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Abstract
We suggest a nonlinear time series methodology to model the (last-minute) price 
adjustments that hotels active in the online market make to adapt their early-booking 
rates in response to unpredictable fluctuations in demand. We use this approach to 
reverse-engineer the pricing strategies of six hotels in Milan, Italy, each with dif-
ferent features and services. The results reveal that the hotels’ ability to align last-
minute adjustments with early-booking decisions and account for stochastic demand 
seasonality varies depending on factors such as size, star rating, and brand affiliation. 
As a primary empirical finding, we show that the autocorrelations of the first four 
moments of the last-minute price adjustment can be used to gain crucial insights 
into the hoteliers’ pricing strategies. Scaling up this approach has the potential to 
equip policymakers in smart destinations with a reliable and transparent tool for the 
real-time monitoring of demand dynamics.

Keywords  Management strategy assessment · Web-based shared knowledge · 
Revenue managemenet · Last-minute price adjustment · Non-deterministic 
seasonality

1  Introduction

Online dynamic pricing has become a common marketing-management prac-
tice in many industries and the accommodation sector was a pioneer in this field. 
Over the past few decades, the diffusion of Online Travel Agencies (OTAs) has 
made dynamic pricing strategies, if not transparent, at least understandable through 
analyses of public and easy-to-collect data. The potential of this data, as a source 
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of shared knowledge, has not yet been fully exploited, see Buono et al. (2017). In 
the present paper, we show that it is possible to investigate important managerial 
aspects of the accommodation industry, or any other sector with strong online sales, 
with an original application of statistical methodologies routinely employed in other 
research fields. Specifically, we propose a statistical approach that, by observing the 
prices hoteliers post online over time, allows us to “objectively” evaluate the mecha-
nism accommodation structures utilize to enact their dynamic pricing techniques. 
In particular, we can determine if and how the stochastic demand and the hoteliers’ 
early-booking pricing decisions (price discrimination strategies) affect their last-
minute price adjustments. Following the literature on dynamic pricing (e.g., Weath-
erford and Kimes 2003), we consider the price adjustments at different advance 
bookings as the price shocks necessary to cope with unexpected reservations/can-
cellations in the booking window. We study the evolution of these shocks over the 
calendar days. We regard them as the realization of a stochastic process, and model 
the moments of its probability distribution as time-varying, in line with the assump-
tion that dynamic pricing practices are also affected by seasonality. In particular, 
we focus on the dynamics of location (the size of the price adjustment), scale (the 
variability), symmetry (the prevalence of either discounts or price increases), and 
kurtosis (the relative frequency of extreme adjustments). That way, we can disen-
tangle (i.e., reverse-engineer) pricing decisions of hotels active in the online mar-
ket, obtaining relevant insight into the managers’ propensity to rely on dynamic 
pricing and their ability to manage stochastic demand fluctuation. We model the 
time-varying (conditional) probability distribution of the price shocks based on the 
literature on non-Gaussian dependence that has become very popular in the field 
of finance. Precisely, we dynamically specify the location, volatility, kurtosis, and 
skewness of the last minute adjustment using a score-driven model [see, for exam-
ple Harvey (2013)]. As Creal et  al. (2011) pointed out, the use of the conditional 
score for updating the dynamic parameters is very intuitive. This approach updates 
them at each point in time via a (possibly scaled) steepest ascent step to improve 
the expected fit to the postulated skew Student’s t distribution. Analogously to the 
popular GARCH models, where the conditional variance of the returns is time-
varying and follows an updating function driven by the squared-returns, we model 
the time-varying parameters of the price error by an updating function that takes as 
innovation term the score of the conditional likelihood, that is, the derivative of the 
(postulated) conditional log-density of the error term. Furthermore, we consider the 
fat-tailed and (possibly) skewed nature of the price error distribution by specifying a 
dynamic skew Student’s t distribution with time-varying parameters. In this respect, 
an alternative approach for modelling the possible fat tailed distribution of the last 
minute adjustments could also be provided by a Gaussian innovation process with 
jumps, as considered in Ballestra et al. (2023).

We believe that such an approach can be employed in all the industries where 
goods/services are not necessarily consumed on the day of purchase and capacity 
is fixed (e.g., tickets for events, overnight stays, seats in means of transportation) 
to detect, at the business-unit level, the presence of systematic bias in the mecha-
nism through which on-line prices are dynamically updated. For instance, by focus-
ing on the dynamics of the kurtosis, we can assess how the probability of observing 
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extreme price shocks is persistent over the calendar days. We present an empirical 
analysis focusing on the business city of Milan (Italy), a highly competitive place 
where revenue management algorithms are widely used. We select six accommo-
dation structures belonging to different market segments, each having distinctive 
features. These hotels are natural candidates for our data-driven assessment since 
they also regularly published prices during the Covid-19 pandemic. However, we 
note that these six hotels are considered for illustrative purposes. Indeed, one can 
apply the methodology we propose to any (single) hotel in any city that regularly 
posts prices online. Policymakers can utilize this approach to monitor daily tourism 
seasonality dynamics at any territorial level, provided sufficient hotels in an area 
publish rates on the OTA. For instance, if autocorrelations in the location param-
eter (of a set of hotels located in a ZIP code) are low during a certain event, it can 
be inferred that the event does not meet operators’ expectations, signalling short-
term fluctuations of the last-minute price adjustments. Thus, policy makers are 
informed about undertourism or overtourism effects in real-time (i.e., if the event 
has had more or less success in terms of tourist arrivals than expected based on their 
experience). From a managerial perspective, our quantitative methodology can be 
regarded as a tool that hotel managers can use to assess the pricing strategies of their 
own hotels or competitors after gathering the necessary pricing information. By 
modeling the four parameters mentioned above with an autoregressive specification 
of order one (allowing them to vary over time), we can account for the stochastic 
effects of seasonality (demand fluctuations) on pricing practices. For example, when 
the autoregressive coefficient of the location parameter is close to one, last-minute 
price adjustments tend to persist across consecutive days. This indicates that the 
hotel applies last-minute surcharges/discounts according to an extremely persistent 
pattern that do not change with fairs or weekends. To the best of our knowledge, this 
approach is original compared to the existing literature, as we are the first to sug-
gest how to utilize upstream pricing schemes to obtain simultaneously high-quality 
third-party information on size, symmetry, volatility and probability of extreme last-
minute adjustments. The remainder of the paper is structured as follows: In Sect. 2, 
we review the existing literature; in Sect. 3, we describe the dataset and the theo-
retical framework employed; in Sect. 4, we present and discuss the results obtained. 
Finally, Sect. 5 concludes.

