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Abstract
The paper illustrates a new procedure for estimating asymmetric stochastic volatility 
models. These models shape the asymmetric effect of negative and positive financial 
returns on the expected volatility, behaviour often observed in the stock prices, and 
known as “leverage effect”. The procedure is based on the iterative application of the 
quasi-maximum likelihood (QML) method and is proposed as an alternative to the 
procedure presented by Harvey and Shephard in 1996 and based on the application 
of the QML method on a modified auxiliary model. The estimation results generally 
converge to constant values after a few iterations. The volatility predictor provided 
by the new method is conceptually similar to the EGARCH predictor and different 
from the predictor of the other procedure. A simulation study shows that the itera-
tive QML method provides parameter estimators with RMSEs decreasing as series 
length increases. The distribution of the estimates is approximately normal, and the 
approximation improves as the series size increases. Empirical applications of the 
method provide results similar to ones of the method known in literature. However, 
the two methods provide two different predictors and smoothers of volatility, which 
should be compared on a case-by-case basis.

Keywords Asymmetric stochastic volatility · Leverage effect · Iterative quasi 
maximum likelihood

JEL Classification C13 · C32 · C58

1 Introduction

According with a very common pattern for financial returns, rt , the term volatility 
refers to the coefficient �t into the equation:

 * Paolo Chirico 
 paolo.chirico@uniupo.it

1 Department of Law and Political, Economic and Social Sciences, Università del Piemonte 
Orientale, Alessandria, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-024-00747-z&domain=pdf
http://orcid.org/0000-0003-4229-0440


 P. Chirico 

1 3

where �t is a unit-variance innovation, Gaussian distributed in the simplest case; 
when �t does not depend on �t , �t is the expected value of rt given all information 
known at time t − 1 (Taylor 1986).

Two main classes of volatility models are known in literature:

• Models for conditional heteroskedasticity;
• Stochastic Volatility models.

In the models for conditional heteroskedasticity, generally identified as GARCH 
models (Bollerslev 1986), volatility is a function of the previous information, It−1 , 
and �2

t
 corresponds to the conditional variance of the returns: �2

t
= Var(rt ∣ It−1).

An alternative approach in volatility modelling consists in considering �2
t
 as a 

latent stochastic process, whose logarithm, ht , is usually represented as an autore-
gressive process, in most cases, of order one:

Models in the form (1)–(2) are reported in literature with the general name of Sto-
chastic Volatility (SV) models (Melino and Turnbull 1990; Taylor 1994) and are 
discrete approximations to various diffusion processes proposed in the asset-pricing 
theory (Hull and White 1987; Wiggins 1987).

Unlike GARCH family models, which are easily estimated by the Maximum Like-
lihood (ML) method, the ML estimation of SV models is a tough challenge since the 
likelihood is defined by a T-dimensional integral, which is hard to manage (Harvey 
and Shephard 1996).

In accord with Sandmann and Koopman (1998), methods to face SV models 
estimation can be subdivided into two groups: (i) methods oriented to rebuild the 
exact likelihood of the SV model or a related model; (ii) methods based on more 
workable, but sub-optimal methods. Among all the methods, the Quasi Maximum 
Likelihood (QML) method (Ruiz 1994; Harvey et  al. 1994) appears to be a good 
compromise between simplicity and efficiency: it maximizes a function that is not 
the actual exact likelihood function, but it provides an optimal linear estimator (and 
predictor) of ht , consistent and asymptotically Gaussian, according with the results 
of Dunsmuir (1979).

The method is based on the Kalman filter (Harvey 1990), which filters past and 
present volatilities and predicts future ones; Ruiz (1994) suggest that the method 
works well for sample sizes usually used in financial economics.

On the other hand, the application of the basic1 QML faces some issues when the 
volatility innovation, �t , and the return innovation, �t , are correlated, as explained in 
Sect. 2. This correlation is fundamental to model the asymmetric effect of negative 

(1)rt = �t + �t�t �t ∼ NID(0, 1)

(2)ht+1 = � + �ht + �t �t ∼ NID(0, �2
�
)

1 In the paper, the term “basic” is used to identify the method described by Ruiz (1994) and Harvey 
et al. (1994).



1 3

Iterative QML estimation for asymmetric stochastic volatility…

and positive returns on the expected volatility, behaviour often observed in stock 
prices, and known as leverage effect (Christie 1982; Engle and Ng 1993).

