
Softw Syst Model (2013) 12:35–52
DOI 10.1007/s10270-010-0173-9

THEME SECTION

Integration of data validation and user interface concerns
in a DSL for web applications

Danny M. Groenewegen · Eelco Visser

Received: 25 November 2009 / Revised: 9 August 2010 / Accepted: 17 August 2010 / Published online: 7 September 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Data validation rules constitute the constraints
that data input and processing must adhere to in addition to
the structural constraints imposed by a data model. Web mod-
eling tools do not make all types of data validation explicit
in their models, hampering full code generation and model
expressivity. Web application frameworks do not offer
a consistent interface for data validation. In this paper, we
present a solution for the integration of declarative data val-
idation rules with user interface models in the domain of
web applications, unifying syntax, mechanisms for error han-
dling, and semantics of validation checks, and covering
value well-formedness, data invariants, input assertions, and
action assertions. We have implemented the approach in Web-
DSL, a domain-specific language for the definition of web
applications.

Keywords Web application · Domain-specific language ·
Data validation

1 Introduction

The engineering of web applications requires catering for a
number of different concerns including data models, user
interfaces, actions, data validation, and access control. In
the mainstream technology for web application development
these concerns are supported by loosely coupled languages

Communicated by Gustavo Rossi, Nora Koch, Geert-Jan Houben, and
Antonio Vallecillo.

D. M. Groenewegen (B) · E. Visser
Software Engineering Research Group, Delft University
of Technology, Delft, The Netherlands
e-mail: d.m.groenewegen@tudelft.nl

E. Visser
e-mail: visser@acm.org

that require abundant boilerplate code and lack static
verification. The domain-specific language engineering chal-
lenge for the web application domain [31] is to realize a con-
cise, high-level, declarative language for the definition of
web applications in which the various concerns are supported
by specialized sub-languages, yet linguistically integrated,
and from which implementations can be derived automati-
cally. This requires investigation and understanding of, and
the design of appropriate domain-specific languages for each
of the sub-domains of the web application domain. More-
over, it requires the seamless linguistic integration of these
separate languages that ensures the consistency of models in
the different domains and that leverages their combination.
This research program is relevant for the discovery of good
abstractions for the web engineering domain. It is also rele-
vant as a case study in the systematic development of families
of domain-specific languages.

In previous work, we have studied the domains of data
models and user interface definitions [31], access control
[12], and workflow [14], the results of which have been
implemented as sub-languages of the WebDSL language
[32]. In this paper, we address the domain of data valida-
tion and its interaction with the user interface. This paper is
an extension of the identically titled short paper presented at
the Second International Conference on Software Language
Engineering (SLE 2009) [13].

The core of a data-intensive web application is its data
model. The web application must be organized to preserve
the consistency of data with respect to the data model during
updates, deletes, and insertions. The core consistency proper-
ties of a data model are formed by structural constraints, that
is, the data members of and relations between entities. Some
consistency properties cannot be expressed as structural con-
straints. Furthermore, some data integrity constraints do not
pertain directly to persistent data.

123



36 D. M. Groenewegen, E. Visser

Data validation rules constitute the constraints that data
input and processing must adhere to in addition to the struc-
tural constraints imposed by the data model. Four essen-
tial kinds of data validation in web applications are: value
well-formedness rules, data invariants, input assertions, and
action assertions. Value well-formedness rules define the
syntax of values of particular entity properties. Value prop-
erties are typically stored as strings, but may have to satisfy
additional well-formedness constraints. For example, email
addresses and zip codes cannot be arbitrary strings, but must
conform to a particular syntax. Data invariants are functional
constraints of single properties that cannot be expressed as
syntactic constraints of single values, or coordination con-
straints between properties. For example, uniqueness of a
primary key property, or a size limit on a collection property
encoded by an integer property. Input assertions are checks
based on input data that is not connected (directly) to per-
sistent data, and hence cannot be specified as constraints on
the data model. For example, a double password entry field
requires the user to enter the same password twice to pre-
vent typos. Only one of the password fields is actually stored
in the data model. Thus, the equality constraint cannot be
expressed as a data model invariant. Finally, action asser-
tions are checks on the execution of operations. For exam-
ple, the conclusion of an operation might notify the user by
email. An assertion may require the notification to succeed.

Data validation rules are commonly used in combination
with data models, e.g. OCL [24] constraints that specify class
member invariants in UML class models. For other technical
domains such as user interfaces and actions, where ordering
and control flow is involved, data validation rules are usually
implicitly defined in low-level code. Moreover, integration
with these domains often results in separate mechanisms for
data validation, having an adverse effect on application con-
sistency. In addition to declarative and consistent notation,
another issue is consistent error reporting. Validation feed-
back should be handled transparently, but also materialize in
a way that fits naturally into the user interface.

A high-level web engineering solution should provide a
uniform and declarative validation model that integrates with
the other relevant technical models. In addition to ensuring
data consistency by enforcing a validation model, the integra-
tion of data validation in a web application requires a mecha-
nism for reporting constraint violations to the user, indicating
the origin of the violation in the user interface with a sensible
error message and consistent styling. Model-driven meth-
odologies such as OOHDM [28], WebML [7], UWE [18],
OOWS [25], and Hera [30] do not make all types of data val-
idation explicit in their models. When generating code from
models, as demonstrated for UWE [19], WebML [4], and
Hera [10], validating data requires an escape from model to
code, hampering full code generation and model expressiv-
ity. Web application frameworks provide high-level support

for a subset of data validation tasks. For instance, Ruby on
Rails [26] provides support for data invariants, whereas Java
Server Faces (JSF) [6] supports input assertions, validating
forms directly without taking the relation to the data model
into consideration. In such approaches, the expression of
other types of validation requires a fall back to low-level cod-
ing to implement the checking of rules as well as the handling
of error messages. ASP.NET [21] supports both input asser-
tions and data invariants, but with an inconsistent interface.

In this paper, we present a language design that integrates
declarative data validation rules with user interface models
in the domain of web applications, unifying syntax, mecha-
nisms for error handling, and semantics of validation checks,
and that covers value well-formedness, data invariants, input
assertions, and action assertions. We have implemented the
approach in WebDSL [31], a domain-specific language for
the definition of web applications. The main contributions of
this paper are: (1) the design of abstractions for data valida-
tion in web applications for concise and uniform specification
of value well-formedness, data invariants, input assertions,
and action assertions, (2) the seamless integration of data val-
idation rules and user interface definitions, (3) an example
of the integration of models for multiple technical domains,
and (4) an application of compilation by normalization for
achieving a flexible and extensible implementation.

In the next section we give a brief introduction to Web-
DSL and the running example used in the rest of the paper.
Section 3 discusses validation features necessary for web
applications, namely value well-formedness, data invariants,
input assertions, and action assertions. Section 4 discusses the
inclusion of data validation in the WebDSL request lifecy-
cle. Section 5 describes the implementation of data validation
which is based on compilation by normalization. Section 6
evaluates the approach. Section 7 discusses related and future
work, and Sect. 8 concludes.