2 � Literature review

Although the interest of scholars and operators in revenue management (RM) was ini-
tially aimed at improving the performance of accommodation structures (Kimes 1989), 
more recent literature agrees that dynamic pricing policies that maximize revenues can 
also be beneficial to customers [at least, when the demand elasticity ranges over a small 
interval, see Chen and Gallego (2019)]. Demand forecasting is the core of the pricing 
algorithms. The simple time series models (e.g., the exponential smoothing) that were 
initially used to predict the demand at a given arrival day have given way to techniques 
based on empirical booking curves (Zakhary et al. 2008) and, more recently, to stochas-
tic demand modeling (Lee 2018). These more recent approaches are the closest to the 
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discreteness of consumer choices (Talluri 2004, p. 329), allowing hotel managers to 
jointly optimize assortment and prices. Nowadays, fine-tuning the menu of prices and 
service times allows hotels to dynamically manage demand-capacity imbalances even 
using personalized demand approaches that combine discrete choice modeling with a 
data-driven identification of customer segments based on guest characteristics, booking 
attributes, and room features (Cho et al. 2022). Strategic idleness (deliberately reject-
ing incoming requests for discrimination) and late service prioritization or rejection 
(rationing capacity or clearing the queue for delayed customers), have also been con-
sidered to determine the optimal pricing policy (Abhishek et al. 2021). Hence, person-
alized pricing (Chen and Chen 2015) and discrete choice demand models, which can 
better capture the mechanism of customer decision making (also taking into account 
unobservable no-purchase incidents, see Li and Talluri (2020), have gained increasing 
attention from academics and practitioners (Berbeglia et al. 2022). With the diffusion 
of online bookings, prices have become transparent, and online search engines allow 
researchers to observe pricing behaviours. In spite of all the recent theoretical advance-
ments and the capabilities offered by growing computational algorithms, the empiri-
cal analysis of the revenue managers’ pricing behavior is still underdeveloped. Abrate 
et al. (2012) were among the first to analyze the dynamics of hotel prices across the 
booking horizon. This is not a simple task because, as was clearly understood from 
the beginning, the mathematical techniques and the variables used to model the pric-
ing strategies should consider the nonlinearity in the relationship between price and 
performance (Schwartz and Chen 2010), as well as a large number of other condition-
ing factors. For example: hotel characteristics and the many possibilities they have to 
differentiate their product (Abrate and Viglia 2016), competition among neighborhoods 
(Guizzardi et al. 2019) and with other segments of the lodging market (Dogru et al. 
2020), or spillovers from competition in the airline or other industries (Forbes and Kos-
ová 2022). Other relevant factors are the reference prices that consumers form based 
on their past pricing choices/observations (Choi and Mattila 2018) and the interplay 
between obfuscation and prominence on OTAs (Mamadehussene 2020). We expect 
that all the above variables have a persistent effect on pricing decisions, modulated by 
both the daily seasonality that influences the demand (Sainaghi and Mauri 2018) and 
the pick-up curve forecasted and observed by the hoteliers (Ivanov and Zhechev 2012; 
Webb 2016). Unfortunately, the utilization capacity at different advance bookings and 
arrival days is not publicly available. In the absence of direct access to property man-
agement system data, scholars have proxied daily occupation rates by the number of 
hotels selling rooms online or by the number of rooms offered [see, among others, 
Abrate et al. (2012)]. These measures can be highly biased for hotels with multi-chan-
nel distribution systems, and thus we suggest an alternative approach based on the cor-
relation between price and quantity. In particular, we consider the published rates to be 
informative for the unobserved pick-up curve. In fact, prices are the revenue managers’ 
subjective synthesis of the interaction between all the hotels’ physical and reputation 
characteristics and the observed and expected market conditions, namely, the expected 
size of the demand for a stay on day t and the price for that stay published on day t − k , 
i.e., k days in advance. It is not a coincidence that (when considered) the price pub-
lished on day t − 1 is the most important explanatory variable in hedonic pricing mod-
els (Soler et al. 2019). Price (auto)correlation is also important to model the pricing 
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behavior in the booking window. Mohammed et al. (2021) highlight that rate changes 
in the last minute booking window depend on the price at the beginning of the week (a 
proxy of the current inventory). For this reason, we suggest using the published prices 
to reverse-engineer the dynamic pricing mechanism followed by hoteliers. Moreover, 
the literature has clearly stated the importance of price volatility, pointing out the pos-
sible asymmetric relation between pick-up curve and pricing. Area-specific or even 
macro events can induce temporary peaks in the price volatility, which can be modeled 
using GARCH approaches, see Chan et al. (2005). Abrate et al. (2019) suggest focus-
ing on the variability (and median) of the prices during the advance booking to explain 
how hotels maximize revenues. A further interest in the dynamics of price volatility 
stems from the importance of price stability when customers form their internal ref-
erence rates (see—among others—Viglia et al. (2016), and Choi and Mattila (2018) 
or from the need to prevent speculative behaviors of canceling and re-booking (Gorin 
et al. 2012). More recent studies also point out the presence of asymmetries in pricing 
decisions. For example, Mitra (2020) shows that hotels reduce prices at a steeper rate 
when faced with reduced demand compared to the case of demand increase, whereas 
Mohammed et  al. (2020) highlight some degree of asymmetry between upward and 
downward movements (caused by unforeseen reservations/cancellations). However, to 
the best of our knowledge, no scholars have ever considered the dynamics of higher 
order moments such as—for example—the kurtosis. It is also interesting to investi-
gate the effect of extreme demand shocks on the price and—above all—to assess if 
(and how) the first four moments of the distribution of the price adjustments exhibit 
a time-varying pattern, e.g., if these moments vary according to a seasonality pattern. 
We suggest modeling the time-varying parameters of the probability distribution of 
last-minute price adjustments using a score-driven methodology (Blasques et al. 2018). 
Even though most of the score-driven applications developed so far are in the macro-
economy and finance areas, remarkable works also exist where score-driven models 
are used in other contexts. For example, some scholars have applied them to sports, 
to predict results in tennis (Gorgi et al. 2019) or football matches (Koopman and Lit 
2019). Furthermore, the score-driven approach has recently been employed by Hansen 
and Schmidtblaicher (2021) to predict the probability of success in vaccination and by 
Gasperoni et al. (2021) to model the brain signals recorded using functional magnetic 
resonance imaging. To date, we have found no other applications concerning micro-
economic data except for (Guizzardi et al. 2022). The present paper attempts to fill this 
gap by showing that we can employ score-driven models to reverse-engineer the RM 
policy of any hotel that regularly publishes rates online. Thus, they could also be useful 
to analyze the online pricing strategies that decision-makers follow in other industries.

3 � Understanding last‑minute price adjustments (methodology)

Let Pi,t,k denote the price posted by hotel i for a room booked for day t with k ≥ 0 
days in advance. That is, Pi,t,k is the asking price at time t − k for a stay on day t. We 
propose the following model:
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where �∗
i,t,k

 and Pi,t,k are linear regression coefficients and �i,t,0 is an error term with 
a (time-varying) probabilistic distribution. In Eq. (1), the last minute price Pi,t,0 is 
specified as the sum of three contributions well established in the literature. The 
parameter �∗

i,t,k
 accounts for the time-based theory according to which hotels may 

apply inter-temporal price discrimination across the advance booking k. It repre-
sents the contribution to the price for a good consumed on day t decided by the 
manager on day t − k and not proportional to the price Pi,t,k . It depends on both the 
inventory management (the rooms that the hotelier planned to sell at t and t − k ) 
and the demand shock observed at t − k . Therefore, it represents an inventory-based 
advance booking discount/surcharge. With bi,kPi,t,k we model the expectation that 
the hotelier has at time t − k about the demand on day t (size and customers’ price 
elasticity). This term may depend on both the demand expected for day t and the 
demand observed on day t − k , even though, for the sake of simplicity, we assume 
bi,k only depends on k. Thus, Pi,t,k summarizes the whole information set that the 
RM system could use (at time t − k ) to determine the right price for a given room 
at the last minute ( Pi,t,0 ). This is a potentially very large information set that encom-
passes expectations about market seasonality, weather, pandemics and geo-political 
events. In addition, it includes factors that could affect the rates on day t which were 
not predicted by the revenue manager at time t − k , as they are time-invariant or 
known, namely: the value of the property, the hotel location, the number of competi-
tors, the occupation rate (observed on day t − k ) or the features of the room offered 
(view, floor, quality of the furnishings). Consequently, bi,k measures the strength and 
the uncertainty of the market conditions that the hotelier expects k days in advance 
(Guizzardi et al. 2017; Mohammed et al. 2020). Its value is greater than 1 when at 
t − k the manager is confident that current market conditions are less favorable than 
they will be at the last minute. On the contrary bi,k < 1 indicates that the hotelier is 
systematically afraid the hotel will not be competitive in the last minute period, so 
tends to set higher prices at t − k in order maximize the revenue in the early booking 
period. The third contribution, �i,t,0 , represents the departure of the price posted at t 
from bi,kPi,t,k due to the shocks that may affect the demand in the time interval from 
t − k to t. We can consider this as determined by a “pure” forecasting error (i.e., at 
time t − k the manager might not correctly forecast the occupancy rate for day t). For 
the sake of brevity, from now on we drop the subscript i and we consider the follow-
ing error term:

so that, according to (1),

The random component �t,k is the core of our reverse-engineering approach. It rep-
resents the (stochastic) last-minute price adjustment implied by the pricing strat-
egy pursued by the manager at time t − k . We can think of this (last-minute) price 
shock as the departures from the pick-up rates planned/forecasted along the booking 

