxl1,max2 and max3 represent the maximum inter-arrival
time between/among two, three and four subsequent occur-
rences of the event, respectively. Although three pairs of min
and max parameters are plotted for the first two occurrences
of the event, these parameters continue in a similar fashion
for the rest of the occurrences of the event.

4.13.3 Interpretation in RCM

There is no existing support to specify the arbitrary constraint
in RCM. We propose the addition of a new timing con-

@ Springer

54 S. Mubeen et al.
Fig. 20 Equivalent of the i
Periodic constraint specified 10 ms TrigClockTT
in RCM
1ms TIP ~ TOP
sensor_A DIP_1 stimulus1
Sensor_A TrigJitterPeriod
Fig. 21 Event sequence . offset;+ jitter , ; offset;+ jitter ,
satlsfylpg a Pattern offset, 5 i offset; 5
constraint . ! : , ;
offset,+ jitter : ; offsety+ jitter : ;
offset, offset,
loffset,+ jitter bl Eoffset1+ jitter |
5 2 o ’ S—> P i
offset, 1 : offset, | :
<1 R e P
event i | AN R S Y . A
EE R S T N
minimum s ' ' ' i

Fig. 22 Proposed object in

RCM to specify the Pattern Constraint ->

Pattern

constraint
PatternEventConstraint
max; .
5 min, .
; A :
5 max, :
min, : :
: : : : i event
e Wa%y) i . ! activation
imin, ; : 5
> ; : :

1\ 1‘ : time

g
=
o

Fig. 23 Event sequence satisfying an Arbitrary constraint

straint with the above semantics, denoted by Arbitrary
constraint, in RCM as shown in Fig. 24. The constraint
is able to specify any number of pairs of min and max
values.

@ Springer

Constraint ->
Arbitrary

ArbitraryEventConstraint

Fig. 24 Proposed object in RCM to specify the Arbitrary con-
straint

4.14 Execution time constraint
4.14.1 TADL? description

This constraint constrains the time between activation and
completion of the execution of a function (executable entity).
However, the intervals, when the execution of the function is
interrupted due to preemptions and blocking, are not consid-
ered in this constraint.

4.14.2 Semantics

A system behavior satisfies the specified ExecutionTime
Constraint ETC iff for each occurrence x of the event
ETC.activate, ET; is the set of times between x and the
next ETC. completion while excluding the times due to
ETC.preemtion and ETC.blocking, and that

ETC. lower < sum of all continuous intervals in ET;

A

ETC.upper (@)

This constraint is graphically illustrated in Fig. 25.

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 55

'T‘ activation

7
7

ET, ET, ET; ET, ET;

time % execution ET;

blocking

l preemption

m ; time

eélower <_ ¢ completion

upper

Fig. 25 Event sequence satisfying an execution time constraint

4.14.3 Interpretation in RCM

RCM supports the specification of the execution time con-
straint for an SWC. Each SWC has one or more behaviors,
whereas each behavior represents a function. When an SWC
is triggered, its state and data (from all of its DIPs) are passed
to it. The states are updated and the newly calculated data are
placed on the DOPs while a trigger is produced at the TOP
upon completion of the behavior. RCM supports the speci-
fication of three types of execution times on the behavior of
SWC, namely best-case execution time (BCET), worst-case
execution time (WCET) and average-case execution time
(ACET) as shown in Fig. 26. In order to unambiguously inter-
pret this constraint in RCM, the 1ower and upper values
of this constraint (see Fig. 25) can be assigned to the BCET
and WCET parameters, respectively, in Fig. 26.

4.15 Synchronization constraint
4.15.1 TADL?2 description

This constraint constrains the closeness of the occurrences
of a group of events.

4.15.2 Semantics

A system behavior satisfies the specified Synchroniza-
tionConstraint on a given set of events and given the
occurrence of any event in this set, then the rest of the events
in the set must occur at least once within a certain time win-
dow called tolerance.

Fig. 26 Equivalent to the
execution time constraint e

specified in RCM i
TIP TOP
DIP_1 DOP_1

SWC A é

SWC_A_Behavior °

This constraint is graphically illustrated in Fig. 27. It
is applied on the two events data_A and data_B. In this
constraint, more than one instance of the events may exist
in a time window, provided the above conditions are met.
Moreover, the windows may overlap and they may share
occurrences of the events.

4.15.3 Interpretation in RCM

There is an existing support in RCM to synchronize multiple
triggers by means of a synchronization object denoted by
TrigSync as shown in Fig. 28. This object has two or more
TIPs and only one TOP. The synchronization condition can
use either AND or OR semantics. In the case of the AND
condition, the TOP is triggered only when trigger signals have
arrived at all TIPs. In the case of the OR condition, the TOP is
triggered as soon as there is a trigger signal at one of the TIPs.
In order to make this constraint consistent with the TADL2
Synchronization constraint, we add the tolerance
parameter to this object. The analysis engines are responsible
for checking the constraint by determining if the triggering
events occur within the tolerance window or not.

4.16 Strong synchronization constraint
4.16.1 TADL? description

This constraint constrains the closeness of the occurrences
of a group of events.

4.16.2 Semantics

The semantics of the StrongSynchronizationCons-
traint differs from the semantics of the Synchroniza-
tionConstraint in a way that the occurrences of the
events in a window must have same indices. Therefore, at
most one instance of the events can exist in the time window.
Moreover, the windows cannot overlap and they may share
occurrences of the events.

This constraint is graphically illustrated in Fig. 29. It is
applied on the two events data_A and data_B.

- — — = > Behavior properties:

Identifier
* Worst-case execution time (upper)

fO{.}

TIP TOP
DIP_1

* Average-case execution time

¢ Stack size

* Best-case executiontime (lower)
DOP_1 %

SWC_A Interface

@ Springer

56

S. Mubeen et al.

Fig. 27 Event sequences

SynchronizationConstraint

satisfying a tolerance
Synch.roni zation foata D
constraint Design_Component_A Actuator_A data_A | T 1‘ 1‘ time
o data_B |4 M ¢ M time
Design_Component_B Actuator_B
10 ms
TIP TOP TIP TOP
Sensor_A DIP_1 data_A pdata_A DOP_1 ac_sig_A
SWC_A Actuator_A
10ms P ToP TrigSync TP TOP _
Sensor_B DIP_1 data_ B pdata_ B DOP_1 ac_sig B
SWC_B Actuator_B
Fig. 28 Synchronization constraint in RCM
Fig. 29 Event sequences StrongSynchronizationConstraint
satisfying a Strong tolerance
Synchronization §oldata_ D
. data A .
constraint Design_Component_A Actuator_A R & 1‘ 'T‘ T time
= data B |4 4 4 A fime
Design_Component_B Actuator_B
10 ms
TIP TOP TIP TOP)
Sensor_A DIP_1 data_A pdata_ A DOP_1 ac_sig_A
SWC_A Actuator_A
1oms TIP TOP S-TrigSync TP TOP .
Sensor_B DIP_1 data B prdata_ B DOP_1 ac_sig B
SWC_B Actuator_B

Fig. 30 Proposed object in RCM to specify the Strong Synchronization constraint

4.16.3 Interpretation in RCM

There is an existing support in RCM to synchronize multi-
ple triggers by means of a synchronization object denoted
by TrigSync. In order to differentiate the Strong
Synchronization constraint from this object, we add a
similar object denoted by S-TrigSync as shown in Fig. 30.
This object has two or more TIPs and only one TOP. The syn-
chronization condition can use either AND or OR semantics.
In order to make this constraint consistent with the TADL2
Strong Synchronization constraint, we add the tol-
erance parameter to this object.