This paper presents a new procedure for applying the QML method to asymmet-
ric SV models, which produces a volatility predictor different from the one known 
in the literature, preferable to the latter in some cases. A brief presentation of the 
known procedure is reported in Sect.  2, while the new procedure is illustrated in 
Sect.  3. In Sect.  4, a simulation study evaluates the properties of the estimators 
obtained with the new proposal. Section 5 illustrates the application of the old and 
new procedure on three financial series. The achieved goals are summarized in 
Conclusions.

2  Leverage effect and stochastic volatility

In financial series increases of volatility are often observed after negative returns, 
and generally the greater the extent of the loss the greater the increase. This evi-
dence is called “leverage effect” as price drop in a stock decreases the value of 
the firm equity, and increases the leverage-ratio. The increased leverage-ratio will 
involve higher risk on the equity which will be more volatile during next period 
(Black 1976).

A way to include the leverage effect in (2) consists in assuming the volatility 
innovation �t correlated with the return innovation �t , as in the following general 
Gaussian SV model:

where: xt = rt − �t is the mean-adjusted return on an asset, simply “return” in the 
following; ht = ln �2

t
 is the log-square volatility; �t and �t are zero-mean Gaussian 

innovations, serially independent, with E(�t�t−k) = � if k = 0 , and zero otherwise; 
then, the correlation between �t and �t is � = �∕��.

In Model (3), the leverage effect on ht+1 corresponds to:

which is proportional to the size of �t and of opposite sign if 𝛾 < 0.
The basic QML estimation of a Gaussian SV model would consists in the estima-

tion, via Kalman Filter, of the auxiliary state space model:

where: yt = ln x2
t
 , and �t = ln �2

t
+ 1.27 ; − 1.27 and 4.93 are the values of E(ln �2

t
) 

and Var(ln �2
t
) respectively, when �t is Gaussian (Zelen and Severo 1972).

Unfortunately, the basic QML does not allow to estimate the parameter � (or � ) 
directly since the disturbances �t and �t are uncorrelated when the distribution of 

(3)
xt = exp(ht∕2)�t
ht+1 = � + �ht + �t

[
�t
�t

]
∼ NID

([
0

0

]
,

[
1 �

� �2
�

])

(4)E(�t ∣ �t) = ��t

(5)
yt = −1.27 + ht + �t
ht+1 = � + �ht + �t

[
�t
�t

]
∼ ID

([
0

0

]
,

[
4.93 0

0 �2
�

])
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�t and �t is symmetric, e.g. Gaussian or Student’s t, so that the original covariance 
(correlation) between �t and �t is definitely lost in (5) (Harvey et al. 1994).

Harvey and Shephard (1996) proposed a method, here briefly named HS-QML, 
to estimate the parameters of a SV model with correlated disturbances. According 
with this method, the parameters of (3) can be estimated applying the QML method 
to the time-varying linear state space model2:

where st indicates the sign of xt : it is the equal to 1 ( − 1 ) when xt , i.e. �t , is positive 
(negative).

The one step ahead predictor of ht provided by the Kalman Filter (see Appendix 
A) combines the mechanisms of the EGARCH (Nelson 1991) and the Threshold-
ARCH predictors (Glosten et al. 1993; Zakoian 1994):

where �t is the gain of the Kalman filter (Harvey 1990); ŷt∣t−1 = −1.27 + ĥt∣t−1 is the 
one step ahead prediction of yt ; Pt∣t−1 = E[(ĥt∣t−1 − ht)

2] is the MSE of ĥt∣t−1.
If 𝛾 < 0 , Formula (8) entails that: (𝜅t ∣ Pt∣t−1, st = −1) > (𝜅t ∣ Pt∣t−1, st = +1) . 

Therefore the leverage effect predicted by (7) can be broken down into two parts: 
(i) a part, �st , depending on the sign but not on the size of �t (as in the Threshold-
ARCH model); (ii) a part, 𝜅t(yt − ŷt∣t−1) , depending on the sign and the size of �t
.3 This forecast only partially reflects the characteristics of the leverage effect as 
expressed in (4).

3  Iterative QML for asymmetric SV models

Having assumed that �t, and �t are bivariate normal with E(�t�t) = � , the auxiliary 
model (5) can be rewritten as:

(6)

yt = −1.27 + ht + �t
ht+1 = � + 0.80�st + �ht + �∗

t[
�t
�∗
t

]
∣ st ∼ ID

([
0

0

]
,

[
4.93 1.11�st

1.11�st �
2
�
− 0.64�2

])

(7)ĥt+1∣t =𝜔 + 𝛽ĥt∣t−1 + 0.80𝛾st + 𝜅t(yt − ŷt∣t−1)

(8)�t =
�Pt∣t−1 + 1.11�st

Pt∣t−1 + 4.93

2 See “Appendix A”.
3 (yt − ŷt∣t−1) can be viewed as an approximation of �t = ln �2

t
+ 1.27 = 2 ln |�t| + 1.27.
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where the disturbance �+
t
 represents the exogenous innovation on ht.

