
Softw Syst Model (2011) 10:515–536
DOI 10.1007/s10270-010-0160-1

REGULAR PAPER

An executable object-oriented semantics and its application
to firewall verification

Kenro Yatake · Takuya Katayama

Received: 31 July 2008 / Revised: 4 March 2010 / Accepted: 5 March 2010 / Published online: 1 April 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract This paper presents a formal executable semantics
of object-oriented models. We made it possible to con-
duct both simulation and theorem proving on the seman-
tics by implementing it within the expressive intersection
of the functional programming language ML and the theo-
rem prover HOL. In this paper, we present the definition and
implementation of the semantics. We also present a prototype
verification tool ObjectLogic which supports simulation and
theorem proving on the semantics. As a case study, we show
the verification of a practical firewall system.

Keywords Object-Oriented · Theorem proving ·
Simulation · HOL · ML

1 Introduction

As our society has become more dependent on information
systems, it has become more important to ensure the correct-
ness and the validity of those systems. Especially, there is a
growing need for the verification on the analysis level of the
development. This is because the errors found in the analysis
stage are cheaper to correct than those found in the implemen-
tation stage. Verification on the analysis level allows early
detection of bugs and, as a result, reduces the total cost of
development.
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Among many verification methods, we focus on theorem
proving. The prominent feature of theorem proving is the
induction by which we can prove the correctness of sys-
tem behavior exhaustively for arbitrary inputs. In order to
apply theorem proving to the analysis models such as unified
modeling language (UML) [17], we need to implement a for-
mal semantics of object-oriented (OO) models in theorem
provers.

We consider that the semantics should be executable. This
is because the executable semantics allows us to conduct not
only theorem proving but also simulation. The advantage of
simulation is that it allows us to identify the result of system
execution at a glance. This is especially useful for finding
trivial bugs in the early stage of model construction. By con-
ducting simulation in advance of the thorough verification by
theorem proving, we can reduce the total cost of verification.
In fact, the combination of theorem proving and simulation
has been successfully used in ACL2 [10] for the verification
of both hardware and software [2,13,18,26].

In this paper, we present an executable semantics of
OO models. In order to make it efficiently executable,
we implemented the semantics not only in the theorem
prover HOL [22], but also in the functional programming
language ML [14]. To keep the consistency between the
two semantics, we implemented it within the intersection
of the expressive powers of HOL and ML. It is known
that HOL and ML have similar type systems and there
exists an intersection between them. Specifically, they have
recursive datatypes and recursive functions (primitive recur-
sion and well-founded recursion) in common [4,20]. By
implementing the semantics within this intersection, we
made it possible to conduct both simulation and theorem
proving in the same semantics. The internal representa-
tion of the semantics is a heap memory structure to store
objects. In ML, it is used as a runtime environment for
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simulation. In HOL, the axiomatic semantics is derived from
its definition.

We also present a prototype verification tool ObjectLogic
which supports both simulation and theorem proving based
on the semantics. It allows us to define models in a Java-like
language and automatically generates ML executables for
simulation and HOL proof obligations for theorem proving.
As a case study, we show the verification of a practical fire-
wall system and discuss the effectiveness.

This paper is organized as follows. Section 2 introduces
the preliminaries of HOL. Section 3 explains the definition
and implementation of the semantics. Section 4 introduces
ObjectLogic. Section 5 presents the verification of a firewall
system. Section 6 discusses the effectiveness of the seman-
tics. Section 7 cites related work. Section 8 gives a conclu-
sion. Appendix A lists the list of theorems in the semantics.
Appendix B presents the syntax of the modeling language
used in ObjectLogic.

2 HOL preliminaries

The HOL system is a theorem prover of higher-order logic
which is implemented in Moscow ML. In this section, we
briefly explain the notation of HOL used in this paper.

The major types and logical operations are summarized
in Table 1. The type bool has the constants T and F for true
and false. Natural numbers and integers are represented by
0, 1, 2 (negative integers are represented by ˜1 and ˜2).
Strings are represented with double quotations like "abc".
Pairs are represented by parentheses and commas like(T,5)
and (1,2,"xyz") (abbrev. for (1,(2,"xyz"))). They
are deconstructed by the functions FST:’a#’b->’a and
SND:’a#’b->’b. They return the first and second element
in a pair, respectively. The types ’a and ’b represent type
variables. Lists are constructed by the infix operator _::_
from the empty list [] like 1::2::3::[] (also repre-
sented as [1;2;3]). Lists are deconstructed by the func-
tionsHD:’a list->’a andTL:’a list->’a list.
The function HD returns the first element in the list, while the

Table 1 HOL notations

Operators Meaning Types Meaning

∼ ¬ bool Boolean

/\ ∧ num Natural numbers

\/ ∨ int Integers

==> ⇒ string Strings

! ∀ _#_ Pairs

? ∃ _ list Lists

\ λ _->_ Functions

function TL returns the list excluding the first element. As
for the proof, an expression of type bool can be set to the
proof goal. For example, we can set the following expression
to the goal:

!P Q R. (P \/ Q ==> R) ==> (P ==> R) /\ (Q ==> R)

The proof is done interactively using tactics which are the
commands (ML functions) to simplify the goal. This expres-
sion can be proved by the tacticSIMP_TAC bool_ss [].
The tactic SIMP_TAC ss L simplifies the goal with the
simplifier set ss and the theorems given in the list L. This
goal is proved only with the simplifier set bool_ss (a set
of theorems concerned with Boolean) without giving further
theorems. HOL has a lot other tactics. If the expression is
proved, it becomes a theorem which is denoted with “|-" as
follows:

|- !P Q R. (P \/ Q ==> R) ==> (P ==> R) \/ (Q ==> R)

Once a theorem is proved, it can be used for the next proof,
e.g., by putting it into the list L of SIMP_TAC.

Definitions are a kind of theorems. They have the form of
equation whose left-hand side is a new constant. For exam-
ple, the function MAX, which returns the bigger value from a
pair of natural numbers, is defined by the following theorem:

|- !x y. MAX (x,y) = if x >= y then x else y

Definitions are directly introduced to HOL without proof.
Generally, we should avoid introducing theorems to HOL
without proof because it might cause inconsistency. But, def-
initions are safe because they are always introduced as a form
of an equation whose left-hand-side is a new constant.

3 The OO semantics

In this section, we present the OO semantics. We first explain
the design policy of the semantics. Then, we present the over-
view of the semantics in HOL and ML with an example. Then,
we present the formal definition. Finally, we briefly explain
its implementation.

3.1 Design policy

Besides executability, the design policy of the semantics is
summarized as follows. First, our semantics is implemented
to serve as the semantics of OO analysis models. It supports
the concepts such as classes, attributes, single inheritance,
object subtyping, and references. So, it can be used as the
semantics of, for example, UML class diagrams. The notable
feature of our semantics is that it can accommodate arbitrary
HOL types (with no type variables) for the types of object
attributes. This feature is helpful on the analysis level because
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Fig. 1 The semantics generator

we can abstract the model with various types such as list, set
and stack, etc. To realize this feature, we made the semantics
application-specific. Specifically, we automatically generate
the semantics depending on the specific types in the target
system. For example, if the target system defines a class with
three attributes of type num, bool, and string, we repre-
sent the objects by the product type num#bool#string.
Another option would be to use extensible record types [5,
15], but we kept the implementation simple by using only the
product type. The object subtyping and references are real-
ized by putting those products in a heap memory structure.

Second, it is shallowly embedded, i.e., the concepts such as
classes, attributes, and inheritance are represented directly by
types and constants in HOL. This is because our verification
target is each instance of OO models. Shallow embedding
facilitates the proof on the instance level compared to deep
embedding [16]. It also has the effect of making the semantics
simple because all the typing information is directly repre-
sented by the type system of HOL, that is, there is no need to
additionally include the typing constraints into the semantics.

Finally, it is constructed conservatively by definitional
extension. It is the standard way of constructing sound the-
ories in HOL where new theories are derived from existing
sound theories by only allowing introduction of definition
and derivation by sound inference rules. This is in contrast
to axiomatical theory construction where axioms are directly
introduced in the theory, which often makes the theory incon-
sistent. We derived the semantics from the definition of the
heap memory structure which is constructed by existing the-
ories such as lists and pairs. This guarantees the soundness
of the semantics.

3.2 Overview

As we explained, the semantics is defined depending on the
specific types in the target system. As shown in Fig. 1, we
implemented a semantics generator which inputs a class
model and outputs its semantics both in ML and HOL. The
class model defines the static structure of a system such as
classes, attributes, and inheritance. All the types are defined
in this model. Figure 1 shows an example class model declar-
ing four classes fig, rect, crect, and circ which

represent figures, rectangles, colored-rectangles, and circles,
respectively. It is defined in a text file, but here we show it as
a diagram for readability. It is fed to the semantics generator
and the semantics is constructed automatically.

3.2.1 The semantics in HOL

In HOL, the semantics is implemented as a theory which is a
module containing types, constants, operators, and axioms.
It is automatically derived by the semantics generator from
the underlying heap memory structure of the target system.

