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Abstract
The aim of this article is to make a contribution to the Bayesian procedure of testing 
precise hypotheses for parametric models. For this purpose, we define the Bayesian 
Discrepancy Measure that allows one to evaluate the suitability of a given hypothe-
sis with respect to the available information (prior law and data). To summarise this 
information, the posterior median is employed, allowing a simple assessment of the 
discrepancy with a fixed hypothesis. The Bayesian Discrepancy Measure assesses 
the compatibility of a single hypothesis with the observed data, as opposed to the 
more common comparative approach where a hypothesis is rejected in favour of a 
competing hypothesis. The proposed measure of evidence has properties of consist-
ency and invariance. After presenting the definition of the measure for a parameter 
of interest, both in the absence and in the presence of nuisance parameters, we illus-
trate some examples showing its conceptual and interpretative simplicity. Finally, 
we compare a test procedure based on the Bayesian Discrepancy Measure, with the 
Full Bayesian Significance Test, a well-known Bayesian testing procedure for sharp 
hypotheses.

Keywords  Bayesian test · Evidence · Precise hypothesis · Significance test · Full 
Bayesian significance test

1  Introduction

D. V. Lindley in Lindley (1965) (preface page xi) stated that

“ ...hypothesis testing looms large in standard statistical practice, yet scarcely 
appears as such in the Bayesian literature.”

Since then things have changed and, in the last sixty years, there have been sev-
eral attempts to build a measure of evidence that covers, in a Bayesian context, the 
role that the p-value has played in the frequentist setting. A prominent example is 
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the decision test based on the Bayes Factor and its extensions (see, for instance, 
Berger (1985)).

As an alternative to the Bayes Factor, another Bayesian evidence measure is pro-
vided in Pereira and Stern (1999) upon which the testing procedure Full Bayesian 
Signicance Test (FBST) is based. For a recent survey on the FBST see Pereira and 
Stern (2020).

The main aim of this paper is to give a contribution to the testing procedure of precise 
hypotheses. In particular, the proposed Bayesian measure of evidence, called Bayesian 
Discrepancy Measure (BDM), gives an absolute evaluation of a hypothesis H in light of 
prior knowledge about the parameter and observed data. The proposed measure of evi-
dence has the desired properties of invariance under reparametrization and consistency 
for large samples.

Our starting point is the idea that a hypothesis may be more or less supported by 
the available evidence contained in the posterior distribution.

We do not adopt the hypothesis testing approach for which there is no test that can 
lead to the rejection of a hypothesis except by comparing it with another hypothesis 
(Neyman-Pearson in the frequentist perspective, Bayes factor in the Bayesian one), but 
rather the approach proposed by Fisher (see Christensen (2005) and Deni (2004)). Ref-
erence is made to a precise hypothesis H and no alternative is considered against such 
hypothesis. In this view different hypotheses made by several experts can be evaluated 
and using the information coming from the same data, some can be accepted others not. 
In this respect, in a broad sense, we can say that we return to Fisher’s original idea of 
pure significance according to which “Every experiment may be said to exist only in 
order to give the facts a chance of disproving the null hypothesis” (Fisher 1925).

The proposed measure of evidence can be seen as a Bayesian tool for model 
checking, that is, as a technique that can aid in the actual specification of a model, 
without the need to make explicit reference to alternative models or hypotheses. For 
an extensive discussion of this point and the difference with the procedure of Bayes-
ian model selection see O’Hagan (2003).

The structure of the paper is as follows. In Sect. 2 the definition of the proposed meas-
ure is presented for a scalar parameter of interest, both in the absence or presence of 
nuisance parameters. In Sect. 3 different illustrative examples are discussed, involving 
one or two independent populations. Finally, in Sect. 4 we make a comparison between 
the Bayesian Discrepancy Test and the Full Bayesian Significance Test which is based 
on the e-value, a well-known Bayesian evidence index used to test sharp hypotheses. The 
last section contains conclusions and directions for further research.

2 � The Bayesian discrepancy measure

Let (X,PX
�
,�) be a parametric statistical model where X ∈ X ⊂ ℝ

k , 
P
X
�
= {f (x|�) | � ∈ �} is a class of probability distributions (Lebesgue integrable) 

defined on X  , depending on an unknown vector of continuous parameters � ∈ � , an 
open subset of ℝp . Assume that 
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(a)	 the model is identifiable;
(b)	 f (x|�) have support not depending on � , ∀ � ∈ �;
(c)	 the log likelihood function must be at least twice differentiable;
(d)	 the operations of integration and differentiation with respect to � can be 

exchanged.

We assume a prior probability density g0(�) following Cromwell’s Rule which 
states that “it is inadvisable to attach probabilites of zero to uncertain events, for 
if the prior probability is zero so is the posterior, whatever be the data. A proba-
bility of one is equally dangerous because then the probability of the complemen-
tary event will be zero” (see Section 6.2 in Lindley (1991)). We are then assum-
ing that g0(�) > 0, ∀� for you will need that assumption for claiming consistency 
(see Proposition 1 of the next Section).

First, we discuss the case of a scalar parameter. Then we discuss the case of a 
scalar parameter of interest in the presence of nuisance parameters.