@ Springer

4.17 Output synchronization constraint
4.17.1 TADL? description

This constraint constrains the closeness of the occurrences
of responses to a certain stimulus. Basically, the constraint
defines how far apart the responses to a certain stimulus can
occur. This constraint differs from the Synchronization-
Constraint ina way that it can only be applied to a set of
event chains such that there are multiple responses to a sin-
gle stimulus as shown in Figs. 31 and 32. The tolerance
parameter constrains the latest of these response occurrences
for each chain. The system in Fig. 31 is modeled with
two event chains. They have common stimulus but differ-
ent responses denoted by responsel and response?2.

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 57

Fig. 31 Usage of the Output
Synchronization
constraint at the design level

OutputSynchronizationConstraint

4.17.2 Semantics

A system behavior satisfies the OutputSynchroniza-
tionConstraint OSC iff for each occurrence of OSC.
stimulus at time s, there is a time t such that for each
index i, there is an occurrence of OSC . response; at time
r such that

responsel
data_Afg out_1¢ {)inputzo |
signa data_in data_A Component_B Actuator1
data_B
Sensor
stimulus Component_A data_B{g out_2('? #)inputio I
Component_C Actuator2
response2
stimulus A A —_—
tolerance
< <> <>
responsel .
1 t t time
response2 4 4 4 fime
Fig. 32 Event sequences satisfying the Output

(r.color = s.color)
and
(r is time of the earliest occurrence of OSC.response;
with color s.color)
and
(0O<(r — t)<o0SC.tolerance)

4.17.3 Interpretation in RCM

There is an existing support in RCM to synchronize multiple
triggers by using the TrigSync object. We add a similar
object, denoted by Out-TrigSync, in RCM. This object
has two or more TIPs and only one TOP. The synchroniza-
tion condition can use either AND or OR semantics. In order
to make this constraint consistent with the TADL2 Output
Synchronization constraint, we add the tolerance
parameter to it. The analysis engines must ensure that this
constraint is satisfied within the tolerance window. The
example in Fig. 33 depicts a single-rate system. Hence,
there cannot be more than one occurrences of each response
corresponding to single occurrence of the stimulus. How-
ever, the Out -TrigSync isequally applicable to multi-rate
systems where the components are triggered with inde-
pendent clocks. It is important to note that the Output
Synchronization constraint can also be specified in dis-
tributed systems. For example, the common stimulus of any
two chains can be on one node, while their responses can
be on two different nodes (other than the stimulus node). In
such a case, two TrigSync objects are specified on the two
response nodes. However, the usage name of these objects is
the same. The run-time environment must consider any two
or more TrigSync objects with the same usage name as
one object.

Synchronization constraint

4.18 Input synchronization constraint
4.18.1 TADL? description

This constraint constrains the closeness of the occurrences
of stimuli corresponding to a certain response. Basically, the
constraint defines how far apart the stimuli corresponding to
a certain response can occur. This constraint differs from the
Synchronization constraint in a way that it can only
be applied to a set of event chains such that there are mul-
tiple stimuli and a single corresponding response as shown
in Figs. 34 and 35. The tolerance parameter constrains
the latest of these stimuli occurrences for each chain. This
means that once one of the stimuli has been acquired, the oth-
ers should be acquired within the time window equal to the
tolerance parameter. The system in Fig. 34 is modeled
with two event chains. They are initiated by separate stimuli
but they have one common response.

4.18.2 Semantics

A system behavior satisfies the Input Synchronization
Constraint ISCiffforeachoccurrenceof ISC.respo-
nse at time r, there is a time t such that for each index i,
there is an occurrence of ISC.stimulus; at time s such
that

(r.color = s.color)

@ Springer

58

S. Mubeen et al.

10 ms
, S TIP TOP I} TP TOP TOP [t—>ig ,
stimulus [&0 DIP_1 data_/B\ O DIP_1 responsel © Odata_A DOP_10» lac_sig_A
By SWC B Actuator_ A
Sensor .
= TIP Top— Out-TrigSync = TIP TOP Ip—>13
©DIP_1 response2 data_B DOP_1O-»3 |ac_sig_B
SWC_C Actuator_B
Fig. 33 Proposed object to specify the Output Synchronization constraintin RCM
Fig. 34 Usage of the Tnput InputSynchronizationConstraint
Synchronization stimulus1
constraint at the design level
ﬁsigﬂal¢ gl)data_A out_1 response
Sensor_A Component_B_1 data_1 actuate O— ; inputsD
data 2 Actuator
BSignal¢ JP data_ B out_2 Component_A_1
Sensor_B Component_C_1
stimulus2
tolerance . .
<> s P 4.19 Comparison constraint
stimulus1 4 1\ 1\)
time
This constraint is not a timing constraint. In fact, it is used
stimulus2 |4 t 4 time to represent the comparison between the value of a specified
constraint and the values of the variables that have arithmetic
relations between/among them. For example, consider a dis-
RESPOIES 1) i time tributed chain that consists of three sub-chains. Also assume
Fig. 35 Event sequences satisfying the Input that the delay of each sub-chain is calculated separately. The

Synchronization constraint

and
(s is time of the earliest occurrence of ISC.stimulus;
with color r.color)
and
0<(s — t)<1ISC.tolerance)

4.18.3 Interpretation in RCM

There is an existing support in RCM to synchronize multiple
triggers by using the TrigSync object. We add a similar
object, denoted by In-TrigSync,in RCM. This object has
two or more TIPs and only one TOP. The synchronization
condition can use either AND or OR semantics. In order
to make this constraint consistent with the TADL2 Input
Synchronization constraint, we add the tolerance
parameter to it. The example in Fig. 36 depicts a single-rate
system. Hence, there cannot be more than one occurrences
of each response corresponding to single occurrence of the
stimulus. However, the In-TrigSync is equally applicable
to multi-rate systems where the components are triggered
with independent clocks.

@ Springer

distributed chain is considered schedulable if the sum of the
three delays is less than or equal to the Delay constraint
specified on the distributed chain. Since the Comparison
constraint is not a timing constraint, it does not require any
refinement. The Rubus tool suite automatically compares
each specified constraint with the corresponding calculated
value. The comparison results are presented to the user. More-
over, the results are back-propagated to the models at the
higher abstraction levels.

5 Challenges in the representation of the
end-to-end timing model at the design level

The models and approaches that are used at the imple-
mentation level such as RCM and AUTOSAR allow to
represent the end-to-end timing models. However, the mod-
eling approaches used at the design or higher levels such
as EAST-ADL, TIMMO and TADL?2 do not support com-
plete and unambiguous representation of the timing models.
Due to unavailability of the end-to-end timing models at
the higher abstraction levels, it is not possible to perform
the end-to-end timing analysis [13,38]. As discussed earlier
in Sect. 3.7, there are few works that support the end-to-

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 59

10 ms
TIP
sensor_A DIP_1

stlmulus1
Sensor_A
0ms TP TOP In-TrigSync
sensor_B DIP_1 stimulus2

Sensor_B

TIP TOP TIP TOP
Blg_; data_A data_A response ac_sig

Actuator

Component_A_1

Fig. 36 Proposed object to specify the Input Synchronization constraintin RCM

10ms SWC_A SWC_B SWC_C 10 ms

10 ms

=1 P=4

=

Sensor Data

(a) sink Sensor

BT LBt

Fig. 37 Example of a trigger chain, b data chain and ¢ mixed chain

end timing analysis at the higher levels of abstraction such
as [18,19]. However, the analysis supported by these works
is of low precision. It has already been shown in [18] that
the analyses in [18,19] can be highly pessimistic (overesti-
mated) as compared to the analyses in [13,38]. The analyses
in [18,19] heavily rely on the reuse of software architectures
from legacy systems. Hence, these analyses are not appli-
cable when the system is developed from the scratch. On
the other hand, our work aims to support the high-precision
end-to-end timing analysis [13,38] at the higher abstraction
levels. We focus mainly on the design level within the context
of this problem. We consider the modeling support of EAST-
ADL, TIMMO and TADL?2 at the design level, whereas the
modeling support of RCM is considered at the implementa-
tion level. We discuss some of the challenges that hinder the
representation of the end-to-end timing model. We propose
guidelines and solutions to deal with these challenges. We
also discuss the implementation of these solutions in RCM.