2 WebDSL

WebDSL [31] is a domain-specific language for the devel-
opment of web applications that integrates data models, user
interface models, user interface actions, styling, access con-
trol [12], and workflow [14]. While these different concerns
are supported by separate domain-specific sub-languages,
the static semantics of the language enforces the integrity of
the different concerns of an application model. What distin-
guishes WebDSL from web application frameworks in gen-
eral purpose languages [17,21,26] is static verification and
abstraction from accidental complexity (boilerplate code).
Compared to web modeling tools [4,19,23,29], WebDSL
combines high expressivity with good coverage (customiza-
tion options). The WebDSL compiler generates a complete
implementation in Java.

123



Integration of data validation and user interface concerns 37

Fig. 1 Value well-formedness for Email type

In this section, we give an overview of the features of Web-
DSL needed in this paper and introduce the running example
used to discuss data validation in this paper. We illustrate
the various categories of data validation with a small user
management application. The example application consists
of two data model entities, namely User and UserGroup
(Fig. 1). Data model definitions describe the persistent data
model in a WebDSL application. Data model entities con-
sist of properties with a name and a type. Types of proper-
ties are either value types (indicated by ::) or associations
to other entities defined in the data model. Value types are
basic data types such as String and Int, but also domain-
specific types such asEmail that carry additional functional-
ity. Associations are composite (the referer owns the object,
indicated by <>) or referential (the object may be shared,
indicated by ->). Associations can be to collections such as
Set or List, demonstrated by the members property of
the UserGroup entity.

Page definitions in WebDSL describe the web pages that
allow users to view and modify data model entities. Page
definitions consist of the name of the page, the names and
types of the objects passed as parameters, and a presentation
of the data contained in the parameter objects. For exam-
ple, the editUser(u:User) definition in Fig. 1 creates
a page for editing the properties of User u. WebDSL pro-
vides basic markup operators such as group and label
for defining the structure of a page. Navigation is realized
using the navigate element, which takes a link text and
a page with parameters as arguments. Furthermore, page
definitions can be reused by declaring them as template.
Templates can be included in page definitions by supply-
ing the associated parameters. In addition to presenting data
objects, pages can also modify objects. For example, the con-
tent of a User entity can be modified with the editUser
page. The page element input(u.username) declares
an appropriate form input element based on the type of its
argument; in this case a text field. A data modification is
finalized by means of an action, which can apply further
modifications to the objects involved. For example, in the
save action the changes to the User object are saved.

Changes to existing entities are automatically stored, new
entities need to be saved explicitly using the built-in save()
entity method. The return statement of an action is used
to realize page flow by specifying the page and its argu-
ments where the browser should be directed after finishing
the action.

In previous work we introduced the core components of
WebDSL—pages, entities and actions—and described their
implementation with transformations to the Seam Java frame-
work [31]. Data validation is identified as part of the web
application domain, but it is not addressed in the design. In
our work on access control [12] we analyze various access
control policies and show how to implement them in the Web-
DSL access control sub-language. Access control definitions
are implemented by transformation to the existing core lan-
guage. We have also examined workflow abstractions [14],
which are built on top of the core and access control lan-
guages. Since we encountered problems in the ‘translate to
existing framework’ approach [11], we changed to a custom
framework which matches WebDSL better. While data val-
idation can be encoded using checks in WebDSL actions,
the core language provides no mechanism for placing error
messages at the related components in pages. This requires
a change in the request processing lifecycle of the core lan-
guage. Furthermore, many validation constraints are express-
ible declaratively, associated with the data model.

3 Validation abstractions

Data validation is required in multiple contexts in web appli-
cations. In this section we distinguish four variants, show
how these are expressed in WebDSL using declarative data
validation rules, and how error messages are integrated in the
user interface.

3.1 Value well-formedness

Value well-formedness checks verify that a provided input
value conforms to the value type. In other words, the

123



38 D. M. Groenewegen, E. Visser

Fig. 2 Built-in validation customization

conversion of the input value from request parameter to an
instance of the actual type must succeed. This type of vali-
dation is usually provided by libraries or frameworks. How-
ever, it has to be declared explicitly, and possibly at each
input of a value of the type. In WebDSL, value well-form-
edness rules are checked automatically. WebDSL supports
types specific for the web domain, including Email, URL,
WikiText, and Image. Automatic value well-formedness
constraints for all value types provides decent input valida-
tion by default. Note that validation rules are only used for
input checks that require notification to the user. Checks and
filtering to prevent post-data tampering and javascript injec-
tion are taken care of by the input and output components
of WebDSL, such filtering should not have to be expressed
in an application’s validation rules. For example, in the case
of WikiText, there is only a validation for the (very large)
max length allowed, however, output(WikiText) fil-
ters HTML elements based on a restrictive whitelist after
processing Markdown. Furthermore, checks and messages
for built-in type validation can be customized in an appli-
cation. For example, Fig. 2 shows how the Int type
format check and message can be controlled in an appli-
cation.

The editUser page in Fig. 1 consists of a form with
labeled inputs for theUser properties. Thesave action per-
sists the changes to the database, provided that all validation
checks succeed. Since well-formedness validation checks are
automatically applied to properties, the email property is
validated against its well-formedness criteria. The result of
entering an invalid email address is shown in the screenshot:
a message is presented to the user and the action is not exe-
cuted.

3.2 Data invariants

Data invariants are constraints on the data model, i.e. restric-
tions on the properties of data model entities. These valida-
tion rules can check any type of property, such as a reference,
a collection, or a value type. By declaring validation in the
data model, the validation is reused for any input or opera-
tion on that data. In Ruby on Rails [26], data invariants can
be defined in a ‘validate’ method of the active record class,
which then gets called by the framework when validation
is required. Multiple checks in a validation method tangle
validation for different properties. The Seam [17] frame-
work supports the specification of data invariants declara-
tively through annotations. However, these annotations

consist of a limited number of built-in checks and an escape to
specify a custom class that handles validation for a property.
In the worst case each validation rule needs a separate class,
incurring the syntactic overhead of Java class declarations
several times.

Validation rules in WebDSL are of the form validate
(e,s) and consist of a Boolean expressione to be validated,
and a String expression s to be displayed as error message.
Any globally visible functions or data can be accessed as
well as any of the properties and functions in scope of the
validation rule context. In the examples in this paper, error
messages are placed inline for conciseness. In general, error
messages can also be placed inside a function or even be
stored in the database (as entity property), depending on the
requirements for configuration and internationalization of the
application.

Validation checks on the data model are performed when
a property on which data validation is specified is changed
and when the entity is saved or updated. Validation is con-
nected to properties either by adding the validation in the
property annotation or by referring to a property in the vali-
dation check. More specific validation checks are supported
which are only checked when the entity is in a certain state,
these are validatesave, which is checked when an entity
is saved for the first time, validateupdate, checked on
any update, and validatedelete, checked before delet-
ing the entity. The validation mechanism takes care of cor-
rectly presenting validation errors originating from the data
model. For form inputs causing data invariant violations the
message is placed at the input being processed. When data
model validation fails during the execution of an action, the
error is shown at the corresponding button.