2.1 � The Bayesian discrepancy measure for a scalar parameter

In this section we assume that k = p = 1 . Given an iid random sample 
x = (x1,… , xn) from PX

�
 , let L(�|x) be the corresponding likelihood function 

based on data x and let g0(�) be a continuous prior distribution on Θ ⊆ ℝ . The 
posterior probability density for � given x is then

Moreover, given the posterior distribution function G1(�|x) , the posterior median is 
any real number m1 which satisfies the inequalities G1(m1|x) ≥ 1

2
 and G−

1
(m1|x) ≤ 1

2
 , 

where G−
1
(m1|x) = lim

�↑m1

G1(�|x) . In the case in which G1(⋅|x) is continuous and 

strictly increasing we have m1 = G−1
1
(
1

2
|x) . Under the assumptions made in the 

beginning of Sect. 2, posterior median m1 is uniquely defined.
We are interested in testing the precise hypothesis

In order to measure the discrepancy of the hypothesis (1) w.r.t. the posterior distri-
bution, in the case Θ = ℝ , we consider the following two intervals: 

1.	 the discrepancy interval

2.	 the external interval

g1(�|x) ∝ g0(�)L(�|x).

(1)H ∶ � = �H .

(2)IH =

⎧⎪⎨⎪⎩

(m1, 𝜃H) if m1 < 𝜃H
{m1} if m1 = 𝜃H ,

(𝜃H ,m1) if m1 > 𝜃H
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When m1 = �H , the external interval IE can be (−∞,m1) or (m1,+∞) . Note that, 
by construction, ℙ(IH ∪ IE) =

1

2
 (see Fig.  1). If the support of the posterior is a 

subset of ℝ , the intervals IH and IE can be defined consequently.

Definition 1  Given the posterior distribution function G1(�|x) , we define the Bayes-
ian Discrepancy Measure of the hypothesis H as

The measure can be also computed by means of the external interval as

which can also be written as

where G−
1
(�H|x) = lim

�↑�H

G1(�|x) . In our case, since G1(�H|x) is continuous, this sim-
plifies to

Formulations (6) and (7) have the advantage of not involving the posterior 
median in the integral computation. Furthermore, one can interpret the quantity 
min{G1(�H|x), 1 − G1(�H|x)} as the posterior probability of a “tail" event concern-
ing only the precise hypothesis H. Doubling this “tail" probability, related to the pre-
cise hypothesis H, one gets a posterior probability assessment about how “central" 
the hypothesis H is and hence how it is supported by the prior and the data.

It is important to highlight that the hypothesis H induces the following 
partition

(3)IE =

{
(𝜃H ,+∞) if m1 < 𝜃H
(−∞, 𝜃H) if 𝜃H < m1.

(4)�H = 2ℙ(� ∈ IH|x) = 2∫IH

dG1(�|x).

(5)�H = 1 − 2ℙ(� ∈ IE|x) = 1 − 2∫IE

dG1(�|x),

(6)�H = 1 − 2min{G−
1
(�H|x), 1 − G1(�H|x)},

(7)�H = 1 − 2min{G1(�H|x), 1 − G1(�H|x)}.

Fig. 1   Posterior density g1(�|x) , the corresponding discrepancy interval IH and external interval IE when 
𝜃H < m1 ([A]) and 𝜃H > m1 ([B])
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of the parameter space Θ . Then formulations (6) and (7) can be equivalently 
expressed as

The last formula can be naturally extended to the case where, besides the scalar 
parameter of interest, nuisance parameters are also present. This issue will be devel-
oped in Sect. 2.2.

The following properties apply to the BDM, for a scalar parameter �.

Proposition 1 

	 (i)	 �H always exists and, by construction, �H ∈ [0, 1];
	 (ii)	 �H is invariant under invertible monotonic transformations of the parameter 

�;
	 (iii)	 if � is an a.c. random variable, �∗ is the true value of the parameter and 

�∗ = �H , then �H converges asymptotically to a Unif (⋅|0, 1) . Otherwise, if 

�∗ ≠ �H , then �H
p
−→ 1 (consistency property).

Proof  (i)	� The first property follows immediately from the fact that in (4) the poste-
rior probability ℙ(� ∈ IH|x) ∈

[
0,

1

2

]
.

(ii)	� Let � = �(�) be an invertible monotonic transformation of the parameter 
� and let K1(⋅) be the cumulative distribution function of the parameter 
� . We denote with �H = �(�H) and we notice that m�

1
= �(m1) thanks to 

the monotonic invariance of the median. Suppose, for simplicity, that 
𝜃H > m1 . Then 

 Therefore, the invariance of the BDM follows immediately from the invariance of 
the median under invertible monotonic transformations. Notice that if instead of the 
median m1 we consider, for example, the posterior mean E(�|x) , which is not invari-
ant under invertible monotonic reparametrizations, the property will not hold in gen-
eral. Moreover, E(�|x) for some models may not even exist.

(iii)	� We first examine the first part of the statement for which �∗ = �H . Let 
J(𝜃̂) be the observed Fisher information and let 𝜃̂ be the maximum likeli-
hood estimator of � . Under suitable regularity and technical conditions 

(8)
{
Θa = (−∞, �H), ΘH = {�H}, Θb = (�H ,∞)

}

(9)�H = 1 − 2 ⋅min
a,b

{
ℙ(� ∈ Θa|x) , ℙ(� ∈ Θb|x)

}
.

�H = 2 ∫
�H

m1

dG1(�|x) = 2
|||∫

�H

m�
1

dK1(�|x)|||.
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(see for instance Section 7, p. 129 in Lindley (1965) and Section 5.3.2, 
p. 287 in Bernardo and Smith (1994)), the asymptotic distribution of the 
“normalized” random quantity W =

√

J(�̂)(� − �̂) is standard normal, both in 
the posterior, for fixed data and random � , and in the sampling distribu-
tion, for fixed � and random data. We have 

 where 

 Since W is asymptotically standard normal, then G1(�H|x) is asymptotically 

Φ

(√
J(𝜃̂)(𝜃H − 𝜃̂)

)
 (a function of the data through 𝜃̂ ). But also, in the sampling 

distribution given �∗ = �H , 
√

J(𝜃̂)(𝜃H − 𝜃̂) is asymptotically standard normal and 
thus, in view of the probability integral transform, G1(�H|X) is asymptotically uni-
form on [0, 1] in this sampling distribution. Then 

 so that �H is asymptotically uniform under �H . If, instead, �∗ ≠ �H and n → ∞ , 
under suitable regularity conditions (see for instance Section 7, p. 129 in Lindley 
(1965)) it is well known that g1(�|x) is concentrated in a neighbourhood whose size 
is of order n−

1

2 around �∗ . Then from equation 5, since the tail event � ∈ IE will have 
vanishingly small probability, we have that limn→∞ �H = 1.