5.1 Representation of control and data paths

Unambiguous representation of control (trigger) and data
paths from the system is vital for performing its end-to-end
timing analysis. A trigger path captures the flow of trig-
gers along a chain of components (tasks at run-time). For
example, the trigger path in the chain shown in Fig. 37c
can be expressed as {{SWC_A — SWC_B}, {SWC_C}}
because SWC_B is triggered by SWC_A, while SWC_C is
triggered independently. Similarly, the trigger paths in the
chains shown in Fig. 37a, b can be expressed as { {SWC_A
— SWC_B — SWC_C} and {{SWC_A}, {SWC_B},
{SWC_C}}, respectively.

One of the main challenges in the representation of an
end-to-end timing model at the design level is the lack of a
clear separation between the trigger and data paths. At the

Input (b)

Sensor Data

Data
Input sink

sink

}

1 10 ms

l SWC_A ﬁ SWC_B ﬁ SWC_C ! SWC A chi:gwc c
F = |
|

i—: |
[}
}

implementation level, e.g., in RCM, these paths are clearly
separated from each other by means of trigger and data ports
as shown in Fig. 38b. A TOP of an SWC can only be con-
nected to the TIP(s) of other SWC(s). Similarly, a DOP of an
SWC can only be connected to the DIP(s) of other SWC(s).
Hence, the trigger and data paths can be clearly identified.

On the other hand, the components at the design level
communicate via the flow ports as shown in Fig. 38a. A flow
port is an EAST-ADL object that is used to transfer data
between components. It is single buffer, non-consumable and
over-writable. Without any explicit information, it can be
interpreted as a data or trigger port at the implementation
level. There is no support to specify explicit trigger paths
at the design level. Moreover, a component can be triggered
via specified timing constraints on event, modes or internal
behavior of the component. The two types of flows should
be clearly and separately captured in the end-to-end timing
model because the type of the timing analysis depends upon
it. For example, it is not meaningful to compute the age delay
of a trigger chain shown in Fig. 38a [13]. Since the age delay
in a trigger chain is always equal to its response time, the cal-
culations for the age delay in this case will produce redundant
results.

In order to clearly identify the trigger and data paths at the
design level, we make the following assumptions.

1. We assume a one-to-one mapping between each design-
and implementation-level component. In general, there
can be an n-to-m mapping between a design- and
an implementation-level component. Our assumption is
quite practical because most of the existing works, such as
[44], consider a one-to-one mapping between the design-
level components (developed using EAST-ADL) and
the implementation-level components (developed using
AUTOSAR). In addition, our assumption is based on the

@ Springer

60

S. Mubeen et al.

Fig. 38 Model of the SWC at a
design level and b

implementation level IN_1 OouT_1
IN_2 fBJouT.2
IN_3 ouT_2

Design_Level SWC

C))

common practice thatis used in the vehicle industry, espe-
cially in the segment of construction equipment vehicles
domain.

2. A flow port of a software component can be triggered
either by an independent source such as a clock or by a
dependent source such as another software component.
If the components in a chain are triggered independently,
then the resulting end-to-end delays in the chain are
higher as compared to the case when the components
along the chain are triggered dependently [13,38]. If
there is no trigger information available for a flow port
of a software component on which a timing constraint
is specified, we assume that the component is triggered
independently. The type of triggering is judged by the
type of the constraint. This assumption is pessimistic but
safe because we are interested in the worst-case end-to-
end timing analysis.

3. If the Age or Reaction are the only constraints that
are specified on a chain, we assume that the first and
last components in the chain are triggered independently.
This is because more than one independent trigger in a
chain makes it a multi-rate chain. Otherwise, the chain
becomes a single-rate chain. In a single-rate chain, the
age delay is equal to its response time, while the reaction
delay is a slight variation of its response time. Hence, the
schedulability of a single-rate chain can be determined
by response-time analysis [12] without performing the
end-to-end delay analysis [13,38]. Therefore, the single-
rate chains are constrained by the deadline constraints
instead of the age and reaction constraints. It is more
meaningful to specify the Age and Reaction constraints
on the multi-rate chains as compared to the single-rate
chains.

4. We assume that a flow port is implicitly triggered at the
arrival of data. If there are more than one flow ports in
a component, then the arrival of data at each port pro-
duces a trigger. For example, the component in Fig. 38a
may receive three individual triggers when data are sepa-
rately received at the three input flow ports. The TrigSync
object in RCM can be used to deal with multiple implicit
triggers (corresponding to multiple flow ports) at the
implementation level. This object gets the multiple trig-
gers at input, synchronizes them and produces a single
trigger that can be used to trigger the SWC (correspond-

@ Springer

Flow port /7Tr|gger port

'

- ~==~<3 Data port
Implementation_Level SWC

(b)

IT oT

N

—PpOIN_1 OUT_1
—PpOIN_2 OUT_2
IN_3 OoUT_3

SWC

Fig. 39 Implementation-level equivalent of the design-level compo-
nent in Figure 38(a)

ing to the design-level component) at the implementation
level. Figure 39 shows an implementation-level equiva-
lent of the design-level component with three flow ports
as shown in Fig. 38a.

5.2 Representation of timing parameters

The timing information expressed with the models and tools
used at the design level is not enough to represent the end-to-
end timing model. For example, one of the EAST-ADL based
tools'3 used at the design and higher levels is able to specify
only one timing parameter on components, i.e., the period
of the component. Clearly, this information is not enough to
perform the end-to-end timing analysis. TADL?2 can specify
timing constraints and properties at the design level in EAST-
ADL and AUTOSAR-based development. However, TADL?2
does not allow to express some timing parameters, e.g., pri-
ority and transmission type which are needed to perform the
end-to-end timing analysis. We have already discussed the
interpretation of TADL2 timing constraints in RCM in the
previous section.

We assume that the execution order of the design-level
components in a chain is specified; otherwise, we make an
implicit assumption about it. That is, each component is
assumed to execute only after successful execution of its
preceding component in the chain unless specified other-
wise. This means a data provider component is assumed to be

13 For 1P protection, the name of the tool is not specified.

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 61

always executed before the data receiver component. Since
this assumption fixes the execution order, it is safe to assume
that the priorities of the components are equal within the
chain. Note that this assumption is in line with the fourth
assumption in Sect. 5.1. If worst-, best- and average-case
execution times are not available at the design level, they
can be estimated at the implementation level either by using
estimates by the experts or by reusing them from the other
projects or previous releases of the vehicle.

5.3 Identification of chain types

The chain types in RCM can be easily identified because the
control and data flows are clearly separated at the implemen-
tation level. Various types of chains in RCM are depicted
in Fig. 37. Since there is no clear separation between these
flows at the design level, virtually it is not possible to iden-
tify the type of a chain. At the design level, a chain can be
interpreted as a trigger or data chain. Without any explicit
trigger information, the end-to-end timing analysis cannot
be performed. This is because a trigger chain is analyzed by
calculating its end-to-end response time and reaction delay,
whereas a data or a mixed chain is analyzed by calculating
its end-to-end response time and reaction delay as well as
its age delay [13]. If there are no constraints specified on a
chain, we assume it to be a trigger chain. Otherwise, it can be
considered as a data or a mixed chain depending upon how
the constraints are specified.