Figure 3 presents an extended User entity with several
invariants and a password property. The username prop-
erty has the id annotation, which indicates the property is
unique and can be used to identify this entity type. The is-
Unique member function (a generated function that takes
into account the existence of an ‘id’ property) is called to
verify this constraint. The password property is annotated
with validation rules that express requirements for a stronger
password. By declaring validation rules in the entity, explicit
checks in the user interface can be avoided. Both the Web-
DSL page definition and the resulting web application page
are shown below the entity definition.

Figure 4 shows more advanced validation rules, which
express dependencies between the properties of an entity.
The UserGroup entity is extended with an owner refer-
ence, a moderators set, and a memberLimit value. The
editUserGroup page allows the owner to edit some of the
UserGroup properties. The validation rule on the moder-
ators set expresses that the owner should always be in this
set of moderators (similarly, the owner should always be a
member). The member set is constrained in size based on

123



Integration of data validation and user interface concerns 39

Fig. 3 Data invariants for User entity validation

Fig. 4 Data invariants for UserGroup entity validation

the memberLimit value. Validation rules that cover multi-
ple properties, such as the ‘owner in moderators’ check, are
performed for all input components of properties the valida-
tion is specified on. However, the checks can be added to a
single property as well, in order to specialize the error mes-
sage. This is illustrated by the member limit check, which
is added to the members properties. Note that although the

check is only attached to the members property, a form and
action that changes only memberLimit would still check
invariants for the whole entity before committing changes.
Duplication in checks can be avoided by putting checks in
predicates or functions. A predicate in WebDSL is a func-
tion that returns a Bool, its body a single expression that
produces the result value.

123



40 D. M. Groenewegen, E. Visser

Fig. 5 Form validation with input assertions

3.3 Input assertions

Input assertions are necessary when the validation rule tar-
gets an input that is not directly connected to the persisted
data model. These types of constraints are easy to address in
the form environment itself. For example, a validation check
in XForms [3] verifies properties of the entered form data.
The model in XForms, on which validation is specified, is a
model of the input data produced by the form. Unfortunately,
such form validation solutions are not integrated with valida-
tion on the application data model. For example, an input for
an entity produces the identifier as form data, in the XForms
model it is just text, but in the application data model it is an
entity reference.

Validation checks in WebDSL pages have access to all
variables in scope, including page variables and page argu-
ments. Since storing inputs happens before these validation
rules are checked (see Sect. 4), the placement and order of
validation rules does not influence the results of the checks.
Visualization of errors resulting from validation in forms are
placed at the location of the validation declaration. Usually
such a validation rule is connected to an input, which can be
expressed by placing the validation rule as a child element
of input.

The example in Fig. 5 demonstrates the final addition to
the user edit form, an extra password input field in which
the user must repeat the entered password. This validation
cannot be expressed as a data invariant, since the extra pass-
word field is not part of the User entity. Therefore, the rule
is expressed in the form directly, where it has access to the
page variablep. This variable contains the repeated password
whereas the first password entry is saved in the password field
of User entity u. When entering a different value in the sec-
ond field the validation error is presented, as can be seen in
the screenshot.

3.4 Action assertions

Action assertions are predicate checks at any point in the
execution of actions and functions for verification during the

processing of inputs. If such an assertion fails, the action
processing needs to be aborted, reverting any changes made,
and the validation message has to be presented in the user
interface. This type of validation is not directly supported in
existing solutions, requiring an investment in finding appro-
priate hooks in the implementation. For example, Ruby on
Rails [26] assumes validation is specified in data model clas-
ses, errors are passed through those model classes and the
form mechanism is built around that. There is no mecha-
nism for a validation check as part of a controller action, this
requires a low-level encoding that passes the check result and
error message, or wrapping validation in a data model class.

WebDSL supports this type of validation transparently
using thevalidate syntax. The errors resulting from action
assertion failures are displayed at the place the execution
originated, e.g. above the submit button which triggered the
erroneous action.

Figure 6 provides an example of an action assertion. On the
right is a page definition for a createGroup page which
allows creating new UserGroup entities. The constraint
expressed in the save action is that creating a new group
requires email notification to the specified owner (which
might not be the user executing this operation). The new-
GroupNotify email definition retrieves an email address
from its UserGroup argument (through ug.owner.
email) and tries to send a notification email to the owner
of the new group. When this fails, for instance because there
is no mail server responding to the email address, the call
returns false and the validation check produces the error. This
result is shown on the left in the screenshot.

Generic error handling, such as problems with a database
commit, can also be expressed using action assertions. The
web application can then display an error message in the form
instead of redirecting to a default error page.

3.5 Messages

This section has described assertions that report erroneous
behavior in actions. Related to such action assertions, is a
generic messaging mechanism for giving feedback about the

123



Integration of data validation and user interface concerns 41

Fig. 6 Action assertion for UserGroup creation

Fig. 7 Success message

correct execution of an action. This requires a place to show
messages, for instance by adding a default message template
at the top of each page. Furthermore, the message should be
declared in the action code. An example of such messaging
is shown in Fig. 7. The save action of the editUser page
gives a message to the page redirected to, namely user. The
result of the executed action is shown on the left.

4 Validation mechanics

We have found that data validation concerns are often del-
egated to a web application framework in web engineering
research, e.g. Struts for WebML [7] and Ruby on Rails for
HyperDe [23], assuming that the framework will provide
sufficient support. Examining such web frameworks (in our
case Seam [17], ASP.NET [21], and Ruby on Rails [26])
reveals limitations in the data validation solutions. For exam-
ple, validation is sometimes only supported in the view layer,
making it hard to access the database and the data that is
already loaded. Another issue can be that validation hooks are
only provided for single input components, ignoring valida-
tion between multiple inputs. Value well-formedness checks
might have to be repeated ad nauseam. The next problem
is getting the messages in the right place. Usually, this is
organized well for the directly supported validation features.
However, for more advanced cases like multi-input and data-
base access it becomes cumbersome, e.g. create an entire
class for a single validation check, and error-prone, e.g. hook
into the object-relational mapping (ORM) session. In the

worst case, messages will need to be passed explicitly and
message components need to be included in page defini-
tions that can retrieve and display those passed messages.
In the data validation solution we propose, these problems
are addressed. Validation checks have access to all inputs
and the ORM context. This section describes the integra-
tion of data validation into the request processing lifecycle,
which is needed for such flexibility. A request is processed in
five phases: convert request parameters, update model values,
validate forms, handle actions, and render page or redirect. A
database transaction is started for each request, this transac-
tion is rolled back when there are validation errors, otherwise
it is committed. The phases are illustrated in Fig. 8 and will
be covered separately.

4.1 Convert request parameters

Users interact with web applications through the browser.
This process consists of request and response strings being
exchanged between the web server and the browser. A form,
such as displayed in the example in Fig. 1, is defined by a
response string, which is interpreted by the browser to pro-
duce components that allow user interaction. A user can fill
in data in a text field, and press the submit button. The
browser first collects the data from the form input fields,
and constructs a request string to send to the web server,
which receives the request string and parses it. Values from
input fields can be accessed separately but are represented
as strings. A web application bears the responsibility of con-
verting these strings to actual types to be used in further

123



42 D. M. Groenewegen, E. Visser

Fig. 8 WebDSL request processing lifecycle

processing of the request. Since such conversions are com-
mon in web applications, they are typically directly supported
in frameworks. The supported types are the native types avail-
able in the language used to build the framework. WebDSL
extends the usual set of primitive types with domain-specific
types such as Email and Secret. Conversions from and
to strings for these types are supported in the language itself.