The theory elements are introduced corresponding to the
class model elements. In the case of the example, the follow-
ing types are introduced to the theory:

store, fig, rect, crect, circ

The type store plays a central part in the theory. It repre-
sents the environment which holds all alive objects in the sys-
tem and has the constant emp representing an empty store.
The other types are the types of object references for the
four classes. Each of them has a constant representing null
reference: fig_null, rect_null, crect_null and
circ_null, respectively.

Some of the operators introduced in the theory are

fig_new : store -> fig # store
fig_ex : fig -> store -> bool
fig_get_x : fig -> store -> num
fig_set_x : fig -> num -> store -> store
rect_cast_fig : rect -> store -> fig
fig_is_rect : fig -> store -> bool
rect_is_rect : rect -> store -> bool

The operator fig_new is a function to create a new fig
object in the store. It takes a store as an argument and returns
a pair of a newly created object and the store after the crea-
tion. The operatorfig_ex is a predicate to test the existence
of a fig object. It takes a fig object and a store and returns
true if the object exists (not null) in the store. The relation-
ship between these operators is specified by the following
theorem (derived from two axioms):

|- !s. let (f,s’) = fig_new s in fig_ex f s’

It means “The newly created fig object exists in the store
after the creation.”
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The operators fig_get_x and fig_set_x are func-
tions to read and write the attribute x of the class fig. The
operator fig_get_x takes a fig object and a store and
returns the current value of the attribute x. The operator
fig_set_x takes a fig object, a natural number value
and a store and returns the store after updating the attribute
x to the value. The relationship between these operators is
specified by the following axiom:
|- !f v s. fig_ex f s ==> (fig_get_x f
(fig_set_x f v s) = v)

It means “If the fig object exists in the store, the value
of the attribute x obtained just after updating it to v is equal
to v."

The operator rect_cast_fig is a function to cast a
fig object upward from rect to fig. It takes a rect
object and a store and returns a fig reference to the object.
The operator fig_is_rect is an “instance-of” operator
to test if a fig object is an instance of the class rect. It
takes a fig object and a store and returns true if the fig
object was created from the class rect. Likewise, the oper-
ator rect_is_rect tests if a rect object is an instance
of the class rect. After an object is created, its “apparent”
types can be changed by cast operators, but the instance-of
operator remembers the “actual” type of the object. The fol-
lowing axiom illustrates this:

|- !r s. rect_is_rect r s ==> fig_is_rect
(rect_cast_fig r s) s

It means “If a rect object is an instance of the rect
class, it is still the instance of the rect class even if it is cast
to the fig class.”

3.2.2 The semantics in ML

In ML, the semantics is implemented as a structure (module
unit). Its signature (module interface) provides types, con-
stants, and operators of the same names as those in the seman-
tics in HOL likefig_new,fig_set_x andfig_get_x.
These operators, in turn, can be actually executed as ML func-
tions. Figure 2 shows their execution in the ML interpreter.
First, we apply the operator fig_new to the empty store
emp. This returns a new fig object <fig> and a new store
<store> (The internal representation of the store and the
object are hidden by the opaque signature constraint). Then,
we apply the operator fig_set_x to set the value 10 to the
attribute x. This returns the new store s. Finally, we apply
the operator fig_get_x to get the attribute x. This returns
the value 10. In this way, we can execute the operators in the
semantics.

Note that the value 10 has an integer type int. In ML,
the type int is used instead of num because ML does
not have the natural number type. Of course, we could
implement the type num in ML. But, we avoided doing so

Fig. 2 Execution of the semantics in ML (–:input, >:output)

because it makes the notation of natural numbers lengthy like
Suc (Suc (Suc Zero)).

3.3 Formal definition

Here, we present the formal definition of the semantics.
Note that it is formalized meta-theoretically (not itself imple-
mented in HOL).

3.3.1 Class models

The class model is defined as a six tuple:

C M = (C, A,A, I, T ,V)

The sets C and A are the sets of class names and attri-
bute names which appear in the system, respectively. The
mapping A : C → 2A relates a class to a set of the attri-
butes defined in the class. The mapping I : C → 2C relates
a class to a set of its direct subclasses. We assume single
inheritance. The mapping T : C × A ⇀ T ype relates an
attribute to its type (we represent a partial mapping by ⇀. In
this case, T (c, a) is not defined if a 	∈ A(c)). The set T ype
is a set of arbitrary concrete types. We define the type of an
object reference as the name of the class it belongs to. So,
we assume C ⊂ T ype. The mapping V : C × A ⇀ V alue
relates an attribute to its default value. The set V alue is a
set of values of all types in T ype. The type of V(c, a) must
be T (c, a). By the symbol �, we denote the super-sub rela-
tionship of inheritance (inspired by the triangle symbol of
inheritance in UML). The expression c1 � c2 means c2 is a
direct subclass of c1, which is equivalent to c2 ∈ I(c1). In
addition, c1 �+ c2 means c2 is a descendant class of c1 and
c1 �∗ c2 means c1 = c2 or c1 �+ c2. By attr(c), we denote
the attributes and the inherited attributes of the class c, i.e.,
attr(c) = {a|a ∈ A(d), d �∗ c}.

3.3.2 The OO semantics

The semantics for the class model C M is defined axiomati-
cally as a four tuple:

SemC M = (T y, Con, Op, Ax)
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The sets T y, Con, Op and Ax are the sets of types, con-
stants, operators, and axioms, respectively.

The set T y contains the type store which represents the
type of the system environment. It also contains the types
c ∈ C which represent the object references of the class c.

The set Con contains the constant Emp : store which rep-
resent the empty store. It also contains the constants Nullc : c
which represent the null reference of the class c.

The set Op contains the following operators:

Exc : c → store → bool (c ∈ C)

Newc : store → c # store (c ∈ C)

Getc
a : c → store → T (c, a) (c ∈ C, a ∈ attr(c))

Setc
a : c→T (c, a) → store→store (c∈C, a ∈attr(c))

Castc
d : c → store → d (c, d ∈ C, c �+ d or d �+ c)

I sc
d : c → store → bool (c, d ∈ C, c �∗ d)

The predicate Exc tests if the object of class c exists in
the store. The function Newc creates a new instance of class
c in the store. The function Getc

a and Setc
a reads and updates

the attribute a of the object of class c existent in the store,
respectively. The function Castc

d casts the object type from
c to d. The predicate I sc

d tests if the object of class c is an
instance of the class d.

In HOL and ML, the elements in the semantics store, c,
Emp, Nullc, Exc, Newc, Getc

a , Setc
a , Castc

d and I sc
d are

denoted as store, c, emp, c_null, c_ex, c_new,
c_get_a, c_set_a, c_cast_d and c_is_d, respec-
tively.

The set Ax contains 41 axioms. They specify the behavior
of the operators. They are listed in the Appendix A.

3.4 Implementation

The internal representation of the store is a heap memory
structure to store objects. We implemented it both in ML and
HOL. In ML, it becomes a runtime environment for simu-
lation. In HOL, the axiomatic semantics is derived from its
definition.

Figure 3 shows a snapshot of the heap memory for the
example model. It consists of four lists corresponding to the
four classes:fig,rect,crect andcirc. Lists are used to
store object attributes and the list indices are used for object
references. For example, the indices of the list for fig are
used to represent thefig object referencesf0,f1,f2, … of
typefig (f0 is used for the null reference). Object instances
are fragmented into tuples and stored in each list. For exam-
ple, the tuple in f1 represents a fig instance whose attri-
butes are x=2 and y=3. Two tuples in f2 and r1 together
represent a rect instance whose attributes are x=12, y=5,
w=5, and h=8. Three tuples in f3, r2, and cr1 together
represent a crect instance whose attributes are x=1, y=4,

Fig. 3 The heap memory structure

w=6, h=6, and c=red. The fragments are linked to each
other by storing their references. For example, the two tuples
in f2 and r1 which compose a rect instance are linked to
each other by storing the references r1 and f2, respectively.

By composing object instances by multiple tuples, we can
realize object subtyping. For example, three references f3,
r2 andcr1 all point at the samecrect instance. This means
that the crect instance can have three types fig, rect,
and crect.

Another option to represent the store is to use a single
list to store objects represented by extensible record types.
But in this case, the static type checking does not work on
references because they are represented by the indices of the
single list. In our implementation, we enabled the static type
checking by composing the store with multiple lists and giv-
ing different types to their indices.

All the operators in the semantics are represented by func-
tions on this heap memory structure. Furthermore, all the
axioms are derived from their definitions. The formal imple-
mentation is presented in [27].

4 ObjectLogic

To support the verification of OO models on the semantics,
we implemented a prototype verification tool called Object-
Logic. It is implemented as a library of HOL (a structure
of Moscow ML). It allows us to define models in a Java-
like language called ObjectLogic modeling language (OML,
see Appendix B) and automatically generates ML code for
simulation and HOL code for theorem proving.

