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Abstract
The identification of prognostic and predictive biomarker signatures is crucial for 
drug development and providing personalized treatment to cancer patients. How-
ever, the discovery process often involves high-dimensional candidate biomark-
ers, leading to inflated family-wise error rates (FWERs) due to multiple hypothesis 
testing. This is an understudied area, particularly under the survival framework. 
To address this issue, we propose a novel three-stage approach for identifying sig-
nificant biomarker signatures, including prognostic biomarkers (main effects) and 
predictive biomarkers (biomarker-by-treatment interactions), using Cox propor-
tional hazard regression with high-dimensional covariates. To control the FWER, 
we adopt an adaptive group LASSO for variable screening and selection. We then 
derive adjusted p-values through multi-splitting and bootstrapping to overcome 
invalid p values caused by the penalized approach’s restrictions. Our extensive sim-
ulations provide empirical evaluation of the FWER and model selection accuracy, 
demonstrating that our proposed three-stage approach outperforms existing alterna-
tives. Furthermore, we provide detailed proofs and software implementation in R to 
support our theoretical contributions. Finally, we apply our method to real data from 
cancer genetic studies.
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1 Introduction

Personalized medicine has gained escalating importance in contemporary clinical 
practice, as the potential for tailored treatments designed for individual patients 
holds promise for augmenting the effectiveness of interventions (Hamburg and 
Collins 2010; Chin 2011). However, in the case of diseases such as cancer, sig-
nificant heterogeneity exists among patients, impacting disease progression and 
responses to specific treatments. Consequently, identifying cancer subgroups and 
disparities in diagnoses can be immensely valuable in tailoring optimized thera-
pies for each patient, ultimately improving healthcare outcomes, including sur-
vival rates. To achieve this goal, the discovery of both prognostic markers (pri-
mary biomarkers) and predictive biomarkers (biomarker-treatment interactions) is 
crucial in cancer drug development and clinical practice. These biomarkers have 
the potential to personalize therapies for individual patients and enhance treat-
ment effectiveness.

Recent advances in biotechnology have led to the generation of vast amounts 
of complex biological and molecular data. Modern high-throughput technolo-
gies can simultaneously measure the expression levels of thousands of genes. 
Databases like the Gene Expression Omnibus (GEO) and Array Express provide 
extensive resources for cancer genetic research (Barrett 2010). However, a com-
mon challenge in these datasets is that the number of genes (p) is often equal 
to or even greater than the number of samples (n). This situation becomes more 
complex when researchers aim to identify both prognostic biomarkers (genes) 
and predictive biomarkers (gene-treatment interactions), increasing the dimen-
sionality of the data. In such cases, it is crucial to assess the significance of each 
variable using p values and to correct for multiple testing, especially in clinical 
applications. Of note, controlling the false positive rate, specifically the family-
wise error rates (FWER), is a paramount consideration. False positives can lead 
to erroneous conclusions, resource wastage, the diversion of research efforts 
towards unproductive avenues, among others. Hence, our commitment to con-
trolling false positives is rooted in the need to uphold the integrity of scientific 
and medical research. The central focus of this paper resides in the identification 
of biomarker signatures, encompassing both prognostic and predictive biomark-
ers, through the assignment of valid  p values within the context of the survival 
framework, all while effectively controlling FWER.

Over the past two decades, a multitude of regularization techniques have 
emerged to facilitate feature selection and yield sparse parameter estimates when 
grappling with high-dimensional data. One prominent method is the least abso-
lute shrinkage and selection operator (LASSO) (Tibshirani 1996), a preeminent 
method known for furnishing sparse estimates through an L1 penalty, encom-
passing optimal tuning parameters for linear models. This work has led to the 
development of various extensions (Fan and Li 2001; Zou 2006; Ghosh 2007; 
Yuan and Lin 2006; Wang and Leng 2008). To deal with ultra-high-dimen-
sional data, Fan and Lv (2008a) introduced a correlation screening technique 
termed Sure Independence Screening (SIS). This method effectively reduces the 
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dimensionality from an extremely large scale to a more manageable one, making 
it easier to use LASSO for variable selection. This combination is referred to as 
SIS-Lasso. These techniques, tailored for variable selection and screening, have 
been expanded to accommodate survival outcomes within the context of Cox pro-
portional hazards (PH) models (Tibshirani 1997; Fan and Li 2002; Zhang and Lu 
2007; Simon 2011; He 2019; Fan 2010; Zhao and Li 2012).

While regularization and screening techniques are effective in producing sparse 
and interpretable estimates, they face challenges in maintaining control over type 
I error rates, primarily due to issues with  p values obtained from penalized like-
lihood. Recent advancements have addressed these challenges in high-dimensional 
linear models. For example, Wasserman and Roeder (2009) introduced a “screen 
and clean" procedure, involving data division into a training set for variable screen-
ing (using LASSO) and a testing set for significance testing. Several other meth-
ods exhibit screening properties, such as the adaptive Lasso (Zou 2006) and the 
smoothly clipped absolute deviation (SCAD) Fan and Li (2001). Later, Meinshausen 
(2009) enhanced the approach by iteratively repeating the split-and-fit procedure, 
computing  p values for each split, and aggregating them to establish a collective 
p-value for the purpose of controlling FWER. Related works include Meinshausen 
and Yu (2009); Bühlmann (2013); Zhang and Zhang (2014); Dezeure (2015). Recent 
breakthroughs in this domain include the work of Zuo et al. (2021), who introduced 
a groundbreaking variable selection approach termed “penalized regression with 
second-generation  p values" (ProSGPV). This method combines an L1 penalization 
scheme with second-generation  p values (SGPV) to identify variables suitable for 
inclusion in the model. While these methods have proven effective in generalized 
linear models for high-dimensional data, their application within the survival frame-
work is an emerging area that requires further development and exploration.

