
Softw Syst Model (2018) 17:599–631
https://doi.org/10.1007/s10270-016-0545-x

SPECIAL SECTION PAPER

Scalable process discovery and conformance checking

Sander J. J. Leemans1 · Dirk Fahland1 · Wil M. P. van der Aalst1

Received: 28 October 2015 / Revised: 7 April 2016 / Accepted: 29 May 2016 / Published online: 8 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Considerable amounts of data, including process
events, are collected and stored by organisations nowadays.
Discovering a process model from such event data and ver-
ification of the quality of discovered models are important
steps in process mining. Many discovery techniques have
been proposed, but none of them combines scalability with
strong quality guarantees. We would like such techniques to
handle billions of events or thousands of activities, to pro-
duce soundmodels (without deadlocks and other anomalies),
and to guarantee that the underlying process can be rediscov-
ered when sufficient information is available. In this paper,
we introduce a framework for process discovery that ensures
these properties while passing over the log only once and
introduce three algorithms using the framework. To measure
the quality of discoveredmodels for such large logs, we intro-
duce a model–model and model–log comparison framework
that applies a divide-and-conquer strategy to measure recall,
fitness, and precision.We experimentally show that these dis-
covery and measuring techniques sacrifice little compared to
other algorithms, while gaining the ability to cope with event
logs of 100,000,000 traces and processes of 10,000 activities
on a standard computer.

Communicated by Dr. Selmin Nurcan.

B Sander J. J. Leemans
s.j.j.leemans@tue.nl

Dirk Fahland
d.fahland@tue.nl

Wil M. P. van der Aalst
w.m.p.v.d.aalst@tue.nl

1 Eindhoven University of Technology, Eindhoven,
The Netherlands

Keywords Big data · Scalable process mining · Block-
structured process discovery · Directly-follows graphs ·
Algorithm evaluation · Rediscoverability · Conformance
checking

1 Introduction

Considerable amounts of data are collected and stored by
organisations nowadays. For instance, ERP systems log busi-
ness transaction events, high-tech systems such as X-ray
machines record software and hardware events, and web
servers log page visits. Typically, each action of a user exe-
cuted with the system, e.g. a customer filling in a form or a
machine being switched on, can be recorded by the system as
an event; all events related to the same process execution, e.g.
a customer order or anX-ray diagnosis, are grouped in a trace
(ordered by their time); an event log contains all recorded
traces of the system. Process mining aims to extract infor-
mation from such event logs, for instance social networks,
business process models, compliance to rules and regula-
tions, and performance information (e.g. bottlenecks) [46].

In this paper, we focus on two process mining challenges:
process discovery and conformance checking. Figure 1
shows the context of these two challenges: a real-life busi-
ness process (a system) is running, and the executed process
steps are recorded in an event log. In process discovery, one
assumes that the inner workings of the system are unknown
to the analyst and cannot be obtained otherwise. Therefore,
process discovery aims to learn a processmodel fromanevent
log, which describes the system as it actually happened (in
contrast towhat is assumed to havehappened) [50]. Twomain
challenges exist in process discovery: first, one would like to
learn an easy-to-understand model that captures the actual
behaviour. Second, the model should have a proper formal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0545-x&domain=pdf

600 S. J. J. Leemans et al.

system

system-
model

log model

implemented by

executes discover

log-conformance

model-conformance

Fig. 1 Process discovery and conformance checking in their context.
The box contains a typical process mining project’s scope

interpretation, i.e. have well-defined behavioural semantics
and be free of deadlocks and other anomalies (be sound) [28].
In Sect. 2, we explore these challenges in more detail and
explore how they are realised in existing algorithms and set-
tings. Fewexisting algorithms solve both challenges together.

In contrast, conformance checking studies the differences
between a process model and reality. We distinguish two
types of conformance checking. First, the model can be com-
paredwith a log. Such log conformance checking can provide
insight into the real behaviour of an organisation, by high-
lighting which traces deviate from the model, and where in
the model deviations occur [50]. Second, the model can be
compared with a model of the system (but only if such a
model is available). Model conformance checking can be
used to highlight differences between different snapshots of a
process or to verify that a processmodel conforms to a design
made earlier [19]. Moreover, model conformance checking
can be used to evaluate discovery algorithms by choosing
a system model and quantifying the similarity between this
chosen model and the models discovered by discovery algo-
rithms. In Sect. 2we discuss both log andmodel conformance
checking in more detail.

Large event logs Current process discovery and confor-
mance checking techniques work reasonably well on smaller
event logs, but might have difficulties handling larger event
logs. Commercial techniques such as Fluxicon Disco [23]
and Celonis Process Mining offer the scalability to handle
larger event logs, but usually do not provide strong qual-
ity guarantees or do not support parallelism. For instance,
discovery techniques typically require the event log to fit in
main memory and require the log to be rather complete, i.e.
most of the possible behaviour must be present. Reducing
the log size to fit in memory, e.g. through sampling, may
yield incomplete event logs, which for discovery may lead to
overfitting models (showing only the behaviour of the sam-
ple but not of the system) or underfitting models (showing
arbitrary behaviour beyond the sample log) (for discovery).
For conformance checking, such logs may lead to skewed
measurements [50].

Event logs can be ‘big’ in two dimensions: many events
and many activities (i.e. the different process steps). From

of activities

of

 e
ve

nt
s 101

103

105

107

109

101 102 103 104
100

α

HM

IMd (this paper)

IM
BPIC11

SL

CS

co
m

pl
ex

m
or

e
co

m
pl

ex

large

larger
LHC

medium

Fig. 2 Scales used in this paper. The dots denote maximum number of
events several discovery algorithms could handle (Sect. 6), for Induc-
tive Miner (IM), the Heuristics Miner (HM) and the α-algorithm (α).
These algorithms will be introduced in Sect. 2. The circles denote the
mentioned logs

our experiments (Sect. 6), we identified relevant gradations
for these dimensions: for the number of activities we identi-
fied complex logs, i.e. containing hundreds of activities, and
more complex logs, i.e. containing thousands of activities.
For the number of events we identified medium logs, i.e.
containing tens of thousands of events, large logs, i.e. con-
taining millions of events, and larger logs, i.e. containing
billions of events.

In our experiments we observed that existing process
discovery algorithms with strong quality guarantees, e.g.
soundness, can handle medium logs (see IM in Fig. 2; the
algorithms will be introduced later). Algorithms not provid-
ing such guarantees (e.g. α, HM) can handle large logs, but
fail on larger logs. In the dimension of the number of dif-
ferent activities, experiments showed that most algorithms
could not handle complex processes. Current conformance
checking techniques in our experiments and [38] seem to be
unable to handle medium or complex event logs.

Such numbers of events and activities might seem large
for a complaint-handling process in an airline; however,
processes of much larger complexity exist. For instance,
even simple software tools contain hundreds or thousands
of different methods. We obtained a large and complex
log (SL) that will be used in the evaluation. To study or
reverse engineer such software, studies [33] have recorded
method calls in event logs (at various levels of granular-
ity), and process mining and software mining techniques
have been used on small examples to perform the analy-

123

Scalable process discovery and conformance checking 601

ses [33,40]. complex logs can, for instance, be found in
hospitals: the BPI Challenge log of 2011 (BPIC11) [56] was
recorded in the emergency department of a Dutch hospital
and contains over 600 activities [56]. Even though this log
is just complex and medium, current discovery techniques
have difficulties with this log (we will use it in the evalu-
ation). Other areas in which more complex logs appear
are click-stream data from websites, such as the website of
a dot-com start-up, which produced an event log containing
3300 activities (CL) [26]. Even more difficult logs could be
extracted from large machines, such as the Large Hadron
Collider, in which over 25,000 distributed communicating
components form just a part of the control systems [25],
resulting in complicated behaviour that could be analysed
using scalable process mining techniques. In the future, we
aim to extract such logs and apply our techniques to it, but
currently, we would only discover a model but would not be
able to process the discoveredmodel further (no conformance
checking andnovisualisation on that scale).Nevertheless,we
will show in our evaluation that our discovery techniques are
able to handle such logs.

Problemdefinitionand contribution In this paper,we address
two problems: applying process discovery to larger and
more complex logs, and conformance checking tomedium
and complex logs. We introduce two scalable frameworks:
one for process discovery, the Inductive Miner—directly-
follows framework (IMd framework), and one for con-
formance checking: the Projected Conformance Checking
framework (pcc framework). We instantiate these frame-
works to obtain several algorithms, each with their specific
purposes. For discovery, we show how to adapt an existing
family of algorithms that offers several quality guarantees
(the Inductive Miner framework (IM framework) [29]), such
that is scales better and works on larger and more com-
plex logs. We show that the recursion on event logs used by
the IM framework can be replaced by recursion on an abstrac-
tion (i.e. the so-called directly-follows graph [29]), which can
be computed in a single pass over the event log. We show
that this principle can also be applied to incomplete event
logs (when a discovery technique has to infer missing infor-
mation) and logs with infrequent behaviour or noise (when
a discovery algorithm has to identify and filter the events
that would degrade model quality); we present correspond-
ing algorithms. Incompleteness and infrequency/noise pose
opposing challenges to discovery algorithms, i.e. not enough
and too much information. For these purposes, we intro-
duce different algorithms. For conformance checking, we
introduce the configurable divide-and-conquer pcc frame-
work to compare logs to models and models to models.
Instead of comparing the complete behaviour over all activ-
ities, we decompose the problem into comparing behaviour
for subsets of activities. For each such subset, a recall, fit-

ness, or precision measure is computed. The averages over
these subsets provide the final measures, while the subsets
with low values give information about the location in the
model/log/system-model where deviations occur.

Results We conducted a series of experiments to test how
well algorithms handle large logs and complex processes.
We found that the IMd framework provides the scalability
to handle all kinds of logs up to larger and more com-
plex logs (see Fig. 2). In a second series of experiments
we investigated the ability of several discovery algorithms
to rediscover the original system model: we experimented to
analyse the influence of log sizes, i.e. completeness of the
logs, to analyse the influence of noise, i.e. randomly appear-
ing or missing events in process executions, and to assess the
influence of infrequent behaviour, i.e. structural deviations
from the system model during execution. We found that the
new discovery algorithms perform comparable to existing
algorithms in terms of model quality, while providing much
better scalability. In a third experiment, we explored how
the new discovery algorithms handle large and complex
real-life logs.

In all of these experiments, the new pcc framework was
applied to assess the quality of the discovered models with
respect to the log andwhere applicable the system, as existing
conformance checking techniques could not handle medium
or complex logs and systems. We compared the new con-
formance checking techniques to existing techniques, and
the results suggest that the new techniques might be able to
replace existing less scalable techniques. In particular, model
quality with respect to a log can now be assessed in situations
where existing techniques fail: up to large and complex
logs.

Relation to earlier papers This paper extends the work pre-
sented in [32]. We present the new pcc framework, which is
able to cope with medium and complex logs and models.
This allows us to analyse and compare the quality of the IMd
framework to other algorithms on such event logs in detail.

Outline First, process mining is discussed in more detail in
Sect. 2. Second, process trees, directly-follows graphs, and
cuts are introduced in Sect. 3. In Sect. 4, the IMd framework
and three algorithms using it are introduced. We introduce
the pcc framework in Sect. 5. The algorithms are evaluated
in Sect. 6 using this pcc framework. Section 7 concludes the
paper.

2 Process mining

In this section,we discuss conformance checking and process
discovery in more detail.

123

602 S. J. J. Leemans et al.

2.1 Conformance checking

Theaimof conformance checking is to verify a processmodel
against reality. As shown in Fig. 1, two types of confor-
mance checking exist: log–model conformance checking and
model–model conformance checking. In log–model confor-
mance checking, reality is assumed to be represented by an
event log, while in model–model conformance checking, a
representation of the system is assumed to be present and to
represent reality. Such a system is usually given as another
process model, to which we refer to as system model.

2.1.1 Log–model conformance checking

To compare a process model to an event log, several qual-
ity measures have been proposed [2]. For instance, fitness
expresses the part of the event log that is represented by the
model, log-precision expresses the behaviour in the model
that is present in the event log, generalisation expresses the
likelihood that future behaviour will be representable by the
model, and simplicity expresses the absence of complexity
in a model [2] to represent its behaviour.

Several techniques and measures have been proposed
to measure fitness and precision, such as token-based
replay [43], alignments [1,2], and many more: for an
overview, see [60]. Some techniques that were proposed
earlier, such as token-based replay [43], cannot handle non-
determinism well, i.e. silent activities (τ) and duplicate
activities. Later techniques, such as alignments [2], can
handle non-determinism by exhaustively searching for the
model trace that has the least deviations from a given log
trace (according to some cost function). However, even opti-
mised implementations of these techniques cannot deal with
medium or complex event logs andmodels [38]. To alleviate
this problem, decomposition techniques have been proposed,
using the general principles in [52], for instance using pas-
sages [47] or single-entry–single-exit decompositions [38].
The pcc framework uses the insights of [52] by checking
conformance on small subsets of activities.

2.1.2 Model–model conformance checking

For a more elaborate overview of this field, we refer to [19]
and [7].

Typically, the quality of a process discovery algorithm is
measured using log conformance checking, i.e. a discovered
model is compared to an event log. Alternatively, discovered
model and system model could be compared directly. Ide-
ally, both would be compared on branching bisimilarity or
even stronger notions of equivalence [58], thereby taking the
moments of choice into account. However, as an event log
describes a language and does not contain information about
choices, the discovered model will lack this information as

well and we consider comparison based on languages (trace
equivalence, a language is the set of traces of a log, or the
set of traces that a model can produce).

One such technique is [5]. This approach translates the
models into partially ordered runs annotated with exclusive
relationships (event structures), which can be generated from
process models as well [5]. However, event structures have
difficulties supporting loops by their acyclic nature and con-
structing them requires a full state-space exploration.

As noted in [19], many model–model comparison tech-
niques suffer from exponential complexity due to concur-
rency and loops in the models. To overcome this problem,
several techniques apply an abstraction, for instance using
causal footprints [50,55],weakorder relations [68], or behav-
ioural profiles [27,62]. Another technique to reduce the
state space is decompose the model in pieces and per-
form the computations on these pieces individually [27].
Our approach (pcc framework, which applies to both log–
model and model–model conformance checking) applies an
abstraction using a different angle: we project on subsets of
activities, thereby generalising over many of these abstrac-
tions, i.e. many relations between the projected activities
are captured. Moreover, our approach handles any formal-
ism of which the executable semantics can be described by
deterministic finite automata (DFAs),which includesBPMN,
UML-ADs, labelled Petri nets, and allows for models with
duplicate activities, silent steps, and anomalies such as poten-
tial deadlocks.

2.2 Process discovery

Process discovery aims at discovering a process model from
an event log (see Fig. 1).We first sketch some challenges that
discovery algorithms face, after which we discuss existing
discovery approaches.

Challenges Several factors challenge process discovery
algorithms. One such challenge is that the resulting process
model should have well-defined behavioural semantics and
be sound [50]. Even though an unsound process model or
a model without a language, i.e. without a definition of
traces themodel expresses,might be useful formanual analy-
sis, conformance checking and other automated techniques
can obviously not provide accurate measures on such mod-
els [28,59]. The IMd framework uses its representational
bias to provide a language and to guarantee soundness: it dis-
covers an abstract hierarchical view on workflow nets [50],
process trees, that is guaranteed to be sound [11].

Another challenge of process discovery is that for many
event logs the different measures, e.g. fitness, log-precision,
generalisation and simplicity, are competing, i.e. there might
not exist a model that scores well on all criteria [12]. Thus,
discovery algorithmshave to balance thesemeasures, and this

123

Scalable process discovery and conformance checking 603

balance might depend on the use case at hand, e.g. auditing
questions are best answered using a model with high fitness,
optimisations are best performed on a model with high log-
precision, implementations might require a model with high
generalisation, and human interpretation is eased by a simple
model [12].