(1)Pi,t,0 = �∗
i,t,k

+ bi,kPi,t,k + �i,t,0,

(2)�t,k = �∗
t,k
+ �t,0,

(3)Pt,0 = bkPt,k + �t,k.
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window—i.e., the demand shocks in the window [0, k]. In particular, we focus on 
the first four moments of its probability distribution of �t,k . The location �t,k repre-
sents the modal value of the last minute price adjustment. The scale �t,k provides 
information about the dispersion of the shock around the location. The skewness �t,k 
determines whether price adjustments are more likely to be positive or negative, i.e., 
if they occur due to unexpected reservations rather than cancellations. Finally, the 
kurtosis, measured by the degrees of freedom �t,k , provides information about the 
probability of observing extreme relative price adjustments in the advance book-
ing window [0, k]. By modeling the above four parameters with an autoregressive 
specification of order one (i.e., by letting them vary with time), we can account for 
the (stochastic) effects of seasonality on pricing practices. For example, when the 
autoregressive coefficient of the location parameter is close to one, the last minute 
price adjustments tend to persist across consecutive days. This signals that the hotel 
applies last-minute surcharges/discounts according to extremely persistent path, i.e., 
a monthly or an even higher seasonality. In other words, it does not apply last-min-
ute adjustments that change with fairs or weekends. Thus, in this paper, we propose 
to reverse-engineer the dynamic pricing strategies adopted by hotels by analyzing 
sizes andautocorrelations of location, scale, kurtosis, and skewness of the stochastic 
last-minute adjustment. Such an approach provides an objective criterion to assess 
the performance of RM systems based only on information publicly available on the 
Internet and consolidated and transparent statistical tools. An autocorrelation close 
to one suggests a high persistence (a cyclical behaviour) in the considered moment, 
i.e., an increase/decrease of the moment is often followed by another increase/
decrease). It denotes a cyclical pattern calling for the predominance of long term 
pricing strategies on short term price tactics. If autocorrelations are high, hotels are 
likely to modify the posted rate accordingly to a smooth pattern (i.e., monthly or 
longer) that is not affected (or more likely it does not react promptly) to short term 
demand shocks. In the limit case of weak non-stationarity (autocorrelation equal to 
one) we have a perfect time dependence, so that we expect a very slow mean revert-
ing pattern in the moment of the last-minute price adjustment (location scale skew-
ness or kurtosis have very persistent dynamics). In particular, we suggest the assess-
ment rules listed below. 

1.	 Location (the “mean” of �t,k ). High average values of the last-minute shock not 
proportional to early booking prices imply that the hotelier relies heavily on last-
minute tactics based on inventory management and/or is not able to forecast last-
minute demand (applying high last-minute discounts/surcharges). Large values of 
autocorrelation (close to one) indicate that the RM system does not differentiate 
last-minute discounts or surcharges with respect to intra-week negative or posi-
tive demand peaks (a behavior suggested by a small positive autocorrelation). A 
high negative autocorrelation is the worst-case scenario because it implies that 
last-minute price adjustments are inconsistent with any seasonal fluctuations and/
or implies that managers are not fixing early booking prices in accordance with 
last-minute pricing policies.

2.	 Scale (proportional to the standard deviation of �t,k ). A low value implies that 
the probability of observing last-minute discounts/surcharges different from the 
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location is small (i.e., the RM system always accurately predicts the last-minute 
market, setting early booking prices consistent with the last-minute one). Further-
more, a small scale is also desirable for the sake of consumer price fairness issues. 
Large values of autocorrelation (close to one) indicates that uncertainty remains 
smooth across different seasons (i.e., last-minute adjustments are uniform across 
different seasons t). By contrast, a small autocorrelation implies discounts/sur-
charges consistent with an intra-week interplay of low and high-demand periods. 
During the high season, the hoteliers are less fearful of not selling all the rooms, 
and thus the standard deviation of the shock is smaller than in the adjacent low 
demand days.

3.	 Kurtosis (the probability of observing extreme �t,k ). A high level of kurtosis 
suggests a high propension towards last-minute pricing tactics or a low accuracy 
in forecasting the pick-up curve. For example, extreme last-minute surcharges/
discounts are offered in cases of a shortage/excess in available rooms (or simply to 
communicate a high price to possible walk-in guests). A high degree of autocor-
relation highlights that the RM system maintains a similar accuracy in forecast-
ing the pick-up curve over the calendar day t. However, it could also reflect the 
manager’s preference for fixing early booking prices that systematically leads to 
under/over selling rooms in the early booking period.

4.	 Skewness (the lack of symmetry in �t,k ). A value much higher/lower than zero 
implies that the probability of observing a discount relative to the average last-
minute price adjustment is higher/lower than the probability of a surcharge. If the 
skewness has a large degree of autocorrelation, the RM system is not efficiently 
managing incoming reservations/cancellations. In fact, if the last-minute shock 
is higher/lower than its mean for several consecutive values of t, then the RM 
system is systematically biased (i.e., it is more accurate in forecasting incoming 
reservations then cancellations over long time intervals, or vice versa).

Provided that the pricing scheme is applied for every t, we argue that the above 
points represent four interpretative keys to reading the dynamics of the parameters 
of the error distribution, which leads us to an automatic assessment of the effective-
ness of the RM system. In the following subsections, we present the three stochas-
tic models that we will estimate and compare in our empirical application. For this 
purpose, let p(�t,k|Fk

t−1
,�k) denote the conditional probability density function of 

the price shock, where Fk
t−1

= �{�t−1,k, �t−2,k,…} is the filtration generated by {�t,k} 
and �k is the vector of unknown parameters of the conditional density. Depending on 
which of the three models we consider, �k will vary accordingly.

3.1 � Models for non seasonal last‑minute price adjustment

Let us introduce the two static models we use as benchmarks for our dynamic analy-
sis. As a first step, we assume that �t,k is normally distributed with location (mean) �k 
and scale (standard deviation) �k ∈ ℝ

+ . Thus we set p(�t,k|Fk
t−1

,�k) = N(�k,�
2
k
) and 

�k = (𝜇k,𝜑k)
⊤ . This assumption is very commonly used in the management literature. 
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However, a more realistic alternative is to use a skew-t distribution, to account for the 
possible asymmetry and the high kurtosis of the price shock highlighted (for exam-
ple) by Hung et  al. (2010) and Guo et  al. (2021)). Therefore, following Fernandez 
and Steel (1998) and Azzalini (2013), we model �t,k also by a static skew-t distribu-
tion with �k ∈ (1,+∞) degrees of freedom and skewness parameter �k ∈ ℝ

+ , i.e., 
p(�t,k|Fk

t−1
,�k) = Skew-t(�k,�

2
k
, �k, �k) , and �k = (𝜇k,𝜑

2
k
, 𝜈k, 𝛾k)

⊤ . Note that the con-
straint 𝜈k > 1 is imposed to ensure that �[𝜖t,k] < ∞ . The resulting models are labeled 
as:

3.2 � A model for seasonal last‑minute price adjustment

The above specifications assume that the shape of �t,k does not depend on the arrival 
day t (but only on the chosen advance booking k). However, we expect that the pricing 
decisions of hotels are strongly influenced by seasonality, whose pattern can also be 
very complex (with different periodicity), especially at a daily observation frequency 
and in large metropolitan areas characterized by both leisure and business tourism. 
Therefore, we let the parameters of the distribution of �t,k , (i.e., the location �t,k , the 
scale �t,k , the degrees of freedom �t,k , and the asymmetry �t,k ) to be time-dependent and 
we model them using a score-driven approach. Accordingly, we specify each parameter 
by a recursive equation that involves two main contributions, one proportional to the 
score of the log-density and the other being an autoregressive term of order one. Spe-
cifically, we consider the following model:

The parameters �t,k and �t,k must take positive values, whereas �t,k must be greater 
than one. Thus, we transform �t,k and �t,k ∈ ℝ+ , with the exponential link functions 
�t,k = exp{�t,k} and �t,k = exp{�t,k} , where �t,k , �t,k ∈ ℝ . Moreover, for the degrees 
of freedom �t,k , we opt for the transformation �t,k = 1 + exp{�t,k} , where �t,k ∈ ℝ . 
Therefore, we consider the change of variables

where f t,k = (𝜇t,k, 𝜆t,k,𝜓t,k, 𝜉t,k)
⊤ . Then, according to Creal et al. (2011) and Harvey 

(2013), we update the distribution parameters by using the following first-order vec-
tor recursion:

(4)Model 1 ∶ Pt,0 = bkPt,k + �t,k, �t,k
IID
∼ N(�k,�

2
k
),

(5)Model 2 ∶ Pt,0 = bkPt,k + �t,k, �t,k
IID
∼ Skew-t(�k,�

2
k
, �k, �k).

(6)
Model3 ∶ Pt,0 = bkPt,k + �t,k, �t|Ft−1 ∼ Skew-t (�t,k,�

2
t,k
, �t,k, �t,k).

(7)�(f t,k) =

⎡
⎢⎢⎢⎣

�t,k

exp{�t,k}

1 + exp{�t,k}

exp{�t,k}

⎤
⎥⎥⎥⎦
,
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where st,k is the unconstrained conditional scaled score, �k = (𝛿𝜇k
, 𝛿𝜆k , 𝛿𝜓k

, 𝛿𝜉k )
⊤ ∈ ℝ

4 
is a vector of intercepts, �k ∈ ℝ

4×4 , and Kk ∈ ℝ
4×4 are diagonal matri-

ces with diag (�k) = (𝜙𝜇k
,𝜙𝜆k

,𝜙𝜓k
,𝜙𝜉k

)⊤ and diag (Kk) = (𝜅𝜇k
, 𝜅𝜆k , 𝜅𝜓k

, 𝜅𝜉k )
⊤ . 

Then, for Model 3 by collecting in a vector all the static parameters, we obtain 
�k = (𝛿𝜇k

, 𝛿𝜆k , 𝛿𝜓k
, 𝛿𝜉k ,𝜙𝜇k

,𝜙𝜆k
,𝜙𝜓k

,𝜙𝜉k
, 𝜅𝜇k

, 𝜅𝜆k , 𝜅𝜓k
, 𝜅𝜉k )

⊤ . As a standard approach, 
we impose the constraints |𝜙𝜇k

| < 1 , |𝜙𝜆k
| < 1 , |𝜙𝜓k

| < 1 and |𝜙𝜉k
| < 1 to keep the 

recursion (8) stable. The procedure to compute the unconstrained conditional scaled 
score st,k is analogous to that employed in Guizzardi et al. (2022) and is reported in 
the “Appendix”.

3.3 � Estimation

We estimate all the models described in the previous Subsections by maximum likeli-
hood (ML). Besides the vector of parameters �k , we also have to estimate the parameter 
bk . However, the regressor Pt,k in (4), (5) and (6) is potentially endogenous. Endogene-
ity issues might occur due to missing variables since prices can also vary with the room 
quality, which is not fully observable based on the information gathered from the Inter-
net. Furthermore, endogeneity issues could also occur because the last minute adjust-
ment �t,k might incorporate information about the hotels’ early booking occupancy, and 
thus it might also affect Pt,k . To handle possible endogeneity issues, we adopt the non-
linear instrumental variable (IV) approach as in Hansen et al. (2010), and accordingly 
perform the estimation procedure in two steps. First, we obtain a preliminary estimation 
b̃k . In particular, for Model 1 and Model 2 we use a standard two-stage least squares 
estimator where, for each hotel, we instrument the price Pt,k with a variable zt,k that we 
compute as the average of the prices Pt,k posted by the other hotels For Model 3, b̃k is 
computed by standard ML. The use of the average prices published by other hotels as 
an instrument is not new in the literature (see Guizzardi et al. (2022)). It is worth high-
lighting that our experiment includes four independent hotels and two chain hotels from 
different hotel chains. This diverse selection of hotels, each with unique characteristics 
and managed by different entities, provides a crucial theoretical assurance regarding the 
exogeneity of the average price as an instrumental variable.

Then, we calculate the residuals 𝜖t,k = Pt,0 − b̃kPt,k , and we obtain a quasi-ML esti-
mation of �k as follows:

where T is the number of considered arrival days. Finally, following (Hansen et al. 
2010), the nonlinear IV estimator of bk is given by:

(8)f t+1,k = �k +�kf t,k + Kkst,k,

�̃k = argmax
�k

T∑
t=1

ln p(𝜖t,k|Fk
t−1

,�k),

b̂k = argmin
bk

[ĝ(bk)]
2

Q̂k

,
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where Q̂k =
∑T

t=1
z2
t,k

 , and

4 � Data and results

We collected prices from booking.com for a panel of 100 hotels in the central area 
of Milan, Italy, from January 30, 2019, to November 11, 2020 (654 days). We 
excluded low and mid-segment hotels since they have a lower tendency for dynamic 
pricing and electronic distribution practices (Dabas and Manaktola 2007). The com-
plete closure of the MICE segment due to Covid-19 significantly impacted tourism 
demand, leading to a reduction in hotels regularly posting their offers. Many hotels, 
including high-star ones, even closed their websites for weeks. Therefore, we con-
cluded the data collection in November 2020. As our goal is to reverse-engineer the 
pricing strategies of hotels, in our micro-econometric case study we only consider 
6 hotels among those with the least missing data for both the considered advance 
bookings (0 and 14 days), hereafter referred to as H1,H2,… ,H6.

The hotels differ in star ratings, capacity, and organizational form (as shown in 
Table 1), thus, by looking at their pricing strategies, we can also document possible 
differences related to these characteristics. It’s worth mentioning that the two chain 
hotels, H1 and H6, belong to two different chains. They are also the only accommo-
dation structures with an internal restaurant and meeting rooms hosting more than 
50 persons.

Due to space constraints, in this paper, we choose an advance booking inter-
val of two weeks ( k = 14 ) to focus on a period where the market is not char-
acterized by a specific demand segment. In fact, at longer advance bookings, 
the incoming reservations are mostly made by leisure tourists, while at lower 
k the business segment shapes the market. Nevertheless, our analysis could be 
conducted for any advance booking, not only for k = 14 . With the aid of a web-
scraping software we obtain data for rooms at five different advance bookings, 

ĝ(bk) =

T∑
t=1

zt,k𝜌(Pt,0 − bkPt,k, �̃k), 𝜌(𝜖t,k,�k) =
𝜕 ln p(𝜖t,k|Fk

t−1
,�k)

𝜕𝜖t,k
.