In this paper, we present a novel method for detecting biomarker signatures that 
considers both main effects and biomarker-by-interaction effects within the survival 
framework while effectively managing the FWER. To achieve this, we extend the 
concept introduced by Meinshausen (2009) to the Cox survival model, employing 
a three-stage process that enables the identification of prognostic and predictive 
biomarkers while assigning valid  p values. Our contributions include: (1) Applica-
tion to high-dimensional datasets using a penalized technique for variable selection, 
facilitating the identification of biomarker signatures that encompass both prognos-
tic and predictive biomarkers; (2) Addressing the challenge of multiple testing by 
obtaining  p values from randomized multi-split data, ensuring robust control of the 
FWER; (3) Providing a user-friendly R implementation of our algorithm, available 
at https:// github. com/ alivi awu/ Bioma rker- Paper/ tree/ main. Additionally, we offer 
comprehensive theoretical properties in the Supplementary Materials. By integrat-
ing main effects and biomarker-by-interactions within the survival framework and 
ensuring strict control over the FWER, our approach makes a valuable contribution 
to the field of biomarker identification and statistical inference in high-dimensional 
data scenarios.

The remainder of this paper is organized as follows. In Sect. 2, we provide a detailed 
description of our proposed three-stage approach within the Cox PH model frame-
work. This approach considers main effects and biomarker-by-interaction effects while 

https://github.com/aliviawu/Biomarker-Paper/tree/main
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effectively controlling the FWER. Section 3 presents the results of our simulation stud-
ies, including comparisons with existing methods. In Sect. 4, we apply our proposed 
method to multiple real-world datasets. Finally, in Sect. 5, we summarize our findings 
and discuss potential directions for future research.

2  Materials and methods

To achieve FWER control in biomarker selection, we propose a three-stage approach 
that builds on the penalized-likelihood approach using adaptive gLASSO (Wang and 
Leng 2008). Our approach extends the idea of p-value adjustment developed by Mein-
shausen (2009) to the Cox proportional hazards framework. Additionally, we provide a 
description of several existing alternatives for comparison purposes.

2.1  Notation

Consider a study with n subjects and p potential biomarkers. Let Ti denote the event 
time for the ith subject and Ci denote the censoring time. The follow-up time is defined 
as Yi = min(Ti,Ci) , and the event indicator is �i = I(Ti ≤ Ci) , where I(⋅) is an indica-
tor function. We focus on right-censored data. The p-dimensional candidate biomark-
ers are denoted by Xi = (Xi1,Xi2,… ,Xip)

T . The treatment status for the ith patient is 
denoted by Hi . We assume that Ti and Ci are conditionally independent given Xi . The 
hazard function of the ith patient under the Cox PH model can be expressed as:

with the total number of regression parameters as 2p + 1 . We denote the number of 
main biomarkers (prognostic) and its interaction with treatment (predictive) to be 
p̃ = 2p . Our objective is to identify prognostic biomarkers ( �j ≠ 0 , j = 1,… , p ) and 
predictive biomarkers ( �j ≠ 0 , j = 1,… , p ) in situations where n ≪ �p.

2.2  Adaptive gLASSO for variable selection

Under the Cox PH framework, let D denote the indices of the subjects who experienced 
the event of interest, and for each r ∈ D , the observed failure time is denoted by tr . The 
set Rr = {i ∶ Yi ≥ tr} includes the indices of the individuals who are at risk of experi-
encing the event at time tr . Let � = {�0, �j, �j, j = 1,… , p} be a vector of parameters 
with dimensionality p̃ + 1 , and let the semi-parametric partial likelihood function for 
parameter estimation be denoted by

Let �(�) denote the logarithm of the partial likelihood function logL(�) . The esti-
mates of the parameters � can be obtained by maximizing �(�) . However, when the 

(1)
h(t|Xi,Hi) = h0(t) exp(�0Hi + �1Xi1 +⋯ + �pXip + �1Xi1Hi +⋯ + �pXipHi),

(2)L(�) =
�

r∈D

h(t�Xi,Hi)∑
i∈Rr

h(t�Xi,Hi)
.
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number of parameters p̃ is larger than the sample size n ( n ≪ �p ), the semi-paramet-
ric likelihood estimator in Eq. (2) may not be feasible due to the difficulty in finding 
the global maximum as the number of biomarkers increases.

To select prognostic and predictive biomarkers with the oracle property, one com-
monly used method with a weighted adaptive gLASSO penalty can be considered. 
The objective function that the adaptive gLASSO minimizes is:

where | ⋅ |1 denotes the L1 norm, �1 is the shrinkage parameter, Gg is the index set 
belonging to the g-th pair of prognostic and predictive biomarkers ( g = 1,… , p ), 
and �Gg

= {�g, �g} is the g-th pair of estimated coefficients belonging to Gg . Addi-
tionally, �̂�g is an adaptive weight vector obtained by performing L2 regularization 
for each coefficient of � and � , which is defined as follows:

where �̂�ini
g

 and �̂� ini
g

 are initial estimators obtained from a ridge regression (Hoerl and 
Kennard 1970), g = 1,… , p.

