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Ever since plants colonized the terrestrial environment 
ca. 470 million years ago, they have evolved to maximize 
the efficiency for the use of above-ground and underground 
spaces by coping with harsh environmental stresses on 
land, including drought, high salinity, and UV. Innovation 
of the shooting and rooting systems contributed greatly. 
For instance, shoots form leaves radially around a stem to 
achieve efficient light absorption, thicken their stems to 
increase body mass, and branch out new shoots to produce 
more descendants. Roots are comprised of centrifugally 
layered tissues and branch by forming lateral roots. These 
developmental patterns are based on the three-dimensional 
(3D) growth axes, namely the apical-basal and radial axes. 
One major evolutionary basis that enabled these inventions 
is the emergence of stem cells capable of dividing with mul-
tiple planes in a regulated fashion and the increase of stem 
cell numbers in the apex, i.e. single apical cells in bryo-
phytes, one or two apical cells in lycophytes and ferns, and 
multiple stem cells in seed plants (Harrison 2017). This api-
cal stem cell-based growth mode allowed the drastic expan-
sion of diversity in land plants.

In the green lineage, the stem cell system was acquired 
in charophyte green algae. Stem cells in charophytes divide 
only in one or two directions and thereby can only direct up 
to 2D body plans, such as filaments, branching filaments 
and mats. Bryophytes, consisting of liverworts, mosses, and 
hornworts, are basal land plant lineages that diverged from 
charophytes and have 3D body plans, as clearly manifested 
by rotational leaf formation patterns in liverwort and moss 

species. Thus, coinciding with land colonization, a third 
dimension in the division plane of stem cells was acquired 
and paved the way for drastic morphological innovations.

Recent studies identified moss genes involved in the 
3D regulation of stem cell’s division. The moss Physcom-
itrella patens protonemata grow as filamentous tissues with 
a single apical stem cell, that is 1D growth. Occasionally, 
new stem cells branch (2D growth) and divide obliquely 
to initiate formation of gametophores, or 3D leafy shoots. 
This transition from 2 to 3D growth was shown to be regu-
lated by the APETALA2-type transcription factors APBs 
(for AINTEGUMENTA, PLETHORA, and BABY BOOM; 
Aoyama et al. 2012). The oblique division is defective in 
mutants for Defective Kernel 1 (DEK1; Perroud et al. 2014), 
NO GAMETOPHORES 1 (NOG1; Moody et al. 2018), and 
genes in the CLAVATA (CLV) signaling pathway (White-
woods et al. 2018). The CLV pathway in angiosperms is 
well known for the regulation of the maintenance of stem 
cell pools in concert with the homeobox transcription factor 
WUSCHEL (WUS), a key regulator of stem cell fate (see 
below for WUS). Whitewoods et al. (2018) demonstrated 
that the CLV pathway regulates cell division planes also in 
the angiosperm Arabidopsis thaliana. As not only moss 
but also liverwort and hornwort species lack an ortholo-
gous gene for WUS (Bowman et al. 2017; Li et al. 2020; 
Sakakibara et al. 2014; Zhang et al. 2020), it is reasonable to 
assume that the CLV cell-communication system was origi-
nally invented to control 3D growth and then co-opted to 
control stem cell population by recruiting WUS. This exam-
ple readily shows that it is of great significance to argue the 
evolution of stem cells in land plants by comparing their 
characteristics and functions, or mechanisms of their estab-
lishment and maintenance, in divergent taxonomical groups. 
This JPR symposium titled “Apical stem cell(s): evolution-
ary basis for 3D body plans in land plants” presents review 
and original articles regarding stem cell biology along land 
plant evolution.
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The first three papers are review articles. In the first 
review, Moody (2020) describes comprehensively the mor-
phologies of early streptophytes, from charophyte green 
algae to bryophytes, with nice illustrations and summarizes 
the evolution of their morphological complexities to discuss 
how it relates to the dimensions of stem cell division planes. 
This serves as a good introductory article for the traits and 
taxonomies of these green lineage species, with which read-
ers can follow the evolutionary transition from 1D through 
2D to 3D growth. The author also points out convergent evo-
lution of 3D apical growth between land plants and brown 
algae, which are independently evolved lineages and may 
share similar principles.

Roots are thought to have evolved multiple times inde-
pendently in vascular plants (Friedman et al. 2004; Kenrick 
and Crane 1997; Raven and Edwards 2001), and how root 
apical meristems (RAMs) evolved is an open question. Seed 
plant roots generally contain the quiescent center (QC), an 
organizer to maintain the root stem cell niche. In the second 
review article, Fujinami et al. (2020) classify RAM organi-
zations in lycophytes into four types based on cell division 
activity and anatomy. The authors previously reported the 
existence of a QC-like area with low division activity in the 
root of a lycophyte species, but the absence of such areas in 
other lycophyte species (Fujinami et al. 2017). Together with 
the fact that lycophyte roots branch dichotomously, the data 
support the previous hypothesis of convergent evolution of 
roots in the vascular plant lineage and opens new questions 
on its molecular basis.

