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Abstract
The GARP (Golden2, ARR-B, Psr1) family proteins with a conserved DNA-binding domain, called the B-motif, are plant-
specific transcription factors involved in the regulation of various physiological processes. The GARP family proteins are 
divided into members that function as monomeric transcription factors, and members that function as transcription factors in 
the dimeric form, owing to the presence of a coiled-coil dimerization domain. Recent studies revealed that the dimer-forming 
GARP family members, which are further divided into the PHR1 and NIGT1 subfamilies, play critical roles in the regulation 
of phosphorus (P) and nitrogen (N) acquisition. In this review, we present a general overview of the GARP family proteins 
and discuss how several members of the PHR1 and NIGT1 subfamilies are involved in the coordinated acquisition of P and 
N in response to changes in environmental nutrient conditions, while mainly focusing on the recent findings that enhance 
our knowledge of the roles of PHR1 and NIGT1 in phosphate starvation signaling and nitrate signaling.
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Introduction

Being sessile organisms, plants need to cope with various 
environmental challenges at the site of germination. To over-
come adverse environmental conditions, plants have devel-
oped complicated gene regulatory networks that optimize 
their growth in response to the external environment (Li 
et al. 2021a; Waadt et al. 2022). Transcription factors (TFs) 
are the main regulators of gene regulatory networks. The 
Arabidopsis thaliana genome encodes 2,296 TFs, which are 
classified into 58 families (Jin et al. 2017). Because of their 
functional importance, TFs have been considered as one of 
the main targets of plant research. According to previous 
studies, functional differences occur not only among the dif-
ferent TF families but also among members of the same TF 
family. The GARP (Golden2, ARR-B, Psr1) family of TFs 
is such an example. The GARP family was first identified by 

Riechmann et al. (2000), when Arabidopsis TFs were sys-
temically identified using whole-genome information. The 
family name GARP is derived from the names of its constit-
uent members identified at the early stage of GARP research, 
namely, the GOLDEN 2 (G2) protein of maize (Hall et al. 
1998), Arabidopsis RESPONSE REGULATOR-B (ARR-B) 
protein (Imamura et al. 1999), and the PHOSPHATE STAR-
VATION RESPONSE 1 (PSR1) protein of Chlamydomonas 
(Wykoff et al. 1999); these proteins are involved in chloro-
plast development, cytokinin signaling, and phosphate star-
vation response, respectively. Subsequent studies revealed 
a variety of functions of GARP family members, including 
plant hormone signaling, circadian clock regulation, organ 
development, and nutrient acquisition (Safi et al. 2017), 
highlighting that these proteins play vital physiological roles 
throughout the plant life cycle. Intriguingly, recent studies 
revealed that the interplay of two large subfamilies of the 
GARP family, PHR1 and NIGT1 subfamilies, generates a 
sophisticated regulation of nitrogen (N) and phosphorus (P) 
acquisition to facilitate plant adaptation to the fluctuating 
nutrient conditions. The current review presents a general 
overview of the GARP family proteins and discusses how 
the PHR1 and NIGT1 subfamily proteins cleverly regulate 
N and P acquisition via their interplay. Since most of the 
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previous studies on GARP family proteins were conducted in 
Arabidopsis, the genes and proteins included in this review 
are mostly of Arabidopsis origin, unless specified otherwise.

Definition and structural characteristics 
of GARP family proteins

GARP family proteins have a characteristic DNA-binding 
domain, called the B-motif (Imamura et al. 1999). Because 
of sequence similarity between the B-motif and the DNA-
binding domain of MYB TFs, the GARP family proteins 
are often confused with MYB-like proteins. Nuclear mag-
netic resonance spectroscopy of the ARR10–DNA com-
plex demonstrated that the GARP B-motif and the MYB 
DNA-binding domain exhibit a similar three-dimensional 
(3D) structure (Hosoda et al. 2002). However, phylogenetic 
analysis showed that GARP family proteins are distinct 
from MYB-related proteins (Fitter et al. 2002). Consistent 
with the result of this analysis, some critical amino acids 
in the MYB DNA-binding domain are not conserved in the 
B-motif (Safi et al. 2017). Therefore, GARP family proteins 
are considered to be plant-specific TFs that are distinguish-
able from the widely conserved eukaryotic MYB proteins 
(Riechmann et al. 2000).

The structure of all domains, except the DNA-binding 
domain, of GARP family proteins is highly diverse (Safi 
et al. 2017). However, GARP family proteins are broadly 
classified into monomeric members and members that form 
dimers owing to the presence of a coiled-coil dimerization 
domain (Safi et al. 2017). Since many TFs possess a dimeri-
zation domain for homo- or heterodimerization, which is 
often required for DNA binding (Amoutzias et al. 2008), 
the DNA-binding and dimerization domains are generally 
shared among all members of each TF family. Therefore, the 
presence of both monomeric members and dimer-forming 
members is characteristic of the GARP family.