As �t = xt∕ exp(ht∕2) , Model (9) is not linear, then it cannot be estimated by 
means of basic QML. Nevertheless, we can perform the following procedure: 

1. �t is initially set to xt∕sX , being sX the sample standard deviation of the series of 
returns (x1, x2,… , xT );

2. Model (9), now linear, is estimated by basic QML;
3. �t is updated by xt∕ exp (h̃t∕2) , where h̃t are the smoothed ht , provided by the 

Kalman smoother;
4. steps 2 and 3 are repeated successively according with a pre-set stopping rule4.

Empirical evidence shows that the parameter estimates converge to realistic values 
after few steps. The trick of the iterative procedure, IQML in the following, consists 
in smoothing �t and ht not conjointly: treating separately �t and ht does not compro-
mise the linearity of the second equation into (9).

The IQML can be viewed like a variant of the EM approach (Dempster et  al. 
1977) proposed by Shumway and Stoffer (1982) for smoothing and forecasting time 
series, but some differences should be highlighted. In the case of Model (9), the 
approach of Shumway and Stoffer (1982) would consist in: (i) setting initial val-
ues of the model parameters; (ii) smoothing ht in order to build a likelihood func-
tion (expectation step); (iii) estimating the model parameters maximizing the likeli-
hood function (maximization step); (iv) iterating steps (ii)–(iii) until the estimates 
and the likelihood function are stable. Nevertheless the direct smoothing of ht (step 
ii) is complicated by the non-linearity of the model. This problem is bypassed in 
IQML because �t and ht are smoothed separately: �t is smoothed before the maxi-
misation (estimation) step, whereas ht is smoothed after the maximization step in 
order to update �t . As a result the maximisation step differs between the algorithms: 
in IQML it consists in maximizing a pseudo (quasi) log-likelihood given yt and 
�̃�t ; in EM it consists in the ML estimation of a regression model, the second equa-
tion in (9), given h̃t.5 The IQML procedure is more viable than the EM approach 
described above, but involves an inevitable loss of efficiency due to smoothing �t 
and ht separately.

It is interesting to note the form of the predictor of ht provided by the Kalman 
Filter:

(9)

yt = −1.27 + ht + �t
ht+1 = � + ��t + �ht + �+

t[
�t
�+
t

]
∼ ID

([
0

0

]
,

[
4.93 0

0 �2
�
− �2

])

4 In simulation study (Sect. 4) and empirical applications (Sect. 5), the procedure is stopped when the 
increment of the quasi log-likelihood becomes less than 0.001. With this stopping rule, the relative dif-
ference in the estimates between the last two iterations becomes less than 0.1%
5 Given h̃t (and �̃�t = xt∕ exp(h̃t∕2) ), the model estimation concerns only the second equation in (9).
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where �t is the gain of the Kalman Filter. Since Model (9) satisfies the steady-state 
conditions,6 �t converges to a constant that we name � . Therefore, the steady-state 
predictor of ht can be formalized as:

where the function 𝜉(|�̃�t|) = 2 ln |�̃�t| + 1.27 is a monotonically increasing, mean-
corrected, function of the (approximated) magnitude of �t . Predictor (11) shows a 
clear similarity with the EGARCH predictor in which �(��t�) = ��t� −

√
2∕� is 

the mean-corrected magnitude of �t when �t ∼ N(0, 1) . Predictor (11) may be also 
viewed as a Log-GARCH predictor (Geweke 1986; Pantula 1986) with leverage 
effect.

The leverage effect predicted by (11) tries to replicate the form of the leverage 
effect Model (4): it is proportional to the amplitude of the estimated return innova-
tion, 𝜀t , and of opposite sign (if 𝛾 < 0 ). Formulas (7) and (11) show that the HS-
QML and IQML methods involve two different predictors of ht , whose performances 
are evaluated in Sects. 4 and 5.

3.1  Student’s t return innovations

The IQML method can be generalized to the case where �t has a scaled Student’s 
t-distribution with v degrees of freedom, scaled in order to have unit variance, i.e. 
�t ∼ tv

√
(v − 2)∕v . In this case (see “Appendix B”):

being �0 and �1 the digamma and trigamma function, respectively (Davis 1972).
If the parameter v is assumed known, the model estimation procedure is the 

IQML described above, with the values −1.27 and 4.93 now replaced by the values 
of g1(v) and g2(v) , respectively. Alternatively, −1.27 and 4.93 are replaced by the 
parametric formulas of g1(v) and g2(v) , and v is treated as an additional unknown 
parameter.