Subsequently, the group-based estimates can be obtained by maximizing �aGL(�) . 
Biomarkers with non-zero coefficients ( �g ≠ 0 or �g ≠ 0 , where g = 1,… , p ) will be 
selected. However, it should be noted that the FWER is not well controlled by this 
method.

2.3  The proposed three‑stage approach

To control the FWER, we propose a three-stage strategy based on the penalized like-
lihood approach. This strategy extends the concept of p-value adjustment introduced 
by (Meinshausen 2009) to the Cox proportional hazards model. The algorithm for 
our proposed three-stage approach is described in detail below.

2.3.1  Stage I: conduct feature screening and obtain (nonaggregated)  p values

In the first stage, we perform feature screening to reduce the dimensionality from 
p̃ to a more manageable scale d with d < n . We then use the remaining d/2 pairs of 
prognostic and predictive biomarkers for variable selection based on penalized tech-
niques (i.e., adaptive gLASSO) as well as p-value adjustment. Both feature screen-
ing and p-value adjustment are performed through a bootstrapping procedure.

For b = 1…B , 

(i) Randomly split the data into two sets, a “training" set and a “testing" set, with 
some allocation rate of m (e.g., m = 0.5 indicates an equal sample size). Of note, 

(3)�
aGL(�) = �(�) + 𝜆1

�
p�

g=1

1

�̂�g

‖�Gg
‖1

�
,

(4)
�̂�g =

1
√

(�̂�ini
g
)2 + (�̂� ini

g
)2
,
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the selection of m depends on various factors, including the dataset sample size, 
the study’s objectives, and other relevant considerations.;

(ii) Perform feature screening via joint hypotheses using the training data. To iden-
tify the significant predictors among the main biomarkers and their interactions 
with treatment, the likelihood ratio test (LRT) can be utilized. For each j in 
1, ..., p, the log-likelihood under the null hypothesis ( H0 ) and the alternative 
hypothesis ( HA ) can be compared: 

 The LRT statistic is computed as the difference between the partial log-likeli-
hood statistics of two models: H0 , which only includes the treatment variable 
( Hj ), and HA , which includes the treatment variable ( Hj ), a main biomarker 
( Xj ), and its interaction with treatment ( XjH ). In general, the LRT statistic is 
expressed as LRT = −2 ln(

�0

�A

) ∼ �2
2
 . To screen the predictors efficiently, exist-

ing screening procedures often require the specification of a threshold. Here, 
we adopt the conventional threshold of [n∕ log n] (Fan and Lv 2008b). Specifi-
cally, the screening process retains the top [n∕ log n] pairs based on the rank of 
the Chi-square statistics of the joint hypothesis testing for each biomarker and 
its interaction with treatment.

(iii) Apply adaptive gLASSO on the training set to select pairs using the pre-selected 
pairs of main biomarkers and their interactions with treatment. The selected pairs 
are denoted by S̃(b);

(iv) Obtain the p-values for each selected pair in S̃(b) by performing LRT using test-
ing dataset. Using only testing data, we employ a LRT hypothesis test for each 
selected pair in S̃(b) , and calculate the corresponding chi-square based p-values, 
p̃
(b)

j
 , for j ∈ S̃(b) . For unselected pairs, we set the corresponding p-values to 1.

(v) Adjusted p-values based on the Bonferroni correction for p̃(b)
j

 , denoted by p(b)
j

 
( j = 1,… , p ). For j = 1, 2,… , p , we have 

 where |S̃|(b) denotes the total number of selected pairs in S̃(b).

2.3.2  Stage II: obtain aggregated p values

In the first stage, we obtain a total of B p-values for each pair of prognostic and predic-
tive biomarkers. To aggregate these p-values, we use quantiles introduced by (Mein-
shausen 2009).

Specifically, we define

where q� is the �th quantile for the set 
{
p
(b)

j
∕�;b = 1,… ,B

}
 . The aggregated p-value 

is denoted as p∗
j
 and is defined as

(5)H0 ∶ �j = 0, �j = 0,HA ∶ at least one of �jand �j is not equal to 0.

(6)p
(b)

j
= min

{
1

2
p̃
(b)

j
|S̃(b)|, 1

}
,

Qj(�) = min
{
1, q�

({
p
(b)

j
∕�;b = 1,… ,B

})}
,
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where �min ∈ (0, 1) , and recommended choice is 0.05 as suggested by (Meinshausen 
2009). Note that H0j ∶ �j = �j = 0 is rejected if p∗

j
≤ � , where � is the pre-specified 

FWER to be preserved ( j = 1,… , p).

2.3.3  Stage III: biomarker signature identification

In the last stage, we perform further regression analysis on the pairs of prognos-
tic and predictive biomarkers selected in Stage II. We fit a Cox PH model using 
the entire dataset by maximizing the partial likelihood. We identify biomarkers with 
p-values less than the pre-specified significance level � . The significant biomarkers, 
along with their interactions with treatment, form the biomarker signature for pre-
dicting patient outcomes in response to treatment.