	�  ◻

As pointed out before, the further �H is from the posterior median m1 of the dis-
tribution function G1(�|x) , the closer �H is to 1. It can then be said that H does not 
conform to G1(�|x) . On the contrary, the smaller �H the stronger is the evidence in 
favor of H. Following this idea, we can construct a procedure to evaluate (and pos-
sibly reject) the hypothesis H, using the evidence measure �H.

Definition 2  The Bayesian Discrepancy Test (BDT) is the procedure for evaluating a 
hypothesis H based on the Bayesian Discrepancy Measure (BDM).

High values of �H provide strong evidence against the hypothesis H. On the other 
hand, if �H is small, the data are consistent with H.

Summarizing, when H is true, then, for large n, �H is roughly equally likely to 
fall anywhere between 0 and 1. By contrast, when H is false, �H is more likely to 
be near 1 than near 0. As for other measures of evidence (as for the Full Bayesian 
Significance Test or the frequentist p-value), a threshold could be chosen in order 
to interpret the observed value of �H . However, in the direction recommended in 
the ASA statement (see Wasserstein and Lazar (2016)) and in view of the debate on 
hypothesis testing (Benjamin et al. 2018; Benjamin and Berger 2019) and the recent 

(10)�H = 1 − 2min{G1(�H|x), 1 − G1(�H|x)},

(11)G1(𝜃H|x) = P(W ≤
√

J(𝜃̂)(𝜃H − 𝜃̂) ∣ X = x).

ℙ(�H ≤ t|�H) = ℙ

(
1

2
(1 − t) ≤ G1(�H|X) ≤ 1

2
(1 + t)|�H

)
≈ t,
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studies about the reproducibility of experiments (Collaboration 2015; Johnson et al. 
2017), we agree with Fisher (1973) that “no scientific worker has a fixed level of 
significance at which from year to year, and in all circumstances, he rejects hypoth-
eses; he rather gives his mind to each particular case in the light of his evidence and 
his ideas". Given the critical points related to the choice of a threshold, we think it 
is important to look for an applied measure of evidence that pushes the researcher to 
think more about the specific problem, and that avoids the use of standard receipes.

2.2 � The Bayesian discrepancy measure in presence of nuisance parameters

Suppose that p ≥ 2 and k ≥ 1 . Let � = �(�) be a scalar parameter of interest, where 
𝜑 ∶ � → Φ ⊆ ℝ . Let us further consider a bijective reparametrization � ⇔ (�, �) , 
where � ∈ Z ⊆ ℝ

p−1 denotes an arbitrary nuisance parameter, which is determined 
on the basis of analytical convenience (note that the value of the evidence measure is 
invariant with respect to the choice of the nuisance parameter). We consider hypoth-
eses that can be expressed in the form

where �H is known as it represents the hypothesis that it is of interest to evaluate. 
The transformation � must be such that, for all � ∈ � and for all �H ∈ Φ , it can 
always be assessed whether � is strictly smaller, strictly larger or equal to �H (i.e. 
𝜑 < 𝜑H either 𝜑 > 𝜑H , or � = �H ). Hypothesis (12) and transformation � , with

We call any hypothesis of type (12), which identify a partition of the form (13), a 
partitioning hypothesis. It is easy to verify that many commonly used hypotheses 
are partitioning. In this paper we only consider hypotheses of this nature. In this set-
ting, we express the BDM as

where the external set is given by

In the particular scenario where the marginal posterior

(12)H ∶ � = �H ,

(13)
�a =

{
� ∈ � ∶ 𝜑 < 𝜑H

}
�H =

{
� ∈ � ∶ 𝜑 = 𝜑H

}
.

�b =
{
� ∈ � ∶ 𝜑 > 𝜑H

}

(14)
�H = 1 − 2 ⋅min

a,b

{
ℙ(� ∈ �a|x) , ℙ(� ∈ �b|x)

}

= 1 − 2 ⋅ ∫IE

g1(�|x) d�,

(15)IE = argmin
a,b

{
ℙ(� ∈ �a|x) , ℙ(� ∈ �b|x)

}
.

h1(�|x) = ∫
�(�)=�

g1(�|x)d� , ∀� ∈ Φ ,
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of the parameter of interest � can be computed in a closed form, the hypothesis (12) 
can be easily treated using the methodologies seen in Subsection 2.1, i.e. the BDM 
is computed by means of formula (4) or (5) applied to the marginal.

Properties reported in Proposition 1 naturally extend to the setting we just 
presented.

3 � Illustrative examples

The simplicity of the BDT is highlighted by the following examples, some of which 
deal with cases not usually considered in the literature. Examples 1 and 2 focus on 
a scalar parameter of interest, while Examples 3, 4, 5, 6, 7 also contain nuisance 
parameters.

In all examples we have adopted a Jeffreys’ prior (see Yang and Berger (1996) 
for a catalog of non-informative priors) for simplicity. However, other objective pri-
ors and, in the presence of substantive prior information, informative priors could 
equally be used.