(10)ĥt+1∣t = 𝜔 + 𝛽ĥt∣t−1 + 𝛾�̃�t + 𝜅t(yt − ŷt∣t−1)

(11)ĥt+1∣t = 𝜔 + 𝛽ĥt∣t−1 + 𝛾�̃�t + 𝛼𝜉(|�̃�t|)

(12)E[ln �2
t
] =g1(v) = −1.27 + ln(v∕2 − 1) − �0(v∕2)

(13)Var[ln �2
t
] =g2(v) = 4.93 + �1(v∕2)

6 We assume 0 < 𝛽 < 1 and 𝜎2
𝜂
> 𝛾2 (i.e. −1 < 𝜌 < 1 ). For more details about the convergence properties 

of the Kalman Filter see Harvey (1990) and Hamilton (1994).
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4  Finite sample properties of the IQML estimator

By means of a simulation study, Harvey and Shephard (1996) provided empirical 
results in favour of the consistency of the estimates obtained with the HS-QML 
method. In the study, series of different lengths, T, were simulated 1000 times 
( n = 1000)  from Model (3) with “empirically reasonable” parameters values. On 
each series, the model parameters were estimated using the HS-QML method, under 
some practical constraints.7

Table 1 reports some estimation results of that simulation study: the average and 
the root mean square error, RMSE, (figures in brackets) of the estimates of � , ln �2

�
 

and � ; ln �2
�
 was preferred to �2

�
 because the estimates of the first are closer to be nor-

mally distributed then ones of the second. We can note that the RMSEs decrease as 
the series length increases and, ceteris paribus, they decrease if the absolute value of 
� (i.e. � ) increases.

The same approach, based on simulations, is followed here to asses the finite 
sample properties of the IQML estimators.8 With the same settings adopted by 
Harvey and Shephard, 1000 series were simulated from Model (3), and on each 

Table 1  Simulations results of the HS-QML method ( n = 1000)

Italic values are the actual parameter values used to simulate the 1000 series

Parameters Actual 
Values

Average Estimates

T = 1000 T = 3000 T = 6000

� 0.975 0.948 (0.088) 0.970 (0.028) 0.973 (0.009)
ln �2

�
− 4.605 − 4.437 (1.185) − 4.590 (0.692) − 4.604 (0.432)

� − 0.300 − 0.335 (0.298) − 0.304 (0.156) − 0.303 (0.101)
� 0.975 0.968 (0.034) 0.974 (0.007) 0.975 (0.005)
ln �2

�
− 4.605 − 4.596 (0.708) − 4.617 (0.353) − 4.612 (0.249)

� − 0.900 − 0.909 (0.132) − 0.911 (0.079) − 0.907 (0.058)

7 See Harvey and Shephard (1996) for more details.
8 The procedure was performed using the econometric software Gretl, version 2022a.

Table 2  Simulations results of the IQML method ( n = 1000)

Italic values are the actual parameter values used to simulate the 1000 series

Parameters Actual 
Values

Average estimates

T = 1000 T = 3000 T = 6000

� 0.975 0.945 (0.077) 0.969 (0.019) 0.972 (0.009)
ln �2

�
− 4.605 − 4.373 (1.167) − 4.590 (0.645) − 4.599 (0.430)

� − 0.300 − 0.313 (0.284) − 0.309 (0.148) − 0.298 (0.095)
� 0.975 0.967 (0.028) 0.974 (0.007) 0.975 (0.004)
ln �2

�
− 4.605 − 4.438 (0.646) − 4.612 (0.324) − 4.612 (0.210)

� − 0.900 − 0.875 (0.127) − 0.903 (0.069) − 0.900 (0.044)
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series the model was estimated with the IQML method (Table 2). As in HS-QML, 
the RMSEs of the IQML estimators decrease as the strength of the correlation 
increases and as the length of the series increases. The RMSEs of the new method 
are slightly lower than ones of the other method.