Figure 4 shows its architecture. OML is the input language
which consists of classes, methods, and assertions (method
contracts and class invariants). It is input to the OML parser
which extracts the class model and abstract syntax trees
for methods and assertions. The class model is input to the
semantics generator and the semantics is constructed in ML
and HOL. Methods and assertions are input to the code gen-
erator. From the methods, it constructs an ML structure and
an HOL theory which contains the functions corresponding
to the methods (we call them function structure and function
theory, respectively). From the assertions, it constructs an
HOL theory which contains the propositions corresponding
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Fig. 4 ObjectLogic

to the assertions (we call this assertion theory). We can con-
duct simulation using the functions in the function structure
in ML and theorem proving by proving the propositions in
the assertion structure in HOL. ObjectLogic also provides
special tactics to support proof on the semantics.

In this section, we first explain OML, then its translation
into the semantics, and finally the verification in ML and
HOL.

4.1 OML

OML is designed to facilitate the modeling of software
applications. It supports classes, attributes, methods, single
inheritance. The expressiveness is close to UML sequence
diagrams, i.e., it contains conditional branches and finite
loops. The finite loop statement loop is used like
loop(m(),n) meaning that the method m() is called n
times. Furthermore, it has iteration commands on object lists.
For example, the command l->select(m()) extracts a
list of objects which satisfy the boolean methodm() from the
list l, and the command l->apply(m()) applies method
m() to each object in the list l. These commands are intro-
duced following the tendency that many of the loops in soft-
ware applications are concerned with manipulating object
lists, e.g., “Search a customer which has ID 100 from the list”
and “Add interest to all the accounts in the list”. The syntax
of these commands are inspired by that of object constraint
language (OCL) [25]. They allow us to describe the iteration
in a single line. Note that the list used here is the same as
’a list in HOL. So, these commands are guaranteed to
terminate.

Another facility of OML is that it can import arbitrary
types, constants, and functions from HOL (ML). This facil-
ity is convenient because we can abstract the model with
various types in the libraries and user-defined types. Further-
more, we can make use of the built-in theorems for those
types when performing proofs.

Figures 5 and 6 show the OML code of the canvas system.
The first eight lines in Fig. 5 illustrate how to import libraries
from ML and HOL, namely the ML structure color and the
HOL theory ColorTheory. Suppose that they contain the

Fig. 5 Sample OML code

types color and Color, respectively, which are declared
as follows:

datatype color = Black | Red | Blue; (* ML *)
Hol_datatype Color = BLACK | RED | BLUE; (* HOL *)

To use these types and constants in OML, we have to
declare new types and constants in OML and bind them to
those in ML and HOL. The example of Fig. 5 declares a new
type color and binds it to the type color in ML and the
type Color in HOL. It also declares a new constant black
and binds it to the constants Black in ML and BLACK in
HOL. The other constants red and blue are declared in the
same way. Finally, it declares the function isBlack() and
binds it to the anonymous functions in ML and HOL. Note
that the strings inside ML[#...#] and HOL[#...#] are
not checked by the OML parser and directly embedded to the
generated code. It is the responsibility of users (who write
OML) to ensure the type consistency of the embedded code.
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Fig. 6 Sample OML code
(continued)

Classes are defined by a syntax similar to Java. The three
classes fig, rect and crect in Fig. 5 are from the previ-
ous example. The classcanvas in Fig. 6 represents a canvas
on which the figures are displayed. It is the main class of this
system. The main class is declared uniquely in a system with
the keyword label main. It plays the role of the interface of
the system with the outer environment. Specifically, the API
of the system is defined by the new method and the public
methods of the main class. The reason of introducing the main
class is to define the states of the system, i.e., the initial state
is constructed by the new method, and the other states are
constructed by applying the public methods repeatedly from
the initial state. The induction scheme to prove invariants is
based on this interpretation of the system states.

The attributes figList and max are the list to store fig-
ures and the max size of the list, respectively. For the method
addFig(), which adds a new fig object to figList,
the contract lengthInc is defined. It means that if the
length of figList is below max, the length is incremented
after applying the method. The methods getPosList()
and moveActive() illustrate the use of the iteration com-
mands. The method getPosList returns the list of posi-
tions of all the figures. This is realized by the command
collect which applies the method getPos() to each
of the fig objects in figList and returns the list of
obtained values. The method moveActive() moves all
the active figures in the list by dx and dy. This behavior is
realized by two commandsselect andapp. First, the com-
mand select extracts from figList all the fig objects

which satisfy the method isActive(). Then, the com-
mand apply applies the method move(dx,dy) to all the
objects in the obtained list. The class canvas also defines
the invariant lengthMax which means that the length of
figList never exceeds max.

4.2 Translating methods

Here, we explain how the methods are translated into the
functions in the semantics using the example. We explain
the translation into HOL. The translation into ML is done in
the same way.

4.2.1 Methods

Methods are defined using the primitive operations in the
semantics. The method move() of the class fig is trans-
lated into the following function:

fig_move : fig -> num # num -> store -> store
fig_move this (dx,dy) s =
let s = fig_set_x this (fig_get_x this s + dx) s in
fig_set_y this (fig_set_y this s + dy) s

This function takes three arguments: The first argument
this is the fig object to which the method is applied. The
second argument (dx,dy) is the pair of the method argu-
ments. The third argument s is the store where this method
is applied. The return value is the store after applying the
method. The attribute x is accessed by the Get operator
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fig_get_x and updated by the Set operator fig_set_x.
The attribute y is accessed and updated in the same way.

If there is an expression a-b (a and b are natural
numbers) in OML, it is translated into the expression
if a-b<0 then 0 else a-b in ML. As we men-
tioned, int is used for natural numbers in ML. This transla-
tion is for preserving the semantic equivalence between HOL
and ML.

4.2.2 Inheritance

The class rect does not define the method move(). So, it
inherits the method from the super-class fig. In our seman-
tics, inherited methods must be defined explicitly using the
Cast operators. The method move() of the class rect is
translated into the following function:
rect_move : rect -> num # num -> store -> store
rect_move this (dx,dy) s =
let super = rect_cast_fig this s in
fig_move super (dx,dy) s

First, the superclass object super is obtained from the
rectobjectthisby the Cast operatorrect_cast_fig.
Then, the function fig_move is applied to it.

4.2.3 Overriding

Method overriding is defined in the same way as normal
methods. The super-class object super is accessed using
the Cast operator. The method move() of the class crect,
which turns the color from black to red after the move, is
translated into the following function:
crect_move : crect -> num # num -> store -> store
crect_move this (dx,dy) s =
let super = crect_cast_rect this s
let s = rect_move super (dx,dy) s in
if (\c. c = BLACK) (crect_get_color this s) then
crect_set_color this RED s
else s

The object super is defined by applying the Cast oper-
ator crect_cast_rect to the crect object this. The
function isBlack() is replaced by the embedded code
(\c. c = BLACK).

4.2.4 Dynamic binding

Dynamic binding is realized by defining a virtual method
which switches the method body according to the instance
type of the applied object. The instance type is examined by
the I s operators. The virtual method for the methodmove()
of the class fig is defined as follows:
v_fig_move : fig -> num # num -> store -> store
v_fig_move this (dx,dy) s =
if fig_is_fig this s then
fig_move this (dx,dy) s
else if fig_is_rect this s then

rect_move (fig_cast_rect this s) (dx,dy) s
else
crect_move (fig_cast_crect this s) (dx,dy) s

It determines which class thefig objectthis is instance
of by the I s operators fig_is_fig and fig_is_rect
and calls the corresponding function.

This function is used where the method move() is called
to a fig object. For example, the method moveTop() of
the class canvas, which calls the method move() to the
fig object figList->hd(), is defined as follows:
canvas_moveTop : canvas -> int # int -> store -> store
canvas_moveTop this (dx,dy) s =
let l = canvas_get_figList this s in
if ˜(l = []) then v_fig_move (HD l) (dx,dy) s
else s

4.2.5 Iteration

The iteration commands on lists are defined by higher-order
functions on lists. The method moveActive() of the class
canvas is translated into the following function:

canvas_moveActive : canvas -> num # num ->
store -> store
canvas_moveActive this (dx,dy) s =
FOLDL (\s x. v_fig_move x (dx,dy) s) s
(FILTER (\x. fig_isActive x s)
(canvas_get_figList this s))

The commands select and apply are translated into
the higher-order functions FILTER and FOLDL, respec-
tively. The HOL library of lists contains a lot of theorems
for these functions. We can make use of them when reason-
ing about this method.

4.2.6 Constructors

Constructors are defined in the same way as normal meth-
ods. The constructor of the class fig is translated into the
following function:

fig_fig : fig -> num # num -> store -> store
fig_fig f (x,y) s = fig_set_y f y (fig_set_x f x s)

Along with this function, the function to create a fig
object is also defined:

new_fig : num # num -> store -> fig # store
new_fig (x,y) s =
let (new,s) = fig_new s in
let s = fig_fig new (x,y) s in
(new,s)

It first creates the fig object by the New operator
fig_new. Then, it applies the constructor to the new object.
It returns the pair of the new object and the store.