3.1 � Examples of the univariate parameter case

Example 1  Exponential distribution Let x = (x1,… , xn) be an iid sample of size n 
from the Exponential distribution X ∼ Exp

(
x|�−1) , with � ∈ ℝ

+. We are interested 
in the hypothesis H ∶ � = �H . Assuming a Jeffreys’ prior for � , i.e. g0(�) ∝ �−1 , the 
posterior distribution is given by g1(𝜃|x) ∝ 𝜃−n−1 exp{−nx̄ ⋅ 𝜃−1} , with x̄ the sample 
mean.

Figure 2 shows the posterior density function as well as the discrepancy and the 
external intervals for H ∶ � = �H = 2.4 and the MLE x̄ = 1.2 for three sample sizes 
[A] n = 6 , [B] n = 12 , [C] n = 24 . In [A] we have a posterior median m1 = 1.27 
and �H = 0.832 , while in [B] m1 = 1.23 and �H = 0.960 , in [C] m1 = 1.22 and 
�H = 0.997.

While in case [A] the data do not contradict H sufficiently, in case [B] there is a 
weak evidence against H, which becomes stringer in [C].

Note that in all scenarios considered, we find the following relation between �H 
and the p-value,

Fig. 2   Posterior density function g1(𝜃|nx̄) and intervals IH = (m1, �H) and IE = (�H ,∞) , using data from 
Example 1



1 3

A new Bayesian discrepancy measure﻿	

(in [A] �H = 0.832 and p-value= 0.168 , in [B] �H = 0.96 and p-value= 0.04 , while 
in [C] �H = 0.997 and p-value= 0.003 ). This result depends clearly on the use of 
the Jeffreys’ prior, which is a matching prior for a scalar parameter (see Ruli and 
Ventura (2021)).

Remark 1  The fact that classical and Bayesian procedures, under certain conditions, 
produce the same conclusions is well known (see, for instance, Lindley (1965)). The 
linear relationship (16) also occurs in other simple cases.

Finally, to conclude Example 1, it is useful to show the trend of the BDM when 
varying n = 1, 2,… , 25 for six values of the MLE: (a) 0.8 , (b) 1.2 , (c) 1.6 (case [A]) 
and (d) 4.0 , (e) 3.6 , (f ) 3.2 (case [B]), see Fig. 3. In order to explain the difference 
between the BDM trends in cases [A] and [B], consider that: 

	 (i)	 in case [A] the posterior median m1 < 𝜃H = 2.4 , whereas in case [B] 
m1 > 𝜃H = 2.4;

	 (ii)	 �H is monotonically increasing, both with respect to n, and with respect to the 
distance |m1 − �H|;

	 (iii)	 the posterior g1 always has a positive asymmetry, which decreases as n 
increases;

	 (iv)	 the trend difference of the BDM in cases [A] and [B] depends on the fact that 
the posterior g1 has ‘small’ tails on the left-hand side of m1 and ‘large’ tails on 
the right-hand side.

Moving forward in the discussion, in order to highlight the evaluative nature of 
the BDT, it is worth pointing out that it allows the separate and simultaneous testing 
of � ≥ 2 hypotheses

as shown in Example 2. Remember that with the comparative approach, among the 
� competing hypotheses, only one is accepted. On the contrary, under the evaluative 

(16)p-value = 1 − �H

(17)Hj ∶ � = �j, j = 1, 2,… ,�,

Fig. 3   BDM for n increasing and for different values of the MLE. Case [A] with MLE 
= 0.8 (a), 1.2 (b), 1.6 (c) and case [B] with MLE = 3.2 (f), 3.6 (e), 4 (d)
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approach, it may happen that several hypotheses are supported by the data, or even 
that all hypotheses must be rejected.

Example 2  - Evaluation of some hypotheses made by several experts (Bernoulli dis-
tribution) In the 1700 s, several hypotheses Hj ∶ � = �j were formulated about the 
birth masculinity rate � =

M

M+F
 . Among them we consider �1 =

1

2
 (J. Bernoulli), 

�2 =
13

25
 (J. Arbuthnot), �3 =

1050

2050
 (J. P. Süssmilch), �4 =

23

45
 (P. S. Laplace). We 

assume that the gender of each newborn is modeled as a Bin(⋅|1, �) . Then, using 
data recorded in 1710 in London (see, for instance, Spiegelhalter (2019)), with 7640 
males and 7288 females (the MLE is 𝜃̂ = 0.512 ) and assuming the Jeffreys’ prior 
Beta(�|1, 1) , we compute �Hj

 using the Normal asymptotic approximation

with g̃1 the Normal distribution. Since �H1
= 0.996 , �H2

= 0.955 , �H3
= 0.079 , 

�H4
= 0.132 , we can conclude that there is sufficient evidence against the first two 

hypotheses, while there is not enough evidence agains the hypotheses made by 
Süssmilch and Laplace.

3.2 � Examples of the more general case

The examples presented hereafter, can be distinguished by tests concerning a 
parameter or a parametric function of a single population, and tests concerning 
the comparison of two independent population parameters.

3.2.1 � Tests involving a single population

Example 3  - Test on the shape parameter, mean and variance of the Gamma dis-
tribution Let x = (x1,… , xn) be an iid sample of size n from X ∼ Gamma

(
x|�, �) , 

(�, �) ∈ ℝ
+ ×ℝ

+ . We denote by mg the geometric mean of x . The likelihood func-
tion for (�, �) is given by

For the fictitious data x = (0.8, 1.1, 1.2, 1.4, 1.8, 2, 4, 5, 8) , we find that the MLEs are 
𝛼̂ = 1.921 and 𝛽 = 0.7572.