5.4 Information duplication and ambiguity

At the implementation level, for example, RCM does not
allow illogical operations such as specifying more than one
clock on the same component without any synchronization or
merge operation. However, these restrictions are not present
at the design level, e.g., more than one execution time or
periodic constraint can be specified on a single component
in EAST-ADL using TADL?2. Similarly, if the data age and
reaction constraints are wrongly specified, then the develop-
ment environment does not complain about it. As a result, the
timing model may have redundant or erroneous information.
Information duplication can lead to inconsistency in the tim-
ing model. However, at the implementation level, Rubus-ICE
complains about these inconsistencies and ambiguities. The
analysis engines calculate the age and reaction delays only
when the corresponding constraints are specified on data and
mixed chains.

5.5 Implementation challenges and applicability of the
approach

There are two different approaches to deal with these chal-
lenges. The first approach is to extend and improve the

design-level models, languages and tools in such a way that
the timing models can be completely and unambiguously
represented. Moreover, the represented models are general
enough to be operated on by different models and tools. The
only problem with this approach is that it requires strong
collaboration among a number of tool suppliers and stake
holders. This, in turn, raises other types of challenges and
limitations.

The second approach is to develop the interpretation of the
design level that depends upon the execution-level modeling
technology. Such an interpretation should be general enough
to be applicable to any component model which is designed
for the software development at the implementation abstrac-
tion level, for example, developing a Rubus interpretation of
EAST-ADL. It is important to note that this interpretation
can be a subset of the full expressiveness of EAST-ADL. No
doubt, this may result in a number of these interpretations
by several other modeling technologies. This can be a good
solution as long as these interpretations support unambigu-
ous representation of the end-to-end timing models. In this
paper we have advocated the second option.

The approach proposed in this paper can be generally
applied to any implementation-level component model for
the development of vehicle software that (1) supports a
pipe-and-filter style for the interaction between/among soft-
ware components, (2) differentiates between the control
and data flows between/among the software components
and (3) allows representation of the low-level details at the
higher abstraction levels such as the linking information in
distributed chains [13, 14]. Moreover, the challenges and pro-
posed solutions discussed in this paper are equally applicable
to other higher-level modeling technologies that comply with
the EAST-ADL methodology. Note that all the assump-
tions made in this paper reflect the worst-case conditions.
Hence, the analysis results can be sometimes pessimistic
(overestimated) but safe, i.e., the results cannot be optimistic
(underestimated). The timing model representation approach
is well suited to hard real-time software systems that are
required to meet stringent timing requirements.

5.6 Implementation of the refinement in Rubus-ICE

The refinement of the TADL2 timing constraints to RCM
(discussed in Sect. 4) is hard coded in the refinement engine
of Rubus-ICE as shown in Fig. 40. Note that all EAST-ADL
editors support exchange of the design-level model in the
XML format. Such a model, augmented with the TADL2
timing constraints, is read by the refinement engine. The out-
put of this engine is the refined implementation-level model.
The existing end-to-end timing analysis engines [13,38] in
Rubus-ICE are extended based on the assumptions and guide-
lines that are discussed in this section. The end-to-end timing

@ Springer

62

S. Mubeen et al.

Fig. 40 Information flow after

~

\ Design-level model /E/;\ST—ADD

the implementation of the Refinement engine -
refinement in Rubus-ICE g tiUQTrR%WEE?.W!th ¢ Editors
o, e iming p .
tr Implementation-level constraints /—’ MetaEdit+
w 1o eV XML /; .
O model (XML) A ML) "ah:\"us No Magic
A GmSﬂl%'
2] vEA CORE
3 K . e |
© | End-to-end timing .| Timing analysis SystemWeaver
> : . 1 Its (XML 1 %
Q: analysis engines J results (XML) _ Rubus-EASTE® /

analysis results obtained from the analysis engines are back-
propagated to the design-level models as shown in Fig. 40.

6 Vehicular-application case study

In this section, first we model the steer-by-wire (SBW)
system with EAST-ADL at the design level. In [1], we
modeled partial software architectures of only two nodes
in the SBW system. This section extends the previous case
study by modeling the complete software architecture of the
SBW system. In the second step, we specify several tim-
ing constraints on the software architecture of the SBW
system. In the third step, the design-level software architec-
ture along with the specified timing constraints are refined to
the implementation-level software architecture. In the fourth
step, the analysis engines are run to verify the specified tim-
ing constraints.

6.1 Steer-by-wire (SBW) system

The SBW system provides electronic steer control to a vehi-
cle by substituting majority of mechanical and hydraulic
components with electronic components in the conventional
steering system. In this system, the steering angle is converted
into electrical signals. These signals are then processed to
produce actuation signals that control the direction of the
wheels. The SBW system consists of five nodes or electronic
control units (ECUs) that are connected to a single Controller
Area Network (CAN) [45] bus as shown in Fig. 41. The CAN
bus is assumed to operate at the speed of 250 Kbit/s. There are
four ECUs for Wheel Control (WC) and one ECU for Steer
Control (SC). The WC ECUs for front-left, front-right, rear-
left and rear-right wheels are denoted by FL_WC, FR_WC,
RL_WC and RR_WC in Fig. 41.

The SC ECU receives inputs from three sensors that
include steering angle, steering torque (applied by the driver)
and vehicle speed sensors. It receives one CAN message from
each WC ECU. The message includes information regard-
ing the torque of each wheel. Based on these inputs, the SC
ECU calculates the feedback steering torque and sends it to

@ Springer

N rewe [//£ FL_WC
ECU SC ECU

ECU

I CAN Bus |
RR_WC FR_WC
e I A\ W, ECU

Fig. 41 Block diagram of the SBW system

the feedback torque actuator. This actuator is responsible for
producing the feeling of turning effect of the steering wheel
for the driver. Such an effect corresponds to the grip of the
wheels. The wheel actuators in the WC ECUs should move
the wheels in accordance with the steering wheel movements.
Hence, the SC ECU sends two CAN messages to all WC
ECUs. One message carries the steer angle signal. Whereas
the other message carries the steer torque signal.

Each WC ECU receives inputs from wheel angle and
wheel torque sensors. Depending upon the sensor inputs and
the CAN message that is received from the SC ECU, each
WC ECU calculates the wheel torque and produces actuation
signals for the corresponding wheel actuator. The actuator is
responsible for moving the corresponding wheel in accor-
dance with the steering wheel movements. Each WC ECU
sends one CAN message to the SC ECU containing the cor-
responding wheel torque signals.