A desirable property of discovery algorithms is having
the ability to rediscover the language of the system (redis-
coverability); we assume the system and the system model
to have the same behaviour for rediscoverability. Rediscov-
erability is usually proven using assumptions on both system
and event log: the system typically must be of a certain
class, and the event log must contain enough correct infor-
mation to describe the system well [29]. Therefore, three
more challenges of process discovery algorithms are to han-
dle (1) noise in the event log, i.e. random absence or presence
of events [13], (2) infrequent behaviour, i.e. behaviour that
occurs less frequent than ‘normal’ behaviour, i.e. the excep-
tional cases. For instance, most complaints sent to an airline
are handled according to amodel, but a few complaints are so
complicated that they require ad hoc solutions. This behav-
iour could be of interest or not, which depends on the goal
of the analysis [50]. (3) incompleteness, i.e. the event log
does not contain ‘enough’ information. The notion of what
‘enough’ means depends on the discovery algorithm [6,29].
Even though rediscoverability is desirable, it is a formal
property, and it is not easy to compare algorithms using
it. However, the pcc framework allows to perform exper-
iments to quantify how rediscoverability is influenced by
noise, infrequent behaviour, and incompleteness.

A last challenge arises from the main focus of this paper,
i.e. highly scalable environments. Ideally, a discovery tech-
nique should linearly pass over the event log once, which
removes the need to keep the event log in memory. In
the remainder of this section, we discuss related process
discovery techniques and their application in scalable envi-
ronments.

Sound process discovery algorithms Process discovery tech-
niques such as the Evolutionary Tree Miner (ETM) [11], the
ConstructsCompetitionMiner (CCM) [41],MaximalPattern
Mining (MPM) [34], and Inductive Miner (IM) [29] provide
several quality guarantees, in particular soundness and some
offer rediscoverability, but do notmanage to discover amodel
in a single pass. ETM applies a genetic strategy, i.e. gener-
ates an initial population, and then applies random crossover
steps, selects the ‘best’ individuals from the population and
repeats. While ETM is very flexible towards the desired log
measures to which respect the model should be ‘best’ and
guarantees soundness, it requires multiple passes over the
event log and does not provide rediscoverability.

CCM and IM use a divide-and-conquer strategy on event
logs. In the InductiveMiner framework (IM framework), first

an appropriate cut of the process activities is selected; second,
that cut is used to split the event log into sublogs; third, these
sublogs are recursed on, until a base case is encountered.
If no appropriate cut can be found, a fall-through (‘any-
thing can happen’) is returned. CCM works similarly by
having several process constructs compete with one another.
While bothCCMand the IM framework guarantee soundness
and IM guarantees rediscoverability (for the class of mod-
els described in Appendix 1), both require multiple passes
through the event log (the event log is being split and recursed
on).

MPMfirst constructs a prefix tree of the event log. Second,
it folds leaves to obtain a process model, thereby apply-
ing local generalisations to detect concurrency. The MPM
technique guarantees soundness and fitness, allows for noise
filtering and can reach high precision, but it does so at the
cost of simplicity: typically, lots of activities are duplicated.
Inherently, the MPM technique requires random access to
the event log and a single pass does not suffice.

Other process discovery algorithms Other process discov-
ery techniques are, for instance, the α-algorithm (α) and its
derivatives [49,65,66], the Heuristics Miner [64] (HM), the
Integer Linear Programming miner [54] (ILP) and several
commercial tools, such as Fluxicon Disco (FD) [23] and Per-
ceptive Process Mining (two versions: PM1 and PM2).

Some of these guarantee soundness, but do not support
explicit concurrency (FD, PM1) [31]. The ILP miner guar-
antees fitness and can guarantee that the model is empty after
completion, but only for the traces seen in the event log, i.e.
the models produced by ILP are usually not sound. However,
most of these algorithms (α, HM, ILP, PM2) neither guar-
antee soundness nor even provide a final marking, which
makes it difficult to determine their language (see Appendix
5), and thus, their models are difficult to analyse automat-
ically (though, such unsound models can still be useful for
manual analysis).

Several techniques (e.g. α, HM) satisfy the single-pass
requirement. These algorithms first obtain an abstraction
from the log, which denotes what activities directly follow
one another; in HM, this abstraction is filtered. Second, from
this abstraction a process model is constructed. Both α and
HM have been demonstrated to be applicable in highly scal-
able environments: event logs of 5 million traces have been
processed using map-reduce techniques [21]. Moreover, α

guarantees rediscoverability, but neither α nor HM guaran-
tees soundness. We show that our approach offers the same
scalability as HM and α, but provides both soundness and
rediscoverability.

Some commercial tools such as FD and PM1 offer high
scalability, but do not support explicit concurrency [31].
Other discovery techniques such as the language-based
regionminer [9,10] or the state-based regionminer [17] guar-

123

604 S. J. J. Leemans et al.

antee fitness but neither soundness nor rediscoverability nor
work in single pass.

Software mining In the field of software mining, similar
techniques have been used to discover formal specifica-
tions of software. For instance, in [40] and [4], execution
sequences of software runs (i.e. traces) are recorded in an
event log, from which techniques extract, e.g., valid exe-
cution sequences on the methods of an API. Such valid
execution sequences can then be used to generate docu-
mentation. Process discovery differs from software mining
in focus and challenges: process discovery aims to find
process models with soundness and concurrency and is chal-
lenged, e.g., by deviations from the model (noise, infrequent
behaviour) and readability requirements of the discovered
models, while for software mining techniques, the system
is fixed and challenges arise from, e.g., nesting levels [40],
programmed exceptions [67], and collaborating compo-
nents [22].

Streams Another set of approaches that aims to handle even
bigger logs assumes that the event log is an unbounded
stream of events. Some approaches such as [18,24] work
on click-stream data, i.e. the sequence of web pages users
visit, to extract, for instance, clusters of similar users
or web pages. However, we aim to extract end-to-end
process models, in particular containing parallelism. HM,
α, and CCM have been shown to be applicable in stream-
ing environments [14,42], and any single-pass discov-
ery algorithm (thus the IMd framework as well) can
be converted into a streaming algorithm, but will have
to deal with the same discovery challenges as described
before.

3 Preliminaries

To overcome the limitations of process discovery on large
event logs, we will combine the single-pass property of
directly-follows graphs with a divide-and-conquer strategy.
This section recalls these existing concepts. The new algo-
rithms are introduced in Sect. 4.

3.1 Basic notions

Event logs An event log is a multiset of traces that denote
process executions. For instance, the event log [〈a, b, c〉,
〈b, d〉2] denotes the event log in which the trace consisting
of the activity a followed by the activity b followed by the
activity c was executed once, and the trace consisting of b
followed by d was executed twice.

Process trees A process tree is an abstract representation of
a block-structured hierarchical process model, in which the
leaves represent the activities, i.e. the basic process steps,
and the operators describe how their children are to be com-
bined [11]. τ denotes the activity whose execution is not
visible in the event log.We consider four operators:×,→,∧,
and�.× describes the exclusive choice between its children,
→ the sequential composition, and ∧ the parallel composi-
tion. The first child of a loop� is the body of the loop, and all
other children are redo children. First, the body must be exe-
cuted, followed by zero or more iterations of a redo child and
the body. A formal definition is given in Appendix 1; we give
an example here: Fig. 3 shows the Petri net corresponding to
the process tree→ (×(∧(a, b), c),×(� (→ (d, e), f), g)).
Process trees are inherently sound.

Directly-follows graphs A directly-follows graph can be
derived from a log and describes what activities follow one
another directly, and with which activities a trace starts or
ends. In a directly-follows graph, there is an edge from an
activity a to an activity b if a is followed directly by b.
The weight of an edge denotes how often that happened.
For instance, the directly-follows graph of our example log
[〈a, b, c〉, 〈b, d〉2] is shown in Fig. 4. Note that the multiset
of start activities is [a, b2] and the multiset of end activi-

Fig. 4 Example of a
directly-follows graph

a b

c

d
1 2

2

1

1

1

2

b

c

d e

f

g

a

Fig. 3 A block-structured hierarchical workflow net; the block structure is denoted by filled regions (image taken from [30])

123

Scalable process discovery and conformance checking 605

ties is [c, d2]. A directly-follows graph can be obtained in a
single pass over the event log with minimal memory require-
ments [21].

Cuts, characteristics, and the Inductive Miner framework.
A partition is a non-overlapping division of the activities
of a directly-follows graph. For instance, ({a, b}, {c, d}) is
a binary partition of the directly-follows graph in Fig. 4. A
cut is a partition combined with a process tree operator, for
instance (→, {a, b}, {c, d}). In the IM framework, finding a
cut is an essential step: its operator becomes the root of the
process tree, and its partition determines how the log is split.

The IM framework [29] discovers the main cut and
projects the given log onto the activity partition. In case of
loops, each iteration becomes a new trace in the projected
sublog. Subsequently, for each sublog its main cut is detected
and recursion continues until reaching partitions with single-
ton elements; these become the leaves of the process tree. If
no cut can be found, a generalising fall-through is returned
that allows for any behaviour (a ‘flower model’). By the use
of process trees, the IM framework guarantees sound models
and makes it easy to guarantee fitness. The IM framework is
formalised in Appendix 1.

Suppose that the log is produced by a process which can
be represented by a process tree T . Then, the root of T
leaves certain characteristics in the log and in the directly-
follows graph. The most basic algorithm that uses the IM
framework, i.e. IM [29], searches for a cut that matches
these characteristics perfectly. Other algorithms using the
IM framework are the infrequent behaviour-filtering Induc-
tive Miner—infrequent (IMf) [28] and the incompleteness-
handling Inductive Miner—incompleteness (IMc) [30].

3.2 Cut detection

Cut definitions are given Appendix 1. Here we describe how
the cut detection works. Each of the four process tree opera-

tors×,→,∧, and� leaves a different characteristic footprint
in the directly-follows graph. Figure 5 visualises these char-
acteristics: for exclusive choice, the activities of one subtree
will never occur in the same trace as activities of another
subtree. Hence, activities of the different subtrees form clus-
ters that are not connected by edges in the directly-follows
graph. Thus, the × cut is computed by taking the connected
components of the directly-follows graph.

If two subtrees are sequentially ordered, all activities of
the first subtree strictly precede all activists of the second
subtree; in the directly-follows graph we expect to see a
chain of clusters without edges going back. The procedure
to discover a sequence cut is as follows: each activity starts
as a singleton set. First, the strongly connected components
of the directly-follows graph are computed and merged. By
definition, two activities are in a strongly connected compo-
nent if they are pairwise reachable, and therefore they cannot
sequential. Second, pairwise unreachable sets are merged, as
if there is no way to reach two nodes in the same trace, they
cannot be sequential. Finally, the remaining sets are sorted
based on reachability.

The activities of two parallel subtrees can occur in any
intertwined order; we expect all possible connections to be
present between the child clusters in the directly-follows
graph. To detect parallelism, the graph is negated: the negated
graph gets no edge between two activities if both directly-
follows edges between these activities are present. If either
edge is missing, the negated graph will contain an edge
between these two activities. In this negated graph, the par-
tition of the parallel cut is the set of connected components.

In a loop, the directly-follows graph must contain a clear
set of start and end activities; all connections between clusters
must go through these activities. To detect a loop cut, first the
connected components of the directly-follows graph are com-
puted,while excluding the start and end activities. Please note
that start and end activities by definition belong to the body of
the loop. Second, for each component reachability is used to

...

sequence:

...

exclusive choice:

...

parallel:

...

loop:

Fig. 5 Cut characteristics

123

606 S. J. J. Leemans et al.

a

b

c

e

i

d

h

g

f

9

3

3

3

3

3
3

1 1
1

1

1

1

1 1

6

1
6

3

3

6
3

3

9

Fig. 6 Directly-follows graph D1 of L . In a next step, the partition
({a}, {b, c, d, e}, { f, g, h}, {i}), denoted by the dashed lines, will be
used

determine whether it is directed from a start activity to an end
activity (body part), or directed the other way round (a redo).

4 Process discovery using a directly-follows graph

Algorithms using the IM framework guarantee soundness,
and some even rediscoverability, but do not satisfy the single-
pass property, as the log is traversed and even copied during
each recursive step. Therefore, we introduce an adapted
framework: Inductive Miner—directly-follows (IMd frame-
work) that recurses on the directly-follows graph instead
of the event log. In this section, we first introduce the
IMd framework and a basic algorithm using it. Second, we
introduce two more algorithms: one to handle infrequent
behaviour and another one that handles incompleteness.

4.1 Inductive Miner: directly-follows

As a first algorithm that uses the framework, we introduce
Inductive Miner—directly-follows (IMd). We explain the
stages of IMd in more detail by means of an example: Let
L be [〈a, b, c, f, g, h, i〉, 〈a, b, c, g, h, f, i〉, 〈a, b, c, h, f,
g, i〉, 〈a, c, b, f, g, h, i〉, 〈a, c, b, g, h, f, i〉, 〈a, c, b, h, f, g,
i〉, 〈a, d, f, g, h, i〉, 〈a, d, e, d, g, h, f, i〉, 〈a, d, e, d, e, d,

h, f, g, i〉]. The directly-follows graph D1 of L is shown
in Fig. 6.

Cut detection IMd searches for a cut that perfectly matches
the characteristics mentioned in Sect. 3. As explained,
cut detection has been implemented using standard graph
algorithms (connected components, strongly connected com-
ponents), which run in polynomial time, given the number of
activities (O(n)) and directly-follows edges (O(n2)) in the
graph.

In our example, the cut (→, {a}, {b, c, d, e}, { f, g, h}, {i})
is selected: as shown in Fig. 5, every edge crosses the cut

lines from left to right. Therefore, it perfectly matches the
sequence cut characteristic. Using this cut, the sequence is
recorded and the directly-follows graph can be split.

Directly-follows graph splitting Given a cut, the IMd frame-
work splits the directly-follows graph in disjoint subgraphs.
The idea is to keep the internal structure of each of the clus-
ters of the cut by simply projecting a graph on the cluster.
Figure 7 shows an example of how D1 (Fig. 6) is split using
the sequence cut that was discovered in our example. If the
operator of the cut is → or �, the start and end activities of a
child might be different from the start and end activities of its
parent. Therefore, every edge that enters a cluster is counted
as a start activity, and an edge leaving a cluster is counted as
an end activity. In our example, the start activities of cluster
{ f, g, h} are those having an incoming edge not starting in
{ f, g, h}, and correspondingly for end activities. The result is
shown in Fig. 7a. In case of×, no edges leave any cluster and
hence the start and endactivities remainunchanged. In case of
∧, removed edges express the arbitrary interleaving of activ-
ities in parallel clusters; removing this interleaving informa-
tion does not change with which activities a cluster may start
or end; thus, start and end activities remain unchanged.

The choices for a sequence cut and the split directly-
follows graphs are recorded in an intermediate tree: →
((D2), (D3), (D4), (D5)), denoting a sequence operatorwith
4 unknown subtrees that are to be derived from 4 directly-
follows graphs.

Recursion Next, IMd recurses on each of the new directly-
follows graphs (find cut, split, …) until a base case (see
below) is reached or no perfectly matching cut can be found.
Each of these recursions returns a process tree, which in turn
can be inserted as a child of an operator identified in an earlier
recursion step.

Base case Directly-follows graphs D2 (Fig. 7a) and D5

(Fig. 7d) contain base cases: in both graphs, only a single
activity is left. The algorithm turns these into leaves of the
process tree and inserts them at the respective spot of the par-
ent operator. In our example, detecting the base cases of D2

and D5 yields the intermediate tree → (a, (D3), (D4), i), in
which D3 and D4 indicate directly-follows graphs that are
not base cases and will be recursed on later.