The monomeric GARP family TFs are further classi-
fied into four subfamilies, consisting the ARR, GOLDEN 
2-LIKE (GLK), LUX ARRHYTHMO (LUX), and KANADI 
(KAN) subfamilies, which were defined by the presence of 
several unique amino acid sequence motifs, while GARP 
family proteins that function as dimeric TFs containing 
a coiled-coil domain (CCD) are classified into two sub-
families, the PHOSPHATE STARVATION RESPONSE 
1 (PHR1) and NITRATE-INDUCIBLE, GARP-TYPE 
TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) subfami-
lies (Fig. 1a; Safi et al. 2017). These subfamilies differ phy-
logenetically and regulate different physiological processes 
(Safi et al. 2017). Arabidopsis contains 56 GARP family 
proteins, 55 of which belong to the ARR (13 proteins), GLK 
(3 proteins), LUX (5 protein), KAN (12 proteins), PHR1 
(15 proteins), and NIGT1 (7 proteins) subfamilies, while 

1 GARP family protein (AT5G62110) is not assigned to 
any subfamily, because it lacks the N-terminal half of the 
DNA-binding domain and does not possess any character-
istic amino acid motifs (Fig. 1a). Furthermore, PSEUDO-
RESPONSE REGULATOR 2 (PRR2) is a hybrid protein 
that harbors amino acid motifs conserved among the proteins 
of ARR-B and GLK subfamilies. Although generally consid-
ered as a member of the ARR subfamily, PRR2 is classified 
into the GLK subfamily in this review, based on the results 
of phylogenetic analysis.

Physiological functions of monomeric GARP 
TFs

The monomeric GARP family TFs mediate several physi-
ological responses in plants, based on the evidence available 
mainly in Arabidopsis. GARP family proteins belonging to 
the ARR-B subfamily are the critical regulators of cytokinin 
signaling (Ferreira and Kieber 2005; Hwang et al. 2012). 
The cytokinin signal is transferred from the membrane-
localized cytokinin receptors (AHKs) to histidine phospho-
transfer proteins (AHPs) via a phosphorylation relay. Then, 
the activated AHPs phosphorylate ARR-B proteins at their 
N-terminal receiver domain (Argyros et al. 2008; Yokoyama 
et al. 2007). Consistent with the fact that ARR-B proteins 
are responsible for the expression of most cytokinin-induc-
ible genes (Argyros et al. 2008; Yokoyama et al. 2007), the 
Arabidopsis arr1 arr10 arr12 triple mutant exhibited severe 
defects in its physiological and transcriptional responses 
to the exogenously applied cytokinin and showed various 
abnormalities in cell division and organ differentiation. On 
the other hand, GLKs have been shown to play an essen-
tial role in chloroplast development in several plant species, 
including Arabidopsis, tomato (Solanum lycopersicum), and 
rice (Oryza sativa) (Nguyen et al. 2014; Wang et al. 2013; 
Waters et al. 2009). GLKs are required for the expression of 
nuclear-encoded photosynthetic proteins related to the light-
harvesting complex and chlorophyl biosynthesis (Fitter et al. 
2002; Waters et al. 2009). Thus, the functionally deficient 
mutants of GLKs show pale-green leaves with low chloro-
phyll content and a small number of chloroplasts with devel-
opmentally abnormal thylakoid membrane structure (Fitter 
et al. 2002). Arabidopsis and tomato possess two function-
ally redundant GLK paralogs (GLK1 and GLK2), although 
the fruit tissue predominantly expresses GLK2 (Fitter et al. 
2002; Nguyen et al. 2014; Powell et al. 2012). Therefore, 
Arabidopsis and tomato glk2 mutants, unlike the Arabidop-
sis glk1 mutant and tomato GLK1 co-suppression lines, show 
reduced chloroplast development specifically in fruits (Fitter 
et al. 2002; Nguyen et al. 2014; Powell et al. 2012). LUX (of 
the LUX subfamily) functions as a DNA-binding component 
in the Evening Complex (EC), which is a transcriptional 
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repressor complex and a core regulator of the plant circadian 
clock (Hazen et al. 2005; Silva et al. 2020). As a component 
of the EC, LUX represses the expression of clock-regulated 

genes and therefore is responsible for maintaining circadian 
oscillation. LUX expression is induced during nighttime and 
is under the control of a negative autoregulatory feedback 