6.2 Modeling of the SBW system at the design level

The software architecture of the SBW system at the design
level, modeled with EAST-ADL, is depicted in Fig. 42. The
left-hand side of the figure shows the software architecture
of the SC ECU, whereas the right-hand side of the figure
shows the software architectures of the four WC ECUs. Each
component in Fig. 42 is a Function Prototype which is the
design-level software component in EAST-ADL. It should
be noted that EAST-ADL does not provide detailed models
of networks. Hence, the components that require inter-ECU
communication are interconnected using direct connections,
e.g., SC_Controller and FL._Controller. The detailed network

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 63

TC1,T1C2 TC8 TC10 TC11,T1C12 TC13,TC14 TC27,T1C28 TC9 TC35
| 1 ' . ' S '
TC3, 1 IO L A AR :
N it e R Pk ————————— it ddid a------- Lde-F===a 1 1
Voo 1! 1 1 1 N o
A - : I
: o 1! 1 1 1 Ty [
o I : TR
. b HE 20 7 ¥ o Yv ¥
: : [! FL_Wheel_Info FB M(Em OUT? FL_Angle Controld)i'—:{—:- IN out
| : : : : : FR_Wneel_Info S_Angle Steer FB Actuator l-L_lorq FL_| 1 :
' T {RL_Wheel_Info S_Torque - S_Angle = :
por i $SRR_Wheel_fig] S_Torque ' ,
| (Q Steer_Angle FL_Controller P
OIN ouT O (> Steer_Torque - oy TC36
() Vehicle_Speed TC29,TC30 P H
A SC_Controller TC15,TC16 -mm-y * : : : i
: IN out FR_Angle Control : : IN out
1 o
: TC17,TC18 ": FR_Wheel_Angle FSR;.;:S FR_Info ! FR_Actuator
4 1
Vehicle_Speed : N out S_Torque : i
: : FR_Wheel_Torque FR_Controller : 1
| TC7 i TC37
| TC31,TC32 [H
TC6TCS TC19,TC20---- -, v o v
! N out RL_Angle Control LR out
TC21,TC22--, RL_Wheel_Angie ';LZE:: RL_Info | RL_Actuator
T e [=
1
Legend: RL_Wheel_Torque RL_Controller i TC38
(JP <L TC33,TC34 1 H
IN_Flow_Port £ OUT_Flow_Port r TC23,TC24 -y * : v
Function_Prototype/ Design-level_Software_Component (JBIN g] out 1 J'RR Angle Control 1 i(J“N g] OUT(]3
TC: Timing Constraint TC25,TC26 - -: RR_Wheel_Angle ERR::::@ RR_Info RR_Actuator
RR_Wheel_Torque RR_Controller

Fig. 42 Design-level software architecture of the SBW system in EAST-ADL

communication is modeled only at the implementation level.
Hence, these components communicate with each other via
network messages at the implementation level.

6.3 Specification of timing constraints at the design level

There are 41 Timing Constraints (TCs) that are specified
on the software architecture of the SBW system shown in
Fig. 42. These constraints comprise of nine different types
of timing constraints including Periodic, Sporadic,
Repetition, Strong Delay,
Age, Reaction, Input Synchronization and
Output Synchronization. Various attributes that are
associated with these constraints are listed in Table. 1. Let us
consider three examples to understand the specified timing
constraints. TC1 is a Periodic constraint that is speci-
fied on the Steer_Angle component. It requires the activation
of Steer_Angle to be strictly periodic with a period of
10,000 ps and maximum allowed jitter of 10 ps. TC9 repre-
sents Output Synchronization constraint among the
outputs of the FL_Controller, FR_Controller, RL_Controller
and RR_Controller components. It constrains the closeness
of occurrences of the responses of these four components by
60 ws. TC40 represents the Age constraint that constrains
the data age delay between the arrival of input data at the

Execution Time,

Steer_Angle component in the SC ECU and the produc-
tion of output data by the FL_Actuator component in the
FL_WC_ECU. The maximum and minimum values associ-
ated with this constraint are equal to 20,000 and 30,000 s,
respectively.

6.4 Refinement of the SBW system to the
implementation level

In order to refine the software architecture of the SBW sys-
tem from the design level to the implementation level, we
use the model representation and timing constraints refine-
ment approach that we have discussed in Sects. 4 and 5. The
refined system-level software architecture of the SBW sys-
tem is shown in Fig. 43. This figure contains the models of
five ECUs and one CAN bus. There are six messages (see
Sect. 6.1 for details) in the network. Each message is assumed
to carry a maximum amount of data, i.e., 8 bytes. The refined
software architecture of the SC ECU is shown in Fig. 44,
whereas the refined software architectures of the four WC
ECUs are shown in Fig. 45.

Each Periodic constraint is refined as a pair of periodic
clock and jitter objects. For example, TC11 is refined to the
periodic clock and jitter objects that are connected to the input
trigger port of the FL_Wheel_Angle component in Fig. 45.

@ Springer

64

S. Mubeen et al.

Table 1 Attributes of the timing constraints specified in Fig. 42

Constraint Constraint type Lower/min. (us) Upper/max. (us) Jitter (us) Span Tolerance (us)
TCl Periodic 10,000 10,000 10 1 N.A
TC2 Execution Time 100 N.A N.A N.A N.A
TC3 Repetition 10,000 10,000 10 1 N.A
TC4 Execution Time 100 N.A N.A N.A N.A
TC5 Sporadic 10,000 10,000 10 1 N.A
TC6 Execution Time 100 N.A N.A N.A N.A
TC7 Execution Time 200 N.A N.A N.A N.A
TC8 Input Synchronization N.A N.A N.A N.A 20
TC9 Output Synchronization N.A N.A N.A N.A 60
TC10 Execution Time 120 N.A N.A N.A N.A
TC11 Periodic 10,000 10,000 10 1 N.A
TC12 Execution Time 100 N.A N.A N.A N.A
TC13 Periodic 10,000 10,000 10 1 N.A
TC14 Execution Time 100 N.A N.A N.A N.A
TC15 Periodic 10,000 10,000 10 1 N.A
TC16 Execution Time 100 N.A N.A N.A N.A
TC17 Periodic 10,000 10,000 10 1 N.A
TC18 Execution Time 100 N.A N.A N.A N.A
TC19 Periodic 10,000 10,000 10 1 N.A
TC20 Execution Time 100 N.A N.A N.A N.A
TC21 Periodic 10,000 10,000 10 1 N.A
TC22 Execution Time 100 N.A N.A N.A N.A
TC23 Periodic 10,000 10,000 10 1 N.A
TC24 Execution Time 100 N.A N.A N.A N.A
TC25 Periodic 10,000 10,000 10 1 N.A
TC26 Execution Time 100 N.A N.A N.A N.A
TC27 Periodic 10,000 10,000 10 1 N.A
TC28 Execution Time 200 N.A N.A N.A N.A
TC29 Periodic 10,000 10,000 10 1 N.A
TC30 Execution Time 200 N.A N.A N.A N.A
TC31 Periodic 10,000 10,000 10 1 N.A
TC32 Execution Time 200 N.A N.A N.A N.A
TC33 Periodic 10,000 10,000 10 1 N.A
TC34 Execution Time 200 N.A N.A N.A N.A
TC35 Execution Time 120 N.A N.A N.A N.A
TC36 Execution Time 120 N.A N.A N.A N.A
TC37 Execution Time 120 N.A N.A N.A N.A
TC38 Execution Time 120 N.A N.A N.A N.A
TC39 Strong Delay 10,000 20,000 N.A N.A N.A
TC40 Age 20,000 30,000 N.A N.A N.A
TC41 Reaction 20,000 40,000 N.A N.A N.A

N.A not available or not applicable

@ Springer

Supporting timing analysis of vehicular embedded systems through the refinement of timing...