Fall-through Consider D4 as shown in Fig. 7c. D4 does not
contain unconnected parts, so does not contain an exclusive
choice cut. There is no sequence cut possible, as f , g, and h
form a strongly connected component. There is no parallel
cut as there are nodually connectedparts andno loop cut as all
activities are start and end activities. Thus, IMd selects a fall-
through, being a process tree that allows for any behaviour
consisting of f , g, and h (a flower model � (τ, f, g, h),

123

Scalable process discovery and conformance checking 607

a 99

b

c

e

d

3

33

33

3

3

33

3

h

g

f

6

33

33

6

6

i

3 3

9 9

(a) (b) (c) (d)

Fig. 7 Split directly-follows graphs of D1. The dashed line is used in a next step and denotes another partition. (a) D2 of {a}, b D3 of {b, c, d, e}
c D4 of { f, g, h}, d D5 of {i}

b

c
(a) (b)

3

33

3

33
e

d
33

3 3

Fig. 8 Split directly-follows graphs. Dashed lines denote cuts, which
are used in the next steps. a D6 of {b, c} in D3. b D7 of {d, e} in D3

having the language (f |g|h)∗). The intermediate tree of our
example up till now becomes → (a, (D3),� (τ, f, g, h), i)
(remember that τ denotes the activity of which the execution
is invisible).

Example continued In D3, as shown in Fig. 7b, a cut is
present: (×, {b, c}, {d, e}): no edge in D3 crosses this cut.
The directly-follows graphs D6 and D7, as shown in Fig. 8a,
b, result after splitting D3. The tree of our example up till
now becomes → (a,×((D6), (D7)),� (τ, f, g, h), i).

In D6, as shown in Fig. 8a, a parallel cut is present, as
all possible edges cross the cut, i.e. the dashed line, in both
ways. The dashed line in D7 (Fig. 8b) denotes a loop cut, as
all connections between {d} and {e} go via the set of start and
end activities {d}. Four more base cases give us the complete
process tree → (a,×(∧(b, c),� (d, e)),� (τ, f, g, h), i).

To summarise: IMd selects a cut, splits the directly-
follows graph, and recurses until a base case is encountered
or a fall-through is necessary. As each recursion removes at
least one activity from the graph and cut detection is O(n2),
IMd runs in O(n3), in which n is the number of activities in
the directly-follows graph.

By the nature of process trees, the returnedmodel is sound.
By reasoning similar to IM [29], IMd guarantees rediscov-
erability on the same class of models (see Appendix 1), i.e.
assuming that the model is representable by a process tree

without using duplicate activities, and it is not possible to
start loops with an activity they can also end with [29]. This
makes IMd the first single-pass algorithm to offer these guar-
antees.

4.2 Handling infrequency and incompleteness

The basic algorithm IMd guarantees rediscoverability, but,
as will be shown in this section, is sensitive to both infrequent
and incomplete behaviour. To solve this, we introduce two
more algorithms using the IMd framework.

Infrequent behaviour Infrequent behaviour in an event log is
behaviour that occurs less frequent than ‘normal’ behaviour,
i.e. the exceptional cases. For instance, most complaints sent
to an airline are handled according to amodel, but a few com-
plaints are so complicated that they require ad hoc solutions.
This behaviour could be of interest or not, which depends on
the goal of the analysis.

Consider again directly-follows graph D3, as shown in
Fig. 7b, and suppose that there is a single directly-follows
edge added, from c to d. Then, (×, {b, c}, {d, e}) is not a
perfectly matching cut, as with the addition of this edge the
two parts {b, c} and {d, e} became connected. Nevertheless,
as 9 traces showed exclusive choice behaviour and only one
did not, this single trace is probably an outlier and in most
cases, a model ignoring this trace would be preferable.

To handle these infrequent cases, we apply a strategy sim-
ilar to IMf [28] and use the IMd framework to define another
discovery algorithm: InductiveMiner—infrequent—directly-
follows (IMfD). Infrequent behaviour introduces edges in
the directly-follows graph that violate cut requirements. As
a result, a single edge makes it impossible to detect an oth-
erwise very strong cut. To handle this, IMfD first searches
for existing cuts as described in Sect. 3.2. If none is found
(when IMd would select a fall-through), the graph is filtered
by removing edges which are infrequent with respect to their

123

608 S. J. J. Leemans et al.

Fig. 9 An incomplete
directly-follows graph

a b

c d

3

21
1

3

2 3

23

2

1
1

1

neighbours. Technically, for a parameter 0 ≤ h ≤ 1, for an
activity a we keep the outgoing edges that occur more than
h times the most occurring outgoing edge of a (a formal def-
inition is given in Appendix 1). Start and end activities are
filtered similarly.

Incompleteness A log in a ‘big-data setting’ can be assumed
to contain lots of behaviour. However, we only see example
behaviour and we cannot assume to have seen all pos-
sible traces, even if we use the rather weak notion of
directly-follows completeness [30] as we do here. More-
over, sometimes smaller subsets of the log are considered,
for instance when performing slicing and dicing in the con-
text of process cubes [48]. For instance, an airline might
be interested in comparing the complaint-handling process
for several groups of customers, to gain insight in how the
process relates to age, city, and frequent-flyer level of the cus-
tomer. Then, there might be combinations of age, city, and
frequent-flyer level that rarely occur and the log for these
customers might contain too little information.

If the log contains little information, edges might be miss-
ing from the directly-follows graph and the underlying real
process might not be rediscovered. Figure 9 shows an exam-
ple: the cut ({a, b}, {c, d}) is not a parallel cut as the edge
(c, b) is missing. As the event log only provides example
behaviour, it could be that this edge is possible in the process,
but has not been seen yet. Given this directly-follows graph,
IMd can only give up and return a fall-through flower model,
which yields a very imprecise model. However, choosing the
parallel cut ({a, b}, {c, d})would obviously be a better choice
here, providing a better precision.

To handle incompleteness, we introduce Inductive
Miner—incompleteness—directly-follows (IMcD), which
adopts ideas of IMc [30] into the IMd framework. IMcD
first applies the cut detection of IMd and searches for a cut
that perfectly matches a characteristic. If that fails, instead of
a perfectly matching cut, IMcD searches for the most prob-
able cut of the directly-follows graph at hand.

IMcD does so by first estimating themost probable behav-
ioural relation between any two activities in the directly-
follows graph. In Fig. 9, the activities a and b are most likely
in a sequential relation as there is an edge from a to b. a and
c are most likely in parallel as there are edges in both direc-
tions. Loops and choices have similar local characteristics.
For each pair of activities x and y the probability Pr (x, y)
that x and y are in relation R is determined. The best cut is

then a partition into sets of activities X and Y such that the
average probabilities that x ∈ X and y ∈ Y are in relation R
is maximal. For a formal definition, please refer to [30].

In our example, the probability of cut (∧, {a, b}, {c, d})
is the average probability that (a, c), (a, d), (b, c) and (b, d)

are parallel. IMcD chooses the cut with highest probability,
using optimisation techniques. This approach gives IMcD
a run-time exponential in the number of activities, but still
requires a single pass over the event log.

4.3 Limitations

The IMd framework imposes some limitations on process
discovery.We discuss limiting factors on the challenges iden-
tified in Sect. 2: rediscoverability, handling incompleteness,
handling noise and handling infrequent behaviour, and bal-
ancing fitness, precision, generalisation and simplicity.

Limitations on rediscoverability of the IMd framework are
similar to the IM framework: the system must be a process
tree and adhere to some restrictions, and the log must be
directly-follows complete (as discussed before). If the sys-
tem does not adhere to the restrictions, then IMd framework
will not give up but rather try to discover as much process
tree like behaviour as possible. For instance, if a part of the
process is sequential, then IMd framework might be able to
discover this, even though the other parts of the process are
not block structured. Therefore, in practice, such models can
be useful [8,15]. To formally investigate what happens on
non-block-structured models would be an interesting sub-
ject of further study. For the remaining non-block structured
parts, the flexibility of IMd framework easily allows for
future customisations, e.g. [36].

If the log is incomplete, in some cases log-based dis-
covery techniques might handle this incompleteness better.
For instance, take the process tree P1 = ∧(a, b, c) and an
event log L = {〈a, b, c〉, 〈c, b, a〉, 〈b, a, c〉, 〈a, c, b〉}. Fig-
ure 10a shows the directly-follows graph of L . Log L is not
directly-follows complete with respect to P1, as the edge
(c, a) is missing. Both IM and IMd will first detect a con-
current cut (∧, {a, c}, {b}). The sublogs after splitting by IM
are {〈a, c〉, 〈c, a〉} and {〈b〉}, in which the missing directly-
follows edge a, c pops up and enables the rediscovery of P1.
In IMd, however, the directly-follows graph is split, resulting
in the directly-follows graph for a, c shown in Fig. 10b, from
which P1 cannot be rediscovered. In Sect. 6, wewill illustrate
that the effect of this limitation is limited on larger examples.

If the log contains noise and/or infrequent behaviour,
then the IMd framework might choose a wrong cut at
some point (as discussed in Sect. 4.2), possibly prevent-
ing rediscovery of the system. The noise handling abilities
of log-based and directly-follows-based algorithms differ
in detail; in both, noise and infrequent behaviour mani-
fest as superfluous edges in a directly-follows graph. On

123

Scalable process discovery and conformance checking 609

Fig. 10 A directly-follows
graph that does not suffice to
discover concurrency where the
log does (a, b) and an
ambiguous directly-follows
graph of both P2 and L2 (c). a
Directly-follows graph of L , b
after splitting by IMd, c the
directly-follows graph of both
P2 and L2

a

b

(a) (b) (c)

c

a c

a

c

b

one hand, in IM, such wrong edges might pop up dur-
ing recursion by reasoning similar to the incompleteness
case (which could be harmful), while using the same rea-
soning, log-based algorithms might have more information
available to filter such edges again (which could be bene-
ficial). In the evaluation, we will investigate this difference
further.

Given an event log, both types of algorithms have to bal-
ance fitness, precision, generalisation and simplicity. For
directly-follows-based algorithms, this balance might be dif-
ferent.

For instance, a desirable property of discovery algorithms
is the ability to preserve fitness, i.e. to discover a model that
is guaranteed to include all behaviour seen in the event log.
For directly-follows-based algorithms, this is challenging.
For instance, Fig. 10c shows a complete directly-follows
graph of the process tree P2 = ∧(→ (a, b), c). How-
ever, it is also the directly-follows graph of the event log
L2 = {〈a, c, b, c, a, b〉, 〈c〉}. Hence, if a fitness-preserving
directly-follows-based discovery algorithmwould be applied
to the directly-follows graph in Fig. 10c, this algorithm
could not return P2 and has to seriously underfit/generalise
to preserve fitness since the behaviour of both needs to
be included. Hence, P2 could never be returned. There-
fore, we chose the IMd framework to not guarantee fitness,
while the IM framework by its log splitting indirectly
takes such concurrency dependencies into account. Please
note that this holds for any pure directly-follows-based
process discovery algorithm (see the limitations of the α-
algorithm). Generalisation, i.e. the likelihood that future
behaviour will be representable by the model, is similarly
influenced.

Algorithms of the IM framework can achieve a high log-
precision if it can avoid fall-throughs such as the flower
model [28]. Thus, IM framework achieves the highest log-
precision if it can find a cut. The same holds for IMd
framework, and therefore we expect log-precision to largely
depend on the cut selection. In the evaluation, we will inves-
tigate log-precision further.

The influence of directly-follows-based algorithms on
simplicity highly depends on the chosen simplicity measure:
both IM framework and IMd framework return models in
which each activity appears once.

5 Comparing models to logs and models

We want to evaluate and compare our algorithm to other
algorithms regarding several criteria.

– First, we want to compare algorithms based on the size
of event logs they can handle, as well as the quality of
the producedmodels. In particular, both recall/fitness and
precision (with respect to the given system model or log)
need to be compared, as trivial models exist that achieve
either perfect recall or perfect precision, but not both.

– Second, we want to assess under which conditions
the new algorithms achieve rediscoverability, i.e. under
which conditions the partial or incorrect information in
the event log allows to obtain a model that has exactly the
same behaviour as the original system that produced the
event log. More formally, under which conditions (and
up to which sizes of systems) has the discovered model
the same language as the original system.

Measuringmodel quality is crucial in typical process min-
ing workflows as shown in the ‘Introduction’. However, as
discussed in Sect. 2, existing techniques formeasuringmodel
quality (on log ormodel) cannot handle large and complex
logs and processes. Our technique has to overcome two dif-
ficulties: (1) it has to compute precision and recall of very
large, possibly infinite languages; and (2) it should allow a
fine-grained measurement of precision and recall allowing to
identify particular activities or behavioural relations where
the the model and the log/other model differ.

We first introduce this technique for measuring recall and
precisionof twomodels—with the aimof analysing rediscov-
erability of process mining algorithms (Sect. 5.1). Second,
we adopt this technique to also compare a discovered model
to a (possibly very large) event log (Sect. 5.2). We use the
techniques in our evaluation in Sect. 6.

5.1 Model–model comparison

The recall of a model S and a model M describes the part of
the behaviour of S that is captured byM (compare to the con-
ventional fitness notion in process mining), while precision

123

610 S. J. J. Leemans et al.

process model

project on a1 ... akproject on a1 ... ak

DFA DFA

recall
precision

process model

Fig. 11 Evaluation framework for process discovery algorithms

captures the part of the behaviour of M that is also possible
in S.

For a complex model S and a complex model M , the
direct language-based comparison of the two models by
constructing and comparing their state spaces might suffer
from the state explosion problem, and hence be prohibitively
expensive. Therefore, the framework approximates recall and
precision by measuring them on subsets of activities, i.e. we
avoid the state explosion problem by considering small sub-
models, and averaging over all such subsets. The framework
is applicable to any processmodel formalismand process dis-
covery algorithm, as long as the languages of themodels used
can be described as deterministic finite automata (DFAs).We
first introduce the general idea of the framework, after which
we describe its steps in more detail.

Framework Figure 11 shows an overview of the model–
model evaluation framework; formally, the framework takes
as input a model S, a model M , and an integer k. S and M
must be process models, but can be represented using any
formalism with executable semantics.

To measure recall and precision of S and M , we introduce
a parameterised technique in which k defines the size of the
subsets of activities for which recall and precision shall be
computed. Take a subset of activities A = {a1 . . . ak}, such
that A ⊆ Σ(M) ∪ Σ(S), and |A| = k. Then, S and M are
projected onto A, yielding S|A and M |A (we will show how
the projection is performed below). From these projected S|A
andM |A, deterministic finite automata (DFAs) are generated,
which are compared to quantify recall and precision. These
steps are repeated for all such subsets A, and the average
recall and precision over all subsets is reported.

As we aim to apply this method to test rediscoverability,
a desirable property is that precision and recall should be 1
if and only if L(S) = L(M). Theorem 1, given later, states
that this is the case for the class of process trees used in this
paper.

As a running example, wewill compare twomodels, being
a process tree and a Petri net. Both are shown in Fig. 12.

×(∧(a, b), �(c, d))

a

c

b

(a) (b)

Fig. 12 Example models S and M . a Process tree S, b Petri net M

In the remainder of this section, we describe the steps of
the framework in more detail after which we give an example
and prove Theorem 1.

Projection Many process formalisms allow for projection on
subsets of activities; we give a definition for process trees
here and sketch projection for Petri nets in Appendix 5.

A process tree can be projected on a set of activities A =
{a1 . . . ak} by replacing every leaf that is not in A with τ : (in
which ⊕ is any process tree operator)

a|A = if a ∈ A then a else τ

τ |A = τ

⊕(M1 . . . Mn)|A = ⊕(M1|A . . . Mn|A)

After projection, a major problem reduction (and speedup)
can be achieved by applying structural language-preserving
reduction rules to the process tree, such as the rules described
in Appendix 2.