Fig. 1  Phylogenetic relationship and structure of GARP family pro-
teins. a A phylogenetic tree (left) and representative structure (right) 
of Arabidopsis GARP family proteins. Phylogenetic analysis was 
performed with the SALAD Database (Mihara et  al. 2010). Num-
bers shown in parentheses indicate the number of proteins included 
in each subfamily. Each representative structure indicates a domain 
that is conserved among the subfamily members. CCD, Coiled-coil 
domain; DBD, DNA-binding domain; GCT, GLK/C-terminal box; 
RD, Receiver domain. b Phylogenetic tree constructed using the 

amino acid sequences of the PHR1 and NIGT1 subfamily proteins of 
Marchantia polymorpha (blue), Selaginella moellendorffii (green), 
and Arabidopsis thaliana (orange). Proteins in green and blue back-
ground belong to the PHR1 and NIGT1 subfamilies, respectively. The 
phylogenetic tree was generated using MEGA11 (Tamura et al. 2021). 
The bootstrap values were calculated based on 1,000 replications. c 
and d Sequence alignment of the CCD of PHR1 (c) and NIGT1 (d) 
subfamily members. Sequences with > 80% identity or similarity are 
shaded in gray and black
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loop, because LUX directly binds to its own promoter 
(Helfer et al. 2011). A phylogenetically close homolog of 
LUX, named BROTHER OF LUX ARRHYTHMO (BOA), 
is also involved in the regulation of circadian oscillation 
(Dai et al. 2011). KAN subfamily members are involved 
in organ patterning through the establishment of abaxial/
adaxial polarity. In Arabidopsis, KAN1–4 genes are mainly 
expressed in the abaxial region of tissues and are responsible 
for the maintenance of abaxial identity (Eshed et al. 2004; 
Kerstetter et al. 2001; McAbee et al. 2006). The spatial 
expression pattern of these KAN genes regulates auxin sign-
aling to induce KAN-mediated organ patterning (Izhaki and 
Bowman 2007; Merelo et al. 2013). In addition, KAN1–4 
genes are required for the normal development of vascular 
tissues and reproductive organs (Emery et al. 2003; Eshed 
et al. 2001; Ilegems et al. 2010; Kerstetter et al. 2001). Since 
not all members of the monomeric GARP TF subfamilies 
have been characterized yet, further studies are needed to 
reveal the functions of these proteins. However, at this stage, 
members belonging to the same subfamily of monomeric 
GARP TFs appear to play closely related roles in the same 
physiological process.

Dimerization domains and DNA recognition 
of dimeric GARP TFs

Many members of the two subfamilies of dimeric GARP 
TFs, PHR1 and NIGT1 subfamilies (Fig. 1b), have been 
shown to play critical roles in regulating nutrient responses 
(discussed below); however, some members of the PHR1 
and NIGT1 subfamilies are suggested to play vital roles 
in the developmental processes. ALTERED PHLOEM 
DEVELOPMENT (APL), a member of the PHR1 subfam-
ily, is a critical regulator for the definition of phloem identity 
(Abe et al. 2015; Bonke et al. 2003; Kim et al. 2021; Kondo 
et al. 2016; Zhao et al. 2011), but the role of APL in nutri-
ent responses has yet to be shown. HYPERSENSITIVITY 
TO LOW PI-ELICITED PRIMARY ROOT SHORTENING 
1 HOMOLOGUE 4 (HHO4)/EARLY FLOWERING MYB 
PROTEIN (EFM) and HHO5/ULTRAPETALA 1 INTER-
ACTING FACTOR 1 (UIF1) are NIGT1 subfamily mem-
bers involved in the flowering and floral organ development, 
respectively (Moreau et al. 2016; Yan et al. 2014).

PHR1 subfamily proteins possess a coiled-coil-type 
dimerization domain downstream of their DNA-binding 
domain (Fig. 1a, c). Because of this structural feature, 
Lundmark et al. (2011) referred to the PHR1 subfamily 
as the GARP coiled-coil family. By contrast, the NIGT1 
subfamily proteins possess another coiled-coil domain 
for dimerization upstream of their DNA-binding domain 
(Fig. 1a, d) (Safi et  al. 2017; Ueda et  al. 2020b). The 
coiled-coil dimerization domain of NIGT1 proteins, which 

was referred to as the hydrophobic and globular domain by 
Li et al. (2021b), shares no amino acid sequence similar-
ity with that of PHR1 subfamily proteins and therefore is 
easily distinguishable.

Phylogenetic analysis showed that PHR1-like and NIGT1-
like proteins show a similar domain structure in liverwort 
(Marchantia polymorpha) and spike moss (Selaginella 
moellendorffii) (Fig. 1b–d). Furthermore, the domain struc-
ture, dimerization domain, and physiological role of Chla-
mydomonas PSR1 are similar to those of PHR1 (Rubio et al. 
2001; Wykoff et al. 1999). Therefore, the physiological 
functions of PHR1 and NIGT1 subfamily proteins might be 
evolutionally conserved. Although many studies revealed 
that both PHR1 and NIGT1 subfamily proteins are closely 
associated with nutrient responses, the PHR1 and NIGT1 
subfamilies do not constitute a monophyletic group. Hence, 
it was hypothesized that the ancestors of PHR1 and NIGT1 
subfamilies evolved their respective dimerization domains 
independently (Safi et al. 2017). Consistently, Ueda et al. 
(2020b) showed that the NIGT1 subfamily proteins dimerize 
among themselves (to form homo- and heterodimers) but do 
not dimerize with PHR1 subfamily proteins.