65

SC_ECU

CAN

:ﬁ:—.%m""
e
ﬂ$ canl

FR_WC_ECU
RR_WC_ECU

RL_Msg E’?-f

Fig. 43 Refined software architecture of the SBW system at the implementation level

{3

Reaction Age

Vehicle_Speed

Steer_FB_Actuator S_Delay
S_Angle_Msg
S_Torque_Msg

1 Steer_Controller
1

1
Implement'ation-level
Software Component

Network Port

Fig. 44 Refined software architecture of the SC ECU at the implementation level

Each Execution Time constraintisrefined by specifying
it on the behavior of the corresponding component in a simi-
lar fashion as itis done in Fig. 26. The Sporadic constraint,
TC5, is refined to the sporadic clock and jitter objects that
are connected to the input trigger port of the Vehicle_Speed
component in Fig. 44. The Repetition constraint, TC3,
is refined to the periodic clock and jitter objects that are
connected to the input trigger port of the Steer_Torque
component in Fig. 44. The Input Synchronization
constraint, TC8, is refined to the In_TrigSync object
in Fig. 44. The Output Synchronization constraint,
TC9, is refined to the Out_TrigSync object in Fig. 45.
There are four Out_TrigSync objects in Fig. 45. Since
we use the same usage name for these objects, they corre-
spond to only one Out_TrigSync object at run-time (see
Sect. 4.17.3 for details). The Strong Delay constraint,
TC39, is refined to the S_Delay Start and S_Delay
End objects in Fig. 44. The Age constraint, TC40, is refined
tothe Age StartandAge EndobjectsinFigs.44and45,

respectively. The Age Start and Age End objects have
the same usage name. Similarly, the Reaction constraint,
TC41,isrefinedtothe Reaction StartandReaction
End objects in Fig. 44 and 45, respectively. The Reaction
Start and Reaction End objects also have the same
usage name.

6.5 Verification of the timing constraints and discussion

We use the analysis engines provided by the Rubus-ICE tool
suite to verify whether the specified timing constraints are
satisfied or not. The periodic and sporadic activations of
tasks (run-time entities corresponding to software compo-
nents) can be implemented at the user or kernel level in a
real-time operating system (RTOS). The Rubus RTOS sup-
ports such activations at the kernel level. This means that
it guarantees strict periodic and sporadic clocks. Hence, all
the Periodic, Sporadic and Repetition constraints,
specified on the SBW system, are satisfied by construction

@ Springer

66 S. Mubeen et al.

|
H h
! a 2 |
|
i s [IT oT[> '
1 % _ OID_1 Control {3 CEndS” !
! ID_2 FL_Wheel_Infad rh e Reetion |
! —») Steer_Angle » 9 H
! - <>Steer_Torque H
H 1 1 - FL_Controlle: i
1
I I
! FL_Wheel Torque S_Torque_Msg FL_Msg F L_WC_EC U '
|

10ms T oT|
ID_1 oD_1
10 us = =

FR_Wheel_Angle

Steer_Torque

FR_Controller

S_Angle_Msg
S_Torque_Msg

= a

10ms I OT[> 10 ms
o ID1 0D_1 1D_1
D2

Steer_Angle

S_Angle_Msg
§_Torque_Msg

I
1

1

1

1

I

i

1

H RL_Wheel_Angle
! n

i

1

I

1

I

I

1

RR_Wheel_Torque

RL_Controller

T Steer_Torque

O Steer_Angle
O Steer_Torque

RR_Wheel_Infol>

S_Angle_Msg

RR Wheel Torque S-'0raue_Msg

RR_Controlle

RR_WC_ECU

Fig. 45 Refined software architectures of the four WC ECUs at the implementation level

if the Rubus RTOS is used. RCM and its run-time frame-
work consider both best- and worst-case execution times of
the tasks. The tasks are not allowed to overrun as compared
to the specified worst-case execution times. Hence, all the
Execution Time constraints, specified on the SBW sys-
tem, are satisfied by using such restrictions.

The Rubus RTOS uses offline scheduling on top of
the fixed-priority scheduling [46,47]. Using the offline
scheduling, all the tasks (corresponding to the components
on which the Input Synchronization constraint is
specified) are placed next to each other in the sched-
ule. Hence, the static scheduler along with the priority
assignment policy can provide guarantees for meeting the
Input Synchronization constraint (identified as TC8
in Fig. 42). The Output Synchronization constraint
can be verified by performing the end-to-end delay anal-
ysis [13] on the four chains on which TC9 is specified.
According to the analysis engines, the output data are
available at the data output ports of the FL_Controller,
FR_Controller, RL_Controller and RR_Controller compo-

@ Springer

nents at time 23,320 ws. Interestingly, the delay variation
in the output of the four chains is 0 which is well below
the tolerance parameter associated with TC9. The Strong
Delay, data Age delay and data Reaction delay calcu-
lated by the end-to-end delay analysis engines are equal to
10,640, 23,440 and 33,440 s, respectively. By comparing
these delays with TC39, TC40 and TC41, we can see that
the specified timing constraints are satisfied.

7 Conclusion and future work

We have extended our previous approach to support the
representation of the end-to-end timing models at a higher
abstraction level compared to the level where the software
architecture is implemented. The purpose is to support the
end-to-end timing analysis at the higher abstraction level and
at an earlier phase during the development of component-
based vehicular distributed embedded systems. At the higher
level, the approach provides a representation of the timing

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 67

information that is extracted from the models developed with
the EAST-ADL and TADL?2 languages using the TIMMO
methodology, whereas at the lower level, it uses the Rubus
Component Model (RCM) to represent the timing informa-
tion that cannot be clearly specified at the higher level. As
part of this approach, we have provided an interpretation of
the TADL?2 timing constraints in RCM. We have also pro-
posed extensions to RCM for the unambiguous refinement
of these constraints. Moreover, we have discussed the chal-
lenges and issues that are faced during the representation
of the timing information at the higher abstraction level. We
have presented the guidelines and solutions to deal with these
challenges. Finally, we have modeled and analyzed the tim-
ing of a vehicular-application case study to provide a proof
of concept for our approach. The challenges and correspond-
ing solutions presented in this paper can be applied to other
modeling technologies that comply with the EAST-ADL
methodology at the higher abstraction levels. The proposed
approach is suitable for any implementation level modeling
technology that supports a pipe-and-filter style for the com-
munication among its software components, differentiates
between the control and data flows among its software com-
ponents and allows representation of the low-level details
at the higher abstraction levels (e.g., linking information in
distributed chains).

In TADL2, time can be expressed in multiple time bases,
e.g., chronometric time, angular time, revolution per minute
and time expressed in distance or rotation of a crank shaft.
Furthermore, time can also be expressed as algebraic expres-
sions and parameterized expressions between different time
bases using the symbolic timing expression [2]. It can be an
interesting future work to extend our approach by supporting
the timing expressions that are based on multiple time bases.

Acknowledgements The work in this paper is supported by the
Swedish Foundation for Strategic Research, ARTEMIS and the Swedish
Knowledge Foundation through the projects PRESS, CRYSTAL and
PreView respectively. The authors would like to take the opportunity to
thank the industrial partners Arcticus Systems, Volvo CE, Volvo GTT
and BAE Systems Hagglunds, Sweden.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Mubeen, S., Miki-Turja, J., Sjodin, M.: Translating timing con-
straints during vehicular distributed embedded systems develop-
ment. In: Ist International Workshop on Model-Driven Engineering
for Component-Based Software Systems, Sep 2014

2. Timing Augmented Description Language (TADL2) syntax,
semantics, metamodel Ver. 2, Deliverable 11, Aug 2012

3. Hénninen, K., etal.: The Rubus component model for resource con-
strained real-time systems. In: 3rd IEEE International Symposium
on Industrial Embedded Systems, June 2008

4. Thorngren, P.: Keynote Talk: Experiences from EAST-ADL Use,
EAST-ADL Open Workshop, Gothenburg, Oct 2013

5. Henzinger, T.A., Sifakis, J.: The embedded systems design chal-
lenge. In: Proceedings of the 14th International Symposium on For-
mal Methods (FM), Lecture Notes in Computer Science (Springer,
Berlin, 2006). pp. 1-15