Table 1   Main features of the six hotels considered

Star rating Rooms (class) Organizational form Restaurant/meet-
ing room > 50 
guest

H1 4 101–125 Chain Yes
H2 3 51–75 Independent No
H3 3 51–75 Independent Yes
H4 3 26–50 Independent No
H5 4 51–75 Independent No
H6 4 > 125 Chain Yes
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namely, k = 0, 1, 12, 13, 14 days. For the last-minute price, we take the rate pub-
lished online for k = 0 or, when not available, for k = 1 . As the early booking 
price, we take the rate published online for k = 14 or, when not available, for 
k = 13 or k = 12 . That way, we reduce the number of missing data while taking 
into account the most recent information provided by the hoteliers themselves. 
Since, for the first 14 arrival days in the sample, early booking prices are not 
available, our dataset shrinks to 640 arrival dates (starting from February 13, 
2019). We scrape all the posted offers. If the scraping algorithm selects differ-
ent prices for the “same” room (i.e., based only on the characteristics observed, 
the room appears not to be differentiated), we consider the best available rate. 
This choice ensures the highest homogeneity relative to possible (unobservable) 
product differentiation practices. The type of room most frequently offered at the 
last minute is a double room single use, breakfast included, and not refundable. 
To reduce the bias that might occur if the rooms offered at different t and k are 
not the same, two approaches are possible: we could either introduce exogenous 
dummies in the models or adjust the published price using auxiliary regressions. 
We prefer the latter procedure because it allows us to keep the model simple and 
decide whether or not to retain fitted data based on the significance of the auxil-
iary regressions. For instance, we estimate missing double room rates using the 
following linear regression in which the independent variable is the price of a 
single room (same i, t and k):

where the indexes DR and SR refer to double room and single room rates, respec-
tively. If the intercept and the slope parameter are both non-significant (at the 1% 
confidence level), we do not forecast the missing data. We use an analogous proce-
dure to estimate missing not-refundable rates when refundable prices are published. 
In contrast, missing “meal included” rates are obtained by adding the cost of break-
fast or subtracting the cost of lunch, as we note that these surcharge/discount rates 
are never subject to dynamic pricing (for a given hotel, they are the same for every t 
and k). Descriptive statistics are reported in Table 2. The average last-minute prices 
(averaged over t) vary widely (from 76 to 203 euros). This, however, does not affect 
the hoteliers’ propensity to practice dynamic pricing, which always remains high, as 
we can see by comparing extreme quantiles.

The comparison between advance booking ( k = 0 ) and early booking ( k = 14 ) 
prices shows that only Hotel H6 has increasing prices—even on extreme per-
centiles—and a variability that does not depend on k. The pricing policies of 
the other five structures seem to signal greater difficulties in predicting future 
levels of demand (or a higher likelihood of last-minute tactics in the high/low 
seasons). In fact, we see a higher variability for k = 0 , but—more noticeably—
higher early booking prices in low seasons. In particular, for hotels H1, H2, … , 
H5, the q10 prices are always lower at k = 0 than at k = 14 , signaling the need for 
last-minute discounts, presumably because the prices proposed at k = 14 have 
discouraged early booking. In the case of the 3-star Hotels H2, H3 and H4, this 
last-minute discount tactic is also revealed by the large gap between the q10 and 

(9)Pi,t,k,DR = ai,t,k + bi,kPi,t,k,SR + �i,t,k,DR,
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the average prices for k = 0 (the q10 is always smaller than sixty percent of the 
average price).

4.1 � Analyzing the stochastic last‑minute price adjustments

In line with the objectives of this work, we analyze the probability distribution of the 
last-minute price adjustment. First, for the six hotels considered, we estimate Model 
1 by maximum likelihood. Results in Table 3 show that the normality assumption, 
which is quite common in the literature on dynamic pricing, is not supported by the 
data. The kurtosis is higher than 3 for all hotels, which reveals the presence of very 
fat tails (i.e., a common use of extreme last-minute price adjustments). Analogously, 
the skewness is always greater than zero, which indicates the predominance of last-
minute surcharges over last-minute discounts.

The chain hotels (H1 and H6) show pricing policies that seem more attentive to 
the customers’ perceptions. For these hotels, the kurtosis is smaller than the others. 
By contrast, the small values of skewness indicate a better balance in forecasting 
peaks in last-minute reservations and cancellations. The 3-star hotels (most of all, 
H4) seem more prone to relying on price tactics, i.e., at the last minute they post 
price Pt,0 on the Internet that may be very different from what they expected at time 
t − 14 . Tactics are mostly last-minute discounts on the price they post in t − 14 for a 
stay in t. However, the fact that the skewness is always positive and greater than one 

Table 2   Descriptive statistics of 
the posted prices

Standard deviation (SD), quantiles at levels � = 10% (q
10
) and 

� = 90% (q
90
)

Mean SD q
10

q
90

k = 0 k = 14 k = 0 k = 14 k = 0 k = 14 k = 0 k = 14

H1 176.4 178.1 78.2 74.9 109.0 118.3 270.7 254.0
H2 97.1 91.6 52.5 42.1 52.5 68.1 161.1 122.5
H3 104.8 108.2 56.2 52.4 61.3 67.0 183.5 159.7
H4 121.0 122.6 72.4 56.7 66.0 71.6 216.2 166.8
H5 76.0 71.8 31.5 28.1 54.0 53.4 105.0 100.0
H6 203.0 176.6 85.2 85.9 134.0 110.5 313.5 266.8

Table 3   Empirical skewness 
and excess kurtosis of the price 
shocks �

t,14

Skewness Excess kurtosis

H1 0.61 4.29
H2 1.63 8.79
H3 1.07 6.54
H4 2.95 22.34
H5 0.11 6.87
H6 0.92 3.40
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suggests that, on some days, they manage to offer very high prices (i.e., the average 
of the last minute discount is higher than its median). The comparisons between the 
AIC and BIC criteria for Model 1 and Model 2 (see Table 4) indicate that, for all six 
hotels, the highest goodness-of-fit is obtained when the error term �t,14 is modeled 
using a skew-t distribution. Thus, the non-normal model yields a better description 
of the behavior of all the observed decision-makers. This empirical evidence, albeit 
stemming from a small sample of hotels, would suggest that the choice of the dis-
tribution of �t,14 plays a fundamental role in evaluating the price differentiation tech-
niques applied by the hoteliers.

Finally, let us focus on the two hotels with the extreme pricing behavior in terms 
of kurtosis. They are also the hotels with the lowest and highest number of rooms 
and services offered. For Hotels H4 and H6, the empirical density of the price 
shocks (see Figs.  1 and  2) show a large number of extreme values and is largely 
asymmetric with a longer right tail. We also note that Model 1 is not capable of fully 
reproducing the data, even though the observed skewness and kurtosis are closer to 
those of the Gaussian distribution. Figures 3 and 4 show the time series of the price 
shocks for Hotels H4 and H6. The two plots highlight the asymmetry of �t , which is 
reflected by the more elongated right tail. Thus, we still arrive at the same conclu-
sion: a skew-t distribution allows for a more realistic representation of the unob-
served price shocks.   