The dimerization domains of both PHR1 and NIGT1 sub-
family proteins are essential for DNA recognition. Deletion 
of the dimerization domain of PHR1 abolished its DNA-
binding ability (Rubio et al. 2001). Similarly, high-affinity 
DNA binding of NIGT1 proteins requires dimerization 
(Ueda et al. 2020b). However, mutations in the dimeriza-
tion domain of NIGT1 did not completely abolish its DNA-
binding activity, indicating that the NIGT1 DNA-binding 
domain of monomeric NIGT1 is still able to recognize its 
target sequence. Based on these observations, it was hypoth-
esized that PHR1 and NIGT1 proteins use different mecha-
nisms to bind to DNA (Fig. 2) (Yanagisawa 2013).

The PHR1-binding sequence (P1BS) is the -GNATATNC- 
palindromic sequence, in which N indicates any nucleotide. 
Thus, the dimerization of PHR1 proteins likely results in the 
formation of a rigid 3D structure with two closely and sym-
metrically aligned PHR1 DNA-binding domains, which are 
necessary for DNA-binding activity. Previously, comparison 
between the DNA-binding domains of PHR1 and ARR10 led 
to the speculation that well-conserved amino acid residues in 
the two DNA-binding domains are involved in the nucleotide 
recognition of one half of the P1BS (-GNAT-) (Yanagisawa 
2013). Although the leucine residue involved in the recogni-
tion of cytosine in the ARR10-binding sequence (-AATCT-) 
is also conserved in PHR1, PHR1 does not seem to use this 
residue to bind to DNA, probably because the access of this 
residue is structurally inhibited by the close positioning of 
two DNA-binding domains. Thus, each protein component 
of the GARP monomers and dimers shares a similar DNA 
recognition pattern, although dimerization alters this rec-
ognition pattern.
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On the other hand, NIGT1 employs two DNA recogni-
tion modes to bind to a variety of target sequences (Ueda 
et al. 2020b) (Fig. 2). One of these modes is similar to 
that of PHR1, where an NIGT1 dimer binds to a palindro-
mic sequence (-GAA TAT TC-). Because a mutation in the 
dimerization domain disrupts the binding of NIGT1 pro-
teins to this palindromic sequence, close positioning of two 
DNA-binding domains is necessary for this DNA recogni-
tion mode. The other DNA recognition mode is unique to 
NIGT1 proteins, in which the NIGT1 dimer recognizes a 
single copy and two separated copies of the NIGT1-binding 
sequence (-GAATC-) with low and high affinities, respec-
tively. Although structural details should be verified in a 
future study, the two DNA-binding domains of an NIGT1 
dimer independently recognize the target sequence much like 
a monomeric GARP protein. The NIGT1-binding sequence 
in this type of DNA recognition (-GAATC-) shares an 
AATC motif with the ARR10-binding sequence (-AATCT-), 
suggesting that the 3D structure of the NIGT1–DNA com-
plex in this DNA recognition mode is similar to that of the 
ARR10–DNA complex. The fact that amino acid residues 

recognizing these nucleotides in ARR10 are highly con-
served in the NIGT1 DNA-binding domain is consistent with 
this hypothesis (Yanagisawa 2013). Recognition of an addi-
tional cytosine in this type of DNA recognition sequence 
also implies more space between the two NIGT1 DNA-
binding domains compared with the binding mode for the 
-GAA TAT TC- sequence. Thus, NIGT1 can recognize two 
distant target -GAATC- sequences with face-to-face (e.g., 
-GATTC-N38-GAATC- in the NRT2.1 promoter) (Ueda 
et al. 2020b). This difference implies that the structure of 
the linker region between the dimerization and DNA-binding 
domains is flexible for the appropriate positioning of the 
DNA-binding domain, depending on the target sequences. 
Further structural analyses of the NIGT1 dimer may reveal 
molecular details of how NIGT1 utilizes the two distinct 
DNA-binding modes.

The dimerization of TFs allows them to recognize longer 
and more complex sequences, which enables plants to 
develop complicated transcriptional regulatory networks. 
The formation of heterodimers can alter the DNA-bind-
ing affinity and sequence specificity of each constituent 

Fig. 2  A model depicting the DNA-binding modes of PHR1 and 
NIGT1 proteins. PHR1 and NIGT1 form dimers using the coiled-
coil-type dimerization domains (yellow and purple rectangles, respec-
tively) and bind to palindromic DNA sequences (-GNATATNC- and 
-GAA TAT TC-, respectively). In this DNA-binding mode, two DNA-
binding domains (green and blue triangles) align closely and symmet-
rically. The NIGT1 dimer also binds to the NIGT1-binding sequence 