In principle, any further language-preserving state-space
reduction rules can be applied; we will not explore further
options in this paper.

If we project our example process tree and Petri net onto
activities a and b, we obtain the models as shown in Fig. 13.

Process model to deterministic finite automaton An automa-
ton describes a language based on an alphabet Σ . The
automaton starts in its initial state; fromeach state, transitions
labelled with activities fromΣ denote the possible steps that
can be taken from that state. A state can be an accepting state,
which denotes that a trace which execution ends in that state
is accepted by the automaton. An automaton with a finite set
of states is a non-deterministic finite automaton (NFA). In
case that the automaton does not contain a state from which
two transitions with the same activity leave, the automaton
is a deterministic finite automaton (DFA). Each NFA can be
translated into a DFA and a language for which a DFA exist
is a regular language; for each DFA, there exists a reduced
unique minimal version [35].

Process tree is defined using regular expressions in
Appendix 1,which can be transformed straightforwardly into
an NFA (we used the implementation [37], which provides a

123

Scalable process discovery and conformance checking 611

Fig. 13 Example models S and
M projected/reduced. a S|a,b, b
S|a,b reduced, c M |a,b

×(∧(a, b), �(τ, τ))

(a)

×(∧(a, b), τ)

(b)

a

b

(c)

Fig. 14 DFAs for S and M
projected to {a, b} and reduced,
and their conjunction. a
DFA(S|{a,b}), b DFA(M |{a,b}), c
DFAc(S, M, {a, b})

s1 s2

s3s4

a

bb

a

m1 m2

m3

a

b
b

s1m1 s2m2

s3m3

a

b

(a) (b) (c)

shuffle operator). Second, a simple procedure transforms the
NFA into a DFA [35].

The translation of our example S|{a,b} andM |{a,b} toDFAs
results in the automata shown in Fig. 14a, b.

Comparing deterministic finite automata Precision is
defined as the part of behaviour in M |A that is also in
S|A. Therefore, first the conjunction DFA(S|A)∩DFA(M |A)

(which we abbreviate to DFAc(S, M, A)) of these DFAs is
constructed, which accepts the traces accepted by both S|A
and M |A. Figure 14c shows the conjunctive DFA of our
running example. Then, precision is measured similarly to
several existing precision metrics, such as [3]: we count the
outgoing edges of all states in DFA(M |A) and compare that
to the outgoing edges of the corresponding states (s,m) in
DFAc(S, M, A) (for ease of notation,we consider an automa-
ton as a set of states here):

precision(S, M, A) =
∑

m∈DFA(M|A)

∑
(s,m)∈DFAc(S,M,A) outgoing edges of (s,m) in DFAc(S, M, A)

∑
m∈DFA(M|A)

∑
(s,m)∈DFAc(S,M,A) outgoing edges of m in DFA(M |A)

If DFA(M |A) has no edges at all (i.e. describes the empty
language), we define

precision(S, M, A)

=
{
0 if DFAc(S, M, A) has edges

1 if DFAc(S, M, A) has no edges

Please note that we count acceptance as an outgoing edge,
and that states may be counted multiple times if they are
used multiple times in DFAc. Recall is defined as the part of
behaviour in S|A that is not in M |A, i.e. recall(S, M, A) =

Table 1 Outgoing edge counting of our running example

Recall for activity subset {a, b}
State in
DFA(S|{a,b})

Outgoing
edges

State in
DFAc(S, M, {a, b})

Outgoing
edges

s1 3 s1m1 1

s2 1 s2m2 1

s3 1 s3m3 1

s4 1 – 0

Precision for activity subset {a, b}
State in
DFA(M |{a,b})

Outgoing
edges

State in
DFAc(S, M, {a, b})

Outgoing
edges

m1 2 s1m1 1

m2 1 s2m2 1

m3 1 s3m3 1

precision(M, S, A). In our example (see Table 1), recall for
(a, b) is 1+1+1

3+1+1+1 = 0.5; precision is 1+1+1
2+1+1 = 0.75.

5.1.1 Over all activities

For an alphabet Σ , finally the previous steps are repeated for
each set of activities {a1 . . . ak} ⊆ Σ of size k and the results
are averaged:

recall(S, M, k) =
∑

A⊆Σ(S)∪Σ(M)∧|A|=k recall(S, M, a1 . . . ak)

|{A ⊆ Σ(S) ∪ Σ(M) ∧ |A| = k}|
precision(S, M, k) = recall(M, S, k)

123

612 S. J. J. Leemans et al.

Note that we assume a closed world here, i.e. the alphabet
Σ is assumed to be the same for S and M . If an activity is
missing from M , we therefore consider M to express that the
activity can never happen.

Framework guarantees Using these definitions, we prove
that the framework is able to detect language equivalence
between process trees of the class that can be rediscovered
by IM and IMd. This theorem will be useful in later eval-
uations, where from recall and precision being 1, we can
conclude that the system was rediscovered.

Theorem 1 Let S and M be process trees without dupli-
cate activities and without τ s. Then, recall(S, M, 2) =
1 ∧ precision(S, M, 2) = 1 ⇔ L(S) = L(M).

The proof strategy is to prove the two directions of the
implication separately, using that for such trees, there exists
a language-unique normal form [29, Corollary 15]. For a
detailed proof, see Appendix 3. As for sound free-choice
unlabelled workflow nets without short loops the directly-
follows graph defines a unique language [61], Theorem 1
applies to these nets as well.

Corollary 2 Let S and M be sound free-choice unlabelled
workflow nets without short loops. Then, recall(S, M, 2) =
1 ∧ precision(S, M, 2) = 1 ⇔ L(S) = L(M).

Unfortunately, this theorem does not hold for general
process trees. For instance, take S = ×(a, b, c, τ) and
M = ×(a, b, c). For k = 2, the framework will consider
the subtrees ×(a, b, τ), ×(a, c, τ) and ×(b, c, τ) for both
S and M , thus will not spot any difference: recall = 1 and
precision = 1, even though the languages of S and M are
clearly different. Only for k = 3, the framework will detect
the difference.

In Sect. 6, we use the algorithm framework to test incom-
pleteness, noise, and infrequent behaviour on large models.
Before that, we first show that the ideas of the framework can
also be used to compare models to event logs.

5.2 Log–model comparison

In order to evaluate models with respect to event logs, the
framework in Sect. 5.1 is adapted as follows: Fig. 15 shows
an overview: the framework starts from an event log L and a
model M (in a process mining setting, M would have been
discovered from L). First, L and M are projected on a set
of activities A. A log is projected by removing the non-
projected events, e.g. {〈a, b, c〉, 〈c, d〉}|{a,b} = {〈a, b〉, 〈 〉}.
Second, from both projections a DFA is constructed. Preci-
sion is computed as in Sect. 5.2, i.e. by comparing DFA(L|A)

andDFA(M |A). For fitness, it is desirable that the frequencies
of traces are taken into account, such that a trace that appears

ledomssecorpgoltneve

project on a1 ... akproject on a1 ... ak

DFA

precision

DFA

Fig. 15 Evaluation approach for logs versus models

10,000 times in L contributes more to the fitness value than
a trace that appears just once. Therefore, we compute fit-
ness as the fraction of traces of L|A that can be replayed on
DFA(M |A):

fitness(L , M, A) = |[t ∈ L|A|t ∈ DFA(M |A)]|
|L|A|

If the log contains no traces, we define fitness to be 1.
Note that L is a multiset: if a trace appears multiple times

in L , it contributes multiple times as well. This is repeated
for all subsets of activities A of a certain length k, simi-
larly to the model–model comparison. Note that besides a
fitness/precision number, the subsets A also provide clues
where deviations in the log and model occur.

6 Evaluation

To understand the impact of ‘big data’ event logs on process
discovery and quality assessment, we conducted a series of
experiments to answer the following research questions:

RQ1 What is the largest event log (number of events/traces
or number of activities) that process discovery algo-
rithms can handle?

RQ2 Are single-pass algorithms such as the algorithms of
the IMd framework able to rediscover the system?
How large do event logs have to be in order to enable
this rediscovery? How do these algorithms compare to
classical algorithms?

RQ3 Can the system also be rediscovered if an event log
contains unstructured noise or structured infrequent
behaviour?Howdoesmodel quality of the newly intro-
duced algorithms suffer compared to other algorithms?

123

Scalable process discovery and conformance checking 613

event log process modelsystem

discovergenerate

recall
log-precision

Fig. 16 Set-up of our evaluation

RQ4 Can pcc framework handle logs that existingmeasures
cannot handle?How do both sets ofmeasures compare
on smaller logs?

To answer the first three questions, we conducted four similar
experiments, as shown in Fig. 16: we choose a system, gen-
erate an event log, and discover a process model, after which
we measure how well the discovered model represents the
system using log-precision and recall. Of these experiments,
one focuses on scalability, i.e. the ability in handling big
event logs and complex systems (Sect. 6.1), one on handling
incompleteness (Sect. 6.2), one on handling noise (Sect. 6.3),
and one on handling infrequent behaviour (Sect. 6.4).

To answer RQ4, we conducted another experiment: we
use real-life logs, apply discovery algorithms, and measure
fitness and log-precision, using both the pcc framework
and existing measures (Sect. 6.5). All algorithms of the
IMd framework and pcc framework are implemented as
plug-ins of the ProM framework,1 taking as input a directly-
follows graph. Directly-follows graphs were generated using
an external Python script. For more details on the set-up,
please refer to Appendix 4.

6.1 Scalability of IMd versus other discovery algorithms

First, we compare the IMd algorithms with several other
discovery algorithms in their ability to handle big event logs
and complex systems using limited main memory.

Set-up All algorithms were tested on the same set of XES
event logs, which have been created randomly from three
process trees, of (A) 40 activities, (B) 1000 activities, and
(C) 10,000 activities. The three trees have been generated
randomly.

For each tree, we first generate a random log of t traces,
starting t at 1. Second, we test whether an algorithm returns
a model for that log when allocated 2GB of main memory,
i.e. the algorithm terminates with a result and does not crash.
If successful, we multiply t by 10 and repeat the procedure.
The maximum t is recorded for each algorithm and process
tree A, B, and C.

1 Available for download at http://promtools.org.

Besides the new algorithms introduced in this paper, the
following algorithms were included in the experiment:

α-Algorithm (α) [49] ProM 6.5.1a

Heuristics Miner (HM) [63] ProM 6.5.1a

Integer Linear
Programming

(ILP) [54] ProM 6.5.1a

immediately_follows_
cnet_from_log

(P-IF) [16] PMLAB

pn_from_ts (P-PT) [16] PMLAB

Inductive Miner (IM) [29] ProM 6.5.1a

Inductive
Miner—infrequent

(IMf) [28] ProM 6.5.1a

Inductive Miner—
incompleteness

(IMc) [30] ProM 6.5.1a

IM—directly-follows (IMd) This paper ProM 6.5.1a

IM—infrequent—
directly-follows

(IMfD) This paper ProM 6.5.1a

IM—incompleteness—
directly-follows

(IMcD) This paper ProM 6.5.1a

The soundness-guaranteeing algorithms ETM, CCM, and
MPMwere not included, as ETM is a non-deterministic algo-
rithm and requires long run times to discover reasonable
models, and as for CCM and MPM, there is no implementa-
tion publicly available. It would be interesting to test these
as well.

Event logs The complexities of the event logs are shown in
Table 2; they were generated randomly from trees A, B, or C.
From this table, we can deduce that the average trace length
in (A) is 37 events, in (B) 109, and in (C) 764; Appendix 6
shows additional statistics. Thus, the average trace length
increases with the number of activities.

The largest log we could generate for A was 217GB (108

traces), limited by disk space. For the trees B and C, the
largest logs we could generate were 106 and 105 traces, but
now limited by RAM. For the bigger logs, the traces were
directly transformed into a directly-follows graph and the
log itself was not stored. In Table 2, these logs are marked
with *.

Compared with [32], tree B was added and the logs of
trees A and Cwere regenerated. Therefore, the log generated
for these trees are slightly different from [32]. However, the
conclusions were not influenced by this.

Results Table 3 shows the results. Results that could not be
obtained are marked with * (for instance, IMc and IMcD ran
for over a week without returning a result).

This experiment clearly shows the scalability of the IMd
framework,which handles larger andmore complex logs

123

http://promtools.org

614 S. J. J. Leemans et al.

Table 2 Log complexity (∗ denotes that a directly-follows graph was generated)

Traces A: 40 activities B: 1000 activities complex C: 10,000 activities more complex

Events Activities Events Activities Events Activities

1 21 21 190 52 81 66

10 309 40 922 359 8796 1932

102 3567 40 9577 802 77,664 7195

103 37,415 40 112,821 973 780,535 9589

104 370,687 40 1,106,495 999 7,641,398 9991

105 3,697,424 40 10,908,461 1000 76,663,981 10,000

106 36,970,718 40 109,147,057 1000 764,585,193 10,000*

107 369,999,523 40 1,090,802,965 1000* 7,644,466,866 10,000*

108 3,700,046,394 40 10,908,051,834 1000* 76,477,175,661 10,000*

Table 3 Scalability: maximum
number of traces an algorithm
could handle

A: 40 activities B: 1000 activities C: 10,000 activities
Traces Traces Traces

α 10,000 100 1

HM 1,000,000 1,000,000 1

ILP 1000 100 1

P-IF 10,000 0* 1*

P-PT 10,000 0* 1*

IM 100,000 100,000 1000

IMd 100,000,000 100,000,000 100,000,000

IMf 100,000 100,000 1000

IMfD 100,000,000 100,000,000 100,000,000

IMc 100,000† 1 10*

IMcD 100,000,000† 1 10*

easily (IMd and IMfD handle 108 traces, 7 × 1010 events,
and 104 activities). Moreover, it shows the inability of exist-
ing approaches to handle larger and complex logs: the
most scalable other algorithms were IM and IMf, that both
handled only 1000 traces. Furthermore, it shows the lim-
ited use sampling would have on such logs (logs manageable
for other algorithms, i.e. 1000 traces for tree C do not con-
tain all activities yet). We discuss the results in detail in
Appendix 7.

Time Timewise, it took a day to obtain a directly-follows
graph from the log of 108 traces of tree A, (using the pre-
processing Python script) after that discovering a process
model was a matter of seconds for IMd and IMfD. For the
largest logs they could handle, P-IF, α, HM, IM, IMf, and
IMc took a few minutes; P-PT took days, ILP a few hours.
In comparison, on the logs that ILP could handle, creating a
directly-follows graph took a few seconds, just as applying
IMd.

6.2 The influence of incompleteness on rediscoverability

To answer RQ2, i.e. whether single-pass algorithms are able
to rediscover the system, how large logs need to be in order
to enable rediscovery, and how these algorithms compare
to classical algorithms, we performed a second experiment.
In complex processes, such as B and C, information can be
missing from logs if the logs are not large enough: Table 2
shows that in our example, 105 traces were necessary for B
to have all activities appear in the log.

Set-up For each model generated in the scalability experi-
ment, we measure recall and precision with respect to tree
A, B, or C using the pcc framework. Given the results of the
scalability experiment, we include the algorithms IM, IMf,
IMc, HM, IMd, IMfD, IMcD, and a baselinemodel allowing
for any behaviour (a flower model).