Request parameter conversion is not possible if the incom-
ing value is not well-formed. For example, a value of “3f”
cannot be converted to an integer. Since a failed conver-
sion invalidates any input it is not necessary to update the
model before re-rendering the page with error messages.
The Value Well-formedness Errors arrow indi-
cates this situation. In a page render resulting from validation
errors, input components that were submitted restore the sub-
mitted value instead of the original value. This allows a user
to fix the entered data.

Each input in a page definition includes a template that
renders the corresponding conversion error. This template
wraps around inputs and labeled inputs which allows explicit
indication of the erroneous input element. Validation mes-
sage templates can be overridden in the application model to
support flexibility in layout and style. A template definition
in WebDSL can contain the same elements as a page defini-
tion. An error rendering template takes as argument the list of
messages (a List<String>). The messages can be shown
in several ways, e.g. as items in a bullet list, or on new lines
below the input (as illustrated in Fig. 1). Error templates and
customization is discussed in more detail in Sect. 5.

4.2 Update model values

In the first phase, parameters are decoded from strings. In
the ‘Update Model Values’ phase, these parameters are auto-
matically inserted in data model entities. WebDSL supports
such data binding through input elements. For example,
the input(u.email) element declares that an input field
should be displayed with the current contents of the email
property of variable u of type User. Furthermore, when a
user submits the containing form with a new value in the
email field, the new value will be assigned to u.email. An

action finalizing this operation just needs to save the variable
u in order to persist the new email address.

4.3 Validate forms

The changes made through data binding have to be validated,
this is performed after data binding for the whole form is
completed. When an entity property is being validated, each
validation rule defined on that property is checked, possibly
producing multiple error messages. This can be observed in
the password property example in Fig. 3. Besides entity val-
idations, there can also be validation rules in pages which
need to be enforced; e.g. the repeat password check in Fig. 5.
The ‘Validate Forms’ phase traverses the form that is sub-
mitted and checks any validation it encounters. When at
least one validation fails during this phase, further process-
ing is disabled and errors are displayed, indicated by the
Data Invariant Errors and Input Assertion
Errors arrows.

Messages originating from entity validation are rendered
in the same way as the conversion error messages. The same
template is used, but now the argument contains validation
error messages originating from the data model. The screen-
shot in Fig. 3 shows this type of message. The validation
messages for page validations are displayed at the location
of the check in the form. If the validation is expressed in the
context of an input element, then the input will display the
error as if originating from a data model invariant (see Fig. 5).
If the validation check is not in the context of an input, it is
rendered in-place.

4.4 Handle actions

When all validation checks in previous phases have suc-
ceeded, the selected action is executed. During the execu-
tion of an action there can be action assertions that validate
the data in the current execution state of the action. More-
over, data invariants are still checked during this phase and
can produce validation errors as well. If any validation check
fails, the entire action is cancelled. This means all the
changes to the data model are reverted and rendering is initi-
ated (Data Invariant or Action Assertion

123



Integration of data validation and user interface concerns 43

Error arrow). Only one error can be produced at a time
since action processing will not continue when a validation
fails.

Error messages produced during the ‘Handle Actions’
phase are placed at the executed action button (Fig. 6). In
this case, the error template wraps around the action invok-
ing button instead of an input or label.

4.5 Render page or redirect

Validation messages produced in the previous phases result
in a re-render of the same page with error messages inserted.
If all validations succeed, the action results in a redirect to the
same or a different page, possibly sending messages along
which describe successful execution of the action (Mes-
sages arrow).

Success messages to other pages are handled by adding
an implicit argument to each page containing the list of mes-
sages. When an action is finished executing and initiates a
redirect or re-render, the messages are passed along. A dif-
ferent template is used for success messages, since these are
likely to use different colors than the templates for errors.
By default this template is added at the top of each page, but
the position can be customized as well by adding an explicit
messages component in a page.

4.6 Ajax

WebDSL also supports asynchronous page updates. Instead
of a full page refresh as response to an action, an action may
selectively replace elements of the page with new elements.
For example, a content-heavy page can have a small sidebar
containing a placeholder with a login button. The action con-
nected to this button can replace the placeholder with a login
form. When a validation rule fails in such a form, the entire
placeholder is replaced again, it will display the login form
with validation errors just as with the validation in earlier
examples in this paper. Automatically deriving more fine-
grained validation checks while entering data in the form is
not addressed in this paper.

5 Compilation by normalization

The implementation of data validation is based on compi-
lation by normalization [16]. Data validation language ele-
ments are transformed to more generic lower-level constructs
in the WebDSL language. These lower-level constructs are
reusable for other language features. Moreover, they can eas-
ily be tested in isolation, resulting in a robust implementa-
tion. Since these lower-level constructs are still at a higher
abstraction level than the code that is ultimately generated,
they greatly simplify the translation for the data validation

Fig. 9 Value well-formedness definition

abstraction. This section describes the implementation of val-
idation checks (Sect. 5.1), the visualization of generated error
messages (Sect. 5.2), and the mechanism for generic mes-
sages (Sect. 5.3).

5.1 Validation checks

This section provides a more detailed explanation of the
implementation of validation checks. The type of checks
introduced in Sect. 3 are discussed separately.

5.1.1 Value well-formedness

To implement or customize value well-formedness checks, a
hook is needed to add validation to value types. The WebDSL
definition type x { typeelem* } allows adding val-
idation to (built-in) value types. For instance, the definition
in Fig. 9 checks that a request parameter of type Int can be
successfully created from the incoming String (input is
a special variable in this context that refers to the incoming
request parameter String).

Figure 10 describes the semantics of these type valida-
tions using a transformation. The WebDSL code that does
the parameter conversion is shown on the left, converting
input (type String is added for clarity, it can be omitted
because WebDSL supports local type inference in variable
initializations) to inputX, where X is a value type. A value
well-formedness definition on the type (similar to what is
shown in Fig. 9) adds validation to type X. This results in
a transformation of the conversion code to include the val-
idation checks, before performing data binding (ref :=
inputX;). Validations on built-in value types are part of
the standard library, and custom value types can also take
advantage of automatic well-formedness checks for inputs
using the type definition.

Thevalidate function that is called is shown in Fig. 11.
The function checks the passed condition and throws an
exception with the message, contained in a Validation-
Exception entity. Where this exception is caught and how
errors are displayed is described later in this section. The
cancel() function is a built-in function for cancelling
changes made during request handling. More specifically,
after finishing the current phase, any changes due to data
binding or actions are reverted, and any phase between the
current and render phase is skipped.