This function is used where a new fig object is created.
For example, the method addFig() of the class canvas,
is defined as follows:
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canvas_addFig this (x,y) s =
let (f,s) = new_fig (x,y) s in
let l = canvas_get_figList this s in
if (LENGTH l < canvas_get_max this s) then
canvas_set_figList this (f::l) s
else s

4.2.7 Visibilities

In HOL, visibilities of methods such as public and
private are not translated into the semantics. It is only
checked by the OML compiler. In ML, visibilities are
reflected in the signature of the function structure. Specif-
ically, only the functions corresponding to the new method
and the public methods of the main class are included in the
signature.

4.3 Translating assertions

ObjectLogic translates assertions into propositions in HOL.
There are two kinds of assertions: contracts and invariants.
Contracts are the pre- and post-conditions which are assumed
and ensured before and after the application of methods.
Invariants are the properties which hold on all the states of
the system.

4.3.1 Contracts

The contract lengthInc of the public method addFig()
is translated into the following proposition:

canvas_addFig_lengthInc =
!(this:canvas) (x:num) (y:num) (s:store).
let s’ = canvas_addFig this (x,y) s in
canvas_addFig_lengthInc_pre this (x,y) s /\
canvas_ex this s

==> canvas_addFig_lengthInc_post this (x,y) s s’

where

canvas_addFig_lengthInc_pre this (x,y) s =
(LENGTH (canvas_get_figList this s)
< canvas_get_max this s)

canvas_addFig_lengthInc_post this (x,y) s s’ =
(LENGTH (canvas_get_figList this s’) =
LENGTH (canvas_get_figList this s) + 1)

It means that if the pre-condition canvas_addFig_
lengthInc_preholds in the store s, the post-condition
canvas_addFig_lengthInc_post holds in the store
s’. The store s’ is constructed by applying the function
canvas_add-Fig to the previous store s. The additional
pre-condition canvas_ex this s is included to ensure
that the main class object this is not null.

The pre- and post-conditions take the arguments x and y
of the method addFig(). Although they are not used in the
conditions, they are included mechanically because contracts
are essentially dependent on method arguments.

4.3.2 Invariants

Before we explain the translation of invariants, we need to
clarify the definition of the system states and the induction
scheme to prove invariants. In terms of the semantics, the
initial state of the system is defined by the store which is
constructed by applying the new function of the main class
(new_canvas in the example) to the store emp. The suc-
ceeding states are defined by the stores which are constructed
by applying the functions corresponding to the public meth-
ods of the main class repeatedly to the initial state. To observe
this definition, OML has a constraint that the attribute of the
main class must be private and the main class must not be
created inside the system. To prove an invariant, we have to
use induction on the system states, i.e., as a base step, we
prove that it is satisfied in the initial state, and as induction
steps, we prove that each public method of the main class
maintains the invariant.

The invariantlengthMax is translated into the following
proposition:

canvas_lengthMax (this:canvas)
(s:store) =
(LENGTH (canvas_get_figList this s)
<= canvas_get_max this s)

ObjectLogic generates the propositions corresponding to all
the steps of the induction. The following proposition is the
induction step for the public method addFig():
canvas_addFig_lengthMax =
!this (x,y) s. let s’ = canvas_addFig this (x,y) s in
canvas_invariants this s /\ canvas_ex this s
==> canvas_lengthMax this s’

It means that if the invariant canvas_lengthMax
this s (which is contained in the predicate canvas_
invariants this s) holds in the previous store s, it
also holds in the succeeding store s’. The pre-condition
canvas_invariants this s contains all the invari-
ants of the system. This means that invariants can be always
used as pre-conditions of induction steps because they hold
on all the states of the system. Again, the pre-condition
canvas_ex this s is included to ensure that the main
object this is not null.

OML only allows invariants to be defined in the main class.
To define invariants for other classes, they must be defined
in the context of the main class. For example, to define fig
objects’ invariantx<=10, it must be defined in the main class
such as figList->forall(f|f.x<=10).

4.4 Simulation

Simulation is conducted by executing the functions contained
in the function structure in ML. The function structure in ML
contains the functions corresponding to the public methods
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of the main class. It also contains the new function of the
main class which is used as the initializer of the system. Cur-
rently, it is up to users how to execute the model. Execution
is done in the ML interpreter as follows:

- val (c,s) = new_canvas 10 emp;
> val c = <canvas> : canvas
val s = <store> : store
- val s = canvas_addFig c (2,3) s;
> val s = <store> : store
- val s = canvas_moveTop c (1,2) s;
> val s = <store> : store
- canvas_getPosList c s;
> val it = [(3,5)] : (num * num) list

4.5 Theorem proving

Theorem proving is conducted by proving the propositions
contained in the assertion theory in HOL. The proof is done
interactively using the tactics provided in ObjectLogic. The
main tactic isOBJ_TACwhich automatically tries to simplify
the proof goal using the axioms in the semantics. Addition-
ally, the tactic SLICE_TAC is provided. This tactic, as the
name implies, applies slicing to the goal, i.e., it makes the goal
readable by removing the operators which do not affect the
proof. Using these tactics, the proof proceeds basically as fol-
lows: (1) expanding definitions, (2) applying SLICE_TAC,
and (3) applying OBJ_TAC. We do not need to remember
all of the axioms in the semantics because these tactics auto-
matically apply necessary axioms to the goal.

Let us demonstrate the use of the tactics with the proof of
the proposition canvas_addFig_lengthInc. First, we
expand all the definitions in the goal. This results in the goal
shown in Fig. 7, which basically is an equation about the
value of canvas_get_figList. It looks quite lengthy
because it contains many operators which do not affect the
value of canvas_get_figList, such as fig_set_y,
fig_set_x, and fig_new. To remove these irrelevant
terms, we then apply SLICE_TAC. This results in the goal
shown in Fig. 8. (In this step, the condition of the if-expres-
sion matches the assumption thus only then-part remains.)
The goal is now quite readable as it contains only the essential
operators for the value of canvas_get_figList. Now,
we can use OBJ_TAC. The result is the goal shown in Fig. 9.
At this point, all the operators are reduced and only a propo-
sition about lists is left. This can be completed by rewriting
with the list theorems, i.e., SIMP_TAC list_ss [].

The tactics SLICE_TAC and OBJ_TAC are implemented
so as to automatically apply the necessary axioms to the goal.
In the proof,SLICE_TAC applied the axioms DiffGetSet and
DiffGetNew (see Appendix A).OBJ_TAC applied the axiom
GetSet. The necessary axioms are determined by examining

the proof goal. For example, OBJ_TAC selected the axiom
GetSet because the goal contained the term

canvas_get_figList this (canvas_set_figList this... s)

As it matches to the left-hand-side of the equation of the
axiom GetSet, this axiom is selected as one of the candi-
dates to simplify the goal. The selected axioms are applied
to the goal making use of the built-in tactic SIMP_TAC, i.e.,
they are applied to the goal by being put in the list L of
SIMP_TAC bool_ss L.

5 Verification of a firewall system

We applied ObjectLogic to the verification of a practical fire-
wall system. The specification of the firewall system is based
on a real product of a company. In this section, we first pres-
ent the specification and requirements of the firewall system.
Then, we explain the modeling in OML. Finally, we show
the verification.

5.1 Firewall specification and requirements

The firewall works on the network layer of the OSI refer-
ence model. It is a stateful packet filter, i.e., it decides to
pass or drop packets based not only on the filtering rules but
also on the connection states. It also conducts NAT (Network
Address Translation) which is a mechanism to share a sin-
gle IP address among multiple hosts. It translates between
a global IP address of the firewall and multiple private IP
addresses of local hosts. This mechanism has the effects of
saving global IP addresses and hiding private addresses of
the local network.

We explain the behavior of the firewall by an example.
Figure 10 shows the procedure of outbound packet filtering.
Now, a packet is going from the inside network to the outside
network. Its source address, destination address, and protocol
are (30,1100), (250,80) and TCP, respectively. (We
define an “address” as a pair of IP address and a port num-
ber which are represented by natural numbers.) (1) First, the
firewall checks that the packet satisfies the filter rule. The
filter rule defines permissible packet header values. As all
of the header values of this packet are defined in the filter
rule, it is allowed to pass the firewall. When a packet belongs
to an already existing connection, this check is omitted. (2)
Second, it adds a new connection to the connection table.
The connection table is a table which stores active connec-
tions. In this case, the connection between the local address
(30,1100) and the global address (250,80) is created.
Connections are deleted by timeout in a specific amount of
time after the last communication. The value 300 is the ini-
tial value of the timer. When it cannot create a new con-
nection due to lack of memory capacity, it drops the packet.
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Fig. 7 Proof goal (1)

Fig. 8 Proof goal (2)

Fig. 9 Proof goal (3)

(3) Third, it creates a new NAT rule and adds it to the NAT
table. The NAT table is a table which stores active NAT rules.
In this case, the rule which translates the private address
(30,1100) into the public address (200,1220) is cre-
ated. The public IP address 200 is the IP address of the
firewall and the public port 1220 is the port dynamically
selected from the open ports of the firewall. NAT rules are
deleted by timeout in a specific amount of time after the last
use. The value500 is the initial value of the timer. (4) Finally,
it translates the source address of the packet using the new
NAT rule and sends it to the outside network.