6. Crnkovic, 1., Larsson, M.: Building Reliable Component-Based
Software Systems. Artech House Inc, Norwood (2002)

7. AUTOSAR Technical Overview, Release 4.1, Rev. 2, Ver. 1.1.0.,
The AUTOSAR Consortium, Oct 2013. http://autosar.org

8. TIMMO Methodology, Ver. 2, TIMMO (TIMing MOdel), Deliv-
erable 7, Oct 2009, The TIMMO Consortium

9. TIMMO-2-USE. https://itea3.org/project/timmo-2-use.html

10. CRYSTAL—CRIitical sYSTem engineering AcceLeration. http://
www.crystal-artemis.eu. Accessed Mar 2016

11. Model-based Analysis & Engineering of Novel Architectures for
Dependable Electric Vehicles (MAENAD) Project. http://www.
maenad.eu. Accessed Mar 2016

12. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed
hard real-time systems. Microprocess. Microprogram. 40, 117-134
(1994)

13. Mubeen, S., Miki-Turja, J., Sjodin, M.: Support for end-to-end
response-time and delay analysis in the industrial tool suite: issues,
experiences and a case study. Comput. Sci. Inf. Syst. 10(1), 1361-
1384 (2013)

14. Mubeen, S., Miki-Turja, J., Sjodin, M.: Communications-oriented
development of component-based vehicular distributed real-time
embedded systems. J. Syst. Archit. 60(2), 207-220 (2014)

15. Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., Crnkovic, L.:
A component model for control-intensive distributed embedded
systems. In: 11th International Symposium on Component Based
Software Engineering. Springer, Berlin, 2008). pp. 310-317

16. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: a component-
based framework for generative development of distributed real-
time control systems. In: 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA 2007). pp. 199 208, Aug 2007

17. Catalog of Specialized CORBA Specifications. OMG Group.
http://www.omg.org/technology/documents/

18. Mubeen, S., Nolte, T., Lundbick, J., Galnander, M., Lundbéck,
K-L.: Refining timing requirements in extended models of legacy
vehicular embedded systems using early end-to-end timing analy-
sis. In: 13th International Conference on Information Technology:
New Generations (ITNG), Apr 2016

19. Mubeen, S., Sjodin, M., Nolte, T.,Lundbéck, J., Galnander, M.,
Lundbick, K.-L.: End-to-end timing analysis of black-box mod-
els in legacy vehicular distributed embedded systems. In: 21st
International Conference on Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), Aug 2015

20. OMG Systems Modeling Language, version 1.3. http://www.
omgsysml.org

21. EAST-ADL Domain Model Specification, Version V2.1.12,
Version V2.1.12, Deliverable 11, Aug 2012,http://www.east-adl.
info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.
pdf. Accessed Mar 2016

22. TIMMO-2-USE Methodology Description, Ver. 2, Del. 13, July
2012

23. Rubus ICE-Integrated Development Environment. http://www.
arcticus-systems.com

24. Feiler, P, Lewis, B., Vestal, S., Colbert, E.: An overview of the SAE
Architecture Analysis & Design Language (AADL) standard: a

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://autosar.org
https://itea3.org/project/timmo-2-use.html
http://www.crystal-artemis.eu
http://www.crystal-artemis.eu
http://www.maenad.eu
http://www.maenad.eu
http://www.omg.org/technology/documents/
http://www.omgsysml.org
http://www.omgsysml.org
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.arcticus-systems.com
http://www.arcticus-systems.com

68

S. Mubeen et al.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

basis for model-based architecture-driven embedded systems engi-
neering. In: Architecture Description Languages. The International
Federation for Information Processing (IFIP), vol. 176. (Springer,
New York, 2005), pp. 3-15

SCADE Suite. http://www.esterel-technologies.com/products/
scade-suite. Accessed Mar 2016

The UML Profile for MARTE: Modeling and Analysis of Real-
Time and Embedded Systems. http://www.omgmarte.org/. Jan
2010

MAST—Modeling and Analysis Suite for Real-Time Applications.
http://mast.unican.es

CHESS Project, CHESS consortium. http://www.chess-project.
org. Accessed Mar 2016

Cicchetti, A., Ciccozzi, F., Mazzini, S., Puri, S., Panunzio, M.,
Vardanega, T., Zovi, A.: Chess: a model-driven engineering tool
environment for aiding the development of complex industrial sys-
tems. In: 27th International Conference on Automated Software
Engineering (ASE 2012), Sep 2012

Rubus models, methods and tools. http://www.arcticus-systems.
com

Chen, D., Feng, L., Qureshi, T., Lonn, H., Hagl, F.: An architectural
approach to the analysis, verification and validation of software
intensive embedded systems. Computing 95(8), 649-688 (2013)
ISO 26262-1:2011: Road vehicles Functional safety. http://www.
iso.org/

Mastering Timing Information for Advanced Automotive Systems
Engineering. In the TIMMO-2-USE Brochure, 2012. http://www.
timmo-2-use.org/pdf/T2UBrochure

TADL: Timing Augmented Description Language, Ver. 2, Deliv-
erable 6, Oct 2009

Ohno, A., Azumi, T., Nishio, N.: TECS components providing
functionalities of OSEK specification for ITRON OS. J. Inf. Pro-
cess. 22(4), 584-594 (2014)

Carlson, J.: Timing analysis of component-based embedded sys-
tems. In: 15th International ACM SIGSOFT Symposium on
Component Based Software Engineering. ACM, June 2012

Hill, H.: CUTS: a system execution modeling tool for realizing
continuous system integration testing. In: 32nd ACM/IEEE Inter-
national Conference on Software Engineering, May 2010
Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A com-
positional framework for end-to-end path delay calculation of
automotive systems under different path semantics. In: Interna-
tional Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS), Dec 2008

EAST-ADL Tooling. http://www.east-adl.info/Tooling.html.
Accessed Mar 2016

Mubeen, S., Miki-Turja, J., Sjodin, M.: Extraction of end-to-end
timing model from component-based distributed real-time embed-
ded systems. In: Time Analysis and Model-Based Design, from
Functional Models to Distributed Deployments (TiMoBD) Work-
shop located at Embedded Systems Week (Springer, Berlin, 2011),
pp- 1-6

Mubeen, S., Nolte, T., Sjodin, M., Lundbick, J., Galnander, M.,
Lundbick, K.-L.: Modeling of legacy distributed embedded sys-
tems at vehicle abstraction level. In: 19th International Symposium
on Component Based Software Engineering, Apr 2016

Bucaioni, A., Cicchetti, A., Ciccozzi, F., Eramo, R., Mubeen, S.,
Sjodin, M.: Anticipating implementation-level timing analysis for
driving design-level decisions in east-adl. In: International Work-
shop on Modelling in Automotive Software Engineering, Sep 2015
Mubeen, S., Miki-Turja, J., Sjodin, M.: Towards translation of tim-
ing constraints during vehicular embedded systems development.
In: International Conference on Component-Based Software Engi-
neering and Software Architecture (CompArch) (Springer, Berlin,
2014)

@ Springer

44.

45.

46.

47.