123



44 D. M. Groenewegen, E. Visser

Fig. 10 Well-formedness checks transformation

Fig. 11 Validate utility definitions

Fig. 12 Property validation transformation

Fig. 13 Combine validations transformation

5.1.2 Data invariants

Figure 12 illustrates the implementation of data invariant
checks using transformations. These validations on entity
properties are checked at two places in the lifecycle. Firstly,
they are checked in the ‘Validate Forms’ phase. The transfor-
mation on input(e.x) adds the validation to each input of
entity property x. Secondly, they are checked for every entity
instance that is new or has changes at the end of an action.
This is handled by adding the validation checks to an entity
function hook, beforeCommit(), created specifically for
this purpose. The Object-Relational Mapping (ORM) library
is instructed to call this function for each ‘dirty’ object, before
committing the changes.

When multiple failed validation rules have to produce
messages, e.g. an input with multiple nested validations,

they are combined into a single call. This is illustrated in
Fig. 13. The call to validateMultiple will create mul-
tiple messages ([elem1,...,elemn] is a list construc-
tion expression in WebDSL), the utility function and entities
used for checking multiple validation rules at once are shown
in Fig. 14. TheValidation entity stores a validation result
and its message. ValidationExceptionMultiple
can be used to throw an exception with multiple messages. In
the validateMultiple function all checks are first per-
formed, then if any check failed, the messages of all failed
checks are put into the thrown exception.

5.1.3 Input assertions

Input assertions (validation checks in a form) call the util-
ity template definition in Fig. 15. The validate template

123



Integration of data validation and user interface concerns 45

Fig. 14 Multiple validate utility definitions

Fig. 15 Page validation utility template

consists of an executeValidate block, which contains
action code to be executed during the ‘Validate Forms’ phase
of request processing (see Sect. 4). In this block the vali-
date function is called, which was shown in Fig. 11.
A similar template is defined for validateMultiple.

5.1.4 Action assertions

Action checks call the utility validate function (Fig. 11)
directly, the cancel function and exception mechanics are
supported in this context as well. By reusing the validate
function for each type of data validation the consistency of
handling validation checks is enforced.

5.2 Reporting validation errors

Validation checks can produce error messages which have
to be presented to the user. Applications can have various
requirements for displaying such error messages, e.g. a spe-
cific style and the location of the error. The validation abstrac-
tion needs to cope with these requirements and should be
flexible enough to easily create customizations.

In order to visualize validation errors, inputs, labels, and
action buttons/links are wrapped in a validationCon-
text. This wrapping is illustrated in Fig. 16. The input
(x) is wrapped in a validationContext element,
which includes a reference to the error template that needs
to be used for displaying the error, in this case errorTem-
plate (shown in Fig. 17). This is further desugared to a
template call with two explicit template arguments, the error
template and the contents. This wrapping is done automati-
cally, but a validationContext can also be explicitly

added in an application in order to customize the error tem-
plate that is used in that specific context.

The validationContext template is shown in
Fig. 18. This template takes care of catching the thrown
exceptions and calling the error template. try-catch-
finally in the context of a template has the following
semantics: the try and finally body are handled in the
pre-render phases, if no exception is caught they are han-
dled in the render phase as well. If an exception is thrown in
one of the earlier phases, the entire construct will be ignored
from that point and in subsequent pre-render phases, and the
exception is reproduced at the same point during the ren-
der phase. In the render phase, the matching catch and
finally blocks are executed. In the catch block the
error template is called with the wrapped content. The tem-
plate callelements produces the elements that are children
elements in the template call (in this case content). The
default errorTemplate template can be redefined in an
application, this behavior is enabled by the allow-over-
ride modifier. Note that the error template can also be
customized for a specific case, using validationCon-
text directly, or in a whole template call context, shown
later in this section. The request-scoped variable vali-
dationContextCount keeps track of nesting. Request-
scoped variable variables are created at the beginning of the
request and cleaned up at the end of the request, and they
are accessible from anywhere in the application. The exe-
cuteRender block contains action code that is executed
during the render phase of the request processing lifecycle
(Sect. 4). validationContextCount counts the num-
ber of validationContext templates that have been
entered recursively. The validation message will be shown
at the outer validation context, when validationCon-
textCount == 1. This will make sure that inputs with
labels take the label as part of the erroneous content, and that
an explicit validationContext template call takes pre-
cedence over an automatically generated one. It also becomes
possible to place the error higher in the page element tree by
adding an explicit validationContext element, e.g. to
show errors above or below the form that encloses the input.

123



46 D. M. Groenewegen, E. Visser

Fig. 16 Validation feedback transformation

Fig. 17 Error template

Fig. 18 Validation context template

Fig. 19 Custom error context transformation

Customization of the error template can be done in an
entire template context to avoid repetitively calling the cus-
tom template. Fig. 19 shows a custom error template,
errorTemplateCustom, and a call to useValida-
tionError, which declares a new default error template
for the content. The implementation of this context is done
by generating a new uniquely named template and reusing
the dynamically scoped local template redefinitions of Web-
DSL to set errorTemplate for the content. Each call
to errorTemplate in the context of CustomValida-
tionContext1 calls the redefined version of error-
Template, which uses the custom error template to show

messages (errorTemplateCustom). The call to use-
ValidationError is transformed to a call to the gener-
ated template (customValidationContext in the
example). These error contexts can be used to allow a library
with layout to enforce a corresponding error layout, without
requiring the user of the library to set the error template.

5.3 Messages

Besides error messages we have also described generic mes-
sages. These messages are stored in a session entity (Fig. 20).
The messageStorage session entity has one property,

123



Integration of data validation and user interface concerns 47

Fig. 20 Storing and receiving messages

a list of String messages. Session entities in WebDSL behave
like singletons (one per browser session) that are automat-
ically stored in the server session, and retrieved upon the
next request. Since an action always results in a redirect (to
avoid accidental repeated ‘post’ requests), the messages can
be immediately retrieved and removed from the session when
rendering the next page. This approach avoids polluting the
URL with messages when redirecting. The message func-
tion is added for conveniently adding messages to the session
entity.

The display of these messages is illustrated in Fig. 20.
Since messages are stored in the session entity messageS-
torage, they need to be retrieved and removed so they will
not be shown again. They are taken from the session and put
into the request-scoped variable incomingMessages. A
call to the messages template is transformed to a call to
the default messageTemplate which retrieves the mes-
sages through the functiongetMessages(). This function
marks the messages as being shown, so they will not show up
at the top of the page, and returns the list of messages. Since
getMessages() can also be called directly the template
used for showing messages can be customized. Furthermore,
an application can override messageTemplate.

6 Evaluation

In order to assess the data validation abstraction presented
in this paper, we have performed two case studies in which
we analyzed the application of data validation in existing
applications written in WebDSL.

Goal and Research Questions Our goal in these case studies
is to analyze the coverage of the data validation abstraction,
to assess the conciseness of data validation definitions, and

to review the flexibility in presenting messages to the user.
Our research questions are the following:

RQ1 What is the coverage of the validation abstraction with
respect to the data validation requirements of the application?

RQ2 How concise are the data validation definitions?

RQ3 Is the default way of presenting errors acceptable, and
are the customization options sufficient?