As HM does not guarantee to return a sound model, nor
provides a final marking, we obtain a final marking using the

123

Scalable process discovery and conformance checking 615

Fig. 17 Incompleteness results
for process tree A (40 activities)

100 102 104 106
0

0.2

0.4

0.6

0.8

1

number of traces
re
ca
ll/

pr
ec
is
io
n

IM

100 102 104 106
0

0.2

0.4

0.6

0.8

1

number of traces

IMd

recall; precision

Fig. 18 Incompleteness results
for process tree B (1000
activities)

100 103 106 109

number of traces

re
ca
ll/

pr
ec
is
io
n

IM

100 103 106 109
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

number of traces

IMd

recall; precision

method described in Appendix 5. However, even with this
method we were unable to determine the languages of the
models returned by HM, and thus, these were excluded.

Results Figure 17 shows that for model A (40 activities) both
IM and IMd rediscover the language of A (a model that has
1.0 model-precision and recall with respect to A) on a log
of 104 traces. As can be seen in Fig. 18, IMd could redis-
cover the language of B at 108 traces, IM did not succeed
as the largest log it could handle (105 traces) did not con-
tain enough information to rediscover the language of B.
The largest log we generated for tree C, i.e. containing 108

traces, did not contain enough information to rediscover the
language of C: IMd discovered a model with a recall of 1.0
and a model-precision of 0.97. Corresponding results have
been obtained for IMf/IMfD and IMc/IMcD; see Appen-
dix 8 for all details. The flower model provided the baseline
for precision: it achieved recall 1.0 at 101 (A) and 102 (B)
traces and achieves a model-precision of 0.8.

We conclude that algorithms of the IMd framework are
capable of rediscovering the original system, even in case of

very large systems (trees B and C), and that these algorithms
do not require larger logs than other algorithms to do so:
IM and IMd rediscovered the models on logs of the same
sizes; for smaller logs IMd performed slightly better than
IMfD. Overall, IMd and IMfD have a similar robustness to
incomplete event logs as their IM counterparts, which makes
them more robust than other algorithms as well [30]. We
discuss the results in detail in Appendix 7.

6.3 The influence of noise on rediscoverability

To answer RQ3, we tested how noise in the event log influ-
ences rediscovery. We took the event log of 104 traces of tree
B, as that log was well handled by several algorithms but did
not reach perfect recall and precision in the incompleteness
experiment, indicating that discovery is possible but chal-
lenging. To this 104 traces, we add n noisy traces with some
noise, for tenfold increasing n from 1 to 105, i.e. the logs have
10,001–110,000 traces. A noisy trace is obtained from a nor-
mal trace by adding or removing a random event (both with
0.5 probability). By the representational bias of the process

123

616 S. J. J. Leemans et al.

Fig. 19 Algorithms applied to
logs with noisy traces [tree B
(1000 activities)]

100 101 102 103 104 105

noisy traces added
re
ca
ll/

pr
ec
is
io
n

IMf 0.2

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

noisy traces added

IMfD 0.2

recall; precision

trees used in the generation, such a trace is guaranteed to not
fit the original model. To each of these logs, we applied IM,
IMf, IMd, and IMfD and measured recall and precision with
respect to the unchanged system B. No artificial RAM limit
was enforced.

Notice that when 105 noisy traces are added, only 9% of
the traces remains noise-free. The directly-follows graph of
this noisy log contains 118,262 directly-follows edges, while
the graph of the model would just have 32,012. Moreover,
almost all activities are observed as start activities (946) and
end activities (929) in this log (vs 244/231 in the model). It is
clear that without serious noise filtering, no algorithm could
make any sense of this log.

Results Figure 19 shows the comparison of the 2 noise filter-
ing algorithms IMf and IMfD on the logs of B with various
noise levels. Surprisingly, IMfD performs better than IMf:
IMfD achieves consistently higher precision at only slight
drop in recall compared to IMfwhose precision drops to 0.8,
which is close to the flower model (i.e. no actual restriction
of behaviour). The perfect recall obtained by IM on large
lots can be explained by the fall-throughs of IMd and IM: if
no cut can be found, a flower model is selected. For IM and
IMd, we consistently observed lower precision scores for all
models compared to both IMf and IMfD but a consistent fit-
ness of 1.0 (which is easily explained by their lack of noise
handling capabilities); exact numbers and more details are
available in Appendix 8.

A manual inspection of the models returned shows that
all models still give information on the overall structure of
the system, while for larger parts of the model no structure
could be discovered and a flower submodel was discov-
ered. In this limited experiment, IMfD is the clear winner: it
keeps precision highest in return for a little drop in recall.
We suspect that this is due to IMfD using less informa-
tion than IMf and therefore the introduced noise has a larger
impact (see Sect. 4.3).More experiments need to evaluate this
hypothesis.

6.4 The influence of infrequent behaviour on
rediscoverability

To answer the second part of RQ3we investigated how infre-
quent behaviour, i.e. structured deviations from the system,
influences rediscovery. The set-up of this experiment is sim-
ilar to the noise experiment, i.e. t deviating traces are added.
Each deviating trace contains one structural deviation from
the model, e.g. for an×, two children are executed. For more
details, please refer to Appendix 4.

Similar to the noise experiment, the log with 105 added
infrequent traces has a lot of wrong behaviour: without infre-
quent behaviour, its directly-follows graph would contain
32,012 edges, 244 start activities, and 231 end activities, but
the deviating log contained 118,262 edges, 946 start activ-
ities, and 929 end activities. That means that if one would
randomly pick an edge from the log, there would be only
27% chance that the chosen edge would be according to
the model. Exact numbers and more details are available in
Appendix 8.

Results Figure 20 shows the results of IMf and IMfD on
logs of process tree B with various levels of added infrequent
behaviour. Similar to the noise experiments, IMfD compared
to IMf trades recall (0.95 vs 0.99) for log-precision (0.95 vs
0.90). Of the non-filtering versions IM and IMd, both got a
recall of 0.99, IM amodel-precision of around 0.90, and IMd
0.92, and thus, IMd performs a bit better in this experiment.

We suspect that two of the inserted types of infrequent
behaviour positively influenced the results: skipping a child
of a → or ∧ has no troublesome impact on the directly-
follows graph for the IMd framework, but log splitting will
introduce a (false) empty trace for the IM framework. The
IM framework algorithms must decide to ignore this empty
trace in later recursions, while IMd framework algorithms
simply don’t see it. Altogether, IMfD performs remarkably
well given event logs containing structured deviations from
the system.

123

Scalable process discovery and conformance checking 617

Fig. 20 Infrequent behaviour
results of process tree B (1000
activities)

100 101 102 103 104 105

infrequent traces added
re
ca
ll/

pr
ec
is
io
n

IMf 0.2

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

infrequent traces added

IMfD 0.2

recall; precision

6.5 Real-life model–log evaluation

To test real-life performance of the new algorithms and to
answer RQ4, i.e. whether the newly introduced fitness and
precisionmeasures can handle larger logs and how they com-
pare to existingmeasures, we performed a fourth experiment.

Experimental set-up In this experiment, we take four real-
life event logs. To these event logs, we apply the algorithms
α, HM, IM, IMf, IMd, and IMfD and analyse the resulting
models manually. The algorithms CCM and MPM are not
publicly available and were excluded.

Second, in order to evaluate the pcc framework, we
apply the pcc framework and existing fitness [51] and log-
precision [1] measures to the discoveredmodels. Themodels
byHMandα were unsound and had to be excluded (we intro-
duced some heuristics for unsound models, but they did not
help in this case. For more details, see Appendix 5). Further-
more, IM and IMd do not apply noise filtering and therefore
their models are often flower models, so these were excluded
as well.

To provide a baseline for log-precision, we add a flower
model to the comparison: a flowermodel allows for all behav-
iour, so intuitively has the worst precision. Therefore, we
scale (normalised) the log-precision according to this base-
line:

scaled log-precision

= 1 − 1 − log-precision of model

1 − log-precision of flower model

Intuitively, scaled precision denotes the linear precision gain
with respect to a flower model, i.e. 0 for the flower model
itself and 1 for perfect precision. The pcc framework-fitness
measure and the existing fitness measure [51] are conceptu-
ally similar, so they are not scaled.

Logs We analysed four real-life logs. The first log (BPIC11)
originates from the emergency department of a Dutch hospi-

tal [56]. BPIC11 describes a fairly unstructured process and
contains 624 activities, 1143 traces (patients), and 150,291
events. In our classification, it is a complex andmedium log.
The second log (BPIC12) originates from a Dutch financial
institution and describes amortgage application process [57].
It contains 23 activities, 13,087 traces (clients), and 164,506
events and is therefore a medium log. BPIC12 was filtered
to only contain events having the ‘complete’ life cycle tran-
sition, i.e. ‘schedule’ and ‘start’ events were removed. The
resulting log was included, as well as the logs for three activ-
ity subsets, (BPIC|A, BPIC|O , and BPIC|W), e.g. BPIC|A
only contains activities prefixed by A. The third log (SL)
originates from the repeated execution of software: SL was
obtained by recordingmethod calls executed by RapidMiner,
using 5 operators, each corresponding to plug-ins of Rapid-
ProM. The recording was performed using the Kieker tool
(see http://kieker-monitoring.net) and repeated 25 timeswith
different input event logs. In total, the event log (SL) has 25
traces, 5,869,492 events, and 271 activities, which makes it
a large. Its traces are particularly long: up to 1,151,788
events per trace. The fourth log (CS) originates from a web-
site of a dot-com start-up and represents click-stream data,
i.e. every website visitor is a trace, and each page visited is
an events [26]. CS contains 77,513 traces, 358,278 events,
and 3300 activities, which makes it more complex and
medium. As described in the ‘Introduction’, much bigger
event logs exist. We were able to run IMd and IMfD on
larger and more complex logs, but we were unable
to compute metrics or even visualise the resulting models.
Therefore, we do not report on such logs in this evaluation.

Results for process discovery Thefirst step in this experiment
was to apply several process discovery algorithms.

On BPIC11, IM, IMf, IMd, and IMfD produced a model.
OnBPIC12, all the algorithmsproduced amodel.We illus-

trate the results of the experiments on BPIC12, filtered for
activities starting with A (BPIC|A): Fig. 21 shows the model
returned by IMf; Fig. 22 the model by IMfD. This illustrates

123

http://kieker-monitoring.net

618 S. J. J. Leemans et al.

Fig. 21 IMf applied to BPIC12|A (without activity names)

Fig. 22 IMfD applied to BPIC12|A (without activity names)

Fig. 23 Models discovered from a software execution log. a Impression of the model discovered by HM. b Impression of the model discovered
by IMf. c Impression of the model discovered by IMfD.

the different trade-offs made between IM and IMd: these
models are very similar, except that for IMf, three activities
can be skipped. Operating on the directly-follows abstraction
of the log, IMfD was unable to decide to make these activi-
ties skippable, which lowers fitness a bit (0.816 vs 0.995) but
increases precision (1 vs 0.606).

On the SL log, HM, IM, IMf, IMd, and IMfD pro-
duced a model, and α could not proceed beyond passing
over the event log. The models discovered by HM, IMf,
and IMfD are shown in Fig. 23 (we uploaded these models
to http://www.processmining.org/blogs/pub2015/scalable_
process_discovery_and_evaluation). The model discovered
by HM has 2 unconnected parts, of which one part cannot
be executed. Hence, it is not a workflow model, thus not
sound and, as discussed before, difficult to be analysed auto-
matically. In the models discovered IMf and IMfD, the five
RapidProM operators are easily recognisable. However, the

models are too complex to be analysed in detail by hand.2

Therefore, in further analysis steps, problematic parts of the
models by IMf and IMfD could be identified, the log filtered
for them, and the analysis repeated.

On the CS log, IM, IMf, IMd, and IMfD produced a
model. IMd and IMfD returned a model in less than 30s
using less than 1GB of RAM, while IM and IMf took more
than an hour and used 30GB of RAM. As CS has five times
more activities than SL, we could not visualise it. This illus-
trates that scalable process discovery is a first step in scalable
process mining: the models we obtained are suitable for
automatic processing, but human analysis without further
visualisation techniques is very challenging.

2 Anecdotically: the vector images of these models were too large to
be displayed by Adobe Illustrator or Adobe Acrobat.

123

http://www.processmining.org/blogs/pub2015/scalable_process_discovery_and_evaluation
http://www.processmining.org/blogs/pub2015/scalable_process_discovery_and_evaluation

Scalable process discovery and conformance checking 619

Table 4 Log measures compared on real-life logs

Existing techniques This paper (pcc framework)

Fitness [51] Log-precision [1] Time Fitness Log-precision Time

Measured Scaled Measured Scaled

BPIC11 IMf Out of memory 0.627 0.764 0.472 25s

IMfD Out of memory 0.997 0.766 0.477 1m

Flower 1.000 0.002 0.000 5h 1.000 0.553 0.000 25s

BPIC12|A IMf 0.995 0.606 0.940 ≤1s 0.999 0.967 0.931 ≤1s

IMfD 0.816 1.000 1.000 ≤1s 0.700 1.000 1.000 ≤1s

Flower 1.000 0.227 0.000 ≤1s 1.000 0.520 0.000 ≤1s

BPIC12|O IMf 0.991 0.508 0.351 ≤1s 0.981 0.809 0.407 ≤1s

IMfD 0.861 0.384 0.187 ≤1s 0.862 0.794 0.360 ≤1s

Flower 1.000 0.242 0.000 ≤1s 1.000 0.678 0.000 ≤1s

BPIC12|W IMf 0.876 0.690 0.553 ≤1s 0.875 0.836 0.611 ≤1s

IMfD 0.914 0.300 −0.010 ≤1s 0.923 0.823 0.581 ≤1s

Flower 1.000 0.307 0.000 ≤1s 1.000 0.578 0.000 ≤1s

BPIC12 IMf 0.967 0.364 0.290 20m 0.978 0.668 0.092 ≤1s

IMfD 1.000 0.189 0.095 25m 1.000 0.693 0.161 ≤1s

Flower 1.000 0.104 0.000 30m 1.000 0.634 0.000 ≤1s

SL IMf Out of memory 0.584 0.246 −0.158 30m

IMfD Out of memory 0.924 0.385 0.055 30m

Flower Out of memory 1.000 0.349 0.000 35m

CS IMf Out of memory 0.999 0.580 0.023 1h

IMfD Out of memory 0.999 0.585 0.036 6.5h

Flower Out of memory 1.000 0.570 0.000 55m

Fig. 24 IMfD applied to BPIC|W

Results for log conformance checking Table 4 shows the
results, extended with the approximate running time of the
techniques.

Fitness scores according to the pcc framework differ from
thefitness scores by van derAalst [51] by atmost 0.05 (except
for BPIC12|A IMfD). Thus, this experiment suggests that
the new fitness measurement could replace the alignment-
based fitness [51] metric, while being generally faster on
both smaller and larger logs, though additional experiments
may be required to verify this hypothesis. More importantly,
the pcc framework could handle logs (BPIC11, SL, CS) that
the existing measure could not handle.

Comparing the scaled precision measures, the pcc frame-
work and the existing approach agree on the relative order
of IMf and IMfD for BPIC12|A and BPIC12|O , disagree
on BPIC12, and are incomparable on BPIC11, SL, and CS

due to failure of the existing measure. For BPIC12|W , IMfD
performed worse than the flower model according to Adri-
ansyah et al. [1] but better according to our measure. This
model, as shown in Fig. 24, is certainly more restrictive than
a flowermodel, which is correctly reflected by our new preci-
sion measure. Therefore, likely the approach of Adriansyah
et al. [1] encounters an inaccuracywhen computing the preci-
sion score. For BPIC12, precision [1] ranks IMf higher than
IMfD, whereas our precision ranks IMfD higher than IMf.
Inspecting the models, we found that IMf misses one activ-
ity from the log while IMfD has all activities. Apparently,
our newmeasure penalises more for a missing activity, while
the alignment-based existing measure penalises more for a
missing structure.