when present singly (-GAATC-) or as a pair (e.g., -GATTC-N38-
GAATC-). A conformational change in the linker region that con-
nects the dimerization domain with the DNA-binding domain allows 
NIGT1 to flexibly position the two DNA-binding domains. In this 
DNA-binding mode, two DNA-binding domains independently rec-
ognize the target sequences, including the additional cytosine (shown 
in blue), compared with the palindromic target sequence
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monomer, depending on their characteristics. Therefore, in 
some cases, the functions of dimerized TFs can be modified 
by regulating the expression ratios and dimerization effi-
ciency of the participating monomers. In the case of MYB-
RELATED PROTEIN 1 (MYR1) and MYR2, members of 
the PHR1 subfamily, alternative splicing was shown to affect 
their dimerization efficiency by altering the sequence of the 
dimerization domain (Zhao and Beers 2013), thus perhaps 
fine-tuning downstream gene expression. Both PHR1 and 
NIGT1 subfamily proteins form heterodimers with other 
family members exhibiting different expression patterns 
and functions (Ueda et al. 2020b; Wang et al. 2023). Future 
studies focusing on heterodimer formation may reveal new 
regulatory roles of dimeric GARP TFs.

Physiological roles of PHR1 subfamily 
members in P acquisition

In the past two decades, many studies have revealed that 
plants precisely control N and P acquisition via a transcrip-
tional regulatory network composed of multiple TFs (Helli-
well 2023; Li et al. 2021b; Sega and Pacak 2019; Ueda et al. 
2021). PHR1 and NIGT1 subfamily members play essential 
roles in this network. PHR1 and its homologs have been well 
characterized as essential positive regulators of phosphate 
uptake and phosphate starvation responses in Arabidopsis, 
rice, and several other plant species (Sega and Pacak 2019). 
Since plants acquire P from the soil as phosphate, the phos-
phate uptake and phosphate starvation responses are coor-
dinately regulated by PHR1 and its homologs.

PSR1, which was the first PHR1 subfamily member 
to be reported, was identified in a screening of Chla-
mydomonas mutants showing defective acclimatization to 
phosphate limitation (Shimogawara et al. 1999; Wykoff 
et  al. 1999). The psr1 mutant showed no increase in 
the rate of phosphate uptake upon phosphate depletion, 
resulting in a rapid decline in photosynthetic activity and 
growth after transfer to phosphate-limited conditions. 
Subsequently, Arabidopsis PHR1 was identified through 
mutant screening with a GUS reporter line, in which GUS 
expression was driven by a phosphate starvation-inducible 
gene promoter (Rubio et al. 2001). PHR1 functions redun-
dantly with PHL1, which is most closely related to PHR1 
in Arabidopsis (Fig. 1b), controlling a large part of the 
transcriptional response to phosphate starvation. Conse-
quently, the phr1 phl1 double mutant does not exhibit the 
typical physiological responses to phosphate starvation, 
such as anthocyanin accumulation, root hair elongation, 
and increased root/shoot ratio, and shows severe growth 
defects under phosphate-deficient conditions (Bustos 
et al. 2010). PHR1 homologs, PHL2 and PHL3, are also 
involved in the phosphate starvation response (Sun et al. 

2016). PHR1 and PHLs share the dimerization domain 
and the DNA-binding sequence; however, PHR1/PHL1 
and PHL2/PHL3 function as distinct modules to regulate 
plant development and transcriptional responses, because 
they do not physically interact with each other (Wang et al. 
2023). The distinct roles of PHR1/PHL1 and PHL2/PHL3 
in the phosphate starvation response may be related to the 
distant position of PHR1/PHL1 and PHL2/PHL3 in the 
phylogenetic tree (Fig. 1b), implying that many members 
of the PHR1 subfamily may be involved in phosphate-
related physiological processes.

Interestingly, PHR1 was found to not only directly 
activate the phosphate starvation-related genes but also 
suppress the immune response-related genes. This PHR1-
mediated regulation balances resource allocation between 
phosphate acquisition and immunity and modulates root 
microbial community. Under phosphate starvation condi-
tions, plants allow colonization by beneficial microorgan-
isms, such as mycorrhizal fungi, to promote phosphate 
uptake. A recent study showed that PHR1 activates the 
genes encoding the immune response-suppressing rapid 
alkalinization factor peptides to balance phosphate acqui-
sition and immune response in phosphate-deficient envi-
ronments (Tang et al. 2022). Therefore, PHR1 plays a criti-
cal role in controlling the overall physiological responses 
of plants to enable their survival in phosphate-limited 
environments.