The normal distribution of the IQML estimates has been tested using the Sha-
piro-Wilks and the Jarque-Bera tests. Table  3 reports the p-values of the tests 
on the estimates of � , � , � , and ln �2

�
 , both with T = 3000 and T = 6000 . With 

series of length T = 6000 , the estimates of � , � and ln �2
�
 can be already consid-

ered normally distributed with a significance level of 0.03. On the other hand, 
the sampling distribution of 𝛽  cannot yet be approximated by the normal, this 
is because the simulated value, 0.975, is very close to the upper limit in case of 
stationary volatility ( � = 1 ). As a result, the finite sample distribution of 𝛽  has a 
slightly longer left tail than the right one, although the skewness decreases the 

Table 3  IQML—p value of 
normality tests ( n = 1000)

T = 3000 T = 6000

� = − 0.900 − 0.300 − 0.900 − 0.300

Test for normality of �̂�
Shapiro–Wilk test 0.244 0.293 0.952 0.090
Jarque–Bera test 0.109 0.968 0.723 0.088
Test for normality of �̂�
Shapiro–Wilk test 0.018 0.179 0.271 0.135
Jarque–Bera test 0.021 0.174 0.144 0.392

Test for normality of 𝛽
Shapiro–Wilk test 0.000 0.000 0.000 0.000
Jarque–Bera test 0.000 0.000 0.000 0.000
Test for normality of ln �̂�2

𝜂

Shapiro–Wilk test 0.090 0.000 0.380 0.178
Jarque–Bera test 0.009 0.000 0.330 0.031

Fig. 1  Estimated density of 𝛽  in the simulation study ( n = 1000)
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more negative the correlation � (Fig. 1). In this case the Gaussian approximation 
should be possible with series length greater than those considered.

4.1  Goodness of the IQML filtered and smoothed volatilities

A simulation was conducted to evaluate the goodness of the filtered and smoothed 
volatilities provided by the IQML and HS-QML methods. To this end: (i) 100 series 
of length T = 1000 were simulated from model (3) with � = 0.97 , � = −0.90 , 
ln(�2

�
) = −4 (i.e. � = −0.122 and �2

�
= 0.0183 ); (ii) on each series, the IQML and HS-

QML methods were applied to filter and smooth the log-square volatility ht using the 
estimated parameters provided by each method, then filtered and smoothed �2

t
 s were 

obtained by exponential transformation of the corresponding log-square volatilities; 
(iii) the closeness of the filtered and smoothed �2

t
 s to the simulated ones was measured 

on each series using the (average) loss functions MSE, MAE and Qlike (Patton 2011; 
Hansen and Lunde 2005):

(14)MSE =T−1

T∑

t=1

(�2
t
− exp ht)

2

(15)MAE =T−1

T∑

t=1

|�2
t
− exp ht|

(16)Qlike∗ =T−1

T∑

t=1

(
�2
t

exp ht
− 1 − ln

�2
t

exp ht

)

Fig. 2  Behaviour of the loss functions given �2
= 2
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The loss function (16) corresponds to the variant of Qlike proposed by Patton (2011, 
p. 252) in order to make the function homogeneous. This variant is formally the 
relative difference of �2

t
 from exp ht minus the corresponding log-difference. Given 

the relationship between the two differences, Qlike∗ grows as the gap between �2
t
 

and exp ht increases, and grows more when the gap is negative, i.e. �2
t
 is underes-

timated (Fig. 2). On the other hand, MSE and MAE present symmetric effects of 
overestimation and underestimation, but MSE is more sensitive than MAE to large 
gaps between �2

t
 and exp ht (due to sharp changes in volatility or outliers).

Table 4 reports the overall average of the loss functions for the methods,9 and the 
the number of series, n∗ , where IQML determines the lowest loss. We can see that 
the values of all three loss functions are lower when the IQML method is used, both 
in case of filtered and in case of smoothed �2

t
 s. These results seem to suggest that 

the IQML method provides filtered and smoothed �2
t
 s that fit better the actual ones. 

In particular, the IQML method appears to better limit: (i) large gaps between actual 
volatility and filtered (smoothed) volatility; (ii) underestimation of actual volatility.

Finally, the n∗ counter shows that the IQML method outperforms the HS-QML in 
a large percentage of simulated series.

5  Empirical Applications

The IQML method was applied on several financial series for the estimation of the 
asymmetric SV model (3). This section illustrates the application of the method on 
three series of financial indices:

• NASDAQ Composite (IXIC)
• DAX index (GDAXI)
• CAC40 index (FCHI)

Table 4  Overall average of the 
loss functions on the simulated 
series ( n = 100;T = 1000)

Results as fraction of the corresponding HS-QML loss
n
∗ = number of series where IQML determines the lowest loss