𝛿Hj
≅ 1 − 2 ⋅ ∫I

j

E

g̃1
(
𝜃|𝜃̂, 1

n
𝜃̂(1 − 𝜃̂)

)
d𝜃, j = 1, 2, 3, 4,

L(𝛼, 𝛽|x) ∝

(
𝛽𝛼

Γ(𝛼)
⋅ m𝛼

g
⋅ e−x̄⋅𝛽

)n

.
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We are interested in testing the hypotheses [A] HA ∶ � = �H , with �H = 2.5 , [B] 
HB ∶ � = �H , with �H = 6 , and [C] HC ∶ �2 = �2

H
 , with �2

H
= 2 , where � =

�

�
 and 

�2 =
�

�2
 denote the mean and the variance of X.

We suppose that the parameters � and � are independent and we assume the Jef-
freys’ prior for them (see Yang and Berger (1996)), i.e. g0(�, �) = g�

0
(�) ⋅ g

�

0
(�) 

where g�
0
(�) ∝

√
� ⋅ � (1)(�) − 1 , g�

0
(�) ∝

1

�
 , and � (1)(�) =

∑∞

j=0
(� + j)−2 denotes the 

digamma function. Then, the posterior for (�, �) is given by 
g1(�, � ∣ x) = k ⋅ g�

0
(�) ⋅ g

�

0
(�) ⋅ L(�, �|x), with normalizing constant k.

•	 Case [A] The hypothesis HA identifies the vertical straight line of equation 
� = �H and two subsets �a = {(𝛼, 𝛽) ∶ 𝛼 < 𝛼H} and �b = {(𝛼, 𝛽) ∶ 𝛼 > 𝛼H} (see 
Fig. 4 [A]). Then we can compute 

 and �H = 0.570 , indicating that there is not enough evidence against H.
•	 Case [B] The hypothesis HB identifies the straight line of equation � =

1

�H

� in the 
��-plane (see Fig. 4 [B]) and the two subsets 

 We have 

ℙ
�
(𝛼, 𝛽) ∈ �b � x

�
=∫

∞

𝛼H
∫

∞

0

g1(𝛼, 𝛽 ∣ x) d𝛽 d𝛼

=k ⋅ ∫
∞

𝛼H
∫

∞

0

√
𝛼 ⋅ 𝜓 (1)(𝛼) − 1 ⋅

1

𝛽

�
𝛽𝛼

Γ(𝛼)
⋅ m𝛼

g
⋅ e−x̄⋅𝛽

�n

d𝛽 d𝛼

=k ⋅ ∫
∞

𝛼H

√
𝛼 ⋅ 𝜓 (1)(𝛼) − 1 ⋅

Γ(n𝛼)

Γ(𝛼)n
⋅

�
mg

n x̄

�n𝛼

d𝛼 = 0.215 ,

�c =
{
(𝛼, 𝛽) ∶ 𝛽 >

1

𝜇H

𝛼
}
and�d =

{
(𝛼, 𝛽) ∶ 𝛽 <

1

𝜇H

𝛼
}
.

Fig. 4   Posterior density function g1(�, �|x) from Example 3 and corresponding sets of the induced parti-
tion in the cases [A], [B] and [C]
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 and, since �H = 0.976 , we have strong evidence against HB.
•	 Case [C] The hypothesis HC identifies the parabola of equation � =

1√
�2
H

√
�, in 

the ��-plane (see Fig. 4 [C]), and the two subsets 

 We have 

 Therefore �H = 0.846 , and so we have not strong evidence against HC.

Example 4  - Test on the coefficient of variation for a Normal distribution Given an 
iid sample x = (x1,… , xn) from X ∼ N

(
x|�,�−1

)
 , the parameter of interest is 

� =

√
Var(X)

∣ �(X) ∣
=

1

∣ � ∣
√
�

 . We are interested in testing the hypothesis

with �H = 0.1 . If we consider the Jeffreys’ prior g0(�,�) ∝ �−1
⋅ 1

ℝ×ℝ+ , the poste-
rior distribution is the Normal-Gamma density

with hyperparameters (�, �, �, �) , where 𝜂 = x̄ , � = n , � =
1

2
(n − 1) , � =

1

2
ns2 , and 

density

ℙ
(
(�, �) ∈ �d | x

)
= ∫

�d

g1(�, � ∣ x) d� d� = 0.012 ,

�e =
�
(𝛼, 𝛽) ∶ 𝛽 >

1�
𝜎2
H

√
𝛼
�
and�f =

�
(𝛼, 𝛽) ∶ 𝛽 <

1�
𝜎2
H

√
𝛼
�
.

ℙ
(
(�, �) ∈ �e | x

)
= ∫

�e

g1(�, � ∣ x) d� d� = 0.078 .

H ∶ � = �H ,

(�,�) ∣ x ∼ NG
(
�,� ∣ �, �, �, �

)
,

Fig. 5   Test on the coefficient of variation � of a Gaussian population. Data refers to Example 4. In the 
plots, the sets �a , �b and �H are reported for n = 10 ([A]) and n = 40 ([B])
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We consider the particular case in which x̄ = 17 and s2 = 1.6 (so that the MLE is 
𝜙̂ = 0.074 ) with two samples of size n = 10 (Fig. 5 [A]) and n = 40 (Fig. 5 [B]). In 
the ��−space, the hypothesis H is represented by the curve � =

1

�2
H

�−2 and deter-

mines the subsets �a and �b visualized in Fig. 5.
In case [A] we have

where g1(�,� ∣ �, �, �, �) is the Normal-Gamma density, so that �H = 0.570 and there 
is not enough evidence against H. In case [B], we have ℙ

(
(�,�) ∈ �b | x

)
= 0.014 

and, since �H = 0.972 , there is strong evidence against H. Therefore in such a case, 
with different sample sizes, the inferential conclusions change (Fig. 6).