As for requirements, we expect this firewall to satisfy the
properties such as “The outbound packets which do not meet
the filter rules are always dropped unless they belong to exist-
ing connections” and “The source IP address of the outbound
packet is always updated by the public IP address of the fire-
wall”. Both of them are crucial for the firewall security. The
first property ensures that a local host never connects to ille-
gal hosts in the outside network. The second property ensures
that the private IP addresses of the local network never leak
to the outside network. In the following, we focus on the
second property which we call “NAT correctness”.
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Fig. 10 Outbound filtering

5.2 Modeling in OML

To construct the model, we abstracted the datatypes that
appear in the system. IP addresses (and port numbers), which
are actually 32 bit data like 192.168.1.10, are abstracted by
natural numbers. Generally, representing 32 bit data by nat-
ural numbers makes it impossible to realize overflows. But
it does not matter because the system never increments and
decrements those values and uses them only for compari-
son. The range of private address values, which actually con-
sists of three classes A, B, and C, is abstracted by the range
from 0 to some positive constant. This is because the firewall
behavior does not depend on the private address classes. The
filter rules are abstracted by lists of permissible values like
[10,20,30]. Although the filter rules of practical firewalls
are defined in a much more complex manner, we kept its
datatype as simple as possible because the filter rule itself is
not our verification target ([8] verifies inside filter rules). We
excluded irrelevant operations from the model such as the
checksum recalculation after application of the NAT rules
and the audit log recording.

Fig. 11 Class diagram of the firewall system

Figure 11 shows the overall structure of the model as
a diagram. It consists of nine classes and the number of
attributes and methods are 37 and 105, respectively. The
main class is the fw class. It has the method filterOut()
and filterIn() to perform outbound and inbound packet
filtering, respectively. They input a packet data of type
ptype. The type ptype is declared in OML to be the
type (num#num)#(num#num)#num which is a tuple of
the source address, the destination address and the protocol.
If the packet is permitted, they return true with the packet
data after applying the NAT rule. The fw class also has the
method clock() to proceed time in the system. This is
our way of representing time in the model. We assume that
clock() is called periodically from outer environment. In
this method, the timers of the connections and the NAT rules
are decremented.

Figure 12 shows the method filterOut() in OML.
The NAT correctness property is defined as the contract
natCorrectness. It means that if the input packet is per-
mitted (the first value of result is true), then the source
IP address of the output packet data (obtained by applying
the function srcip(x:ptype):num to the packet data) is
equal to the public IP address of the firewall (obtained by the
method getIP()). The overall code length of the system is
about 1,200 lines.

5.3 Verification

Figure 13 shows the simulation of the firewall system. We
first created a fw object and set the configuration values such
as the public IP address, the port numbers and the filter rules.
Then, we applied the filter to a correct packet and an illegal
packet and identified if they were correctly handled.

For theorem proving, we proved the contract nat
Correctness in HOL. The proof took 8 h for one person.
We proved 21 lemmas and applied a total of 249 tactics. The
detail of the applied tactics is shown in Table 2. We conducted
most of the proof with the technique explained in 4.5, i.e.,
expanding definitions, applying SLICE_TAC, and applying
OBJ_TAC. This routine amounted about 60% of all the tactic
applications. Table 3 shows the axioms applied by the two
tactics. They automatically applied a total of 110 axioms.
Along the proof, we encountered ten case splits. They were
caused by the built-in simplifier (RW_TAC)when reducing the
if-expressions. We applied an induction to prove a lemma
about lists. We applied a first-order reasoner twice to prove
lemmas about booleans. Other tactics include the simplifi-
cation by theorems (such as booleans and lists), and minor
manipulations on the goal (such as quantifier stripping).

The proof failed several times due to the lack of invari-
ants in the pre-condition. The following two invariants were
necessary for the fw class:
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Fig. 12 The method
filterOut() in OML

Fig. 13 Simulation of the
firewall system

nattable!=(null:nattable)
Forall l g. connectionExists(l,g)
implies srcnatRuleExists(l)

The first invariant means that the nattable object linked
with the fw object must not be null. This is the charac-
teristic of the graph structure of objects. The contable
object is created only once and linked to the fw object in
the constructor of the fw class and none of the public meth-
ods of the fw class changes this link. So, the first invari-
ant obviously holds. The second invariant is the property
about consistency between the connection table and the NAT
table. It means that if a connection exists in the connec-
tion table, a NAT rule corresponding to its local address
always exists in the NAT table. As shown in Fig. 10, if a
connection (20,1070)-(250,80) exists, the NAT rule

(20,1070)-(200,1200) exists corresponding to the
local address (20,1070). This invariant is necessary in
the case that an outbound packet belongs to an existing con-
nection. In this case, no new NAT rules are created. So, in
order to apply NAT to the packet, we must use the NAT rule
which was created when the connection was first created.

6 Discussion

6.1 Effectiveness

The advantage of ObjectLogic is that it enables us to perform
theorem proving on the level of objects which is close to our
intuition. This makes the proof easy to read compared with
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Table 2 Tactics used in the proof

Tactics Times Ratio (%)

Definition expansion 101 40.6

SLICE_TAC 46 18.5

OBJ_TAC 8 3.2

Case split 10 4.0

Induction 1 0.4

First-order reasoning 2 0.8

Lemma application 25 10.0

Others 56 22.5

Total 249 100.0

Table 3 Axioms applied by SLICE_TAC and OBJ_TAC

Axioms (SLICE_TAC) Times Axioms (OBJ_TAC) Times

ExSet 22 GetSet 5

DiffGetSet 60 GetSetNew 1

DiffGetNew 11 NotExNull 3

DiffFstNewSet 1

DiffSetSet 6

DiffSetNew 1

Total 101 Total 9

the proof on the level of primitive theories such as pairs and
lists. It also makes it easy for us to debug the model, i.e., as
the abstract level is the same as that of the model, we can
easily identify which part of the model was wrong when a
proof failed.

Furthermore, we can conduct proofs using two tactics
SLICE_TAC and OBJ_TAC without having to remember
each of the axioms. Actually in the proof, they took care
of all the reasoning about objects. This helped us concen-
trate on the proof of the essential property of the firewall
system. Furthermore, as Table 3 shows, the tactics used the
same axioms many times. This means that the proof steps to
derive the axioms from the definitions of the heap memory
model were saved many times. This is a clear evidence that
our axiomatization of the semantics actually simplified the
verification.

The combination of simulation and theorem proving also
worked well to construct the correct model. In simulation,
we were able to find many trivial bugs. For example, we
found the lack of method call to add a connection by seeing
the result that the connection table remained unchanged. We
also found that then- and else-parts of the if-statement
were reversed by the result that an obviously correct packet
was dropped. By conducting simulation and excluding triv-
ial bugs in advance, we were able to avoid the tediousness
to find them in theorem proving. To make simulation more
effective, we need to implement a test case generator which

can improve the test coverage with respect to various aspects
such as branches, statements, and conditions.

In theorem proving, we were able to find a subtle bug
through the discovery of invariants. In the proof of the NAT
correctness, we found an invariant about consistency between
the connection table and the NAT table, i.e., a NAT rule must
exist while the corresponding connection exists. This invari-
ant contributed to finding another invariant that the initial
timer value of a NAT rule must not be lower than that of a
connection. In OML, it is defined as the following invariant:

contable.timeLimit <= nattable.timeLimit

This invariant is necessary because the NAT rule must
not be deleted earlier than the connection. In order to
maintain this invariant, we must pay attention to the two
methods setConnectionTime() and setNatrule
Time() which are the methods of the fw class to set the
initial value of the timer for connections and NAT rules,
respectively. At first, we naively designed these methods
to be able to set arbitrary values to the attributes. But, by
the discovery of the invariant, we noticed our mistake and
were able to fix it so that the methods preserve the con-
straint between the two values. We consider that this kind
of constraints on internal values are difficult to find in simu-
lation.

6.2 Possible improvements

Although the high abstractness of the semantics was effec-
tive, we still took as much as 8 h to complete the proof. There
are mainly three reasons for the inefficiency. First, we had to
consume a lot of time to find invariants when the proof failed.
Second, we had to redo the proof many times to understand
the proof structure which was made complex by many nested
branches. Third, we had to make many lemmas to arrange the
proof.