6.1 Case study 1: Webdslorg

The Webdslorg application is used for the homepage of Web-
DSL.1 It is a wiki application that allows developers and
invited users to create a manual online, and to show news
related to WebDSL. The application contains wiki page ver-
sioning, page composition, user management, and access
control management. This application consists of around
1,800 lines of WebDSL code. These lines constitute 10 data
model entities, 27 pages, 70 templates, and 30 actions. Web-
dslorg is open source.2

The main data validation requirements in this application
occur in the create and edit user forms, the login form, and
the create and edit page forms. To address RQ1 we first look
at the usage of data validation in the application. The results
are shown in Fig. 21. There are 30 input components in the
application, each input validates well-formedness implicitly.
8 data invariants are used, checking, e.g. uniqueness and exis-
tence of properties (‘not null’ checks). The other types of data
validation do not occur frequently, there are 3 input assertions
and 2 action assertions.

1 http://webdsl.org.
2 http://svn.strategoxt.org/repos/WebDSL/webdslorg/trunk/.

123

http://webdsl.org
http://svn.strategoxt.org/repos/WebDSL/webdslorg/trunk/


48 D. M. Groenewegen, E. Visser

Fig. 21 webdsl.org data validation

In the wikipage editing template there is a check to verify
that the version being edited is still the latest version of that
wikipage, and if not, the user is warned and the newer tem-
plate is shown before finalizing the edit. This kind of warning
behavior is not in the data validation abstraction and a work-
around is created here using generic messages and action
assertions. For the other data validation requirements the data
validation abstraction is sufficient.

For RQ2 we look at the expressions used in data validation
checks. In 9 out of 13 cases the check is a simple comparison,
in the other 4 cases a function is called which decides the val-
idation outcome. These functions are, e.g. querying the data-
base for uniqueness. Also the warning behavior mentioned
requires a function to encode a workaround.

For RQ3 we determine how much error message custom-
ization is applied in Webdslorg. In this application there is a
global override of the error and success messages. Since all
the forms have a consistent layout, the error messages can
also be displayed in one consistent way.

6.2 Case study 2: Researchr

Researchr3 is a tool for indexing, managing, and sharing
bibliographic information of scientific publications. An
important feature of Researchr is the identification of authors,
editors, and advisors. Other features include:

– Author profiles with publications, affiliations, reviews
– Theses with advisors
– Indexing of proceedings and journals

Basic bibliography information can be further enriched by:

– Tagging: categorize publications with keywords
– Reviewing: private or public reviews of publications
– Bibliographies: collect publications on a subject
– Usergroups: share bibliographies

Researchr consists of around 15,000 lines of WebDSL code,
which constitute 50 data model entities, 100 pages, 600 tem-
plates, and 190 actions.

To address RQ1 we look at the application of data valida-
tion in Researchr. The results are shown in Fig. 22.
Researchr contains 160 input fields which all get implicit
value well-formedness checks. There are 20 data invariants,
which enforce uniqueness of identifying properties and some
multi-property constraints. Five input assertions cover cases

3 http://researchr.org.

Fig. 22 researchr.org data validation

similar to the ‘repeat password’ check in Fig. 5. Finally, there
are 14 action assertions. Several complex operations in
Researchr are related to conversion of imported data from
DBLP4 and from bibtex entries, these benefit from having
action assertions to notify the user of problems occuring in
the import and to prevent importing incorrect data.

Similar to what we found in case study 1 for RQ2, the
checks in Researchr are mostly simple comparisons and a few
more complex checks encapsulated in function definitions.

Researchr has several layouts for forms, some are placed
in the main part of the page, others are small and located
in a sidebar. This requires customization of error messages
specific to these contexts (RQ3). The error messages for nor-
mal forms are customized by redefining the global template
for error messages. The sidebar is nested in a useValida-
tionError call (see Fig. 19), in order to specify a different
error template in that entire context.

7 Discussion

This section contains a discussion of related work, covering
web modeling tools (Sect. 7.1), web application frameworks
(Sect. 7.2), and form replacements (Sect. 7.3). This is fol-
lowed by a discussion of future work (Sect. 7.4).

7.1 Web modeling tools

Several model-driven methodologies for creating web appli-
cations have been proposed in recent years, including
OOHDM [28], SHDM [20], WebML [7], UWE [18], OOWS
[25], and Hera [30]. WebDSL goes beyond being a method-
ology for designing web applications and providing a path
to actual implementation by leveraging full code generation.
The transformation from problem space to solution space
is completely automated. In this paragraph we discuss how
these methodologies and their tools relate to WebDSL in gen-
eral, and data validation integration in particular.

The Hera Presentation Generator [10] allows modeling
forms to support editing data in the session. The persisted
domain data of the application cannot be changed. Hera-
S [29] also incorporates persisting form input data through
update queries. The only example in the paper of such an
update shows incrementing a view counter, a simple
operation that does not process form input data. Kraus

4 http://dblp.uni-trier.de.

123

http://researchr.org
http://dblp.uni-trier.de


Integration of data validation and user interface concerns 49

Fig. 23 JSF request processing lifecycle

et al. [19] present the generation of partial web applications
from UWE models. An application skeleton is generated
including JSP pages and navigation between them. Forms
and input data are not discussed, which probably means it is
part of the custom code. HyperDe [23] is a tool that allows
online creation of web applications designed with the SHDM
method. The paper shows an example of an input field for a
person’s email address. This involves manual construction
of data binding (showing the email and reading it from the
submitted data) and does not indicate how validation of that
input can be performed. WebRatio [4] is a tool for generating
web applications based on the WebML method. The concep-
tual WebML models do not model data validation concerns,
while WebRatio does have form validation features. These
can be directly mapped to validation features in the underly-
ing Struts [5] framework. Validation which goes beyond the
form, such as querying the database, has to be implemented
in a Struts validator class. This implementation requires intri-
cate knowledge of the translation process and implementa-
tion platform.

Book et al. [2] describe a formal model for user input
evaluation and interface responses. Rules define validity, vis-
ibility, and availability of user interface widgets. Technical
validation rules in their model correspond to value well-form-
edness rules, automatic checks based on the type of the input.
Data model validation is similar to input assertions in this
paper, validations related to specific inputs in forms. Only
variables of primitive types are included in the model, so
there is no clear connection to validation on data model enti-
ties. Their model does include intermediate validation of data
while entering the form, e.g. validating when an input loses
focus. Validation rules are constructed in a visual expression
editor and execution is interpreted at run-time. The imple-
mentation of this model is part of the Cepheus framework.

From our study of the web modeling literature we con-
clude that data validation is not a large research theme in this
area. The languages and tools typically only address simple
form validation, without accessing the persisted data model.

7.2 Web application frameworks

JavaServer Faces (JSF) [6] provides abstractions for creat-
ing user interfaces in Java web applications. The core of the
request processing lifecycle in JSF (without events and short-
circuiting) is illustrated in Fig. 23. The lifecycle is critically

different at one point compared to the WebDSL lifecycle
shown in Sect. 4, the ‘Process Validations’ phase occurs
before updating of model values. Since the connection to
the model has not been made at the point of validation, these
validation rules only support checks based on the input value.
Expressing validation rules covering multiple input fields is
cumbersome as it requires that each relevant input has been
processed (this validation needs to be expressed below the
inputs in the page component structure) and requires access-
ing the components with identifiers.