Unlike PSR1 activity, which is regulated at the tran-
scriptional level (Wykoff et al. 1999), PHR1 activity is 
post-translationally regulated in response to the phosphate 
nutrient status. SYG1/PHO81/XPR1 (SPX) proteins inter-
act with PHR1 in an inositol phosphate (InsP)-dependent 
manner to form the PHR1–InsP–SPX ternary complex and 
reduce PHR1 activity (Puga et al. 2014; Wang et al. 2014; 
Wild et al. 2016). Because the InsP level is correlated with 
the cellular phosphate level, plants monitor the cellular 
phosphate status based on InsP concentration (Wang et al. 
2021). Consequently, SPX interacts with PHR1 to inhibit 
the binding of PHR1 to the P1BS-containing promoters 
under phosphate-sufficient conditions; however, reduction 
in the cellular phosphate level leads to the dissociation of the 
PHR1–InsP–SPX ternary complex, which increases PHR1 
activity and upregulates genes responsive to phosphate star-
vation. A recent study showed that NLA, an SPX domain-
containing E3 ubiquitin ligase, also interacts with PHR1 
in a manner similar to that employed by SPX proteins to 
regulate PHR1 protein stability depending on the phosphate 
level (Park et al. 2023). Furthermore, PHR1 activity is also 
considered to be regulated by SUMOylation (Miura et al. 
2005). Arabidopsis PHR1 is SUMOylated by SIZ1 SUMO 
E3 ligase; however, because of the pleiotropic phenotype 
of siz1, the exact effect of SUMOylation on PHR1 activity 
remains unclear.
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Physiological roles of NIGT1 subfamily 
members in N acquisition

The first suggested physiological role of NIGT1 subfam-
ily members was phosphate starvation response, because 
overexpression of an Arabidopsis NIGT1 gene, termed as 
HYPERSENSITIVITY TO LOW PI-ELICITED PRIMARY 
ROOT SHORTENING 1 (HRS1/NIGT1.4), resulted in 
altered phosphate starvation response compared with the 
wild type (Liu et al. 2009). However, NIGT1 subfamily 
members, including HRS1 and HHO proteins, are mainly 
associated with N responses (Maeda et al. 2018) and the N 
starvation response (Kiba et al. 2018; Ueda et al. 2020a). 
Consistently, the rice NIGT1 (OsNIGT1) gene was identi-
fied as the most strongly induced TF gene upon nitrate 
treatment (Sawaki et al. 2013) and all Arabidopsis NIGT1 
genes are typical nitrate-inducible genes (Maeda et al. 
2018). By contrast, Arabidopsis HRS1 and HHO genes are 
slightly induced by phosphate starvation, because PHR1 
and PHL1 weakly activate some (but not all) NIGT1 pro-
moters (Maeda et al. 2018). Following previous publica-
tions (Kiba et al. 2018; Li et al. 2021b; Liu et al. 2023; 
Maeda et al. 2018; Ueda et al. 2020a), the NIGT1 sub-
family members encoded by nitrate-inducible genes are 
referred to as NIGT1 proteins in this review, whereas those 
encoded by nitrate-non-inducible genes are referred to as 
HHO proteins. Both NIGT1 and HHO proteins function as 
transcriptional repressors, probably owing to the presence 
of the EAR motif, an interaction domain for co-repressors 
(Kagale and Rozwadowski 2011).

Recent studies revealed the roles of NIGT1 proteins in 
nitrate signaling and responses. Although plants acquire 
nitrate and ammonium as N sources from the soil, soil 
nitrate is the major N source for most land plants in oxida-
tive environments. Therefore, nitrate is a key N nutrient, 
and the supply of nitrate to N-starved plants induces rapid 
reprogramming of the transcriptome, triggering nitrate 
responses including the activation of genes related to 
nitrate uptake, N assimilation, and transcriptional regula-
tion. In nitrate signaling, nitrate itself acts as the primary 
signal that directly binds to and activates NIN-LIKE PRO-
TEIN (NLP) TFs, which perform dual functions by acting 
as the nitrate sensor as well as a master transcriptional 
activator at the initial stage of the nitrate response (Konishi 
and Yanagisawa 2013, 2014; Krapp et al. 2014; Liu et al. 
2022; Marchive et al. 2013). On the other hand, NIGT1 
proteins, which function directly downstream of the NLP 
TFs, are responsible for the negative feedback regulation 
of nitrate signaling. Although the role of NIGT1 proteins 
in nitrate signaling was initially suggested in rice (Sawaki 
et al. 2013), detailed analyses were performed using four 
Arabidopsis homologs (NIGT1.1–1.4), which revealed 

their roles in the downregulation of nitrate responses 
(Maeda et al. 2018; Ueda et al. 2020a, b). NIGT1 proteins 
negatively regulate the expression of many genes activated 
by nitrate-activated NLP TFs, which are very frequently 
related to nitrate transport, nitrate assimilation, cytokinin 
biosynthesis, and abscisic acid degradation (Maeda et al. 
2018; Ueda and Yanagisawa 2019). Thus, the NLP and 
NIGT1 TFs form an incoherent type I feedforward loop 
to stabilize the expression of the common target genes 
of NLP and NIGT1 proteins, such as NITRATE TRANS-
POTER2.1 (NRT2.1) (Ueda and Yanagisawa 2019, 2023). 
Furthermore, NIGT1 proteins have been shown to bind 
to NIGT1 recognition sequences in their gene promot-
ers, indicating that NIGT1 proteins constitute a negative 
autoregulatory loop to modulate their expression levels 
during the nitrate response (Maeda et al. 2018; Sawaki 
et  al. 2013). This complicated regulatory system that 
includes the NLP–NIGT1 transcriptional module likely 
optimizes nitrate responses under a myriad of different 
environmental situations. In addition to the downregula-
tion of nitrate responses, the NIGT1 proteins also regulate 
N starvation responses (Kiba et al. 2018). NIGT1 proteins 
suppress N starvation-responsive genes when the N nutri-
ent is abundant, whereas NIGT1 expression is decreased 
upon nitrate depletion, leading to the de-repression of 
N starvation-responsive genes, including NRT2.4 and 
NRT2.5, to enhance nitrate uptake.