Identification of prognostic and predictive biomarkers related to disease pro-
gression and treatment response in a survival framework is crucial for personalized 
medicine. However, existing penalized approaches for high-dimensional data often 
suffer from a lack of control over the FWER. Our proposed three-stage strategy that 
combines penalized likelihood techniques with adjusted  p values obtained through 
random data splitting provides a reliable and interpretable approach for identifying 
biomarker signatures with strong prognostic and predictive power, while effectively 
controlling FWER.

In Stage I, we use a bootstrapping procedure to reduce the dimensionality of the 
training dataset to a moderate scale and select active pairs of prognostic and predic-
tive biomarkers via an adaptive group LASSO technique. We then accumulate cor-
rected p-values p(b)

j
 for each active pair via a likelihood ratio test based on the testing 

dataset. In Stage II, we summarize these non-aggregated p-values to p∗
j
 using an 

adaptive empirical quantile function and select the pairs based on p∗
j
 . Finally, in 

Stage III, we identify the final biomarkers by fitting the selected pairs from Stage II 
with a Cox PH model based on the entire dataset.

2.4  Other existing methods

To empirically evaluate the performance of our proposed approach, we compare it 
with several existing methods. In the literature, there are various methods for vari-
able selection from biomarker main effects and biomarker-by-treatment interactions. 
Ternès (2016) conducted a comprehensive summary of possible approaches for 
high-dimensional Cox PH regression. They compared these methods through simu-
lations with different numbers of biomarkers and varying effects of main biomarkers 
and interactions with treatment, and evaluated their selection abilities in null (i.e., 
no interactions with treatment) and alternative scenarios (i.e., at least one interaction 
with treatment). In the null scenarios, group LASSO and gradient boosting methods 
performed poorly in the presence of non-null main effects but performed well in 
alternative scenarios with high interaction strengths. Adaptive LASSO with grouped 

(7)p∗
j
= min

{
1,
(
1 − log �min

)
inf

�∈(�min,1)
Qj(�)

}
,
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weights was found to be too conservative. Principal component analysis (PCA) 
combined with LASSO performed moderately. Both LASSO and adaptive LASSO 
performed well, although LASSO was relatively poor in the presence of only non-
null main effects. Here, we describe several competing methods that we consider for 
comparison.

2.4.1  LASSO

In the Cox PH framework, variable selection is typically performed by minimizing 
the log partial likelihood subject to a penalty on the parameters, as proposed by Tib-
shirani (1997). We use the LASSO penalty for both the main effects �j and their 
interaction effects with treatment �j ( j = 1, ..., p ) in Eq. (1) to perform variable selec-
tion, enabling us to identify both prognostic and predictive biomarkers. With the 
semi-parametric partial likelihood function defined in Eq. (2), let � = {�0, �j, �j}

p

j=1
 , 

where �0 denotes the treatment effect, �j denotes the jth prognostic biomarker effect 
and �j denotes the jth predictive biomarker effect. The partial log-likelihood with the 
LASSO penalty is

where prognostic biomarkers and predictive biomarkers are equally penalized with 
the shrinkage parameter � . This tuning parameter � is chosen by fivefold cross-vali-
dation. The LASSO-based coefficient estimators can then be obtained by maximiz-
ing �L(�) , and the predictive and prognostic biomarkers ( �j ≠ 0 , �j ≠ 0 ) are selected.

2.4.2  Adaptive LASSO with grouped weights

Adaptive LASSO is a penalization method that assigns different penalty weights to 
the main effects and interaction effects, with larger coefficients penalized less than 
smaller ones to highlight their differences (Zou 2006; Zhang and Lu 2007). In the 
initial stage, this method estimates the weights by including the treatment and all 
biomarker main effects and interactions with the treatment, and applies a ridge pen-
alty (Hoerl and Kennard 1970). Let �j and �j ( j = 1, ..., p ) be the main effects and 
interaction effects of the biomarkers, respectively. The penalty term with the shrink-
age parameter �2 to control the magnitude of �j and �j is

In the second stage, a common grouped weight is estimated for all �j and a single 
weight is assigned to all �j as the average of �j and �j from the preliminary stage, i.e., 
�R =

1

p

∑p

j=1
��j� , �R =

1

p

∑p

j=1
��j� . The penalized log-likelihood with 

� = {�0, �j, �j}
p

j=1
 is

(8)�
L(�) = �(�) + �

(
p∑

j=1

|�j| +
p∑

j=1

|�j|
)
,

(9)�2(

p∑

j=1

�2
j
+

p∑

j=1

�2
j
).
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2.4.3  Gradient boosting

Boosting algorithms are designed to enhance prediction accuracy by training a 
sequence of weak models, each correcting the errors of its predecessors. In high-dimen-
sional settings, the process starts from the null model and updates a single coefficient at 
each step. This iterative process stops when the model achieves a balance between bias 
and variance. Gradient boosting reformulates this approach as a numerical optimization 
problem, where the objective is to minimize the model’s loss function by adding weak 
learners using gradient descent (Friedman 2001). Bühlmann and Yu (2003) proposed 
L2-Boost with a novel component-wise smoothing spline learner, providing an effec-
tive procedure for carrying out boosting for high-dimensional regression problems with 
continuous predictors. In our study, we first estimate the treatment effect preliminarily 
and then fix it as an offset.