Example 5  - Test on the skewness coefficient of the Inverse Gaussian distribution Let 
us consider a Inverse Gaussian random variable X with density

where (�, �) ∈ ℝ
+ ×ℝ

+ . The parameter of interest is the skewness coefficient 
� = 3

√
�

�
 and it is of interest to test the hypothesis H ∶ � = �H , where �H = 2 . The 

Jeffreys’ prior is

g1(�,� ∣ �, �, �, �) =
��

√
�

Γ(�)
√
2�

��−1∕2e
−

��

2
(�−�)2

e−��.

ℙ
(
(�,�) ∈ �b | x

)
= ∫

�b

g1(�,� ∣ �, �, �, �) d� d� = 0.215,

f (x ∣ �, �) =

�
�

2�x3
exp

�
−

�

2

�x − �

�
√
x

�2�
⋅ 1

ℝ+(x),

Fig. 6   Test on the skewness of 
the Inverse Gaussian distribu-
tion with �H = 2 . In the plot the 
sets of the partition induced by 
H are reported. Data refers to 
Example 5
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Given n observations, the posterior distribution of (�, �) is

where x̄ and a are the arithmetic and harmonic mean, respectively.
We apply the procedure to the following rainfall data (inches) analyzed in Folks 

and Chhikara (1978) (p. 272):

The hypothesis identifies in the parameter space � = ℝ
+ ×ℝ

+ the subsets

We have that

see Fig.  6, then we obtain �H = 0.844 . This result indicates that we do not have 
enough evidence against the hypothesis H.

3.2.2 � Tests involving two independent populations

In this section we consider some examples concerning comparisons between param-
eters of two independent populations.

Example 6  - Comparison between means and precisions of two independent Nor-
mal populations Let us consider a case study on the dating of the core and periph-
ery of some wooden furniture, found in a Byzantine church, using radiocarbon (see 
Casella and Berger (2001), p. 409). The historians wanted to verify if the mean age 
of the core is the same as the mean age of the periphery, using two samples of sizes 
m = 14 and n = 9 , respectively, given by

g0(�, �) ∝
1√
�3�

⋅ 1
ℝ+×ℝ+(�, �).

g1(𝜇, 𝜈|x) ∝

√
𝜈n−1

𝜇3
⋅ exp

{
−
n 𝜈

2
⋅

(
x̄

𝜇2
−

2

𝜇
+

1

a

)}
⋅ 1

ℝ+×ℝ+(𝜇, 𝜈),

1.01 1.11 1.13 1.15 1.16

1.17 1.17 1.20 1.52 1.54

1.54 1.57 1.64 1.73 1.79

2.09 2.09 2.57 2.75 2.93

3.19 3.54 3.57 5.11 5.62.

�a =
{
(𝜇, 𝜈) ∈ � ∶ 3

√
𝜇

𝜈
< 𝛾H

}
,

�H =
{
(𝜇, 𝜈) ∈ � ∶ 3

√
𝜇

𝜈
= 𝛾H

}
,

�b =
{
(𝜇, 𝜈) ∈ � ∶ 3

√
𝜇

𝜈
> 𝛾H

}
.

(18)ℙ
(
(�, �) ∈ �b | x

)
= ∫

�b

g1(�, �|x) d� d� = 0.078 ,
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We assume that the age of the core X and of the periphery Y are distributed as

where Var(X) = �−1
1

 and Var(Y) = �−1
2

 , and we assume that the data are iid condi-
tional on the parameters. We consider for (�i,�i) the Jeffreys’ prior

We obtain x̄ = 1249.86 , ȳ = 1261.33 , d̄ = x̄ − ȳ = −11.48 , while the MLEs for the 
sample standard deviations are s1 = 23.43 and s2 = 12.51. The posterior distribution 
for (�i,�i) is the Normal-Gamma law

with hyperparameters 𝜂1 = x̄ , �1 = m , �1 =
1

2
(m − 1) , �1 =

1

2
ms2

1
    and    𝜂2 = ȳ , 

�2 = n , �2 =
1

2
(n − 1) , �2 =

1

2
ns2

2
 , and density

The hypothesis of interest

identifies the following subsets in the parameter space

Then we can compute

core 1294 1279 1274 1264 1263 periphery 1284 1272 1256

1254 1251 1251 1248 1240 1254 1242 1274

1232 1220 1218 1210 1264 1256 1250

X ∼ N(x|�1,�
−1
1
) and Y ∼ N(y|�2,�

−1
2
),

gi
0
(�i,�i) ∝ �−1

i
⋅ 1

ℝ×ℝ+ , i = 1, 2 .

(�i,�i) ∣ x, y ∼ NG
(
�i,�i ∣ �i, �i, �i, �i

)
, i = 1, 2,

gi
1
(�i,�i ∣ �i, �i, �i, �i) =

�
�i
i

√
�i

Γ(�i)
√
2�

�
�i−1∕2

i
e
−

�i�i

2
(�i−�i)

2

e−�i�i , i = 1, 2.

HA ∶ 𝜇1 − 𝜇2 = 0, ∀𝜙1 > 0, ∀𝜙2 > 0,

�a =
{
ℝ

2 ×ℝ
2
+
∶ 𝜇1 < 𝜇2

}
,

�HA
=

{
ℝ

2 ×ℝ
2
+
∶ 𝜇1 = 𝜇2

}
,

�b =
{
ℝ

2 ×ℝ
2
+
∶ 𝜇1 > 𝜇2

}
.