According to recent studies, the HHO proteins also play 
critical roles in N deficiency responses. In the gene regu-
latory network controlling N deficiency responses in rice, 
which was identified through a weighted gene co-expression 
network analysis and GENIE3-based regulatory network 
analysis, OsHHO3 and OsHHO4 were designated as the 
strongest candidates for the central regulators of N defi-
ciency responses in rice. Indeed, very recently, OsHHO3 was 
reported as a transcriptional repressor of three AMMONIUM 
TRANSPORTER 1 (AMT1) genes responsible for most of 
the ammonium uptake activity of plants under N-deficient 
conditions (Liu et al. 2023). AMT1 activity is tightly asso-
ciated with plant growth in rice, because rice plants grow 
in paddy fields and prefer ammonium over nitrate as the 
N source. Like the expression of Arabidopsis NIGT1, the 
expression of OsHHO3 is repressed under N-deficient con-
ditions. Therefore, rice plants enhance AMT1 activity and 
ammonium uptake by reducing OsHHO3 expression upon N 
deficiency. Interestingly, OsHHO3 expression level showed 
a negative correlation with plant biomass and AMT1 expres-
sion in rice cultivars under N-deficient conditions, implying 
that natural variation in OsHHO3 expression levels among 
rice accessions should be utilized to improve the N use effi-
ciency of rice cultivars (Liu et al. 2023).

Recent studies showed that NIGT1 and HHO proteins 
play key roles in regulating N deficiency responses and N 
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acquisition, thus constituting a complicated mechanism. 
However, since Arabidopsis NIGT1 proteins can form heter-
odimers with certain HHO proteins (Ueda et al. 2020b), the 
NIGT1 subfamily members potentially regulate N acquisi-
tion and utilization in a more complex manner than currently 
understood.

PHR1‑NIGT1 interplay balancing N and P 
acquisition activities

N and P are key soil nutrients necessary in exceedingly high 
amounts, because they constitute various biomolecules. Plants 
must allocate resources to either the nitrate uptake pathway or 
the phosphate uptake pathway, depending on the demand and 
availability of these nutrients, to achieve optimal growth in 
different nutrient environments without wasting energy. Thus, 
plants need a complicated system to balance N and P acquisi-
tion activities. In recent years, the mechanisms underlying bal-
anced nutrient acquisition under diverse nutrient conditions 
have emerged as a new research target (Oldroyd and Leyser 
2020). Recent studies on Arabidopsis NIGT1 and PHR1 sub-
family members revealed a new mechanism, which indicated 
that both NIGT1 and PHR1 TFs constitute the core part of 
the transcriptional regulatory network that coordinates N and 
P acquisition (Maeda et al. 2018; Ueda et al. 2020a). In the 
proposed model (Fig. 3), nitrate induces NIGT1 expression 
to downregulate nitrate transporter genes and subsequently 

prevent the excess absorption of nitrate under N-sufficient 
conditions. Simultaneously, NIGT1 binds to the SPX gene 
promoters and represses SPX expression to enhance PHR1 
activity and phosphate uptake activity, thereby eliminating 
the problem of lower phosphate uptake activity compared to 
nitrate uptake activity. The expression or activity of NIGT1, 
SPX, and PHR1 reaches a steady state when mutual activa-
tion and repression among these factors leads to an optimal 
balance of nitrate and phosphate uptake activity. At this stage, 
NIGT1 expression is under the control of autorepression, 
owing to the presence of NIGT1-binding sites in NIGT1 gene 
promoters, probably contributing to maintaining this steady 
state. By contrast, under N-deficient conditions, plants must 
balance the amounts of acquired N and P by promoting nitrate 
uptake and decreasing phosphate uptake. Consistent with this 
requirement, N deficiency reduces NIGT1 expression levels, 
leading to higher nitrate uptake activity. At the same time, 
N deficiency-repressed NIGT1 expression upregulates SPX 
expression, reducing PHR activity to suppress phosphate 
uptake activity. This model is consistent with the root devel-
opment phenotypes of hrs1 (nigt1.4) mutants and HRS1 
(NIGT1.4) overexpressors under phosphate deficiency con-
ditions (Liu et al. 2009; Medici et al. 2015; Nagarajan et al. 
2016). Conversely, PHR1 and PHL1, activated in response to 
phosphate starvation, directly enhance NIGT1 expression to 
reduce the expression of nitrate transporter genes and con-
sequently decrease nitrate uptake activity to a level propor-
tional to phosphate uptake. Since one of the NIGT1-binding 