4.2 � The static approach: estimation

We might expect the price Pt,14 to be endogenously correlated with �t . For exam-
ple, if the “old good RM rule” to sell the best rooms first (Escoffier 1997) is fol-
lowed, second-order price discrimination tactics could be considered an omitted 
variable affecting both Pt,14 and Pt,0 . Endogeneity issues could occur because 
the last minute adjustment �t,14 might incorporate information about the hotels’ 
early booking occupancy, thus affecting Pt,14 . To handle possible endogeneity 
problems, we use an instrumental variable approach. Specifically, for each hotel, 
we choose the average of the prices Pt,14 of the other five hotels as the instru-
ment. This average is not expected to be correlated with the error �t , since the 
six selected hotels have different locations, star ratings, sizes, features and—
most of all—they do not have interlocking directorates, as we checked using the 

Table 4   AIC and BIC criteria Model 1 Model 2

AIC BIC AIC BIC

H1 6637.28 6650.66 6476.19 6498.50
H2 6443.24 6456.63 5984.28 6006.58
H3 6630.25 6643.63 6279.16 6301.46
H4 6990.06 7003.44 6479.66 6501.97
H5 5606.61 5619.99 5340.10 5362.41
H6 6853.82 6867.20 6574.55 6596.86
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Bureau-Van-Dijk’s AIDA database. Further, we test the relevance of the instru-
ment and we find that it is strongly correlated with Pt,14 for every hotel. When 
we regress Pt,14 on the instrument, the F-statistic varies from 1154 for Hotel H3 
to 3410 for Hotel H6. Then, by running the Durbin-Wu-Hausman test, we find 
that Pt,14 is endogenous for each of the six hotels (p-value < 5%). Therefore, we 
estimate the parameters of Model 1 and Model 2 by using the 2−stage proce-
dure introduced in Sect.  3.3. We report the results in Table  5. As we see, both 
the specifications indicate the evidence of price discrimination practices. The 
parameter b14 is always significant and positive, revealing that the RM systems 
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Fig. 1   Empirical distribution of price shocks for Hotel H4. Model 1 (blue) and Model 2 (red) (colour 
figure online)
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Fig. 2   Empirical distribution of price shocks for Hotel H6. Model 1 (blue) and Model 2 (red) (colour 
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fix prices at t − k in line with the last-minute price (i.e., hoteliers can accurately 
predict stochastic seasonality). Moreover, �14 is positive and significant, thus we 
find evidence of price discrimination practices that do not vary with the calendar 
time t. The parameter b14 is always smaller than one, reaching the lowest values 
for Hotels H3, H4 and H6. The first two of these accommodation structures are 
3-star hotels whose average prices in t tend to be lower than those proposed at 
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Fig. 3   Price shocks of Hotel H4. Model 1 (blue) and Model 2 (red) (colour figure online)
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Fig. 4   Price shocks of Hotel H6. Model 1 (blue) and Model 2 (red) (colour figure online)
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t − 14 (see Table 2). Their strategy appears simple: they set relatively high prices 
at t − 14 to keep inventory for the last minute. They are more worried about miss-
ing the opportunity to further increase prices at the last-minute than about having 
to offer large discounts in t to increase the occupancy rate. The case of H6 is the 
opposite, as the large value of �14 suggests that, despite the prices set in t − 14 , 
the hotel can raise the last minute rates for every t. It’s important to note that H6 
is a 4-star chain hotel, which is very attractive to business travelers, the segment 
less elastic to price.

The fit of Model 1 is always worse than Model 2, so we can assume that the coef-
ficients estimated under the skew-t assumption better reflect the price discrimina-
tion policy of every hotel. The value of b14 is smaller under skew-t errors, showing 
that the effect of the early booking prices on the last-minute rates is biased if the 
last minute response to demand shocks is constrained to be symmetric and without 
fat tails. The only exception is for Hotel H1, for which �14 is not significant and 
b14 is close to (and less than) one, reflecting a wide uniformity of prices between 
early and late booking (see Table  2). We can speculate that such an approach to 
pricing responds to a chain logic, e.g., communicating stable prices to the on-line 
potential customers or keeping a buffer of rooms available at the last minute to re-
protect overbooking of other affiliated structures. However, the asymmetric errors 
and thick tails lead us to conclude that both models fail to predict extreme scenarios, 
especially the most negative ones (i.e., more cancellations or fewer reservations than 
expected). This conclusion is consistent with the findings of Mitra (2020).

4.3 � Time‑varying parameters: a framework to assess RM practices

Let us consider Model 3, according to which the conditional location, volatility, kur-
tosis, and skewness of �t,k are assumed to be time-varying. This way, the dependence 

Table 5   Estimated parameters of Model 1 and Model 2 

Model 1 �
14

SE b
14

SE

H1 21.030 4.512 0.880 0.032
H2 15.730 3.508 0.917 0.043
H3 29.170 3.870 0.732 0.045
H4 24.040 5.294 0.827 0.052
H5 11.950 2.261 0.920 0.046
H6 62.470 4.651 0.799 0.033

Model 2 �
14

SE b
14

SE

H1 6.710 5.523 0.919 0.043
H2 2.580 1.099 0.690 0.016
H3 25.680 1.556 0.533 0.015
H4 36.060 2.212 0.343 0.025
H5 16.950 5.883 0.680 0.148
H6 69.660 2.220 0.544 0.012
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of the error on the seasonality becomes a further dimension that we can use to eval-
uate dynamic pricing practices. To model the time dependence of the above four 
characteristics, we use an autoregressive process of order one (see relation (8) in 
the “Appendix”). We estimate the parameters for each of the six hotels using the 2−
stage procedure introduced in Sect. 3.3. We report results in Table 6. We first stress 
that introducing time-varying parameters in the shock term improves the goodness-
of-fit. The AIC and BIC statistics are much smaller for Model 3 than for the two 
models with constant parameters (compare Table 6 with Table 5). The improvement 
is for all six hotels. If we consider a stochastic dynamic for the parameters of the 
error �t,14 , the coefficient b14 declines, and the weight of last-minute adjustments 
due to unpredicted demand and/or pricing tactics increases. In other words, allow-
ing for a dynamic location to manage/react to stochastic seasonality reduces the 
weight given to Pt,14 in favor of that given to the last minute (stochastic) discount/
surcharge. Hotels H4 and H6 represent the two extremes. The former has a very 
simple RM system with a b14 parameter almost equal to zero and a ��14

 coefficient 
close to one (0.981). The early booking price is therefore set with little knowledge 
of the events that can cause excess demand (i.e., Pt,14 does not replicate Pt,0 ). The 
hotel is applying a simple additive price discrimination policy that tends to persist 
over time (the discounts for the advance booking simply follow a long-term—i.e., 
weekly or monthly—seasonality). On the contrary, H6 has a more advanced pric-
ing system, with last-minute prices proportional to the early booking ones and with 
discounts/surcharges for the advance booking that vary on a daily basis. That is, they 
are almost serially uncorrelated at lag 1 (the ��14

 coefficient is equal to 0.1).
We argue that further investigation of the persistence of the higher moments of 

the distribution of �t,14 may lead to a more in-depth inference on the “mechanics” of 
each RM system. Therefore, we are going to assess the ability of the revenue man-
agement policies to learn from the past, based on the autoregressive coefficients ��14

 , 
��14

 and ��14
 . The scale of the error term informs us about the dispersion around 

its location. The estimated parameters ��14
 are relatively high, indicating that the 

last-minute adjustments are uniform across different seasons t. The only exception 
is Hotel H2, which occasionally presents peaks in the scale due to very high last-
minute discounts in the low seasons. The large and negative difference between the 
q10 for t and t − 14 (see Table 2) also reflects this. On the opposite side, we find the 
chain Hotel H6, for which ��14

 is almost equal to one. This finding indicates that 
the RM system pays attention to price fairness and/or that the pricing dynamic is 
based more on a long-memory strategy rather than occasional last-minute tactics. 
The kurtosis of �t,14 measures the propensity of each hotel to make “extreme” fore-
casting errors for different arrival days. As for its autocorrelation parameter ��14

 , we 
note that it is never smaller than 0.55, a value highlighting that the accuracy in pre-
dicting demand peaks remains quite constant over time. Unfortunately, the param-
eters do not inform us regarding the revenue managers’ forecasting ability (i.e., the 
magnitude of the “extreme” forecasting errors). Thus, we can only conclude that 
is difficult for these hotels to use previous experience to reduce the probability of 
making extreme relative price adjustments. The autocorrelation in the kurtosis 
parameters also shows a very low variability among the hotels, reaching its mini-
mum for H2 and H5, the only medium-sized hotels without a restaurant. These two 



1 3

Reverse engineering the last‑minute on‑line pricing practices:…

Ta
bl

e 
6  

M
od

el
 3

, e
sti

m
at

ed
 p

ar
am

et
er

s a
nd

 in
fo

rm
at

io
n 

cr
ite

ria

M
od

el
 3

b
1
4

SE
�
�
1
4

SE
�
�
1
4

SE
�
�
1
4

SE
�
�
1
4

SE
AI

C
BI

C

H
1

0.
35

9
0.