The first and second cases are unavoidable because they
come from the nature of the firewall system. But, the third
case can be improved a lot by enhancing SLICE_TAC. In
fact, as many as 15 of 21 lemmas were concerned with slic-
ing. For example, we proved the following lemma:
|- !(fw:fw) (ct:contable) (c:connection) (s:store).
fw_getIP fw (contable_addConnection ct c s)
= fw_getIP fw s

This means that the fw class’ method getIP() is not
affected by the contable class’ method addConnec-
tion(). This is because the attributes accessed by these two
methods do not overlap. Even though this theorem was eas-
ily proved with the definition expansion and SLICE_TAC,
we had to prove it separately as a lemma because the defini-
tion expansion made the proof goal quite large and made the
application of SLICE_TAC quite slow.
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This problem can be solved by implementing
SLICE_TAC to work directly on the method level. Specifi-
cally, it should be implemented so that it can automatically
prove the theorem inside the tactic and apply it to the goal.
This allows us to apply slicing on the method level without
expanding definitions. If it is used in the proof, we can reduce
a total of 126 tactic applications (50.6% of all) required to
prove the extra 15 lemmas. As a result, we can concentrate
more on the essential part of the proof.

6.3 Exception handling

Currently, we do not implement the exception handling
mechanism explicitly in the semantics. The exceptional cases
such as the null accessing and the illegal down-casting are
handled differently in ML and HOL. (In this sense, the equiv-
alence of the semantics is broken when exceptional cases
occur.) In ML, we simply raise the exception of ML. In HOL,
we return a constant representing an undefined value, which
is summarized as the following axioms:
|- !s. fig_get_x fig_null s = undef
|- !x s. fig_set_x fig_null x s = s
|- !f s. fig_is_fig f s ==> (fig_cast_rect f s = undef)

The first and the second axioms are the cases when an attri-
bute of a null object is read and set, respectively. The third
axiom is the case when an illegal down-casting occurs. For
the first and the third cases, we return the constant undef of
type ’a. When this constant comes up in the proof goal, we
can notice the occurrence of the exception. (Of course, we
do not always notice this, for example, when an equation is
accidentally evaluated to undef=undef and reduced to T.)
For the second case, we just “skip” the exception by leaving
the store s unchanged.

The reason to skip the exception for the second case is
related to the efficiency of SLICE_TAC. Specifically, if we
do not skip the exception and return undef, we have to
check if the object is non-null every time an attribute setting
occurs. Actually, if we return undef, the axiom DiffGetSet
|- !i j x s. fig_get_y i (fig_set_x j x s)
= fig_get_y i s

must be changed to
|- !i j x s. fig_ex j s ==>
(fig_get_y i (fig_set_x j x s) = fig_get_y i s)

This means that we cannot remove fig_set_x without
proving the existence of the object j. As shown in Table 3,
DiffGetSet is an important axiom for SLICE_TAC. If this
implication is imposed, SLICE_TAC becomes quite ineffi-
cient because it cannot always perform the simplification by
the equation.

For this reason, we adopted the axiom to skip the excep-
tion. We consider that this is practically reasonable because
we can considerably improve the efficiency of the proof by

SLICE_TACwith only sacrificing the check for the attribute
setting. Furthermore, the lack of the check can be compen-
sated by the simulation which supports all the exceptions.

7 Related work

7.1 Combining a programming language and a theorem
prover

ACL2 is well known as the tool to combine a programming
language and a theorem prover. It is based on an applicative
subset of Common Lisp. It is often used as the semantics
for both simulation and theorem proving. For example, the
work by Moore [13] implements the operational semantics
of JVM for testing and proving about Java methods. The
work by Al Sammane [2] implements a tool TheoSim which
supports simulation and theorem proving of VHDL designs.
The work by Wilding et al. [26] defines a formal model of a
microprocessor to integrate simulation and formal analysis.

We followed the approach of combining a programming
language and a theorem prover using ML and HOL. The
reason for the use of HOL is to construct the OO seman-
tics conservatively by definitional extension. To derive our
semantics from the definitions, it requires the expressiveness
of the higher-order logic. Specifically, we need the induction
theorem on lists to derive the properties about the heap mem-
ory operations. We also need predicate variables to construct
the type store from the heap memory type. It is an advan-
tage of HOL to be able to construct sound theories using such
powerful expressiveness. As the semantics itself is express-
ible by the first-order logic, it is possible to export it to ACL2
and conduct verification using its powerful reasoner.

7.2 Embedding OO semantics

There has been a lot of works on implementing OO semantics
in theorem provers especially for Java. For deep embedding,
the work by von Oheimb et al. [24] implements a semantics
of Java for both source language level and bytecode level in
Isabelle/HOL. The work by Barthe et al. [3] implements a
semantics of JavaCard platform (virtual machine and byte-
code verifier) in Coq. Both of them adopt deep embedding
because their verification target is on the meta-language level
such as type safety, soundness of Hoare logic, and correctness
of the bytecode verifier. We adopted a shallow embedding
because our verification target is on the instance level such
as method contracts and class invariants. Shallow embedding
makes the proof on the instance level easier and the theory
itself simpler than deep embedding.

For shallow embedding, the work by Brucker et al. [5]
implements an object data model close to ours. The type of
the object data is made extensible by representing it by the
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product type and the sum type. This enables the reuse of proof
by structural subtyping of objects. Our model, however, does
not realize the reuse of proof because object subtyping is real-
ized explicitly by cast functions. Instead of using extensible
types, we represented objects by linked-tuples. This enables
static type checking on object references. Furthermore, we
made our data model executable by embedding it within the
expressivity of ML.

Poetzsch-Heffter and Müller [19] define a store model
for the logical foundation of Java verification. The opera-
tors defined on the store are similar to ours such as object
creation, attribute get and set. But it does not have the oper-
ators concerning subtyping such as the cast and instance-of
operators. They are defined on the level of Hoare-logic. The
work by van den Berg et al. [23] and Marché and Paulin-
Mohring [11] implements memory models of Java seman-
tics for reasoning about Java programs annotated with JML
specifications in Isabelle/HOL and Why, respectively. We
defined a similar memory model, but it differs from them in
that it allows arbitrary types for object attributes, which is
effective in the verification on the analysis level.

7.3 Interactive verification tools for OO specification

The KeY tool [1] is a software development system based on
UML. It supports construction of the specification in OCL
and the implementation in Java Card. It also supports veri-
fication of both of them by generating proof obligations in
dynamic logic, an extension of Hoare logic. The HOL-OCL
tool [6] is an interactive proof environment for UML/OCL.
The semantics of OCL is embedded conservatively in
Isabelle/HOL faithfully to its three-valued logic. It also pro-
vides its own proof procedure for reasoning about the spec-
ification. The Why tool [7] is a verification system for
Java and C. It inputs JML-annotated Java programs and
annotated C programs from the front end tools Krakatoa
and Caduceus, respectively, and outputs verification con-
ditions to various theorem provers. The Jive tool [12] and
the LOOP tool [9] are also verification systems for JML-
annotated Java. In Jive, the proof is done on the source
code level using tactics which are implemented based on
Hoare logic. In LOOP, the proof is done inside PVS based
on the weakest precondition calculus. The work by Schir-
mer [21] implements a verification environment for a general
imperative programming language model. It can generate
verification conditions based on Hoare logic whose com-
pleteness and soundness is proved in Isabelle/HOL.

Compared with these tools which support verification of
standard and general languages, ObjectLogic is directed at
a verification tool for a specific domain. Our future vision
is to seek for the fully automated proof in the data man-
agement domain and automatically generate implementation
code from the language.

8 Conclusion and future work

In this paper, we presented an executable semantics of OO
models for the foundation of both simulation and theorem
proving. The semantics is implemented in two languages:
HOL and ML. We preserved the semantics equivalence by
implementing the underlying heap memory structure within
the intersection of their expressiveness. We mainly presented
the formal definition of the semantics and the prototype veri-
fication tool ObjectLogic which supports simulation and the-
orem proving on the semantics. As a case study, we showed
the verification of a practical firewall system and discussed
the effectiveness and possible improvements of Object-
Logic. Future work is to improve the degree of automation of
the tool by enhancing the tactics. We are also considering to
apply it to the verification of more complex systems which
include inheritance.

Appendix A: Axioms

The full list of axioms (with 3 theorems) is presented here.
They are divided into two groups depending on how they
are derived. One is the axioms which can be derived simply
by expanding the definitions of operators. The other is the
axioms which can be derived as invariants of the heap mem-
ory structure. The latter ones are marked with “*”. Further-
more, the axioms used by SLICE_TAC are marked with “†”.
The others are applied by OBJ_TAC. The correspondence
between axioms and operations are presented in Table 4.

1. NotExEmp
 ∀o. ¬(Exc o Emp)

No objects exist the empty store.
2. NotExNull

 ∀s. ¬(Exc Nullc s)
No null objects exist in the store.

3. ExIs*
 ∀o s. Exc o s = I sc

d1
o s∨· · ·∨ I sc

dn
o s({d1, . . . , dn}

= {d | c �∗ d})
The c object o which exists in the store is an instance
of either the class c or one of the descendants of c.

4. NotExFstNew
 ∀s. let (o, s′) = Newc s in ¬(Exc o s)
The newly created object does not exist in the previous
store. This axiom implies that the new object is distinct
from all the previous objects.