2.4.4  PCA+LASSO

In the first stage, we use PCA (Hastie 2017) to reduce the dimensionality of the main 
effect matrix. The second stage applies the LASSO penalty to the interactions, which 
allows for the identification of predictive biomarkers based on the first K principal com-
ponents of the main effects. In the final stage, we fit a Cox PH model by maximizing 
the partial likelihood based on all biomarkers and selected biomarker-treatment interac-
tions. We then select prognostic and predictive biomarkers with p-values less than �.

3  Simulation studies

3.1  Simulation setup

We make the following assumptions regarding the true hazard function for the i-th 
patient:

 Here, �0 denotes the impact of treatment H, �4 and �5 signify the prognostic effects 
of biomarkers X4 and X5 , respectively, and �4 represents the predictive effect of bio-
marker X4 . We investigate four distinct scenarios, each characterized by distinct 
values of ( �0 , �4, �4, �5 ): Scenario 1 (S1): (1, 1, 1, 1); Scenario 2 (S2): (1, 0.5, 1, 
1); Scenario 3 (S3): (1, 0.5, 1.5, 1); Scenario 4 (S4): (1, 0.5, 2.5, 1.5). To simulate 
individual participants, we generate a treatment indicator variable for each using a 
Binom(1,  0.5) distribution. The expression level of the primary j-th biomarker Xij 
follows a standard normal distribution. The pairwise correlation between prognostic 

(10)�
aL(�) = �(�) + �

(
1

�R

p∑

j=1

|�j| +
1

�R

p∑

j=1

|�j|
)
.

(11)h(t|Xi) = h0(t) exp
(
�0Hi + �4Xi4 + �4Xi4Hi + �5Xi5

)
.
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biomarkers is set to � = 0.15 in order to mimic our real data applications. The base-
line hazard function h0(t) is set up as a constant 1

100
 and 1

270
 , resulting in mean censor-

ing rates of around 40% or 60% , respectively. Censoring times Ci are generated from 
a uniform distribution Unif(0, 150). For the estimation of survival times, we employ 
the method introduced by (Bender 2005). This involves drawing from a Unif(0, 1) 
random variable and subsequently applying the transformations:

The observed time to an event is then computed as min(ti,Ci) , along with the event 
status denoted as I(ti < Ci) . To provide a comprehensive evaluation of our results, 
we generate 1,000 Monte Carlo datasets for each scenario. Furthermore, we con-
sider varying sample sizes of 300, 500, or 1000, with the allocation rate m = 0.5 and 
the total number of candidate prognostic and predictive biomarkers p̃ set to 1000, 
2000, or 4000.

We evaluate four primary performance metrics: selection accuracy, mean squared 
error (MSE), relative bias of regression coefficient estimates, and control of FWER. 
Selection accuracy measures the percentage of times the true biomarker is selected 
out of 1,000 replicates. We estimate MSE as the mean of the squared difference 
between the true and estimated parameters across 1,000 replicates. Relative bias is 
evaluated as the mean difference divided by the true parameter value across 1,000 
replicates. FWER control measures the proportion of times in 1,000 replicates that at 
least one biomarker, which is not one of the three candidate biomarkers, is selected 
while controlling the FWER at the nominal level of � = 0.05 . We investigate the 
impact of sample size, number of biomarkers, and censoring rates on these four met-
rics across various scenarios. Additionally, we compare the proposed method with 
five other methods, namely LASSO, gLASSO, adaptive LASSO, PCA+LASSO, 
and gradient boosting.

3.2  Simulation results

3.2.1  FWER control

Our proposed method effectively controls the FWER at a nominal level of 0.05 
for selecting prognostic and predictive biomarkers, as demonstrated in Fig. 1. We 
evaluated the actual FWER across 1,000 replicates for four different scenarios 
with varying sample sizes (n), the total number of biomarkers ( ̃p ), and censor-
ing rates, except for the case where p̃ = n = 1000 because it does not represent a 
high-dimensional scenario. Our method shows effective FWER control at approx-
imately 0.05 for all four scenarios, particularly when the sample size is 1000. 
Although the FWERs were inflated for sample sizes of 500 or 800, we observed 
a return to 0.05 with a sample size of 1000. Furthermore, we conducted addi-
tional simulations using a different allocation rate, i.e., m = 0.7 (allocating 70% 
of the data for training and 30% for testing). We observed minimal differences 
in FWERs. For example, with sample sizes of n = 300, 500 in S1 ( ̃p = 2000 ), 
the FWERs were 0.062 and 0.048, respectively, and also similar trends emerged 

ti = −log(U)∕h(t|Xi).
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across varying sample sizes (not shown due to space limit). Moreover, we also 
considered a higher value of the correlation coefficient, � = 0.3 , for S1. Across 
different combinations of sample sizes and the number of biomarkers denoted as 
(n, p̃) = (300, 1000), (300, 2000), (500, 1000), (500, 2000), (1000, 2000), (1000, 4000) , 
we obtained satisfactory results with the FWERs of 0.055, 0.056, 0.051, 0.045, 
0.059, and 0.048, respectively. In addition, We also incorporated a non-randomized 
clinical trial with an 80% treatment proportion, mirroring our second data applica-
tion. Thus, in Scenario 1 ( �4 = �5 = �4 = 1 ), with sample sizes of n = (300, 500) 
and p̃=2000, the obtained FWERs are 0.045 and 0.040, respectively.