ℙ
(
(𝜇1,𝜇2,𝜙1,𝜙2) ∈ �a | x, y

)

= ∫
�a

2∏
i=1

gi
1
(𝜇i,𝜙i ∣ 𝜂i, 𝜈i, 𝛼i, 𝛽i) d𝜇1 d𝜇2 d𝜙1 d𝜙2

= ∫
𝜇1<𝜇2

2∏
i=1

Γ(𝛼i +
1

2
)

Γ(𝛼i)

( 𝜈i

2𝜋𝛽i

)1∕2[
1 +

𝜈i

2𝛽i
(𝜇i − 𝜂i)

2
]−(𝛼i+ 1

2
)

d𝜇1 d𝜇2

= 0.089 ,
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so we have �H = 0.823 , a value that does not indicate evidence against the hypothe-
sis. We exploited the fact that the marginal of each �i is a Generalized Student’s 
t-distribution (denoted by StudentG) with hyperparameters 

(
�i,

�i�i

�i
, 2�i

)
.

Figure 7 [A] in the space (�1,�2) shows the contour lines of the distribution

Note that the homoscedasticity assumption is not necessary. Consider now the 
hypothesis

which determines in the parameter space the subsets

We have

from which it follows that �H = 0.908 and there is strong evidence against the 
hypothesis H. To compute the integral we have used the fact that the marginal of 
each �i has Gamma distribution with parameters (�i, �i), i = 1, 2.

The contour lines of the law Gamma(�1|�1, �1) ⋅ Gamma(�2|�2, �2), in the space 
(�1,�2) , are reported in Figure 7 [B].

StudentG
(
�1
|| �1,

�1 ⋅ �1

�1
, 2�1

)
⋅ StudentG

(
�2
|| �2,

�2 ⋅ �2

�2
, 2�2

)
.

HB ∶ �1 − �2 = 0, ∀�1,�2,

�c =
{
ℝ

2 ×ℝ
2
+
∶ 𝜙1 < 𝜙2

}
,

�HB
=

{
ℝ

2 ×ℝ
2
+
∶ 𝜙1 = 𝜙2

}
,

�d =
{
ℝ

2 ×ℝ
2
+
∶ 𝜙1 > 𝜙2

}
.

ℙ
(
(𝜇1,𝜇2,𝜙1,𝜙2) ∈ �c | x, y

)
= ∫

𝜙1<𝜙2

2∏
i=1

𝛽
𝛼i
i

Γ(𝛼i)
𝜙
𝛼i−1

i
e−𝜙i𝛽i d𝜙1 d𝜙2 = 0.046,

Fig. 7   Comparisons between means ([A]) and precisions ([B]) of independent normal populations for 
data in Example 6. For both cases we show the contour plots of the marginals of �j ([A]) and �j ([B]), 
and the partition sets associated with the corresponding hypotheses
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Example 7  - Comparison of the shape parameter of two Gamma distributions Let 
us consider two iid Gamma populations Xi ∼ Gamma

(
�i, �i

)
, (�i, �i) ∈ ℝ

+ ×ℝ
+ , 

i = 1, 2 , and let us consider two samples of sizes n1 = 9 and n2 = 12 , respectively, 
with sample means x̄1 = 2.811 and x̄2 = 1.973 , and geometric means mg1

= 2.116 
and mg2

= 1.327.
We are interested in testing H ∶ �1 = �2. The posterior distribution for 

(�1, �1, �2, �2) is given by

where

with normalizing constant ki , i = 1, 2 . Let �a =
{
(𝛼1, 𝛼2) ∈ ℝ

+ ×ℝ
+ ∶ 𝛼1 > 𝛼2

}
 

and �b =
{
(𝛼1, 𝛼2) ∈ ℝ

+ ×ℝ
+ ∶ 𝛼1 < 𝛼2

}
 (see Figure  8). In order to test the 

hypothesis H, we compute the probability

and, since �H = 0.378 , there is evidence in favour of H.

g1(�1, �1, �2, �2|x1, x2) = g1
1
(�1, �1|x1) ⋅ g21(�2, �2|x2) ,

gi
1
(�i, �i|xi) = ki ⋅ g0(�i, �i) ⋅ L(�i, �i ∣ xi),

ℙ((𝛼1, 𝛼2) ∈ �b | x1, x2)
= ∫

𝛼1<𝛼2
∫
ℝ+×ℝ+

g1
1
(𝛼1, 𝛽1|x1) ⋅ g21(𝛼2, 𝛽2|x2) d𝛽1d𝛽2 d𝛼1 d𝛼2

= ∫
𝛼1<𝛼2

2∏
i=1

ki ⋅ g
𝛼
0
(𝛼i) ⋅

Γ(ni𝛼i)

Γ(𝛼i)
ni

⋅

(
mgi

njx̄i

)ni𝛼i

d𝛼1d𝛼2 = 0.311

Fig. 8   Comparison of the shape 
parameters of two independent 
Gamma populations, using data 
of Example 7. The sets Θa,Θb 
and ΘH of the partition are 
reported
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4 � Comparison with the FBST

In this section we present a comparison of the BDT with the Full Bayesian Significance 
Test (FBST) as presented in Pereira and Stern (2020), which provides an overview of 
the e-value.