5. NotExFstNewCast
 ∀s. let (o, s′) = Newc s in ¬(Exc (Castc

d o s′) s)
This axiom is similar to the previous one. The object
obtained by casting the newly created object does not
exist in the store before creation.
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Table 4 Correspondence between axioms and operators

New Ex Get Set Cast Is Null Emp

1. NotExEmp © ©
2. NotExNull © ©
3. ExIs* © ©
4. NotExFstNew © ©
5. NotExFstNewCast © © ©
6. IsImpNotIs* ©
7. IsCast* © ©
8. IsNew © ©
9. IsNewCast © © ©
10. DiffIsNew† © ©
11. IsSet† © ©
12. DownNull © © ©
13. NotExCast © © ©
14. Up11* © ©
15. Down11* © ©
16. UpDown* © ©
17. DownUp* © ©
18. CastCast ©
19. CastSet† © ©
20. ExCastNew © © ©
21. DiffCastNew © ©
22. NotExGet © ©
23. NotExSet © ©
24. SprGet © ©
25. SprSet © ©
26. GetSet © © ©
27. DiffObjGetSet © ©
28. DiffGetSet† © ©
29. GetNew © ©
30. GetNewCast © © ©
31. ExGetNew © © ©
32. DiffGetNew† © ©
33. SetSet† ©
34. DiffObjSetSet ©
35. DiffSetSet† ©
36. ExSetNew © © ©
37. DiffSetNew† © ©
38. DiffNewNew† ©
39. SetGet† © ©
40. FstNewSet† © ©
41. DiffFstNewNew† ©
42. ExNew © ©
43. ExSet† © ©
44. GetSetNew © © ©
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6. IsImpNotIs*
 ∀o s. I sc

d o s ⇒ ¬(I sc
e o s) (d 	= e)

If the c object o is an instance of the class d, it is not
an instance of the different class e.

7. IsCast*
 ∀o s. I sc

e o s ⇒ I sd
e (Castc

d o s) s (d �+ e)
If the c object o is an instance of the class e, the object
obtained by casting to the ancestor-class d is also the
instance of e, i.e., the instance type is invariable.

8. IsNew
 ∀o1 s. let (o2, s′) = Newc s in
I sc

c o1 s′ = (o1 = o2) ∨ I sc
c o1 s

The c object o1 is an instance of the class c in the store
after creating a new instance of the class c iff o1 is
either the newly created object o2 or the object which
was already an instance of c before the creation.

9. IsNewCast
 ∀o1 s. let (o2, s′) = Newd s in
I sc

d o1 s′ = (o1 = Castd
c o2 s′) ∨ I sc

d o1 s
This axiom is similar to the previous one. The c object
o1 is an instance of the class d in the store after creating
a new instance of the class d iff o1 is either the object
obtained by casting the new object o2 to c or the
object which was already an instance of d before the
creation.

10. DiffIsNew†

 ∀o s. I sc
d o (Snd (Newe s)) = I sc

d o s (d 	= e)
Whether the c object is an instance of the class d or
not is not affected by the object creation of the class e
which is different from d.

11. IsSet†

 ∀o1 o2 x s. I sc
d o1 (Sete

a o2 x s) = I sc
d o1 s

I s operations are independent of Set operations.
12. DownNull

 ∀o s. I sc
d o s ⇒ (Castc

e o s = Unde f ) (e 	�∗ d)

Casting the d instance to the non-ancestor class e results
in the undefined value.

13. NotExCast
 ∀o s. ¬(Exc o s) ⇒ (Castc

d o s = Nulld)

Casting the non-existent object results in the null object
of the destination class.

14. Up11*
 ∀o1 o2 s. Exd o1 s ∧ Exd o2 s ⇒
¬(o1 = o2) ⇒ ¬(Castd

c o1 s = Castd
c o2 s) (c �+ d)

If two c objects o1 and o2 are different and exist in the
store, the two object obtained by up-casting to the class
c are also different, i.e., Cast operators are injective.

15. Down11*
 ∀o1 o2 s. I sc

e o1 s ∧ I sc
e o2 s ⇒

¬(o1 = o2) ⇒ ¬(Castc
d o1 s = Castc

d o2 s) (c �+
d and d �∗ e)
If two c objects o1 and o2 (which are both instance of
the class e) are different, the two objects obtained by

down-casting to the class d (which is equal to or an
ancestor of e) are also different.

16. UpDown*
 ∀o s. Exd o s ⇒ (Castc

d (Castd
c o s) s = o) (c �+

d)

If the d object o exists in the store, the object obtained
by up-casting to c and then down-casting to d is equal
to o itself.

17. DownUp*
 ∀o s. Exd (Castc

d o s) s ⇒ (Castd
c (Castc

d o s) s =
o) (c �+ d)

If the c object o is down-castable to the class d (i.e., the
down-cast object exists in the store), the object obtained
by down-casting to d and then up-casting to c is equal
to o itself.

18. CastCast
 ∀o s. Castd

e (Castc
d o s) s = Castc

e o s
((c �+ d and d �+ e) or (e �+ d and d �+ c))
Two transitive casts from c to d and from d to e are
concatenated to a single cast from c to e.

19. CastSet†

 ∀o1 o2. Castc
d o1 (Sete

a o2 x s) = Castc
d o1 s

Cast operations are independent of Set operations.
20. ExCastNew

 ∀o s. Exc o s ⇒ (Castc
d o (Snd (Newe s)) =

Castc
d o s)

(c �∗ e and d �∗ e)
If the c object o exists in the store, the value of the object
reference obtained by casting o to d is not affected by
the object creation of the class e. This axiom holds
when c and d are equal to or ancestors of e. The other
case is stated in the next axiom.

21. DiffCastNew
 ∀o s. Castc

d o (Snd (Newe s)) = Castc
d o s (c 	�∗

e or d 	�∗ e)
The value of the object reference obtained by casting
the c object o to d is not affected by the object crea-
tion of the class e if either c or d is not equal to or an
ancestor of e.

22. NotExGet
 ∀o s. ¬(Exc o s) ⇒ (Getc

a o s = Unde f )

Getting the attribute of a non-existent object results in
the undefined value.

23. NotExSet
 ∀o x s. ¬(Exc o s) ⇒ (Setc

a o x s = s)
Setting the attribute of a non-existent object causes
nothing to the store.

24. SprGet
 ∀o s. Getd

a o s = Getc
a (Castd

c o s) s (c �+
d and a ∈ Mattr (c))
For the d object o, getting the attribute a defined in the
super-class c is equivalent to getting a after up-casting
it to c.
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25. SprSet
 ∀o s. Setd

a o x s = Setc
a (Castd

c o s) x s (c �+
d and a ∈ Mattr (c))
For the d object o, setting the attribute a defined in the
super-class c is equivalent to setting a after up-casting
it to c.

26. GetSet
 ∀o s. Exc o s ⇒ (Getc

a o (Setc
a o x s) = x)

If the object o exists in the store, the attribute a of o
obtained just after setting it to x is equal to x .

27. DiffObjGetSet
 ∀o1 o2 s. ¬(o1 = o2) ⇒ (Getc

a o1 (Setc
a o2 x s) =

Getc
a o1 s)

If the two objects o1 and o2 are different, getting the
attribute a of o1 is not affected by the setting of the
same attribute of o2.

28. DiffGetSet†

 ∀o1 o2 s. Getc
a o1 (Setd

b o2 x s) = Getc
a o1 s

((c 	�∗ d and d 	�∗ c) or a 	= b)

If the two classes c and d are not in the inheritance
relationship or the attribute name a and b are different,
getting the attribute a of the object o1 is not affected
by the setting of the attribute b of the object o2.

29. GetNew
 ∀s. let (o, s′) = Newc s in Getc

a o s′ = V(c, a)

Getting the attribute of the newly created object results
in the default value for the attribute.

30. GetNewCast
 ∀o s. let (o, s′) = Newd s in

Getc
a (Castd

c o s′) s′ = V(c, a) (c �+ d and e �∗ c)
This axiom is similar the previous one. Getting the attri-
bute of the object obtained by up-casting the newly cre-
ated object results in the default value of the attribute.

31. ExGetNew
 ∀o s. Exc o s ⇒ (Getc

a o (Snd (Newd s)) =
Getc

a o s) (c �∗ d)

If the c object o exists in the store, getting the attribute
of o is not affected by the object creation of the class
d. This axiom holds when d is equal to or a descendant
of c. The other case is stated in the next axiom.

32. DiffGetNew†

 ∀o s. Getc
a o (Snd (Newd s)) = Getc

a o s (c 	�∗ d)

The attribute value of the c object is not affected by the
object creation of the class d which is neither equal to
nor a descendant of c.

33. SetSet†

 ∀o x y s. Setc
a o x (Setc

a o y s) = Setc
a o x s

Two consecutive settings of the same attribute cancel
the previous one.

34. DiffObjSetSet
 ∀o1 o2 x y s. ¬(o1 = o2) ⇒
(Setc

a o1 x (Setc
a o2 y s) = Setc

a o2 y (Setc
a o1 x s))

Two attribute settings of different objects are inter-
changeable.