A similar effect is visible for SL: IMf achieves a lower
precision than the flower model. Further analysis revealed

123

620 S. J. J. Leemans et al.

that several activities were missing from the model by IMf.
The following example illustrates the effect: let L = {〈a, b〉}
be a projected log and M = a a projected model. Then, tech-
nically, their conjunction is empty and hence both precision
and recall are 0. This matches intuition, as they have no trace
in common.This sensitivity tomissing activities is inherent to
language-based measuring techniques. From the model dis-
covered by IMf, 45 activities are missing, which means that
of the 36,585 pairs of activities that are considered for preci-
sion and recall, in 11,160 pairs a missing activity is involved.

This experiment does not suggest that our new measure
can directly replace the existing measures, but precision
seems to be able to provide a categorisation, such as
good/mediocre/bad precision, compared to the flowermodel.

Altogether, we showed that our new fitness and precision
metrics are useful to quickly assess the quality of a discov-
eredmodel and decidewhether to continue analyseswith it or
not, in particular on event logs that are too large for current
techniques. In addition to simply providing an aggregated
fitness and precision value, both existing and our new tech-
nique allow for more fine-grained diagnostics of where in
the model and event log fitness and precision are lost. For
instance, by looking at the subsets a1 . . . ak of activities with
a low fitness or precision score, one can identify the activi-
ties that are not accurately represented by the model and then
refine the analysis of the event log accordingly.

For most event logs, IMfD seems to perform comparably
to IMf. However, please notice that by the nature of fitness
and log-precision, for each event log there exists a trivial
model that scores perfectly on both, i.e. the model consisting
of a choice between all traces. As such a model provides
neither any new information nor insight, generalisation and
simplicity have to be taken into account as well. As future
work, we would like to adapt generalisation metrics to be
applicable to large event logs and complex processes as well.

7 Conclusion

Process discovery aims to obtain process models from event
logs, while conformance checking aims to obtain informa-
tion from the differences between a model and either an
event log or a system model. Currently, there is no process
discovery technique that works on larger andmore com-
plex logs, i.e. containing billions of events or thousands
of activities, and that guarantees both soundness and redis-
coverability. Moreover, current log conformance checking
techniques cannot handle medium and complex logs, and
as current process discovery evaluation techniques are based
on log conformance checking, algorithms cannot be evalu-
ated formedium and complex logs. In this paper, we pushed
the boundary on what can be done with larger and more
complex logs.

For process discovery, we introduced the Inductive
Miner—directly-follows (IMd) framework and three algo-
rithms using it. The input of the framework is a directly-
follows graph, which can be obtained from any event log
in linear time, for instance using highly scalable techniques
such as map-reduce. The IM framework uses a divide-and-
conquer strategy that recursively builds a process model by
splitting the directly-follows graph and recursing on the sub-
graphs until it encounters a base case.

We showed that the memory usage of algorithms of the
IMd framework is independent of the number of traces in
the event log considered. In our experiments, the scalability
was only limited by the logs we could generate. The IMd
framework managed to handle over 70 billion events, while
using only 2GB of RAM; some other techniques required
the event log to be in main memory and therefore could han-
dle at most 1–10million events. Besides scalability, we also
investigated how the new algorithms compare qualitatively
to existing techniques that usemore knowledge, but also have
higher memory requirements. The new algorithms handled
systems of 10,000 activities in polynomial time and were
robust to incompleteness, noise, and infrequent behaviour.
Moreover, they always return sound models and suffered lit-
tle loss in quality compared to multipass algorithms; in some
cases we even observed quality improvements.

For conformance checking, we introduced the projected
conformance checking framework (pcc framework), that
is applicable to both log–model and model–model confor-
mance checking. The pcc framework measures recall/fitness
and precision, by projecting both system and system model/
log onto subsets of activities to determine their recall/fitness
and precision. Using this framework, one can measure
recall/fitness and precision of arbitrary models with a
bounded state space of (almost) arbitrary size.

The pcc framework’s model–model capabilities enable a
novel way to evaluate discovery techniques that scales well
and provides new insights. We applied this to test robustness
of various algorithms to incompleteness, noise, and infre-
quent behaviour. Moreover, we showed that the log–model
version of the pcc framework allows to measure fitness and
precision of a model with respect to an event log, even in
cases where classical techniques fail, and can give detailed
insights into the location of deviations in both log andmodel.

Altogether, we have presented the first steps of process
mining workflows on very large data sets: discovering a
model and assessing its quality. However, as we encountered
in our evaluation, we envision further steps in the process-
ing and visualisation of large models, such as using natural
language-based techniques [5]. To ease the analyses in con-
texts of big data, our algorithm evaluation framework could
be combined with the approach in [45], by having our frame-
work detecting the problematic sets of activities, and the
approach in [45] focusing on these submodels. For instance,

123

Scalable process discovery and conformance checking 621

it would be interesting to approximate performancemeasures
on the model without computing alignments.

Furthermore, it would be interesting to study the influence
of k on the pcc framework, both practically and theoretically.
As shown in Sect. 5.1, there exist cases for which the lan-
guage equivalence can only be guaranteed if k is at least the
number of nodes minus one. However, besides the classes for
which Theorem 1 or Corollary 2 holds, there might be other
classes of models for which a smaller k suffices.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: Formal definitions

Process trees

Recursively define the shuffle product operator ∼ on traces
as follows:

〈 〉 ∼ B = {B}
A ∼ 〈 〉 = {A}
(〈a〉 · A) ∼ (〈b〉 · B)

= {〈a〉} · (A ∼ (〈b〉 · B)) ∪ {〈b〉} · ((〈a〉 · A) ∼ B)

Then, the shuffle product can also be applied to languages:

L1 ∼ L2 =
⋃

w1∈L1∧w2∈L2

w1 ∼ w2

Using these, we define the semantics of process trees using
their language (taken from [30]):

L(τ) = {〈 〉}
L(a) = {〈a〉} for a ∈ Σ

L(×(M1, . . . , Mn)) = L(M1)|L(M2) . . .L(Mn)

L(→ (M1, . . . , Mn)) = L(M1) · L(M2) · · ·L(Mn)

L(∧(M1, . . . , Mn)) = L(M1) ∼ L(M2) . . .L(Mn)

L(� (M1, . . . , Mn))

= L(M1) · (L(×(M2, . . . , Mn)) · L(M1))
∗

Inductive Miner framework (IM framework)

Let L be the set of all logs, P the set of all process trees
and

⊕ = {×,→,∧,�}. The Inductive Miner frame-
work (IM framework) takes as input a cut selection pro-
cedure f indCut : L → ⊕×2Σ , a log splitting function

spli t : L × ⊕×2Σ → 2L, a fall-through function
f allT hrough : L → P, and a base-case generating func-
tion: f indBaseCase : L → P. The functions f indCut and
f indBaseCase may fail to produce a result.
Each of the algorithms, i.e. IM, IMf and IMc, provides a

specific set of these functions.

function IM framework(L)
base ← f indBaseCase(L)

if f indBaseCase successful then
return base

end if
(⊕,Σ1, . . . Σn) ← f indCut (L)

if f indCut successful then
L1 . . . Ln ← spli t (L ,⊕,Σ1 . . . Σn)

return ⊕(I M f ramework(L1), . . .

I M f ramework(Ln))

end if
return f allT hrough(L)

end function

Inductive Miner: directly-follows framework (IMd
framework)

Let G be the set of all directly-follows graphs, P the set
of all process trees and

⊕ = {×,→,∧,�}. The Induc-
tive Miner—directly-follows framework (IMd framework)
takes as input a cut selection procedure f indCutd : G →⊕×2Σ , a log splitting function spli td : G×⊕×2Σ → 2G,
a fall-through function f allT hroughd : G → P, and a base-
case generating function: f indBaseCased : G → P. The
functions f indCutd and f indBaseCased may fail to pro-
duce a result.

Each of the algorithms, i.e. IMd, IMfD and IMcD, pro-
vides a specific set of these functions.

function IMd framework(G)
base ← f indBaseCased(G)

if f indBaseCased successful then
return base

end if
(⊕,Σ1, . . . Σn) ← f indCutd(G)

if f indCutd successful then
G1 . . .Gn ← spli td(G,⊕,Σ1 . . . Σn)

return ⊕(I Md f ramework(G1), . . .

I Md f ramework(Gn))

end if
return f allT hroughd(G)

end function

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

622 S. J. J. Leemans et al.

Class of models that can be rediscovered

The following definitions are taken from [29]. Let S be a
system. Then, S can be rediscovered by IM and IMd if there
exists a process tree S′ such thatL(S) = L(S′), and (inwhich
⊕(S′

1, . . . , S
′
n) is a node at any position in S′, Start (M)

denotes the start activities of a model M and End(M) the
end activities.)

1. Duplicate activities are not allowed: ∀i �= j : Σ(S′
i) ∩

Σ(S′
j) = ∅.

2. If ⊕ =�, the sets of start and end activities of the
first branch must be disjoint: ⊕ =�⇒ Start (S′

1) ∩
End(S′

1) = ∅.
3. No τ ’s are allowed: ∀i ≤ n : S′

i �= τ .

The rediscoverability proof for this class of models is
given in Leemans et al. [29].

Inductive Miner: directly-follows (IMd)

The following definitions are taken from Leemans et al. [29].
In these definitions, a �→ b denotes that there is a directly-
follows edge from a to b; a �→+ b denotes that there is
an edge in the transitive closure. Moreover, Start denotes
the set of start activities, End the set of end activities. The
function f indCutd,I Md(G) searches for a cut that perfectly
matches the definitions given below, using efficient proce-
dures as described Sect. 3.2.

Definition 1 An exclusive choice cut is a cut (×,Σ1, . . . ,

Σn) such that

1. ∀i �= j, ai ∈ Σi , a j ∈ Σ j : ai � �→ a j

Definition 2 A sequence cut is an ordered cut (→,Σ1, . . . ,

Σn) such that

1. ∀1 ≤ i < j ≤ n, ai ∈ Σi , a j ∈ Σ j : a j � �→+ ai
2. ∀1 ≤ i < j ≤ n, ai ∈ Σi , a j ∈ Σ j : ai �→+ a j

Definition 3 A concurrent cut is a cut (∧,Σ1, . . . , Σn) such
that

1. ∀i : Σi ∩ Start �= ∅ ∧ Σi ∩ End �= ∅
2. ∀i �= j, ai ∈ Σi , a j ∈ Σ j : ai �→ a j ∧ a j �→ ai

Definition 4 A loop cut is a partially ordered cut (�,Σ1,

. . . , Σn) such that

1. Start ∪ End ⊆ Σ1

2. ∀i �= 1, ai ∈ Σi , a1 ∈ Σ1 : a1 �→ ai ⇒ a1 ∈ End
3. ∀i �= 1, ai ∈ Σi , a1 ∈ Σ1 : ai �→ a1 ⇒ a1 ∈ Start
4. ∀1 < (i, j) ≤ n, i �= j, ai ∈ Σi , a j ∈ Σ j : ai � �→ a j

5. ∀i �= 1, ai ∈ Σi , a1 ∈ Start (G) : (∃a′
1 ∈ Σ1 : ai �→

a′
1

) ⇔ ai �→ a1

6. ∀i �= 1, ai ∈ Σi , a1 ∈ End(G) : (∃a′
1 ∈ Σ1 : a′

1 �→ ai
)

⇔ a1 �→ ai

Inductive Miner: infrequent—directly-follows (IMfD)

For Inductive Miner—infrequent—directly-follows (IMfD),
the cut finding function f indCutd,I M f D(G) first tries the
IMd cut finding function. If that fails, it filters the directly-
follows graph and tries again. In the following definition,
w(a �→ b) denotes the weight of edge a �→ b in G, and l
denotes a noise threshold value (0 ≤ l ≤ 1).

f ilter(G, l) = {a �→ b|a �→ b ∈ G ∧ w(a �→ b)

≥ max
c

(w(a �→ c)) · l}

f indCutd,IMfD(G)

=
{
f indCutd,IMd(G) if successful
f indCutd,IMd(f ilter(G, l)) otherwise

Appendix 2: Reduction

In themodel evaluation framework, the to-be comparedmod-
els S and M are first projected by replacing activities by τ . In
order to efficiently compare the languages of these projected
models, we apply several language-preserving reduction
rules. In addition to the first six language-unique reduction
rules introduced in Leemans et al. [29], several new reduction
rules are applied (in which ⊕ is any process tree operator):

⊕(M) = M

×(. . .1 ,×(. . .2), . . .3) = × (. . .1 , . . .2 , . . .3)

→ (. . .1 ,→ (. . .2), . . .3) = → (. . .1 , . . .2 , . . .3)

∧(. . .1 ,∧(. . .2), . . .3) = ∧ (. . .1 , . . .2 , . . .3)

� (� (M, . . .1), . . .2) = � (M, . . .1 , . . .2)

� (M, . . .1 ,×(. . .2), . . .3) = � (M, . . .1 , . . .2 , . . .3)

→ (. . .1 , τ, . . .2) = → (. . .1 , . . .2)

if . . .1 or . . .2 non-empty

∧(. . .1 , τ) = ∧ (. . .1)

if . . .1 non-empty

×(τ, M, . . .1) = × (M, . . .1)

if ε ∈ L(M)

� (τ, τ) = τ

� (τ, . . .1) = � (τ, a1, . . . , an)

if {a1 . . . an} = Σ(. . .1) ∧ ∀1≤i≤n〈ai 〉 ∈ L(. . .1)

and the resulting subtree is smaller than . . .1

� (M, τ) = � (τ, a1, . . . , an)

if {a1 . . . an} = Σ(M)

∧ ∀1≤i≤n〈ai 〉 ∈ L(M) ∧ ε ∈ L(M)

� (M, τ) = � (×(a1, . . . , an), τ)

if {a1 . . . an} = Σ(M)

∧ ∀1≤i≤n〈ai 〉 ∈ L(M) ∧ ε /∈ L(M)

and the resulting subtree is smaller than M

123

Scalable process discovery and conformance checking 623

Obviously, each of these rules is language preserving and
decreases the size of the process tree; the rules are applied
exhaustively to both the projected system and the projected
model.

Appendix 3: Proof of Theorem 1

Theorem: Let S and M be process trees without dupli-
cate activities and without τ s. Then, recall(S, M, 2) =
1 ∧ precision(S, M, 2) = 1 ⇔ L(S) = L(M).

Proof We prove the two cases ⇐ and ⇒ separately. Obvi-
ously, in both cases Σ(S) = Σ(M). Take a set of activities
{a, b} with {a, b} ⊆ Σ(M) and a �= b.

⇐ Assume L(S) = L(M). Then obviously L(S|a,b) =
L(M |a,b). By construction, DFA(S|a,b) = DFA(M |a,b)

and hence
recall(S, M, {a, b}) = precision(S, M, {a, b}) = 1. This
holds for all sets {a, b}); thus, recall and precision are 1.
⇒ Assume recall(S, M, 2) = precision(S, M, 2) = 1.
Then, recall(S, M, {a, b}) = precision(S, M, {a, b}) =
1, henceDFA(S|a,b) = DFA(M |a,b) and thusL(S|a,b) =
L(M |a,b). By Corollary 15 in [29] and the assumed
restrictions, for both S and M , there exist language-
unique normal forms S′ and M ′. Then, we may conclude
that L(S′|a,b) = L(M ′|a,b), and hence ,the lowest com-
mon parent of a, b in S′ is equal to the lowest common
parent of {a, b} in M ′, and the relative order of a and b
matches (in case of� or→). This holds for all sets {a, b},
and neither tree contains duplicate activities or τ s; thus,
S′ = M ′, and hence, L(S) = L(M). ��

Appendix 4: Evaluation set-up details

In the experiments, directly-follows graphs were obtained
using a small script that incrementally builds a directly-
follows graph from an event log. If the experiment contained
a memory limitation, this script was not exempt from that
limitation.