The Seam framework [17] combines JSF with the Java
Persistence API (JPA) [9]/Hibernate [1] for data model per-
sistence. Because the data model is not updated before pro-
cessing validations, validation constraints cannot be
expressed on the data model (e.g. the member limit validation
in Fig. 4). It is necessary to encode these kinds of constraints
as part of the ‘Invoke Application’ phase (Fig. 23), in which
the ‘business logic’ of the application is executed. Unfortu-
nately, in the Seam framework the ‘Update Model Values’
phase also results in database updates. The database transac-
tion has to be explicitly aborted in case the validation check
fails at the ‘Invoke Application’ phase, and the old values
have to be restored before rendering the response. Further-
more, placing error messages at this point in the lifecycle
requires referring to explicitly named JSF page components.
Keeping such names in sync is hard to maintain.

ASP.NET [21] provides form input validation controls
which are executed at the client and the server. There are
several built-in validation controls, such as required field
and regular expression. Moreover, developers can create cus-
tom validation controls to provide code for validating the
input (client-side is optional). These form controls are simi-
lar to the validation support in JSF, also not taking data mod-
els into account. Visual Studio provides a visual designer
to create data models and generate classes with database
mappings to be used with the Language-Integrated Query
(LINQ) [22] feature in .NET. These generated classes allow
validation to be expressed on the data model through prede-
fined method names, such asOnFieldChanging and On-
Validate, which can be implemented in partial classes. An
issue is that validation is not defined in the same place as the
entity, and has to be synchronized with the generated classes.
The implemented function has to throw a specific exception,
which needs to be caught in the page code and requires cus-
tom code to display the error message. Consequently, form

123



50 D. M. Groenewegen, E. Visser

validation and data model validation are supported by incon-
sistent mechanisms in this framework. Both mechanisms
have limited access to the rest of the application.

In Ruby on Rails [26] validation can be specified in Active
Record objects, which constitute data model entities. The
implementation consists of defining functions with specific
names, such as validate and validate_on_create,
which are the hooks for validation. These functions get called
when an object is saved. Defining such functions is more
verbose than the validation rules in WebDSL and there is no
static verification of the validation check. Built-in validation
checks can be declared more concisely, leveraging the fertile
ground of Ruby for embedded DSLs [8]. Nevertheless, this
introduces two notations for the same concept. Value well-
formedness checks, such as checking whether an input is a
number, are typically built-in checks. These are not added
automatically. Displaying errors for data model validation
checks also has to be done manually by adding error mes-
sage components to pages, which refer to an entity property
or the entity as a whole. Form validation related to values
not in the data model can be validated in the action handling
code, and the message can be added by explicitly placing it in
the page template and connecting it by name. Generic errors
and messages are handled similarly.

What can be observed in the various existing web frame-
work solutions for validation is that the different types of
validation are addressed with separate mechanisms. Further-
more, there is no automatic way of placing messages in pages
for each of the validation types, often one type is preferred
over the others.

7.3 Form replacements

The XForms [3] standard is a successor to HTML forms.
XForms separates the classical form into model, instance
data, and user interface to allow better reuse. It provides a
rich standard for interactive forms, which improves device-
independence and reduces the need for scripting. Values are
strongly typed, which allows automatic well-formedness
checks. Furthermore, XForms supports validation rules to
constrain the value space of data values collected by the
model. While the standardization of an improved form com-
ponent is a positive development, the features proposed are
already available as Javascript libraries. It does not solve the
integration problems with user interface and data validation,
since only part of the validation concerns can be addressed
in the environment of the form.

7.4 Future work

In this paper, we have not considered intermediate validation
checks. Validation could be requested from the server for
each input component separately, while the user is entering

data into a form. In the examples shown, validation is per-
formed when the save button is pressed. Providing feedback
as early as possible can improve the user experience.

Checks are currently always performed on the server.
Implementing checks client-side could be considered an opti-
mization and does not obviate the need for server-side checks,
since submitted data can be tampered with. Moreover, checks
that require access to the database can only be performed at
the server.

Besides strict validation errors which deny the operation,
there are also softer constraints involved in developing a web
application. The validation mechanism could be extended to
include warnings and confirmations, e.g. require the user to
click again to finalize an action. Furthermore, information
messages could be added to assist the user in repairing typi-
cal mistakes, e.g. when the user repeats an error a few times,
show extra information to help the user fill in the form.

Some data invariants can be translated to database schema
constraints. Adding these to the underlying database schema
will improve robustness of the application. For example, it
will protect the programmer from certain errors when migrat-
ing old data to a new version of the application.

The current validation model focuses on verifying that
the data satisfies a set of constraints. Actions that break these
constraints are forbidden and result in an error message. An
alternative approach would be to solve constraints automat-
ically [15] and repair data so that it complies with the con-
straints or to suggest such repairs to the user.

In this paper, we focus on how and where to express data
validation. The checks consist of arbitrary expressions such
as simple comparisons, collection membership tests, or func-
tion calls. Since most inputs in web application forms are
strings, expressivity could be increased by incorporating a
domain-specific language for string constraints. Scaffidi et
al. [27] demonstrate that parsing technology can provide rich
string input validation and feedback.

8 Conclusion

The domain-specific language engineering challenge for the
web application domain [31] is to realize a concise,
high-level, declarative language for the definition of web
applications in which the various concerns are supported
by specialized sub-languages, yet linguistically integrated,
and from which implementations can be derived automati-
cally. This paper presents a solution for the integration of
data validation, a vital component of web applications, into
a web application DSL that includes data models, user inter-
faces, and actions. This solution unifies syntax, mechanisms
for error handling, and semantics for data validation checks
covering value well-formedness, data invariants, input asser-
tions, and action assertions. Our approach improves over

123



Integration of data validation and user interface concerns 51

current web modeling tools by providing declarative data
validation rules from which a complete implementation is
generated. Unlike web application frameworks, our solu-
tion supports different kinds of data validation uniformly.
The integration of data validation rules into WebDSL, a web
application DSL that supports data models, user interfaces,
and actions, allows web application developers to take a truly
model-driven approach to the design of web applications,
concentrating on the logical design of an application rather
than the accidental complexity of low-level implementation
techniques.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Bauer, C., King, G. (eds.): Java Persistence with Hibernate. Man-
ning Publications Co., Greenwich (2006)

2. Book, M., Brückmann, T., Gruhn, V., Hülder, M.: Specification
and control of interface responses to user input in rich internet
applications. In: ASE ’09: Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering,
pp. 321–331. IEEE Computer Society, Washington, DC (2009)

3. Boyer, J.M. (ed.): XForms 1.0, 3rd edn. W3C Recommendation
(2007)

4. Brambilla, M., Comai, S., Fraternali, P., Matera, M.: Designing
web applications with WebML and WebRatio. Web Eng Model
Implement Web Appl. 221–260 (2007)

5. Brown, D., Davis, C., Stanlick, S. (eds.): Struts 2 in Action. Man-
ning Publ. Co., (2008)

6. Burns, E., Kitain, R. (eds.): JavaServer Faces Specification. Version
1.2. Sun, (2006)

7. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (Web-
ML): a modeling language for designing Web sites. Comput.
Netw. 33(1–6), 137–157 (2000)