35. DiffSetSet†

 ∀o1 o2 x y s. Setc
a o1 x (Setd

b o2 y s) =
Setd

b o2 y (Setc
a o1 x s)((c 	�∗ d and d 	�∗ c) or (a 	=

b))

Two settings of different attributes are interchangeable.
36. ExSetNew

 ∀o x s. Exc o s ⇒
(Setc

a o x (Snd (Newd s)) = Snd (Newd

(Setc
a o x s)))(c �∗ d)

If the object o exists in the store, the attribute setting
of the object and the object creation of the class d are
interchangeable. This axiom holds when c is equal to
or an ancestor of d. The other case is stated in the next
axiom.

37. DiffSetNew†

 ∀o x s. Setc
a o x (Snd (Newd s)) = Snd (Newd

(Setc
a o x s)) (c 	�∗ d)

The attribute setting of the c object and the object cre-
ation of the class d (which is neither equal to nor a
descendant of c) are interchangeable.

38. DiffNewNew†

 ∀s. Snd (Newc (Snd (Newd s))) = Snd (Newd

(Snd (Newc s)))(not relative(c, d))

Two object creations of different classes c and d are
interchangeable as long as they belong to different
inheritance tree (relative(c, d) = ∃r. r �∗ c ∧ r �∗
d).

39. SetGet†

 ∀o s. Setc
a o (Getc

a o s) s = s
Setting the attribute a in the store s to the same attribute
in the same store results in the original store.

40. FstNewSet†

 ∀o x s. Fst (Newc (Setd
a o x s)) = Fst (Newc s)

The value of the object reference obtained by the object
creation is not affected by the attribute setting.

41. DiffFstNewNew†

 ∀s. Fst (Newc (Snd (Newd s)))
= Fst (Newc s) (c 	�∗ d)

The value of the object reference obtained by the object
creation of the class c is not affected by the object cre-
ation of the class d which is neither equal to nor a
descendant of c.

42. ExNew
 ∀o1 s. let (o2, s′) = Newc s in
Exc o1 s′ = (o1 = o2) ∨ Exc o1 s
This is a theorem derived from ExIs and IsNew. The c
object o1 exists in the store after creating a new instance
of the class c iff o1 is either the newly created object o2

or the object which already existed before the creation.
43. ExSet†

 ∀o1 o2 x s. Exc o1 (Sete
a o2 x s) = Exc o1 s
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This is a theorem derived from ExIs and IsSet. Ex
operations are independent of Set operations.

44. GetSetNew
 ∀x s. let (o, s′)= Newc s in Getc

a o (Setc
a o x s′)= x

This is a theorem derived from ExNew and GetSet. If
the object o is a newly created object, the attribute a of
o obtained just after setting it to x is equal to x .

Appendix B: OML syntax

The syntax of OML is defined as BNF notation. The nota-
tion ε is an empty string. The notation A+ repeats A at least
once. The notation A | B selects A or B. The notation A∗ is
equivalent to A A+. The notation A? means A is optional.

OML consists of a header and a set of classes:

O M L ::= Header (Class)∗

The header consists of imports of libraries and declaration
of new types, constants, and functions:

Header ::= (I mport)∗ (Decl)∗

I mport := importML Names | importHOL Names

Decl ::= T ypeDecl | Const Decl | FuncDecl

T ypeDecl ::= type name == (T ype | Emb)

Const Decl ::= const name : T ype == (Exp | Emb)

FuncDecl ::= func name ( Args ): T ype == (Exp | Emb)

Emb := HOL[# string #] ML[# string #]

Names ::= name (, name)∗

Args ::= ε | name : name (, name : name)∗

name ::= (a|...|z|A|...|Z) (a|...|z|A|...|Z|0|...|9|)∗

New types, constants, and functions are defined using the
standard types and expressions in OML or the embedded
code from ML and HOL.

A class consists of three kinds of members: attributes,
methods, and invariants. Contracts can be attached to a
method:

Class ::= Class Decl { (Member)∗ }
Class Decl ::= (main)? class name (extends name)?

Member ::= (Attr | Meth | I nv)∗

Attr ::= Acc name : T ype == Exp ;

Meth ::= Acc name ( Args ): T ype { Body } (Conts)?

I nv ::= invariant name { Exp }

Conts ::= contracting Cont (and Cont)∗

Cont ::= name { (Quant)? (pre: Exp)? post: Exp }

Acc ::= private | public | protected
Args ::= ε | Arg (, Arg)∗

Arg ::= name : T ype

The main class must be unique and must not be created inside
the system. The invariants are only defined in the main class.

The attributes of the main class must be private. The public
methods of the main class can neither input nor output objects
(The system is closed). It is prohibited to input objects to the
public methods of the main class It is also prohibited to call
side-effecting methods inside contracts and invariants. Both
in the contracts and invariants, visibilities become transpar-
ent, i.e., all the members can be publicly accessed (This is for
omitting the burden to define additional methods for debug-
ging).

There are following kinds of types:

T ype ::= name | void | num | bool | string | T ype # T ype |
T ype list | name List | ( T ype )

The type name includes the class names for object types and
the names for newly declared types. All the types except for
objects are simple data and not objects. For example, the
strings in Java are treated as objects, but they are treated as
values in OML. The type List is the type of object lists
which is distinguished from the normal list type list. Both
lists are also treated as values.

The method body consists of declaration of local variables
and a sequence of statements:

Body ::= (V ar)∗ (Stm)∗

V ar ::= var Names : T ype == Exp ;

Stm ::= Skip | Ass | Call | App | New | Loop | I f | Return

Names ::= name (, name)∗

Statements are defined as follows:

Skip ::= ;

Ass ::= (Exp .)? name = Exp ;

Call ::= ((Exp .)? name =)? (Exp.)? name ( Exps );

App ::= Exp -> apply ( name ( Args ));

New ::= (Exp .)? name = (new | newList) name ( Exps );

Loop ::= Exp . loop ( name ( Args ), Exp );

I f ::= if ( Exp ) Stm (Else)? | if ( Exp ) { (Stm)∗ } (Else)?

Else ::= else Stm | else { (Stm)∗ }
Return ::= return Exp ;

Exps ::= ε | Exp (, Exp)∗

There are two commands for object creation: new and
newList. The first one is the usual one for creating a
single object used like f = new foo(1);. The second
one is for creating multiple objects used like L = new-List
foo([1,2,3]). It creates three cutomer objects with con-
structor arguments 1, 2 and 3, respectively. The created
objects are put in the ist L in this order. The command loop
repeats a method for a finite number of times. For example,
the statementfw.loop(clock(),10); calls the method
clock() to the fw object for 10 times.
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Expressions are defined as follows:

Exp ::= Obj | Num | Bool | String | Pair | List | Obj List |
Pre f i x Exp | Exp I n f i x Exp | Exp Su f f i x |
(Exp.)? name | Exp. name ( Exps ) | Fun ( Exps ) |
Cond | _ | result | Quant Exp | ( Exp )

Obj ::= this | super | null: T ype | Exp : T ype

Num ::= (1|...|9) (0|...|9)∗

Bool ::= true | false
Pre f i x ::= !

I n f i x ::= + | - | * | / | % | && | || | implies | == | != | < | > | <= | >=
Su f f i x ::= @pre

Fun ::= fst | snd | concat | hd | tl | last | nth | cons | length |
append | zip | unzip | filter | forall | exists |
map | member | foldl | foldr | reverse | sum | mklist

String ::= " string "

Pair ::= ( Exps )

List ::= []: T ype | [ Exps ]

Obj List ::= Nil: T ype | Exp -> add ( Exp ) | Exp -> del ( Exp ) |
Exp -> append ( Exp ) | Exp -> hd() | Exp -> tl() |
Exp -> length() | Exp -> contains ( Exp ) |
Exp -> select ( name | Exp ) | Exp -> reject ( name | Exp ) |
Exp -> forall ( name | Exp ) | Exp -> exists ( name | Exp ) |
Exp -> collect ( name | Exp )

Cond ::= ( Exp )? Exp : Exp

Quant ::= (Forall (name)+ . | Exists (name)+ . )+

It is not allowed to call side-effecting methods in expres-
sions. Quantifiers and the infix implies can be used only
in the contracts and invariants. The expression result
and the suffix @pre can be used only in the post-condi-
tion of contracts. Cast is denoted by : like rectobj:fig.
The application of object list function is denoted by ->,
which makes it easy to connect them sequentially like
L->select(x|x.F())->length(). The expression_
is used as the special argument for functions on list.
The meaning depends on the functions. For example, the
expression filter([1,2,3], _<=2) evaluates to the
list [1,2]. In this case, _ is used to represent each ele-
ment in the list. The function mk_list is used to construct
lists. The expression mklist(n,G(_)) constructs a list
whose length is n and the i-th value is G(i). For exam-
ple, the expression mklist(4,_*_) evaluates to the list
[1,4,9,16]. In this case, _ is used to represent the posi-
tion of the list. By combining mklist and newList, we
can construct various kinds of object lists.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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