We used ProM version 6.5.1a, and the logs are imported
using the log importer ‘ProM log files (disk-buffered by
MapDB, sequential access, w/o cache)’, as this importer
requires the least amount of RAM. Enough SSD disk space
was available for the importer.

Each experiment started with a new instance of the ProM
framework, in order to release all memory.

For the log generation, whenever an ×-node was encoun-
tered, each child had an equal probability of being executed.
For � nodes, the choice between doing a redo and an exit
was a constant 0.5/0.5.

Infrequent behaviour generation For the infrequent behav-
iour experiment, we took the same log of 104 activities
generated from tree B, and added n deviating traces: for each
trace, a random deliberate structural deviationwas inserted at
some point of execution, based on the operator on that point
(each of these points with equal probability).

× two children are executed,
→ either a child is executed a second time in an arbitrary
position or a child is skipped,
∧ either a child is executed twice or a child is not exe-
cuted,
� a child is skipped.

Appendix 5: Projecting Petri nets and converting
them into deterministic finite automata

A Petri net can be projected by replacing each transition
that is not in A by a τ -transition. In complex models and for
smaller ks, the frameworkwill introduce a lot of τ -transitions
in the projection. However,many of these τ -transitionsmight
be removable without changing the language of the projected
model. Therefore, a subset of language-preserving reduction
rules [39] can be applied to reduce the size of the Petri net,
and hence its corresponding automaton.

A Petri net can be translated to an automaton using a state-
space exploration. The more the net was reduced, the smaller
the state space will be in this step.

A necessary condition for the translation to a DFA is that
the language of the Petri net can be described by a DFA.
A definition of a language requires the notion of start and
acceptance of traces, and a finite state space, thus the model
needs to be bounded, and provide an initial marking and
a finite set of final markings. Please note that for general
Petri nets, a translation to a DFA is impossible as we could
use such a translation to decide language inclusion, which
is undecidable [20]. Aware of this limitation, we introduce
several heuristics, while making sure that for the consistency
of the framework, the heuristics applied to a sound workflow
net result in their normal semantics.

Making a Petri net bounded To make the Petri net bounded,
each place is given an artificial capacity. During state-space
exploration, a transition is only enabled if firing it would not
violate the bound of any place [53]. As sound workflow nets
are bounded, this heuristic will not influence their seman-
tics. However, if the capacity is chosen too low, not enough
behaviourmight be captured for a comparison, and language-
preserving reduction rules might influence the result. This
limitation is inherent to using DFAs and solving it would

123

624 S. J. J. Leemans et al.

require other classes of models, for which the problemmight
be undecidable.

Heuristic for an initial marking Some algorithms, such as
the Heuristics Miner, provide an initial marking. If no initial
marking is present, we construct an initial marking by putting
a token into eachplacewithout incoming transitions. In sound
workflow nets, an initial marking is provided by the source
place, which corresponds to our heuristic.

Heuristic for final markings Only few discovery algorithms
are capable of producing Petri nets with a distinguished final
marking. In case no final marking is given, it can be obtained
as follows:

– Manually inspect the model and define a final marking.
This is usually infeasible for complex models;

– An approach taken in [3] is to consider each reachable
marking as a final marking. Obviously, this increases the
size of the language and is inconsistent with our frame-
work: applying this heuristic to a sound workflow net
results in an overestimation of recall and an underestima-
tion of precision. Moreover, having each marking being
a final marking is not what ismeant by current discovery
algorithms: corresponding to traces in the event log, algo-
rithms aim to discover a model of a process with a clear
start and a clear end. Nevertheless, in use cases in which
such behaviour is intended [44], this strategy might be
chosen (but must be chosen for both models to ensure
comparability).

– Another approach is to consider each reachable con-
ditional deadlock to be a final marking. A conditional
deadlock is a marking M in which for each enabled tran-
sition t , one of the following conditions holds:

– t is not connected to any place, or
– firing t leads to amarkingM ′ that is equal to or strictly

bigger than M .

Figure 25 shows an example of a Petri net in a conditional
deadlock: b is enabled but firing it would leave the net in
a strictly larger marking (as b produces a token without
consuming one), d is not connected to any place, and
firing ewould yield an equal marking. In soundworkflow
nets, the only conditional deadlock is the onewith a token
in the sink place, which corresponds to this heuristic. A

a

b c d e

Fig. 25 An unbounded Petri net in a conditional deadlock

downside of this strategy is that nets without conditional
deadlocks (e.g. with livelocks) are considered to have the
empty language.

We prefer the second strategy as it keeps the framework
consistent and we performed the evaluation (Sect. 6) using
it. Ideally, the discovery algorithm should provide an ini-
tial marking and final markings, and preferably a bounded
net.

Appendix 6: Evaluation process tree statistics

The table below gives for each process tree that was used in
the evaluation its distribution of nodes.

40 activities 1000 activities 10,000 activities

τ 0 0 0

× 3 142 1532

→ 6 212 2575

� 2 86 1039

∧ 6 130 1569

Appendix 7: Discussion of evaluation results

Scalability

For tree A, several implementations were limited by their
requirement to load the log in main memory first: HM, IM,
IMf, and IMc could handle 106 traces, P-IF and P-PT 104.
The recursion on event logs of IM, IMf, and IMc shows its
limitations as well. (Compared with [32], a more efficient
log importer has been added to ProM, which enabled the
import of 106 traces; only HM benefits from this increase.)
Only algorithms of the IMd framework could handle logs of
107 or more traces, which shows the value of the single-pass
property, as there is no need to load the log in main mem-
ory. IMd and IMfD are clearly not limited by log size. In
[21], a single-pass version of HM and α is described. We
believe such a version of HM could be memory-restricted,
but still this would offer neither soundness nor rediscover-
ability. Of the IM framework, single-pass versions cannot
exist due to the necessary log splitting. The exponential
incompleteness-handling algorithms IMc and IMcD were
unable to handle smaller logs (i.e. 1000 traces for IMc and
100 for IMcD); this has been denoted with a †. These algo-
rithms first try to find a perfect cut (like IM), and if this fails,
i.e. for smaller logs, enter a procedure of exponential com-
plexity.

123

Scalable process discovery and conformance checking 625

Tree B challenged α, HM, P-IF, P-PT, IMc, and IMcD
more than tree A. Please note that HM handled the largest
log we could generate, i.e. this experiment did not reach the
limits of HM.

For tree C, log importers were not a problem. Algorithms
that are exponential in the number of activities (IMc, IMcD,
α, HM) show their limitations here: none of them could han-
dle a log with only 100 traces. Moreover, only IMd and
IMfD could handle logs in which all 10,000 activities were
present, which shows that in this case, sampling would not
be an option: a log of a size manageable to other algorithms
would not contain all activities (see Table 2). This experiment
clearly shows the scalability of the IMd framework.

Incompleteness

The flower models provide baselines for precision, i.e. 0.77
for model A and 0.66 for model B, and an upper bound for
recall (1 for both), which depends on the completeness of
activities in the event log.

HM illustrates the challenges that arise when dealing with
arbitrary Petri nets. As HM does not provide a final mark-
ing, and the models contained no obvious final places (and
our heuristic (Appendix 5) could not find a final marking
either), the languages of these models remained unclear and
we didn’t include their results (recall 0, precision 1).

For model A, IM and IMd performed similarly: both
achieved perfect recall at 10 traces (the first time all activities
had appeared in the event log), and both reached perfect pre-
cision at 104. Manual inspection revealed that IMd and IM
always returned the same model once the log was complete.
The infrequent-handling IMf and IMfD performed similar to
IM and IMd, except for 103 traces, where recall dropped and
precision remained comparable. Manual inspection revealed
that the root operator of A is ∧; at 102 traces, both miners
did not find a cut and returned general models (� (. . . , τ, τ))
yielding a high recall, whereas at 103 traces, theminers found
∧-cuts but got the activity partition wrong.

For model B, IMd and IM performed similarly: both
reached perfect recall at 105 (once the log contained all activ-
ities), while IMd achieved a slightly higher precision for each
log in this experiment. At 108, IMd reached perfect preci-
sion, while IM could not handle logs of this size. The results

for IMfD and IMf contain a drop in recall at 104 traces (just
as for tree A) and show the same precision as IMd and IM.
Given the results presented in [30], IMc and presumably
IMcD would have performed better in these experiments.
However, as shown by the scalability results, IMc and a cor-
responding IMcD are unable to handle logs of these sizes.

Infrequent Behaviour

Figure 20 shows the results for the infrequency experiment.
Similar to the noise experiments, the infrequency-filtering
algorithms (IMf, IMfD) perform slightly better than IM and
IMd. Except for n = 105, IMfD got the highest precision
scores for each n. Similarly, IMd got a consistently higher
precision than IMfD. As the event logs were equivalent (up
to the introduction of noise/infrequent behaviour) for the
noise experiment and this experiment, we expected a sim-
ilar increase in precision for IMd at n = 105. However, it
was IMf that got this increase; IMd and IM remained at their
lower level.

Nevertheless, IMd and IMfD seem to do better than IM
and IMf on precision, which seems counterintuitive as the
IM framework can usemore information than the IMd frame-
work. We suspect that two of the inserted types of infrequent
behaviour might be of influence here: skipping a child of a
→ or ∧ has no troublesome impact on the directly-follows
graph for the IM framework, but log splitting will introduce
a (false) empty trace for the IM framework; IM framework
algorithms must decide to ignore this empty trace in later
recursions, while IMd framework algorithms simply don’t
see it.

Altogether, IMfD performs remarkably well and stable
in this typical case of process discovery where an event log
contains structured deviations from the system.

Appendix 8: Evaluation results

Incompleteness

See Figs. 26 and 27. The models for IMc for 103 traces and
IMcD for 102 traces could not be obtained (they ran for over
a week).

123

626 S. J. J. Leemans et al.

Fig. 26 Incompleteness results
for process tree A (40 activities)

re
ca
ll/

pr
ec
is
io
n

IM

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

IMd

number of traces

re
ca
ll/

pr
ec
is
io
n

IMf 0.2

number of traces

IMfD 0.2

100 102 104 106

100 102 104 106

number of traces

re
ca
ll/

pr
ec
is
io
n

IMc

100 102 104 106

100 102 104 106 100 102 104 106

number of traces number of traces

100 102 104 106 100 102 104 106

number of traces

IMcD

number of traces

re
ca
ll/

pr
ec
is
io
n

flower model (baseline precision)

recall; precision

123

Scalable process discovery and conformance checking 627

Fig. 27 Incompleteness results
for process tree B (1000
activities)

number of traces
re
ca
ll/

pr
ec
is
io
n

IM

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

number of traces

IMd

number of traces

re
ca
ll/

pr
ec
is
io
n

IMf 0.2

number of traces

IMfD 0.2

100 103 106 109

100 103 106 109 100 103 106 109

100 103 106 109100 103 106 109

number of traces

re
ca
ll/

pr
ec
is
io
n

flower model (baseline precision)

recall; precision

123

628 S. J. J. Leemans et al.

Noise

See Fig. 28.

Fig. 28 Algorithms applied to
logs with noisy traces [tree B
(1000 activities)]

100 101 102 103 104 105

noisy traces added

re
ca
ll/

pr
ec
is
io
n

IM

100 101 102 103 104 105

noisy traces added

IMd

re
ca
ll/

pr
ec
is
io
n

IMf 0.2

0

0.2

0.4

0.6

0.8

1

0

100 101 102 103 104 105

noisy traces added

100 101 102 103 104 105

noisy traces added

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
IMfD 0.2

recall; precision

123

Scalable process discovery and conformance checking 629

Infrequent behaviour

See Fig. 29.

Fig. 29 Infrequent behaviour
results of process tree B (1000
activities)

100 101 102 103 104 105

infrequent traces added

re
ca
ll/

pr
ec
is
io
n

IM

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

infrequent traces added

100 101 102 103 104 105

infrequent traces added

100 101 102 103 104 105

infrequent traces added

IMd

re
ca
ll/

pr
ec
is
io
n

IMf 0.2 IMfD 0.2

recall; precision

References

1. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F.,
van der Aalst, W.M.P.: Alignment based precision checking. In:
Business Process Management Workshops 2012, pp. 137–149
(2012). doi:10.1007/978-3-642-36285-9_15

2. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Confor-
mance checking using cost-based fitness analysis. In: IEEE EDOC
2011, pp. 55–64 (2011). doi:10.1109/EDOC.2011.12

3. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D.
thesis, Eindhoven University of Technology, Eindhoven (2014)

4. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In:
POPL SIGPLAN-SIGACT 2002, pp. 4–16 (2002). doi:10.1145/
503272.503275. http://dblp.uni-trier.de/rec/bibtex/conf/popl/Am
monsBL02

5. Armas-Cervantes, A., Baldan, P., Dumas, M., García-Ba nuelos,
L.: Behavioral comparison of process models based on canoni-
cally reduced event structures. In: BPM 2014, pp. 267–282 (2014).
doi:10.1007/978-3-319-10172-9_17

6. Badouel, E.: On the α-reconstructibility of workflow nets. In:
Proceedings on 33rd International Conference, of Application
and Theory of Petri Nets, Hamburg, Germany, June 25–29,
vol. 7347, pp. 128–147. Springer, Berlin (2012). doi:10.1007/
978-3-642-31131-4_8. http://dblp.uni-trier.de/rec/bibtex/conf/
apn/Badouell2

7. Becker, M., Laue, R.: A comparative survey of business process
similarity measures. Comput. Ind. 63(2), 148–167 (2012). doi:10.
1016/j.compind.2011.11.003

8. Benner-Wickner,M., Brückmann, T., Gruhn, V., Book,M.: Process
mining for knowledge-intensive business processes. In: I-KNOW
2015, pp. 4:1–4:8 (2015). doi:10.1145/2809563.2809580

9. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining
Based on Regions of Languages. Business Process Management,
Hoboken (2007)

10. Bergenthum,R.,Desel, J.,Mauser, S., Lorenz,R.: Synthesis of Petri
nets from term based representations of infinite partial languages.
Fundam. Inform. 95(1), 187–217 (2009)

11. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm
for discovering process trees. In: IEEE Congress on Evolutionary
Computation, pp. 1–8 (2012)

12. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the
role of fitness, precision, generalization and simplicity in process
discovery. In: OTM. LNCS, vol. 7565, pp. 305–322 (2012). doi:10.
1007/978-3-642-33606-5_19

13. Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for Mining
Structured Process Models. Ph.D. thesis, Eindhoven University of
Technology, Eindhoven (2014)

14. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow
discovery from event streams. In: IEEE Congress on Evolution-

123

http://dx.doi.org/10.1007/978-3-642-36285-9_15
http://dx.doi.org/10.1109/EDOC.2011.12
http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1145/503272.503275
http://dblp.uni-trier.de/rec/bibtex/conf/popl/AmmonsBL02
http://dblp.uni-trier.de/rec/bibtex/conf/popl/AmmonsBL02
http://dx.doi.org/10.1007/978-3-319-10172-9_17
http://dx.doi.org/10.1007/978-3-642-31131-4_8
http://dx.doi.org/10.1007/978-3-642-31131-4_8
http://dblp.uni-trier.de/rec/bibtex/conf/apn/Badouell2
http://dblp.uni-trier.de/rec/bibtex/conf/apn/Badouell2
http://dx.doi.org/10.1016/j.compind.2011.11.003
http://dx.doi.org/10.1016/j.compind.2011.11.003
http://dx.doi.org/10.1145/2809563.2809580
http://dx.doi.org/10.1007/978-3-642-33606-5_19
http://dx.doi.org/10.1007/978-3-642-33606-5_19