Fig. 3  A schematic diagram of the PHR1- and NIGT1-mediated 
mechanism that balances N and P acquisition. Under N-sufficient 
conditions, nitrate increases NIGT1 expression, causing the down-
regulation of nitrate transporter genes to prevent excess absorption of 
nitrate. The increase in NIGT1 expression also represses SPX expres-
sion, resulting in increased PHR1 activity and upregulation of phos-
phate transporter genes to coordinate the cellular phosphate level. 
Then, because of NIGT1 autoregulation and PHR1-dependent acti-
vation of NIGT1 and SPX1 genes for positive and negative feedback 
regulations, the expression levels of these genes reach a steady state. 
Because SPX proteins suppress PHR1 activity in response to the cel-
lular phosphate level, phosphate also participates in this regulatory 

network. Under N-deficient conditions, NIGT expression is decreased, 
inducing the upregulation of nitrate transporter genes, followed by 
increased N uptake activity. The decrease in NIGT expression also 
de-represses the SPX genes, which results in reduced PHR1 activ-
ity and phosphate uptake to prevent the excess uptake of phosphate 
relative to that of nitrate. The modulation of the NIGT1–SPX–PHR 
cascade in response to cellular nitrate and phosphate levels causes 
mutual activation and repression among these factors, optimizing the 
balance of nitrate and phosphate. The upregulated and downregulated 
signals and factors are indicated by bold font and thick lines in black 
and small letters and dashed lines in gray, respectively
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sequences (-GAA TAT TC-) is a variation of P1BS (-GNA-
TATNC-), NIGT1 and PHR1 proteins co-regulate NIGT1 
expression using shared binding sites (Maeda et al. 2018). 
However, because of their unshared binding sites, NIGT1 and 
PHR1 can also regulate distinct target genes individually to 
precisely balance N and P acquisition.

The transcriptional network described above can explain 
the mechanism that balances N and P acquisition. How-
ever, the precise mechanism may be more complicated than 
this simplified model, because of the presence of multilay-
ered positive and negative regulations such as the autore-
pression of NIGT1, activation of SPX genes by PHR1, 
and PHR1–SPX complex formation-mediated repression 
of PHR1 activity. Medici et al. (2015) also reported that 
the stability of NIGT1.4/HRS1 is decreased by phosphate 
deficiency, although how its stability is regulated post-
translationally remains to be elucidated. Furthermore, Hu 
et al. (2019) reported that OsSPX4-mediated regulation of 
OsPHR2 subcellular localization is also involved in balanc-
ing nitrate and phosphate acquisition in rice. Under phos-
phate-deficient conditions, OsPHR2 is sequestered in the 
cytosol by OsSPX4 via direct interaction to suppress phos-
phate uptake. Hu et al. (2019) proposed that nitrate applica-
tion enhances OsSPX4 degradation through the activation 
of an E3 ubiquitin ligase, NRT1.1B-INTERACTING PRO-
TEIN 1 (NBIP1), which allows OsPHR2 to translocate to the 
nucleus to activate phosphate transporter gene expression.

Concluding remarks and future perspectives

As plant-specific TFs, the GARP family proteins are involved 
in various plant-specific physiological processes. Recent stud-
ies revealed that PHR1 and NIGT1 subfamily members are 
key regulators of P and N acquisition. Phylogenetic analysis 
indicates that PHR1 and NIGT1 subfamily members pos-
sessing different amino acid sequences for the CCD do not 
belong to a monophyletic lineage, suggesting that the PHR1 
and NIGT1 subfamily emerged evolutionarily independently 
(Fig. 1). However, many studies revealed that the interplay of 
PHR1 and NIGT1 subfamily members constitutes a central 
regulatory network that integrates the supply and demand 
information of N and P for optimizing nutrient acquisition. 
Thus, most GARP family proteins that function as dimeric 
TFs are likely involved in regulating the nutrient response. 
Furthermore, given the presence of NIGT1 and PHR1 
homologs in a liverwort (Fig. 1b), the transcriptional network 
mediated by NIGT1 and PHR1 family members appears to 
be evolutionarily conserved across the entire plant kingdom 
to regulate nutrient responses. Therefore, further analyses of 
GARP family proteins, especially PHR1 and NIGT1 subfam-
ily members, would reveal the fundamental mechanism that 
regulates the acquisition of the most critical soil nutrients (N 

and P) in plants. Improving the utilization efficiencies of soil 
nutrients in crops is essential for the development of a sustain-
able agriculture system with reduced fertilizer usage, and the 
gene regulatory network regulated by NIGT1 and PHR1 sub-
family members is a potential target for such improvements, 
as already demonstrated through the disruption of OsHHO3 
in rice. Thus, PHR1 and NIGT1 subfamily members remain 
attractive targets for both basic and applied plant research.
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