00
6

0.
72

3
0.

00
2

0.
80

7
0.

00
1

0.
91

2
0.

00
2

0.
93

6
0.

00
2

62
12

.5
3

62
70

.5
3

H
2

0.
35

6
0.

00
6

0.
49

6
0.

00
0

0.
24

5
0.

00
0

0.
55

7
0.

00
1

0.
92

9
0.

00
0

56
33

.8
3

56
91

.8
3

H
3

0.
39

9
0.

00
5

0.
42

2
0.

00
0

0.
72

4
0.

00
0

0.
86

9
0.

00
0

−
0.

21
8

0.
00

0
59

53
.9

1
60

11
.9

1
H

4
0.

01
0

0.
00

3
0.

98
1

0.
00

0
0.

97
2

0.
00

0
0.

92
4

0.
00

1
0.

81
7

0.
00

1
57

31
.4

1
57

89
.4

1
H

5
0.

28
8

0.
00

0
0.

46
3

0.
00

0
0.

71
0

0.
00

0
0.

62
1

0.
00

0
0.

58
2

0.
00

0
48

98
.9

0
49

56
.9

0
H

6
0.

35
8

0.
00

0
0.

10
0

0.
00

0
0.

99
6

0.
00

0
0.

94
5

0.
00

0
0.

91
5

0.
00

1
63

23
.0

1
63

81
.0

1



	 A. Guizzardi et al.

1 3

accommodation structures are also the ones with the lowest average rates, thus we 
can argue that they are the more attractive to the leisure segment. Therefore, they 
would find it difficult to sell rooms to walk-in guests at “any” price, e.g., to last-
minute business customers who have not found available rooms during important 
events and fairs held in Milan. Finally, the relatively high average value (0.66) of the 
autocorrelation of the asymmetry parameter ��14

 suggests that last-minute surcharges 
and discounts maintain the same sign for several consecutive arrival days t. Such a 
persistence reflects a possible bias in forecasting last-minute reservations/cancella-
tions or even a strategy aimed at saving an optimal stock of rooms for last-minute 
sales (setting Pt,14 accordingly). However, the high variability of the ��14

 parameters 
across the observed hotels points to the existence of very different forecasting abili-
ties and/or last-minute pricing tactics. In particular, the autocorrelation parameter 
for Hotel H3 is negative, meaning that its pricing system alternates higher and lower 
than the average last-minute price adjustments, “self-correcting” the asymmetry of 
the last minute price shocks.

4.4 � Main empirical findings

For all the six hotels considered, the introduction of time-varying parameters 
in the shock term yields the highest goodness-of-fit. In this case, we observe 
a weaker influence of early booking prices on revenue management compared 
to the last-minute (stochastic) discount/surcharge. The tendency to rely on last-
minute tactics for dynamic pricing seems to be influenced more by the size of 
the hotel rather than its star rating. Specifically, we observed that larger-sized, 
3-star hotels exhibit more dynamic adjustments in last-minute pricing over time 
t. Chain hotels, in particular, pay close attention to consumers’ perception of 
price fairness over time, maintaining a significant level of price consistency 
between early and late bookings. It is uncommon to find significant discounts 
or surcharges during the last-minute period. However, larger chain hotels are 
more inclined towards dynamic pricing, especially by setting significantly 
higher prices during trade fair periods. The 3-star hotels are more prone to 
apply last-minute discounts on the price they post in t − 14 for a stay in t, albeit 
sometimes they rely on a higher last-minute price to speculate on (unforseen) 
demand peaks. Our approach has allowed us to demonstrate that the autocor-
relation values of the four studied moments reveal essential characteristics of 
pricing strategies. Notably, this is the first time in the literature that an objec-
tive and transparent method (i.e., based on publicly available data) has been pro-
posed to utilize skewness and kurtosis dynamics in analyzing decision-makers’ 
propensity towards extreme last-minute adjustments (kurtosis) and last-minute 
discounts or surcharges (skewness). To further highlight the usefulness and 
applicability of the proposed approach, we focus on the two hotels with extreme 
pricing behavior (H4 and H6) and delve into the dynamics of the error distribu-
tion parameters. In Fig. 5 we show the dynamics of the location parameter for 
Hotel H4. As we may see, the advance booking premium ( �t,14 ) is quite persis-
tent, i.e., it is planned according to a low-frequency pattern. This implies that the 
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last-minute reservations do not follow short-term seasonality (i.e., a weekend or 
a week-day seasonality), or even that the RM system cannot predict (and man-
age via dynamic pricing) high-frequency shocks in the last-minute demand. The 
large values of the scale parameter (compared to the location) confirm that the 
price Pt,14 is not used as a lever for inter-temporal price discrimination, i.e., Pt,14 
is set without considering (or accurately predicting) the stochastic seasonality. 
The quite persistent dynamics of last minute adjustment translates into an almost 
constant pattern after March 2020 (i.e., after the collapse of tourism demand due 
to Covid-19). The effect of the pandemic is particularly interesting if we look 
at the kurtosis. The probability of observing an extreme price adjustment has 
increased (the degrees of freedom �t,14 has decreased), becoming almost flat over 
time. The hotel has lost any residual ability to predict changes in the demand 
(or it stopped practicing dynamic pricing at advance booking k = 14 ) even dur-
ing the summer and the early autumn of 2020, when mobility restrictions were 
relaxed and tourism demand recovered. By contrast, Hotel H6 (see Fig.  6) in 
the Covid-19 period did not change the way it managed pricing, with the only 
exception that it reduced rates and—consequently—the adjustments for advance 
booking ( �t,14 ). This hotel has a very reactive RM system, as highlighted by the 
peaks in both the degrees of freedom and the skewness observed between the 
first and the second wave of Covid-19 when some important fairs and events 
took place. The constant reduction in the scale (see the �t,14 curve) is also a pos-
itive feature, mostly because it happens regardless of the probability of observ-
ing extreme last-minute corrections (see �t,14 ). This suggests that even under the 
mobility restrictions due to Covid-19, the RM system is still capable of setting 

Fig. 5   Filtered parameters for Model 3 and Hotel H4. From the top left, clockwise: location, scale, asym-
metry, degrees of freedom
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values for Pt,14 “in line” with Pt,0 . It is worth mentioning that a scale reduction 
is a powerful tool to manage the customers’ perception of price fairness. Indeed, 
according to Choi and Mattila (2018), the offered prices influence the reference 
price, which is beneficial for to travelers’ perception of price acceptability and 
re-booking propensity.