3.2.2  Estimates of effects

The accurate estimation of prognostic and predictive biomarker effects is crucial for 
predicting hazard and survival rates. Boxplots of the estimates of �4 , �4 , and �5 are 
presented in Fig. 2 for scenarios S1 and S4, both with a 60% censoring rate. Addi-
tional scenarios are presented in Figure S5 and S6 in the Supplementary Materials. 
The average coefficient estimates of �4 and �5 from 1,000 simulated datasets closely 
match the true effects of (1, 1) and (0.5, 2.5) for scenarios S1 and S4, respectively. 
As the sample size increases from 300 to 1000, the dispersion of the estimated �4 
gradually decreases, and the estimates tend to center around the true effects. More-
over, the coefficient estimates for the 40% censoring rate exhibit similar trends in 
terms of deviation from the true values, as shown in Figure S5 in the Supplementary 
Materials.

The MSEs and biases of the estimates are presented in Table 2 and Table S1 in 
the Supplementary Materials, respectively. The results indicate that, with a censor-
ing rate of 40%, the MSEs and biases for all estimates are generally smaller com-
pared to those with a 60% censoring rate. Moreover, increasing the sample size leads 
to a reduction in MSEs and relative bias, which is consistent with our expectations. 
Regarding the interaction effect of �4 , although the MSEs are relatively higher com-
pared to the main effects (e.g., �4 and �5 ), the bias decreases as the true interac-
tion effect increases from 1 to 1.5. Additionally, the underlying true effect strength 
of the primary biomarkers influences the estimation of their interaction effect. For 
example, as the true effect value of �4 decreases from 1 (S1) to 0.5 (S2), its bias 
decreases, while the bias of its interaction effect with �4 increases.

3.2.3  Selection accuracy

The results of the selection accuracy analysis are summarized in Table 1. The find-
ings indicate that selection accuracy improves with larger sample sizes, lower cen-
soring rates, and greater biomarker effects. When the sample size is sufficiently 
large (i.e., >800), the true biomarker effects and censoring rate have minimal effects 
on selection accuracy. Both the biomarker and interaction term selections are influ-
enced by the underlying true effect strength, and the accuracy of the interaction 
term selection tends to increase as the main effect decreases. When �4 decreases 
from 1 (S1) to 0.5 (S2), the selection accuracy of X4 decreases, but the accuracy 
of X4H increases, particularly with small sample sizes and high censoring rates. 
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A three‑stage approach to identify biomarker signatures for…

Furthermore, sample size is a critical factor in determining selection accuracy. As 
the sample size increases from 300 to 500, the selection percentages for all biomark-
ers are consistently around 100%.

In conclusion, higher selection percentages are observed when the sample size is 
large, the censoring rate is small, and the true biomarker effect is strong. The pro-
posed method is not significantly affected by the number of candidate biomarkers, as 
the selection accuracy remains relatively stable as p̃ increases.

3.2.4  Method comparison

We compared our three-stage strategy with five other methods: LASSO, adap-
tive LASSO, gLASSO, PCA+LASSO, and gradient boosting. The comparison 
was based on 11 setups combining various sample sizes and biomarker numbers 
under high censoring rate, and additional scenarios are available in the Supplemen-
tary Materials. Since LASSO and adaptive LASSO had similar performance, we 
excluded the results of adaptive LASSO from the analysis. As shown in Fig. 3, our 
proposed three-stage method effectively controls the FWERs, whereas the other four 
methods fail to achieve this goal. For all alternative methods, the FWERs for all 
scenarios are close to 1. These results agree with our expectation. Notably, meth-
ods such as LASSO, boosting, PCA+LASSO, and adaptive LASSO do not take 
into account the correlation between the primary biomarker and its interaction with 
treatment or impose the hierarchy constraint, despite incorporating various regulari-
zation strategies for variable selection. Group LASSO does attempt to tackle these 
concerns through its regularization approach; however, the p values obtained for the 
selected variables do not effectively control the FWER. In contrast, our method is 
designed to provide valid asymptotic control over variable inclusion at the nominal 
level, which is made possible by integrating the multiple sample-splitting approach 
and incorporating features such as correlation and hierarchy (e.g., group lasso) into 
the regularization techniques after initial feature screening.

For scenarios S1 and S2 (with details available in the Supplementary Materi-
als), we evaluated the selection accuracy of prognostic and predictive biomarkers 
using five methods under four scenarios, with sample sizes of 300, 500, 800, and 
1000, 2000 biomarkers, and 40% and 60% censoring rates. Overall, gLASSO and 
PCA+LASSO showed relatively high selection accuracy of the interaction term 
X4H , but performed poorly in selecting the main effects. On the other hand, LASSO 
and gradient boosting achieved selection accuracies close to 1 and were insensitive 
to the censoring rate, sample size, number of biomarkers, and scenario. However, 
our proposed method controls the selection accuracy with respect to increases in 
the sample size or underlying biomarker effects or a decrease in the censoring rate. 
Furthermore, scenarios S3 and S4 (details available in the Supplementary Materi-
als) compared the coefficient estimates based on different methods. In comparison 
with the four existing methods, our model provided unbiased estimates of the effects 
with improved efficiency throughout. The simulations were carried out using R 4.1.2 
on a high-performance computing cluster. For each dataset with 50 iterations of the 
bootstrapping procedure, the computation time for the proposed method is approxi-
mate 6 min, considering the number of biomarkers as 1,000 and sample size of 300, 
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however, this time may increase (up to 26 min) with larger number of biomarkers 
and sample sizes. Other alternative methods need less time due to the lack of boot-
strap procedures (i.e., 3 min for the case with 1,000 biomarkers and sample size of 
300).