Qureshi, T., Chen, D., Lonn, H., Torngren, M.: From EAST-ADL to
AUTOSAR software architecture: a mapping scheme. In: Software
Architecture, Lecture Notes in Computer Science, vol 6903 (2011),
pp- 328-335

ISO 11898-1. Road vehicles interchange of digital information con-
troller area network (CAN) for high-speed communication. ISO
Standard-11898, Nov 1993

Audsley, N., Burns, A., Davis, R., Tindell, K., Wellings, A.: Fixed
priority pre-emptive scheduling: an historic perspective. Real-Time
Syst. 8(2/3), 173-198 (1995)

Maiki-Turja, J., Hénninen, K., Nolin, M.: Efficient development of
real-time systems using hybrid scheduling. In: International Con-
ference on Embedded Systems and Applications, June 2005

Saad Mubeen Dr. Mubeen is
a Senior Lecturer/Assistant Pro-
fessor at the School of Inno-
vation, Design and Engineering
at Milardalen University, Swe-
den. He is a senior member of
IEEE. He received his PhD in
Computer Science and Engineer-
ing from the same university in
2014. Saad has formerly worked
as a software engineer and a
consultant for Arcticus Systems
and Volvo Construction Equip-
ment, Sweden, respectively. His
research interests include model-

based development of vehicular embedded systems with a focus on
timing models, end-to-end timing analysis and multicore platforms.
Saad has co-authored over 85 research publications in international
peer-reviewed journals, conferences, workshops and book chapters.

Thomas Nolte Professor Nolte
is leading the Complex Real-
time Embedded Systems research
group at Milardalen University,
. Sweden. He is a senior mem-
)\ ber of IEEE. He was awarded
a B.Eng., an M.Sc., a Licentiate
and a Ph.D. degree in Computer
Engineering from the same uni-
versity in 2001, 2002, 2003 and
2006, respectively. He has been a
Visiting Researcher at University
of California, Irvine (UCI), Los
/ i Angeles, USA, in 2002, and a
' Visiting Researcher at University

of Catania, Italy, in 2005. He has been a Postdoctoral Researcher at Uni-
versity of Catania in 2006 and at Milardalen University in 2006-2007.
He has co-authored over 300 research publications in peer-reviewed
conferences, workshops, books and journals.

http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite
http://www.omgmarte.org/
http://mast.unican.es
http://www.chess-project.org
http://www.chess-project.org
http://www.arcticus-systems.com
http://www.arcticus-systems.com
http://www.iso.org/
http://www.iso.org/
http://www.timmo-2-use.org/pdf/T2UBrochure
http://www.timmo-2-use.org/pdf/T2UBrochure
http://www.east-adl.info/Tooling.html

Supporting timing analysis of vehicular embedded systems through the refinement of timing... 69

Mikael Sjodin Dr. Sjodin is a
professor of real-time system and
research director for Embedded
Systems at Milardalen Univer-
sity, Sweden. His research is
focused on the development of
new methods that will make
embedded software development
cheaper, faster and yield soft-
ware with higher quality. Con-
currently, he is also pursuing
research in analysis of real-time
systems, where the goal is to find
vy theoretical models for real-time

systems that will allow their tim-
ing behavior and memory consumption to be calculated. He received his
PhD in computer systems in 2000 from Uppsala University (Sweden).
Since then he has been working in both academia and industry with
embedded systems, real-time systems and embedded communications.
Previous affiliations include Newline Information, Melody Interactive
Solutions and CC Systems. He has co-authored over 240 research pub-
lications in peer-reviewed conferences, workshops, books and journals.

John Lundbick He holds a
Master degree from the Royal
Institute of Technology (KTH),
Sweden. He has been working
as a manager for the tool chain
development at Arcticus Systems
since 1999. He is also leading
the research unit at Arcticus Sys-
tems. He has co-authored over
15 research publications in inter-
national peer-reviewed journals,
conferences and workshops.

Kurt-Lennart Lundbéck Dr.
Lundbick has been active in the
field of computing since 1972
with broad experience in indus-
trial environments. He is experi-
enced in many facets of comput-
ing and computer-based systems
including systems and software
engineering, programming lan-
guages and compilers, operating
systems as well as various real-
time application domains. He
founded Arcticus Systems AB,
a Swedish corporation in 1985.
Currently, he is the CEO of the
company. The goal of Arcticus Systems is to offer methods and tools
to its customers in the vehicle industry, which provide cost-effective
development and support safety critical, non-safety critical and mixed
embedded systems. He has acted as one of the hubs in transferring
research results from academia to the Swedish software industry espe-
cially in the vehicular domain. Dr. Lundbéck has co-authored over 20
research publications in international peer-reviewed journals, confer-
ences and workshops.

@ Springer

	Supporting timing analysis of vehicular embedded systems through the refinement of timing constraints
	Abstract
	1 Extended version
	2 Introduction
	2.1 Problem statement
	2.2 Paper contributions
	2.3 Paper layout

	3 Background and related work
	3.1 EAST-ADL
	3.1.1 Vehicle or end-to-end level
	3.1.2 Analysis level
	3.1.3 Design level
	3.1.4 Implementation level

	3.2 Rubus Component Model (RCM) and Rubus-ICE
	3.3 AUTOSAR
	3.4 TIMMO, TIMMO2USE, MARTE, TADL and TADL2
	3.5 Other related models and approaches
	3.6 Modeling tools
	3.7 Authors' previous work

	4 Interpretation of TADL2 timing constraints in RCM
	4.1 Model of constraints and events
	4.2 Delay constraint
	4.2.1 TADL2 description
	4.2.2 Semantics
	4.2.3 Interpretation in RCM

	4.3 Strong delay constraint
	4.3.1 TADL2 description
	4.3.2 Semantics
	4.3.3 Interpretation in RCM

	4.4 Order constraint
	4.5 Reaction constraint
	4.5.1 TADL2 description
	4.5.2 Semantics
	4.5.3 Interpretation in RCM

	4.6 Age constraint
	4.6.1 TADL2 description
	4.6.2 Semantics
	4.6.3 Interpretation in RCM

	4.7 Repetition constraint
	4.7.1 TADL2 description
	4.7.2 Semantics
	4.7.3 Interpretation in RCM

	4.8 Repeat constraint
	4.9 Sporadic constraint
	4.9.1 TADL2 description
	4.9.2 Semantics
	4.9.3 Interpretation in RCM

	4.10 Burst constraint
	4.10.1 TADL2 description
	4.10.2 Semantics
	4.10.3 Interpretation in RCM

	4.11 Periodic constraint
	4.11.1 TADL2 description
	4.11.2 Semantics
	4.11.3 Interpretation in RCM

	4.12 Pattern constraint
	4.12.1 TADL2 description
	4.12.2 Semantics
	4.12.3 Interpretation in RCM

	4.13 Arbitrary constraint
	4.13.1 TADL2 description
	4.13.2 Semantics
	4.13.3 Interpretation in RCM

	4.14 Execution time constraint
	4.14.1 TADL2 description
	4.14.2 Semantics
	4.14.3 Interpretation in RCM

	4.15 Synchronization constraint
	4.15.1 TADL2 description
	4.15.2 Semantics
	4.15.3 Interpretation in RCM

	4.16 Strong synchronization constraint
	4.16.1 TADL2 description
	4.16.2 Semantics
	4.16.3 Interpretation in RCM

	4.17 Output synchronization constraint
	4.17.1 TADL2 description
	4.17.2 Semantics
	4.17.3 Interpretation in RCM

	4.18 Input synchronization constraint
	4.18.1 TADL2 description
	4.18.2 Semantics
	4.18.3 Interpretation in RCM

	4.19 Comparison constraint

	5 Challenges in the representation of the end-to-end timing model at the design level
	5.1 Representation of control and data paths
	5.2 Representation of timing parameters
	5.3 Identification of chain types
	5.4 Information duplication and ambiguity
	5.5 Implementation challenges and applicability of the approach
	5.6 Implementation of the refinement in Rubus-ICE

	6 Vehicular-application case study
	6.1 Steer-by-wire (SBW) system
	6.2 Modeling of the SBW system at the design level
	6.3 Specification of timing constraints at the design level
	6.4 Refinement of the SBW system to the implementation level
	6.5 Verification of the timing constraints and discussion

	7 Conclusion and future work
	Acknowledgements
	References