Method Filtered �2

t
s Smoothed �2

t
s

MSE MAE Qlike∗ MSE MAE Qlike∗

HS-QML 1.000 1.000 1.000 1.000 1.000 1.000
IQML1 0.807 0.886 0.873 0.767 0.879 0.826

n
∗2 87 91 86 93 91 89

9 Results are reported as fraction of the corresponding HS-QML loss. Since the functions are homogene-
ous, the use of relative values is not affected by the scale of measurement of the returns (percentages or 
decimals).
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in the period from 04-01-2021 to 30-12-2022. The returns we consider are percent-
age log differences of the daily index closing values. The estimation results are com-
pared with those obtained with the HS-QML method.10

Table 5 reports the estimates of �, � , � , and the standard deviation of the exog-
enous innovation on ht (i.e. ��+ ). The standard errors of the estimates are calculated 
on the basis of the “Outer Product of the Gradient” (OPG) method.11 The quasi log-
likelihood, lly, of models (6) and (9) is also reported.

The two methods provide fairly close estimates, also standard errors are pretty 
close. We note that the IQML standard errors are moderately smaller than the corre-
sponding HS-QML standard errors in the IXIC and FCHI series, but not in GDAXI. 
The quasi-log likelihood values, lly, of the two methods are also very close in each 

Table 5  Comparison of the methods on three financial series

n.s. = non-significant

Method Param IXIC GDAXI FCHI

Estimate SE Estimate SE Estimate SE

HS-QML � 0.025 0.010 0.012 0.006 0.014 0.006
� − 0.157 0.046 − 0.264 0.042 − 0.270 0.049
� 0.966 0.013 0.962 0.011 0.950 0.012
��+ 0.137 0.047 0.086 0.043 n.s.1

lly − 1208.6 − 1151.2 − 1124.9
IQML � 0.014 0.005 − 0.002 0.008 − 0.002 0.003

� − 0.157 0.036 − 0.220 0.041 − 0.204 0.038
� 0.977 0.007 0.956 0.015 0.973 0.007
��+ 0.072 0.038 0.137 0.058 n.s.1

lly − 1206.3 − 1153.0 − 1123.4

10 The HS-QML method is applied using the equivalent model form (A.5) explained in Appendix (A). 
This form puts in evidence the standard deviation of the exogenous innovation on ht.
11 See Gretl User’s Guide, version of January 2021, p. 222 (Cottrell and Lucchetti 2021).

Table 6  MSE and Qlike losses 
of the filtered and smoothed �2

t

Results as fraction of the corresponding HS-QML loss

Index Method Filtered �2

t
s Smoothed �2

t
s

MSE Qlike∗ MSE Qlike∗

IXIC HS-QML 1.000 1.000 1.000 1.000
IQML 0.994 0.990 1.012 1.016

GDAXI HS-QML 1.000 1.000 1.000 1.000
IQML 0.989 1.025 0.966 0.999

FCHI HS-QML 1.000 1.000 1.000 1.000
IQML 0.953 1.016 0.953 1.014
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series: the lly of IQML is slightly higher in IXIC and FCHI, and slightly lower in 
GDAXI.

The goodness of the filtered and smoothed �2
t
 s provided by the methods is 

assessed by the MSE (14) and Qlike∗ (16) loss functions computed using the square 
return x2

t
 as proxy of �2

t
 (see Table 6). As stated by Patton (2011), these loss func-

tions are robust to noise when the volatilities proxy are the square returns. Based on 
these results, neither method appears clearly better than the other: the IQML seems 
little better for the IXIC filtered �2

t
 s and the GDAXI smoothed �2

t
 s; the HS-QML 

seems little better for the IXIC smoothed �2
t
 s; for the FCHI series, IQML seems 

preferable if the criterion is MSE, but HS-QML could be better if Qlike is the cri-
terion. Nevertheless, all differences in the loss functions are too small to highlight 
a clear superiority of one method over the other. In the case of financial series, the 
choice of the most appropriate method should take place on a case-by-case basis, 
considering more than one criterion.

6  Conclusion

The IQML method consists in iterating the basic QML method over an asymmetric 
SV model. The procedure is made possible using a proxy of the return innovation �t . 
This simple procedure allows the user to estimate the parameters of an SV model in 
which the return innovation and volatility innovation are correlated. This goal can 
also be achieved with the modified QML method proposed by Harvey and Shephard 
(1996) (HS-QML), but the two methods provide different volatility predictors. The 
IQML predictor is conceptually similar to the EGARCH predictor, whereas the HS-
QML predictor is more similar to the Threshold-ARCH predictor. A simulation 
study shows that the IQML filtered and smoothed square volatilities generally fit 
simulated �2

t
 s better than those of the other model do. On the other hand, empirical 

applications suggest comparing the two methods, using loss functions, to identify 
the most suitable for the series under study.