4  Applications

In the first example, we present an application of our method using an existing breast 
cancer study that includes patients with estrogen receptor (ER)-negative tumors 
(Desmedt 2011; Hatzis 2011). The gene expression data associated with the study is 
publicly available from the Gene Expression Omnibus database (refer to GSE16 446 
and GSE25 066). The study comprised 614 patients, with 507 receiving only anthra-
cycline-based adjuvant chemotherapy (coded as 0) (Desmedt 2011), and 107 receiv-
ing anthracycline with taxane-based chemotherapy (coded as 1) (Hatzis 2011). The 
gene expression data has been pre-processed (e.g., normalization, filtering out low-
expression genes), resulting in 1,689 gene variables for direct analysis. The primary 
outcome of interest is the distant recurrence-free survival, with a censoring rate of 
approximately 78% for both groups.

In the second application, we examine the effect of Tamoxifen treatment on 
patients with ER-positive breast tumors and evaluate gene expression biomarkers 
and their interactions with treatment (Loi 2007). The original dataset comprises 414 
patients from the cohort GSE6532, collected by Loi (2007), to identify ER-positive 
subtypes with gene expression profiles. Our analysis focuses on the primary out-
come of distant metastasis-free survival (DMFS). After excluding 34 patients, who 
lack any records of time-to-event data (no follow-up or dropout information) for sur-
vival outcomes, we are left with 255 patients who received Tamoxifen treatment and 
125 patients who did not. The censoring rates for the two groups are 73.3% and 
77.6%, respectively, and there are 44,916 gene expression measurements for each 
patient.

We applied our approach to identify prognostic and predictive gene biomarkers 
in the two applications and compared it to existing methods. To implement our pro-
posed method, we opted for 50 iterations in the bootstrapping procedure, and we 
utilized a 70% allocation rate to partition the data into training and testing datasets. 
The nominal level was set at 0.05, and for each existing method, a feature screen-
ing was constructed based on the training set. After obtaining a total of 50  p values 
for each pair of prognostic and predictive biomarkers, we calculated the aggregated  
p values for each pair via the quantile function introduced by Meinshausen (2009) 
with 0.05 as the �min.

As shown in Table  3, our proposed method did not identify any prognostic or 
predictive biomarkers for the first dataset. However, for the second dataset, the 
interaction of the gene HYPK (’218,680_x_at’) with the treatment indicator was 
selected with significance, indicating that HYPK is a predictive biomarker for 
Tamoxifen treatment regarding the outcome of DMFS. This finding is consistent 
with the literature (Hans-Dieter and RoyerMatthias 2017), where HYPK is sug-
gested as a novel predictive biomarker for breast cancer. LASSO selected the largest 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16446
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse6532
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number of biomarkers, followed by boosting, adaptive LASSO, and gLASSO, while 
PCA+LASSO led to the fewest selections. This performance is similar to what we 
observed in our simulation studies. Additionally, the HYPK gene selected by our 
proposed method was also identified by the gradient boosting methods. We further 
listed the gene symbols of selected prognostic and predictive biomarkers based on 
the methods in Tables S.4-S.5 of the Supplementary Materials.

Per reviewers’ suggestion, we present another data application to further explore 
our method, as provided in the Supplementary Material. In particular, we analyzed a 
microarray dataset (refer to GSE22762) (Herold 2011) comprising 151 chronic lym-
phocytic leukemia (CLL) patients. The primary objective was to identify prognostic 
and predictive biomarkers associated with overall survival (OS) and salvage chemo-
therapy. Our proposed method successfully identified 2 predictive biomarkers and 3 
prognostic biomarkers. For additional details, please refer to Section D of the Sup-
plementary Material.

5  Discussion

In this paper, we presented a three-stage strategy for identifying prognostic and pre-
dictive biomarker signatures, which can be extended to higher-order terms, such as 
pairwise interactions among the biomarkers, depending on clinical interest or practi-
cal necessity. Our work builds upon the concept of multi-splitting for p-value adjust-
ment to identify prognostic and predictive biomarkers under the survival framework, 
with a focus on Cox PH regressions. Specifically, we extend the approach proposed 
by (Meinshausen 2009) by generating pairwise  p values through joint hypoth-
esis testing. However, we note that if we were to generate  p values via individual 
hypothesis testing, as in the approach proposed by (Meinshausen 2009), the result-
ing family-wise error rates (FWERs) would be overly conservative when identifying 
prognostic and predictive biomarkers in our case.