5 � Conclusions

We propose a nonlinear statistical framework for “reverse-engineering” inter-
temporal price discrimination practices in the presence of a stochastic seasonal-
ity. This is new to the dynamic pricing literature as a way to assess a revenue 
management system based on information that is publicly available on the 
internet and a statistical (transparent) method. The idea is to observe the gap 
between rates posted on-line at different advance bookings for the same product 
and arrival date. We consider such a price adjustment stochastic, as it origi-
nates in the departure of the realized demand (i.e., the unpredictable fluctua-
tions of the daily demand) from the pick-up rates planned/forecasted by revenue 
managers based on the current inventory. The econometric specification we 
propose is straightforward: a linear model where the “expected” price at day t is 

Fig. 6   Filtered parameters for Model 3 and Hotel H6. From the top left, clockwise: location, scale, asym-
metry, degrees of freedom
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a function of the price posted by the decision-maker at t − k (i.e., at the advance 
booking k) plus a stochastic shock/adjustment. We consider the early booking 
rate, the most complete publicly available information regarding the expecta-
tion of decision-makers about the “right” pricing at the last-minute, condi-
tioned on the knowledge they have at t − k . Thus, the last-minute price adjust-
ment reflects the consequences of a pure forecasting error about the demand on 
the arrival day and/or a bias due to last-minute tactics based on inventory man-
agement. In the dynamic pricing literature, the size of the last-minute shocks 
has been thoroughly investigated, but their variability and asymmetry (dis-
counts/surcharges) have largely been overlooked. Moreover, we are the first to 
analyze the fourth moment of the probability distribution of last-minute adjust-
ments, the kurtosis, interpreting it as the likelihood to observe extreme peaks 
(either positive or negative) in the last-minute demand. We model the above 
four moments dynamically based on a score-driven approach, which we take 
from finance and bring into management. Specifically, we propose it as a tool 
to reverse-engineer the time-heterogeneity of the last-minute adjustment prac-
ticed by any hotel that regularly publishes rates online. We point out that a 
hotel can use our methodology either to learn about possible limitations (or 
strengths) of its RM system or to analyze the behavior of competitors based 
only on publicly available information. Our approach does not require any spe-
cific knowledge of the events taking place near the hotel or the features of the 
hotel. The prices offered in the early booking period, together with the price 
adjustments, already reflect the hoteliers’ knowledge and expectations regard-
ing both stochastic peaks in the demand and possible spillovers on adjacent 
arrival days. An empirical application is presented where we consider six hotels 
in Milan, a city where the daily demand has strong (unpredictable) fluctuations 
due to weekends and recurrent fairs and events. These hotels, which are equally 
divided between 3-star and 4-star and managed by non-interlocking directo-
rates, posted prices regularly during the time interval from February 13, 2019 
to November 11, 2020. We first highlight that last-minute price adjustments, 
i.e., the hoteliers’ reaction to demand shocks, are correctly described by a 
heavy-tailed distribution such as the skew-t rather than a Gaussian model. In 
other words, asymmetric errors and thick tails indicate an unequal proportion 
between discounts and surcharges and a higher probability of extreme values 
compared to the Gaussian case. This finding leads us to conclude that, more 
than anything, all the RM systems we considered fail to predict extreme nega-
tive scenarios (i.e., more cancellations or fewer reservations than expected). A 
second (expected) result is that allowing for a stochastic dynamic in the param-
eters of the last-minute adjustment yields a better representation of the observed 
pricing behavior. However, our small sample shows large differences in the way 
the six accommodation structures use last-minute discount/surcharge tactics to 
address possible forecasting errors of the pick-up curve. The lowest-rated hotels 
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tend to set relatively high prices at the early booking to keep the inventory free 
for the last-minute, aiming at applying high surcharges. The highest-rated 
hotels seem less prone to relying on last-minute tactics. They tend to apply 
(only) last-minute overpricing or keep uniform prices between early and 
advance booking. Moreover, the pricing policies of the chain hotels seem more 
attentive to the customers’ perceptions (as documented by the constancy of the 
scale parameter) and more accurate (and balanced) in forecasting positive and 
negative peaks in last-minute reservations and cancellations. All of the six 
hotels considered apply time-varying discrimination policies that are more fre-
quently additive than proportional to early booking prices. However, the way 
they deal with last-minute stochastic seasonality is not homogeneous. In par-
ticular, their RM systems show differing abilities in “pricing” the stochastic 
demand. Looking at the autocorrelation in the location parameters, the most 
evident fact is the great differences between the 3-star hotel with the lowest 
number of rooms, H4, and the 4-star hotel with the highest number of rooms 
and meeting rooms, H6. Hotel H4 applies a simple additive price discrimina-
tion policy that tends to persist over time (the price adjustment for the advance 
booking simply follows a long-term—i.e., weekly or monthly—seasonality). In 
contrast, hotel H6 has a pricing system able to handle daily seasonality, with 
the last minute price adjustments that are almost serially uncorrelated at lag 1 
(i.e., they vary with daily frequency). More in general and in line with Reino 
et al. (2016), the substantial absence of a revenue strategy seems driven by the 
hotel size rather than the star rating, at least in our small sample. In fact, we 
note that other, larger-sized, 3-star hotels show more dynamic last-minute price 
adjustments over time t. If we focus on the autocorrelations of the variability of 
the price shocks (the scale parameter), they are relatively high. This finding 
indicates that the uncertainty regarding last-minute rates remains smooth across 
different seasons t for five out of the six hotels. The hotel with the shortest 
memory in the scale parameter is a 3-star accommodation structure that occa-
sionally offers very high last-minute discounts in periods with no large events 
or during the weekends. For this hotel, the average value of the scale parameter 
is high, which confirms that the RM system sets early booking prices without 
considering (or accurately predicting) the stochastic seasonality. Chain hotels 
show both the highest persistence in the rates’ variance across seasons and a 
low average value of the scale parameter. Thus, we can conclude that they are 
attentive to potential consumer perceptions of price fairness issues For all six 
hotels, the kurtosis of the price shocks shows very high autoregressive coeffi-
cients. Thus, their RM systems tend to maintain the same accuracy (either high 
or low) in forecasting jumps in last-minute occupancy rates over the considered 
time interval. This finding is presumably due to the fact that the attractiveness 
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of a single fair or event is hard to quantify by single hotels with k = 14 days of 
advance booking. It does not seem to be a coincidence that the accommodation 
structures with the less persistent dynamics in the kurtosis parameter are also 
the least exposed to the business segment. These low-rated and less-equipped 
hotels with common spaces become attractive for the richest business segment 
only in a few periods during very high season, when the excess demand allows 
them to occasionally apply high last-minute price surcharges. Finally, looking 
at the dynamics of the symmetry parameter, we note that all the RM systems 
tend to maintain the same propensity to over/underestimate the demand level at 
the last-minute across seasons. In other words, the forecasting algorithms of the 
last- minute occupancy rates are biased, as hotels tend to systematically pro-
pose last-minute discounts (or surcharges) which are not proportional to early 
booking prices. The only exception is with our only 3-star hotel with a restau-
rant, which seems to follow an inconsistent pricing policy between consecutive 
days since it (alternatively) offers last-minute price adjustments that are higher 
and lower than the average. To further investigate such behavior, it would be 
interesting to interview the revenue manager at the hotel (if there is one). How-
ever, we point out that our methodology allows us to detect this type of “non-
smooth” pricing strategy.

Appendix

To calculate the unrestricted score in (8), we need to consider the conditional log
-density of �t,k , which we parametrize as in Harvey and Sucarrat (2014):

The driving-force st,k is computed as follows

where �t,k =
� ln p(�t,k|Fk
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 is the score vector of the predictive log-density in (10), 
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whereas �t,k = (∇
𝜇

t,k
,∇

𝜑

t,k
,∇𝜈

t,k
,∇

𝛾

t,k
)⊤ in Eq. (11) is computed as follows

where Ψ(x) = d

dx
lnΓ(x) is the so-called digamma function, see Abramowitz and Ste-

gun (1964).
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