8. Cuadrado, J., Molina, J.: Building domain-specific languages for
model-driven development. IEEE Softw. 48–55 (2007)

9. DeMichiel, L., Keith, M. (eds.): JSR 220: Enterprise JavaBeans,
Version 3.0. Java Persistence API. Sun Microsystems (2006)

10. Frasincar, F., Houben, G., Barna, P.: HPG: the Hera Presentation
Generator. J. Web Eng. 5(2), 175 (2006)

11. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.: When
frameworks let you down. platform-imposed constraints on the
design and evolution of domain-specific languages. In: Gray, J.,
et al. (eds.) Domain Specific Modelling (DSM’08), pp. 64–66
(2008)

12. Groenewegen, D.M., Visser, E.: Declarative access control for
WebDSL: Combining language integration and separation of con-
cerns. In: Schwabe, D., Curbera, F. (eds.) International Conference
on Web Engineering (ICWE’08), pp. 175–188 (2008)

13. Groenewegen, D.M., Visser, E.: Integration of data validation
and user interface concerns in a DSL for web applications. In:
van den Brand, M., Gray, J. (eds.) Software Language Engineer-
ing, Second International Conference, SLE 2009, Denver, USA,

October, 2009. Revised Selected Short Papers, Lecture Notes in
Computer Science. Springer, Berlin (2009)

14. Hemel, Z., Verhaaf, R., Visser, E.: WebWorkFlow: an object-ori-
ented workflow modeling language for web applications. In: Czar-
necki, K., et al. (eds.) Proceedings of the 11th International Con-
ference on Model Driven Engineering Languages and Systems
(MODELS 2008). LNCS, vol. 5301, pp. 113–127. Springer, Berlin
(2008)

15. Järvi, J., Marcus, M., Parent, S., Freeman, J., Smith, J.N.: Prop-
erty models: from incidental algorithms to reusable components.
In: GPCE, pp. 89–98 (2008)

16. Kats, L.C.L., Bravenboer, M., Visser, E.: Mixing source and byte-
code. A case for compilation by normalization. In: Kiczales,
G., (Ed.) Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA 2008), pp. 91–108. ACM Press, New York
(2008)

17. Kittoli, S. (ed.): Seam - Contextual Components. A Framework for
Enterprise Java. LLC , Red Hat Middleware (2008)

18. Koch, N., Kraus, A., Hennicker, R.: The authoring process of the
UML-based web engineering approach. In: Web-Oriented Soft-
ware Technology (2001)

19. Kraus, A., Knapp, A., Koch, N.: Model-driven generation of web
applications in UWE. In: Model-Driven Web Engineering (MDWE
2007), Como, Italy (July 2007)

20. Lima, F., Schwabe, D.: Application modeling for the semantic web.
In: Latin American Web Congress (LA-WEB’03), p. 93. IEEE
Computer Society, Washington, DC, USA (2003)

21. MacDonald, M., Szpuszta, M.: Pro ASP. NET 3.5 in C# 2008.
Apress (2007)

22. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object,
relations and XML in the .NET framework. In: Management of
Data, pp. 706–706 (2006)

23. Nunes, D., Schwabe, D.: Rapid prototyping of web applications
combining domain specific languages and model driven design.
In: International Conference on Web Engineering (ICWE’06),
pp. 153–160 (2006)

24. Object Constraint Language, OMG Available Specification, Ver-
sion 2.0 (2006)

25. Pastor, O., Fons, J., Pelechano, V.: OOWS: A method to develop
web applications from web-oriented conceptual models. In: Web
Oriented Software Technology (IWWOST’03), pp. 65–70 (2003)

26. Ruby, S., Thomas, D., Heinemeier Hansson, D.: Agile Web Devel-
opment with Rails, 3rd edn. Pragmatic Programmers, Raleigh
(2009)

27. Scaffidi, C., Myers, B.A., Shaw, M.: Topes: reusable abstractions
for validating data. In: ICSE’08, pp. 1–10 (2008)

28. Schwabe, D., Rossi, G., Barbosa, S.: Systematic hypermedia appli-
cation design with OOHDM. In: Proceedings of the Seventh ACM
Conference on Hypertext, pp. 116–128. ACM Press, New York
(1996)

29. van der Sluijs, K., Houben, G., Broekstra, J., Casteleyn, S.:
Hera-S: web design using sesame. In: International Conference
on Web Engineering (ICWE’06), pp. 337–344 (2006)

30. Vdovjak, R., Frasincar, F., Houben, G., Barna, P.: Engineering
semantic web information systems in hera. J Web Eng 2, 3–
26 (2003)

31. Visser, E.: WebDSL: a case study in domain-specific language engi-
neering. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and
transformational techniques in software engineering (GTTSE’07).
In: LNCS, vol. 5235, pp. 291–373. Springer, Berlin (2008)

32. Visser, E., et al.: WebDSL. http://webdsl.org (2007–2009)

123

http://webdsl.org


52 D. M. Groenewegen, E. Visser

Author Biographies

Danny M. Groenewegen is a
PhD student at Delft Univer-
sity of Technology, where he
works on abstractions for the web
domain and their implementation
as domain-specific languages and
code generators. He is the main
developer of the Java back-end
of WebDSL and he designed and
implemented the access control
and data validation sublanguages
of WebDSL.

Eelco Visser is associate pro-
fessor at Delft University of
Technology. He received a mas-
ters and doctorate in computer
science from the University
of Amsterdam in 1993 and
1997, respectively. Previously he
served as a postdoc at the Oregon
Graduate Institute, and as assis-
tant professor at Utrecht Univer-
sity. He is member of the ACM

(SIGPLAN) and the IEEE Computer Society. His research interests
include software language engineering, domain-specific languages,
model-driven engineering, program transformation, software deploy-
ment, interaction design, and digital libraries. With his students he has
designed and implemented the Spoofax language workbench, as well as
many domain-specific languages, including DSLs for syntax definition
(SDF), program transformation (Stratego), software deployment (Nix),
web application development (WebDSL), and mobile phone applica-
tions (mobl). He is the main developer of the researchr bibliography
management system.

123


	Integration of data validation and user interface concerns in a DSL for web applications
	Abstract
	1 Introduction
	2 WebDSL
	3 Validation abstractions
	3.1 Value well-formedness
	3.2 Data invariants
	3.3 Input assertions
	3.4 Action assertions
	3.5 Messages

	4 Validation mechanics
	4.1 Convert request parameters
	4.2 Update model values
	4.3 Validate forms
	4.4 Handle actions
	4.5 Render page or redirect
	4.6 Ajax

	5 Compilation by normalization
	5.1 Validation checks
	5.1.1 Value well-formedness
	5.1.2 Data invariants
	5.1.3 Input assertions
	5.1.4 Action assertions

	5.2 Reporting validation errors
	5.3 Messages

	6 Evaluation
	6.1 Case study 1: Webdslorg
	6.2 Case study 2: Researchr

	7 Discussion
	7.1 Web modeling tools
	7.2 Web application frameworks
	7.3 Form replacements
	7.4 Future work

	8 Conclusion
	References