We conducted extensive simulation studies, which demonstrated that our pro-
posed approach can control the FWER well around the nominal level, whereas 
existing methods such as LASSO, gLASSO, PCA+LASSO, and gradient boost-
ing fail to control FWER. For example, LASSO produces FWERs close to 1 for 
all scenarios, while boosting, gLASSO, and PCA+LASSO have unstable FWERs 
across different scenarios. Controlling the FWER in cancer studies can improve 
the sensitivity of biomarker selection and testing during screening. Addition-
ally, compared with existing methods, our proposed method provides accurate 
estimates of the effects of selected biomarkers with centers closer to true effects 
and lower dispersion across a variety of scenarios. The mean square errors and 
relative bias of the estimates produced by our proposed method are consistently 
lower across a variety of scenarios. However, gLASSO and PCA+LASSO have 
the largest variability of estimates, and the boosting method underestimates the 
effects in most scenarios. Furthermore, our method can control the selection 
accuracy of prognostic and predictive biomarkers close to 100% with an increase 
in sample size or underlying biomarker effects or a decrease in the censoring rate. 
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In contrast, existing methods (e.g., gLASSO and PCA+LASSO) have relatively 
lower and inconsistent selection accuracy of the main effects, regardless of cen-
soring rates.

Furthermore, we applied our proposed method and other existing methods to ana-
lyze two breast cancer datasets and a chronic lymphocytic leukemia dataset, as detailed 
in the supplementary material. While there is no literature revealing true prognostic 
and predictive biomarkers based on these three gene expression datasets, our proposed 
method yielded intriguing findings. In the second data example, our proposed method 
identified the gene HYPK as a predictive biomarker for Tamoxifen treatment regard-
ing the outcome of DMFS. This aligns with a finding from (Hans-Dieter and Royer-
Matthias 2017), suggesting HYPK as a novel predictive biomarker for breast cancer. 
Notably, the gradient boosting method also identified the HYPK gene. For the CLL 

Table 3  Number of selected predictive and prognostic biomarkers

Breast cancer: taxane Breast cancer: tamoxifen

Methods #predictive bio-
markers

#prognostic bio-
markers

#predictive bio-
markers

#prognostic 
biomarkers

Three-stage method 0 0 1 0
Group LASSO 4 5 1 5
LASSO 5 18 11 22
Adaptive LASSO 1 21 0 17
Boosting 9 14 8 15
PCA+LASSO 0 0 2 1

Fig. 1  A matrix of panels for family-wise error rates calculated via our proposed model based on simula-
tion studies; rows represent high or low censoring rates; columns represent four simulation scenarios; 
x-axis is the sample size and y-axis is FWERs; three types of lines represent different total number of 
biomarkers p̃
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data application shown in the Supplementary Material, our proposed method success-
fully identified 2 predictive biomarkers and 3 prognostic biomarkers associated with 
OS and chemotherapy. Among the selected biomarkers, TCF7 stood out as both a 
prognostic and predictive biomarker, indicating a significant impact on OS in CLL and 
providing insights into the effect of chemotherapy on CLL patients. This finding aligns 
with the observations in the paper by (Herold 2011).

In summary, our proposed approach provides a robust tool for identifying prog-
nostic and predictive biomarkers in cancer studies, demonstrating superior perfor-
mance in simulation studies compared to existing methods, particularly in terms 
of controlling the FWER. Noted that the FWER control represents a conservative 
approach, emphasizing the importance of avoiding any false discoveries within a 
family of tests, making it more restrictive compared to less stringent methods. Of 
note, in real-world applications, various factors, such as non-randomized clinical 
trial, sample size, the distribution of biomarker values, the magnitude of biomarker 
effects and varied pairwise correlations among biomarkers, may influence the selec-
tion results. In our data applications, we present several examples for illustration, 
with promise findings and the genes selected by our method verified by the existing 
literature.

Regarding the choice of quantiles for aggregating  p values, we have adopted a 
strategy akin to (Meinshausen 2009), considering a lower bound value of �

min
= 0.05 

that has been both suggested and exclusively explored in prior studies (Meinshausen 
2009; Renaux 2020; Shi et  al. 2023; Buzdugan 2016). While there are alternative 
methods for p-value aggregation (Mitchell 2015), our context is unique because 
the  p values for each variable are generated through repeated data random-splits, 

Fig. 2  A matrix of panels for coefficient estimates for the high censoring rate; rows represent three bio-
marker effects; columns represent four simulation scenarios; x-axis represents 11 setups of sample sizes 
and the numbers of biomarkers; y-axis represents the estimated coefficients; red dotted lines represent the 
strength of biomarker effects



1 3

A three‑stage approach to identify biomarker signatures for…

resulting in empirical distributions. Using quantiles to combine and aggregate p val-
ues provides a flexible means of error rate control, with the advantage of subjective 
quartile selection. The challenge of selecting the quartile parameter, denoted as �

min
 

(0 < 𝜂
min

< 1) , has been acknowledged Meinshausen (2009), and there is no univer-
sally accepted value for �

min
 that guarantees error control. However, the outcomes 

from the chosen value have proven satisfactory, but further exploration can be pur-
sued in this regard.

Fig. 3  A matrix of panels for FWERs comparisons for different methods based on simulation studies; 
rows represent high or low censoring rates; columns represent four simulation scenarios; x-axis repre-
sents different sample sizes and the numbers of biomarkers, y-axis represents FWERs; five colored lines 
represent different methods
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In terms of other future work, it may be worthwhile to investigate the issue of mul-
ticollinearity between gene expression levels, particularly when the correlation among 
biomarkers is relatively high. Additionally, the accelerated failure time model can be 
easily adapted into our three-stage framework to derive the  p values and identify bio-
marker signatures when Cox PH models are not appropriate due to violations of the 
PH assumption. Overall, our proposed method has wide-ranging potential for applica-
tion in cancer genetics studies and can be readily extended to other areas as necessary.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10260- 024- 00748-y.
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