630 S. J. J. Leemans et al.

ary Computation, pp. 2420–2427 (2014). doi:10.1109/CEC.2014.
6900341

15. Burattin, A.: PLG2: multiperspective processes randomization
and simulation for online and offline settings. CoRR (2015).
arXiv:1506.08415

16. Carmona, J., Solé, M.: PMLAB: an scripting environment for
process mining. In: BPM Demos. CEUR-WP, vol. 1295 (2014)

17. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriv-
ing Petri nets from finite transition systems. IEEE Trans. Comput.
47(8), 859–882 (1998)

18. Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.:
Distributed data mining in peer-to-peer networks. IEEE Internet
Comput. 10(4), 18–26 (2006). doi:10.1109/MIC.2006.74

19. Dijkman, R.M., van Dongen, B.F., Dumas, M., García-Ba nue-
los, L., Kunze, M., Leopold, H., Mendling, J., Uba, R., Weidlich,
M., Weske, M., Yan, Z.: A short survey on process model
similarity. In: Seminal Contributions to Information Systems Engi-
neering, 25 Years of CAiSE, pp. 421–427 (2013). doi:10.1007/
978-3-642-36926-1_34

20. Esparza, J., Nielsen, M.: Decidability issues for Petri nets—a sur-
vey. Bull. EATCS 52, 244–262 (1994). http://dblp.uni-trier.de/rec/
bibtex/journals/eatcs/EsparzaN94

21. Evermann, J.: Scalable process discovery using map-reduce. In:
IEEE Transactions on Services Computing (2014, to appear)

22. Gabel, M., Su, Z.: Javert: fully automatic mining of general tem-
poral properties from dynamic traces. In: ACM SIGSOFT 2008,
pp. 339–349 (2008). doi:10.1145/1453101.1453150

23. Günther, C., Rozinat, A.: Disco: discover your processes. In: BPM
(Demos), pp. 40–44 (2012)

24. Hay, B., Wets, G., Vanhoof, K.: Mining navigation patterns using
a sequence alignment method. Knowl. Inf. Syst. 6(2), 150–163
(2004)

25. Hwong, Y., Keiren, J.J.A., Kusters, V.J.J., Leemans, S.J.J.,
Willemse, T.A.C.: Formalising and analysing the control software
of the compact muon solenoid experiment at the large hadron col-
lider. Sci. Comput. Program. 78(12), 2435–2452 (2013). doi:10.
1016/j.scico.2012.11.009

26. Kohavi, R., Brodley, C.E., Frasca, B., Mason, L., Zheng, Z.: Kdd-
cup 2000 organizers’ report: peeling the onion. SIGKDD Explor.
2(2), 86–98 (2000). doi:10.1145/380995.381033

27. Kunze, M., Weidlich, M., Weske, M.: Querying process models by
behavior inclusion. Softw. Syst. Model. 14(3), 1105–1125 (2015).
doi:10.1007/s10270-013-0389-6

28. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-
structured process models from event logs containing infrequent
behaviour. In: Business Process Management Workshops, pp. 66–
78 (2013)

29. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering
block-structured process models from event logs—A constructive
approach. In: Petri Nets 2013, pp. 311–329 (2013). doi:10.1007/
978-3-642-38697-8_17

30. Leemans, S., Fahland, D., van der Aalst, W.: Discovering
block-structured process models from incomplete event logs. In:
Petri nets 2014, vol. 8489, pp. 91–110 (2014). doi:10.1007/
978-3-319-07734-5_6

31. Leemans, S., Fahland, D., van der Aalst, W.: Exploring processes
and deviations. In: Business Process Management Workshops
(2014, to appear)

32. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable
process discovery with guarantees. In: BPMDS 2015, pp. 85–101
(2015). doi:10.1007/978-3-319-19237-6_6

33. Leemans, M., van der Aalst, W.: Process mining in software
systems: discovering real-life business transactions and process
models from distributed systems. In: Lethbridge T, Cabot J, Egyed
A (eds.) ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems, pp. 44–53 (2015). http://
dblp.uni-trier.de/rec/bibtex/conf/models/LeemansA15

34. Liesaputra, V., Yongchareon, S., Chaisiri, S.: Efficient process
model discovery using maximal pattern mining. In: BPM 2015,
pp. 441–456 (2015). doi:10.1007/978-3-319-23063-4_29

35. Linz, P.: An introduction to formal languages and automata. Jones
& Bartlett Learning, Burlington (2011)

36. Lu, X., Fahland, D., van den Biggelaar, F.J., van der Aalst, W.M.:
Label refinement for handling duplicated tasks in process discov-
ery. In: BPM (2016, submitted)

37. Møller, A.: dk.brics.automaton—finite-state automata and regular
expressions for Java (2010). http://www.brics.dk/automaton/

38. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry
single-exit decomposed conformance checking. Inf. Syst. 46, 102–
122 (2014). doi:10.1016/j.is.2014.04.003

39. Murata, T.: Petri nets: properties, analysis and applications. Proc.
IEEE 77(4), 541–580 (1989)

40. Pradel,M.,Gross, T.R.: Automatic generation of object usage spec-
ifications from large method traces. In: ASE 2009, pp. 371–382.
IEEE Computer Society (2009). doi:10.1109/ASE.2009.60

41. Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.:
Constructs competition miner: process control-flow discovery of
bp-domain constructs. In: Proceedings on 12th International Con-
ference, Business Process Management (BPM), Haifa, Israel,
September 7–11, 2014, vol. 8659, pp. 134–150 (2014). doi:10.
1007/978-3-319-10172-9_9

42. Redlich, D.,Molka, T., Gilani,W., Blair, G.S., Rashid, A.: Scalable
dynamic business process discovery with the constructs competi-
tion miner. In: SIMPDA 2014. CEUR-WP, vol. 1293, pp. 91–107
(2014)

43. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of
processes based on monitoring real behavior. Inf. Syst. 33(1), 64–
95 (2008). doi:10.1016/j.is.2007.07.001

44. Tapia-Flores, T., López-Mellado, E., Estrada-Vargas, A.P., Lesage,
J.: Petri net discovery of discrete event processes by computing t-
invariants. In: Proceedings of the 2014 IEEEEmerging Technology
and Factory Automation, ETFA 2014, Barcelona, Spain, Sept. 16–
19, pp. 1–8 (2014). doi:10.1109/ETFA.2014.7005080

45. van Beest, N.R.T.P., Dumas, M., García-Ba nuelos, L., Rosa,
M.L.: Log delta analysis: Interpretable differencing of business
process event logs. In: BPM 2015, pp. 386–405 (2015). doi:10.
1007/978-3-319-23063-4_26

46. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Busi-
ness Process Management Workshops-(BPM) 2011 International
Workshops, Clermont-Ferrand, France, August 29, 2011, Revised
Selected Papers, Part I, 2011, pp. 169–194 (2011). doi:10.1007/
978-3-642-28108-2_19

47. van der Aalst, W.M.P.: Decomposing process mining problems
using passages. In: Petri Nets 2012, pp. 72–91 (2012). doi:10.1007/
978-3-642-31131-4_5

48. van der Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up
and drilling down event data for process mining. AP-BPM 2013,
1–22 (2013). doi:10.1007/978-3-319-02922-1_1

49. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining:
discovering process models from event logs. IEEE Trans. Knowl.
Data Eng. 16(9), 1128–1142 (2004). doi:10.1109/TKDE.2004.47

50. van der Aalst, W.M.P.: Process Mining—Discovery, Conformance
and Enhancement of Business Processes. Springer, Berlin (2011).
doi:10.1007/978-3-642-19345-3

51. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying his-
tory on processmodels for conformance checking and performance
analysis. Wiley Interdiscip. Rev Data Min. Knowl. Discov. 2(2),
182–192 (2012)

52. van der Aalst, W.M.P.: Decomposing Petri nets for process min-
ing: a generic approach. Distrib. Parallel Databases 31(4), 471–507
(2013). doi:10.1007/s10619-013-7127-5

123

http://dx.doi.org/10.1109/CEC.2014.6900341
http://dx.doi.org/10.1109/CEC.2014.6900341
http://arxiv.org/abs/1506.08415
http://dx.doi.org/10.1109/MIC.2006.74
http://dx.doi.org/10.1007/978-3-642-36926-1_34
http://dx.doi.org/10.1007/978-3-642-36926-1_34
http://dblp.uni-trier.de/rec/bibtex/journals/eatcs/EsparzaN94
http://dblp.uni-trier.de/rec/bibtex/journals/eatcs/EsparzaN94
http://dx.doi.org/10.1145/1453101.1453150
http://dx.doi.org/10.1016/j.scico.2012.11.009
http://dx.doi.org/10.1016/j.scico.2012.11.009
http://dx.doi.org/10.1145/380995.381033
http://dx.doi.org/10.1007/s10270-013-0389-6
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-319-07734-5_6
http://dx.doi.org/10.1007/978-3-319-07734-5_6
http://dx.doi.org/10.1007/978-3-319-19237-6_6
http://dblp.uni-trier.de/rec/bibtex/conf/models/LeemansA15
http://dblp.uni-trier.de/rec/bibtex/conf/models/LeemansA15
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://www.brics.dk/automaton/
http://dx.doi.org/10.1016/j.is.2014.04.003
http://dx.doi.org/10.1109/ASE.2009.60
http://dx.doi.org/10.1007/978-3-319-10172-9_9
http://dx.doi.org/10.1007/978-3-319-10172-9_9
http://dx.doi.org/10.1016/j.is.2007.07.001
http://dx.doi.org/10.1109/ETFA.2014.7005080
http://dx.doi.org/10.1007/978-3-319-23063-4_26
http://dx.doi.org/10.1007/978-3-319-23063-4_26
http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1007/978-3-642-31131-4_5
http://dx.doi.org/10.1007/978-3-642-31131-4_5
http://dx.doi.org/10.1007/978-3-319-02922-1_1
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1007/978-3-642-19345-3
http://dx.doi.org/10.1007/s10619-013-7127-5

Scalable process discovery and conformance checking 631

53. van der Aalst, W., Stahl, C.: Modeling Business Processes: A Petri
Net-Oriented Approach. MIT Press, Cambridge (2011)

54. van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.:
Process discovery using integer linear programming. Fundam.
Inform. 94(3–4), 387–412 (2009)

55. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring simi-
larity between business process models. In: Seminal Contributions
to Information Systems Engineering, 25 Years of CAiSE, pp. 405–
419 (2013). doi:10.1007/978-3-642-36926-1_33

56. van Dongen, B.: BPI Challenge 2011 Dataset (2011). doi:10.4121/
uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

57. van Dongen, B.: BPI Challenge 2012 Dataset (2012). doi:10.4121/
uuid:3926db30-f712-4394-aebc-75976070e91f

58. vanGlabbeek, R.J.,Weijland,W.P.: Branching time and abstraction
in bisimulation semantics. J. ACM 43(3), 555–600 (1996). doi:10.
1145/233551.233556

59. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused
control-flow analysis for business process models through SESE
decomposition. In: ICSOC 2007, pp. 43–55 (2007). doi:10.1007/
978-3-540-74974-5_4

60. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-
dimensional quality assessment of state-of-the-art process discov-
ery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676
(2012)

61. Weidlich, M., van der Werf, J.: On profiles and footprints—
relational semantics for Petri nets. In: Petri Nets, pp. 148–167
(2012)

62. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal
behavioural profiles—efficient computation, applications, and
evaluation. Fundam. Inform. 113(3–4), 399–435 (2011)

63. Weijters, A., Ribeiro, J.: Flexible heuristics miner. In: CIDM, pp.
310–317 (2011)

64. Weijters, A., van der Aalst, W., de Medeiros, A.: Process Mining
with the Heuristics Miner-Algorithm. BETA working paper series
166, Eindhoven University of Technology, Eindhoven (2006)

65. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs.
In: Advances in Data and Web Management, pp. 358–365 (2007)

66. Wen,L., vanderAalst,W.,Wang, J., Sun, J.:Miningprocessmodels
with non-free-choice constructs. Data Min. Knowl. Discov. 15(2),
145–180 (2007)

67. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta:
mining temporal API rules from imperfect traces. In: ICSE 2006,
pp. 282–291 (2006). doi:10.1145/1134325

68. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net sim-
ilarity measure based on transition adjacency relations. Comput.
Ind. 61(5), 463–471 (2010). doi:10.1016/j.compind.2010.01.001

Sander J. J. Leemans has been
a Ph.D. student at the Eind-
hoven University of Technol-
ogy in the Netherlands since
2012. His research interests
include process mining, Petri
nets, process discovery, confor-
mance checking and business
process management.

Dirk Fahland is assistant profes-
sor at the Eindhoven University
of Technology researching in the
area of distributed systems, he
received his Ph.D. in Computer
Science from the Humboldt-
Univeristät zu Berlin, Germany,
and the Eindhoven University
of Technology, the Netherlands,
in 2010. His research inter-
ests include distributed processes
and systems built from distrib-
uted components for which he
investigates modeling systems
(using process modeling lan-

guages, Petri nets, or scenario-based techniques), analyzing systems
for errors or misconformances (through verification or simulation), and
process mining/specification mining techniques for discovering system
models from event logs. He particularly focuses on distributed system
with multi-instance characteristics and their synchronizing and inter-
acting behaviors. His results appeared in journals such as Software and
Systems Modeling, The Computer Journal, Data and Knowledge Engi-
neering, and Information Systems.

Wil M. P. van der Aalst is
a full professor of Information
Systems at the Technische Uni-
versiteit Eindhoven (TU/e). At
TU/e he is the scientific direc-
tor of the Data Science Center
Eindhoven (DSC/e). Since 2003
he holds a part-time position at
Queensland University of Tech-
nology (QUT) and is a member
of the Board of Governors of
Tilburg University. His personal
research interests include work-
flow management, process min-
ing, Petri nets, business process

management, process modeling, and process analysis.

123

http://dx.doi.org/10.1007/978-3-642-36926-1_33
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/978-3-540-74974-5_4
http://dx.doi.org/10.1007/978-3-540-74974-5_4
http://dx.doi.org/10.1145/1134325
http://dx.doi.org/10.1016/j.compind.2010.01.001

	Scalable process discovery and conformance checking
	Abstract
	1 Introduction
	2 Process mining
	2.1 Conformance checking
	2.1.1 Log--model conformance checking
	2.1.2 Model--model conformance checking

	2.2 Process discovery

	3 Preliminaries
	3.1 Basic notions
	3.2 Cut detection

	4 Process discovery using a directly-follows graph
	4.1 Inductive Miner: directly-follows
	4.2 Handling infrequency and incompleteness
	4.3 Limitations

	5 Comparing models to logs and models
	5.1 Model--model comparison
	5.1.1 Over all activities

	5.2 Log--model comparison

	6 Evaluation
	6.1 Scalability of IMd versus other discovery algorithms
	6.2 The influence of incompleteness on rediscoverability
	6.3 The influence of noise on rediscoverability
	6.4 The influence of infrequent behaviour on rediscoverability
	6.5 Real-life model--log evaluation

	7 Conclusion
	Appendix 1: Formal definitions
	Process trees
	Inductive Miner framework (IM framework)
	Inductive Miner: directly-follows framework (IMd framework)
	Class of models that can be rediscovered
	Inductive Miner: directly-follows (IMd)
	Inductive Miner: infrequent---directly-follows (IMfD)

	Appendix 2: Reduction
	Appendix 3: Proof of Theorem 1
	Appendix 4: Evaluation set-up details
	Appendix 5: Projecting Petri nets and converting them into deterministic finite automata
	Appendix 6: Evaluation process tree statistics
	Appendix 7: Discussion of evaluation results
	Scalability
	Incompleteness
	Infrequent Behaviour

	Appendix 8: Evaluation results
	Incompleteness
	Noise
	Infrequent behaviour

	References