The simulation study also shows that IQML estimators exhibit decreasing RMSEs 
as the series length increases and finite sample distributions that can be approxi-
mated by the Gaussian distribution; the approximation improves as the sample size 
increases.

The IQML method can be viewed as a variant of the Expectation-Maximization 
(EM) algorithm proposed by Shumway and Stoffer (1982), although the algorithms 
differ in some methodological aspects as specified in Sect. 3.

Finally, the method can be applied to the case with Student’s t return innovations 
in order to treat returns with high kurtosis.

Appendix A Proofs of Model (6)

The original method of Harvey and Shephard (1996) concerns the estimation of the 
following asymmetric SV model:
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where �t is a process of independent, identically distributed random disturbances, 
symmetrically distributed around 0. The authors demonstrated that model (A.1) can 
be estimated applying the QML method to the time varying state space model:

where:

– yt = ln x2
t
;

– �∗ = ln �2 + E[ln �2
t
];

– �t = ln �2
t
− E[ln �2

t
];

– st = +1(−1) when xt , i.e. �t , is positive (negative);
– �∗ and �∗ correspond to E(�t ∣ st = 1) and Cov(�t, �t ∣ st = 1) respectively.

 Harvey and Shephard (1996) proved that the relations of �∗ and �∗ with � depend 
on the distribution of (�t, �t) . When (�t, �t) is bivariate normal, it results (approxi-
mately) that:

Using the restrictions (A.3) and the transformation ht = h∗
t
+ 1.27 + �∗ , Model 

(A.2) assumes, after some algebra, the form (6):

where � = (1 − �)(1.27 + �∗).
Model (A.4) can also be represented in the alternative form:

where �� = [
√
4.93, 0] , ��

�
= [1.11�st∕

√
4.93, ��+] ; ��+ is the standard deviation of 

the exogenous innovation on ht.
Taking into account Formulas (3.2.3c), (3.2.4a) and (3.2.22) in the book of 

Harvey (1990), the one step ahead predictor of ht is:

(A.1)
xt = � exp(h∗

t
∕2)�t

h∗
t+1

= �h∗
t
+ �t

[
�t
�t

]
∼ ID

([
0

0

]
,

[
1 �

� �2
�

])

(A.2)

yt = �∗ + h∗
t
+ �t

h∗
t+1

= �∗st + �h∗
t
+ �∗

t[
�t
�∗
t

]
∣ st ∼ ID

([
0

0

]
,

[
�2
�

�∗st
�∗st �2

�
− �∗2

])

(A.3)�∗ = 0.80� �∗ = 1.11� �2
�
= 4.93

(A.4)

yt = −1.27 + ht + �t
ht+1 = � + 0.80�st + �ht + �∗

t[
�t
�∗
t

]
∣ st ∼ ID

([
0

0

]
,

[
4.93 1.11�st

1.11�st �2
�
− 0.64�2

])

(A.5)
yt = −1.27 + ht + �

�
�
�

ht+1 = � + 0.80�st + �ht + �
�
�
�
�

�
�
∣ st ∼ ID(0, I)
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where: ŷt∣t−1 = −1.27 + ĥt∣t−1 is the one step ahead prediction of yt ; 
Pt∣t−1 = E[(ĥt∣t−1 − ht)

2] is the MSE of ĥt∣t−1.

Appendix B Proofs of Formulas (12) and (13)

A scaled Student’s t-distribution, with v degrees of freedom, is the distribution of 
a random variable, �v , defined as:

where Z is a standard normal r.v., and �2
v
 is a chi-square r.v. with v degrees of free-

dom, independent of Z.
It is easy to derive that: E(�v) = 0 and Var(�v) = 1.
Given �v = ln �2

v
 , it follows:

From Zelen and Severo (1972) we know that:

where �0 and �1 are the digamma and trigamma function, respectively (Davis 1972).
Since �0(1∕2) ≈ −1.963 , �1(1∕2) ≈ 4.93 , and ln(1∕2) ≈ −0.693 , it follows 

approximately that:
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(A.6)
ĥt+1∣t = 𝜔 + 𝛽ĥt∣t−1 + 0.80𝛾st + 𝜅t(yt − ŷt∣t−1)

𝜅t =
𝛽Pt∣t−1+1.11𝛾st

Pt∣t−1+4.93

(B1)
�v =

Z
�

�2
v
∕v

√
(v − 2)∕v

(B2)

�v = ln(�2
1
) − ln(�2

v
∕v) + ln[(v − 2)∕v]

E[�v] =E[ln(�
2
1
)] − E[ln(�2

v
∕v)] + ln[(v − 2)∕v]

Var[�v] =Var[ln(�
2
1
)] + Var[ln(�2

v
∕v)]

(B3)
E[ln(�2

v
∕v)] =�0(v∕2) − ln(v∕2)

Var[ln(�2
v
∕v)] =�1(v∕2)

(B4)
E[�v] = − 1.963 + 0.693 − �0(v∕2) + ln(v∕2) + ln[(v − 2)∕v]

= − 1.27 − �0(v∕2) + ln(v∕2 − 1)

Var[�v] =4.93 + �1(v∕2)



1 3

Iterative QML estimation for asymmetric stochastic volatility…

Data availibility The data used in the work can be requested directly from the author.