The shoot apical meristem (SAM) of A. thaliana consists 
of clonally distinct cell layers, that is L1, L2, and L3 from 
the outside, in all of which stem cells are embedded at the 
center. The number of stem cells is tightly regulated by their 
interaction with the organizing center (OC) located in the 
L3 layer. This non-cell autonomous control of stem cells is 
mediated by a negative feedback loop involving the CLV 
signaling pathway and the homeobox transcription factor 
WUS (Gaillochet et al. 2017). WUS mRNAs accumulate 
exclusively in the OC, but the proteins are detected in the 
L1 and L2 stem cells (Daum et al. 2014; Yadav et al. 2011), 
indicating cell-to-cell movement of WUS proteins. In the 
third review article, Fuchs and Lohmann (2020) comprehen-
sively review previous studies on the WUS-mediated non-
cell autonomous control of stem cells. A special emphasis is 
put on the mechanisms of cell-to-cell protein motility with 
detailed structural considerations and the function of WUS 
transcription factor.

It is known that position-dependent cell-fate determina-
tion underlies organ formation and tissue differentiation in 
angiosperms (Scheres 2001). In contrast, mosses and leafy 
liverworts were reported to form each leaf within a mero-
phyte, a clonal group of cells derived from a daughter cell of 
the single apical cell (Crandall-Stotler 1980; Harrison et al. 

2009), indicating cell-lineage-based organ development in 
these taxa of bryophytes. In this issue, Suzuki et al. (2020) 
apply a clonal analysis technique to a thalloid liverwort, 
Marchantia polymorpha, and elucidate that organs formed 
on the dorsal surface of the thallus contain cells derived 
from multiple merophytes. Thus, the positional cue-directed 
organ formation is likely to be a common theme in land 
plants associated with the 3D mode of apical cell division.

Gametophytes in bryophytes and sporophytes in angio-
sperms develop analogous apical meristems whose activi-
ties are regulated by apical stem cells (Prigge and Beza-
nilla 2010). Arabidopsis LIGHT-DEPENDENT SHORT 
HYPOCOTYLS1 and the Oryza G1 (ALOG) protein family 
regulates apical meristem activities and lateral organ devel-
opment in angiosperms (MacAlister et al. 2012; Takeda et al. 
2011; Yoshida et al. 2009, 2013). Recent findings identified 
that the ALOG protein family regulates meristem main-
tenance and lateral organ development in M. polymorpha 
(Naramoto et al. 2019). This suggests that common regula-
tory mechanisms mediated by ALOG control apical mer-
istem activities, such as cell proliferation and lateral organ 
formation in land plants despite their independent origins 
(Naramoto et al. 2019). In this issue, Naramoto et al. (2020) 
perform phylogenetic analysis of ALOG family proteins and 
identify that the ALOG protein family emerged before the 
evolution of land plants and that their molecular functions 
have been conserved at least in some part during the evolu-
tion of land plants. These findings imply that the ALOG 
gene had acted as an ancient mechanism controlling api-
cal meristem activities in common ancestors of land plants, 
which subsequently recruited different regulatory mecha-
nisms between bryophytes and angiosperms.

Stem cell maintenance and position-dependent cell dif-
ferentiation are regulated by various means, including phy-
tohormone signaling, cell-to-cell movement of proteins, and 
peptide-ligand signaling. Together with the moss CLV path-
way function in the regulation of stem cell division planes, 
a recent finding that CLE (CLAVATA3/EMBRYO SUR-
ROUNDING REGION-related) peptide signaling regulates 
meristem activity in the liverwort (Hirakawa et al. 2019) 
suggests the acquisition of cell–cell communication sys-
tems via peptide ligands contributed greatly to 3D growth 
of land plants. In this issue, Cammarata and Scanlon (2020) 
focus on such systems regulating stem cells and report 
phylogenetic relationships of LEUCINE-RICH REPEAT-
RECEPTOR LIKE KINASEs (LRR-RLKs) and related pro-
teins across diverse land plant models. Their analysis finds 
structural evolution of some protein families and shows that 
several stem cell-regulating protein clades share origins with 
immune signaling proteins, providing new insights into the 
broader aspect of stem cell regulations.

We still do not know much about how stem cells can 
be defined in terms of gene expression, epigenetic status, 
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chromatin structure, and division plane control. State-of-art 
technologies, such as single-cell analysis (e.g., Denyer et al. 
2019; Jean-Baptiste et al. 2019; Ryu et al. 2019; Zhang et al. 
2019), as well as comparative studies with a wide range of 
plant species (e.g., Frank et al. 2015; Frank and Scanlon 
2015), will resolve these questions.
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