Declarations 

Conflict of interest Author declare that there is no conflict of interest.

Consent to participate The work was carried out in compliance with the ethical code of the Università del 
Piemonte Orientale.

Code availability The gretl script for IQML can be requested directly from the author.

Consent for publication The author agrees for publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Black F (1976) Studies of stock market volatility changes. In: Proceedings of the American statistical 
association, business & economic statistics section

Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econ 31:307–327
Christie AA (1982) The stochastich behaviour of common stock variances: value, leverage, and interest 

rate effects. J Finan Econ 10:407–432
Cottrell A, Lucchetti R (2021) Gretl user’s guide. Distributed with the Gretl library
Davis P (1972) Chapter 6. Gamma function and related functions. In: Abramovitz M, Stegun IA (eds) 

Hanbook of mathematical functions. Dover, New York
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algo-

rithm. J R Stat Soc Ser B (Methodological) 39(1):1–22
Dunsmuir W (1979) A central limit theorem for parameter estimation in stationary vector time series and 

its application to models for a signal observed with noise. Ann Stat 490–506
Engle RF, Ng VK (1993) Measuring and testing the impact of news on volatility. J Financ 

48(5):1749–1778
Geweke J (1986) Modelling the persistence of conditional variances: a comment. Econ Rev 5:57–61
Glosten L, Jagannathan R, Runkle D (1993) On the relation between the expected value and volatility of 

nominal excess returns on stocks. J Financ 46:1779–1801
Hamilton J (1994) Time series analysis. Princeton University Press, Princeton, NJ
Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a Garch(1,1)? 

J Appl Econ 20(7):873–889
Harvey A, Shephard N (1996) Estimation of an asymmetric stochastich volatility model for asset returns. 

J Bus Econ Stat 14(4):429–434
Harvey A, Ruiz E, Shepherd N (1994) Multivariate stochastic volatility methods. Rev Econ Stud 

61:247–264
Harvey AC (1990) Forecasting, structural time series models and the Kalman filter. Cambridge Univer-

sity Press, Cambridge
Hull J, White A (1987) The pricing of options on assets with stochastic volatility. J Financ 42:281–300
Melino A, Turnbull SM (1990) Pricing foreign currency options with stochastic volatility. J Econom 

45(1–2):239–265

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 P. Chirico 

1 3

Nelson D (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 
59:347–370

Pantula S (1986) Modelling the persistence of conditional variances: a comment. Econom Rev 5:71–73
Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. J Econom 

160(1):246–256
Ruiz E (1994) Quasi-maximum likelihood estimation of stochastic volatility models. J Econom 

63(1):289–306
Sandmann G, Koopman SJ (1998) Estimation of stochastic volatility models via Monte Carlo maximum 

likelihood. J Econom 87(2):271–301
Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the EM 

algorithm. J Time Ser Anal 3(4):253–264
Taylor S (1986) Modelling financial time series. Wiley, Chichester
Taylor SJ (1994) Modeling stochastic volatility: a review and comparative study. Math Financ 

4(2):183–204
Wiggins JB (1987) Option values under stochastic volatility: theory and empirical estimates. J Financ 

Econom 19(2):351–372
Zakoian JM (1994) Threshold heteroskedastic models. J Econom Dyn Control 18(5):931–955
Zelen M, Severo N (1972) Chapter 26. Probability function. In: Abramovitz M, Stegun IA (eds) Hanbook 

of mathematical functions. Dover, New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Iterative QML estimation for asymmetric stochastic volatility models
	Abstract
	1 Introduction
	2 Leverage effect and stochastic volatility
	3 Iterative QML for asymmetric SV models
	3.1 Student’s  return innovations

	4 Finite sample properties of the IQML estimator
	4.1 Goodness of the IQML filtered and smoothed volatilities

	5 Empirical Applications
	6 Conclusion
	Appendix A Proofs of Model (6)
	Appendix B Proofs of Formulas (12) and (13)
	References