In order to facilitate the discussion, let us briefly review the definition of the e-value 
and the related testing procedure. The FBST can be used with any standard parametric 
statistical model, where � ∈ Θ ⊆ ℝ

p . It tests a sharp hypothesis H which identifies the 
null set ΘH . The conceptual approach of the FBST consists of determining the e-value 
that represents the Bayesian evidence against H. To construct this measure, the authors 
introduce the posterior surprise function and its supremum, given respectively by

where r(�) is a suitable reference function to be chosen. Then, a tangential set is 
defined as

to the sharp hypothesis H, also called a Highest Relative Surprise Set (HRSS), 
which includes all parameter values � that attain a larger surprise function value 
than the supremum s∗ of the null set. Finally, the e-value, that represents the Bayes-
ian evidence against H, is defined as

On the contrary, the e-value in support of H is ev(H) = 1 − ev(H0) , which is eval-
uated by means of the set T(s∗) = Θ ⧵ T(s∗) and the cumulative surprise function 
W(s∗) = 1 −W(s∗) . In conclusion, the FBST is the procedure that rejects H when-
ever ev(H) is large.

As pointed out in Pereira and Stern (2020) (Section 3.2) “the role of the reference 
density is to makeev(H) explicitly invariant under suitable transformations of the 
coordinate system”. A first non-invariant definition of this measure, which corre-
sponds to the use of a flat reference function r(�) ∝ 1 in the second formulation, has 
been given in Pereira and Stern (1999). The first version involved the determination 
of the tangential set T  starting only from the posterior distribution, whereas in the 
second, a corrective element has been introduced by also including the reference 
function. Some of the suggested choices for the reference function are the use of 
uninformative priors such as “the uniform, maximum entropy densities, or Jeffreys’ 
invariant prior” (see Pereira and Stern (2020), Section 3.2).

s(�) =
g1(�|x)
r(�)

and s∗ = s(�∗) = sup
�∈ΘH

s(�),

T(s∗) = {� ∈ Θ|s(�) > s∗},

ev(H) = W(s∗) = ∫T(s∗)

g1(�|x) d�.
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4.1 � Similarities and differences between the procedures

The most striking similarity between the FBST and the BDT is that both tests, fully 
accepting the likelihood principle and relying on the posterior distribution of the 
parameter � ∈ � , are clearly Bayesian.

Another important similarity is that, asymptotically, both tests lead to the rejec-
tion of the hypothesis H when it is false (i.e. when we test �H ≠ �∗ where �∗ is the 
true value of the parameter). On the contrary, if �∗ = �H they have a different asymp-
totic behaviour (see Proposition 1 for the BDM and Section 3.4 in Pereira and Stern 
(2020) for the e-value).

Certainly, the FBST has a more general reach than the BDT. Indeed, it exam-
ines the entire class of sharp hypotheses, whereas the extension of the BDT to such 
hypotheses is not straightforward and, currently, is limited to considering the sub-
class of the hypotheses expressed as H ∶ � = �H that are able to partition the param-
eter space � as 

{
�a, �H , �b

}
 . Moreover, notice that while the integration sets �a 

and �b are determined exclusively by the hypothesis, the tangential set T  depends on 
the hypothesis, the posterior density and the choice of the reference function. It is 
questionable, on the other hand, whether the e-value is as easily computable as the 
BDM is in cases where the parameter space has dimension higher than 1.

Unlike the BDM, the elimination of nuisance parameters is not recommended 
when using the e-value. In fact, this measure is not invariant with respect to margin-
alisations of the nuisance parameter and the use of marginal densities to construct 
credible sets may produce inconsistency.

It is easy to see that one can create an analogy between the p-value, the e-value 
and �H . Regarding frequentist p-values, the sample space is ordered according to 
increasing inconsistency with the assumed null hypothesis H. The FBST instead 
orders the parameter space according to increasing inconsistency with the assumed 
null hypothesis H, based on the concept of statistical surprise. In the same way, it 
can be seen that the probability in (7) has to do with the posterior probability of 
exceeding �H in a direction in contrast with the data (namely, the side where there is 
more posterior probability).

Another similarity occurs when considering the reference density r(�) as the 
(possibly improper) uniform density, since the first and second definitions of evi-
dence define the same tangent set, i.e. the HRSS and the HPDS coincide. Then, for a 
scalar parameter � , since the BDM is linked to the equi-tailed credible regions while 
the e-value is linked to the HPDS, we have that if:

•	 g1(�|x) is symmetric and unimodal, then ev(H) = �H;
•	 g1(�|x) is asymmetric and unimodal (for instance with positive skewness) and 

m1 < 𝜃H [ 𝜃H < m1 ], then ev(H) > 𝛿H [ ev(H) < 𝛿H ]. When m1 = �H we have 
0 = 𝛿H < ev(H).
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4.1.1 � Simulation study

In order to determine the resulting false-positive rates of both the FBST and the 
BDT, we conduct a simulation study for specific sample sizes, considering a con-
tinuous (Exponential) and a discrete (Poisson) model and for each one two differ-
ent choices for the prior distribution, the Jeffreys’ and the conjugate priors. The last 
ones have been chosen to have mean “far" from the true hypothesized values for the 
parameters. Regarding the FBST we have considered two different choices for the 
reference function r(�) , the flat and the prior density.

Let x = (x1,… , xn) be an iid sample of size n from the Exponential distribu-
tion X ∼ Exp

(
x|1∕�∗) , with �∗ = 1.2 . We are interested in testing the hypothesis 

H ∶ �H = �∗ = 1.2 . Assuming the Jeffreys’ prior g0(�) ∝ �−1 , the posterior distribu-
tion is InvGamma(��n,∑ xi) (see Example 1), while adopting a InvGamma(�|�0, �0) 
prior, with �0 = 3 and �0 = 6 , we have a posterior that is still InvGamma(�|�1, �1) , 
with parameters �1 = �0 + n and �1 = �0 +

∑
xi . Let now y = (y1,… , yn) be an iid 

sample of size n from a Poisson distribution Y ∼ Poi
(
y|�∗) , with �∗ = 3 . Interest 

Table 1   Exponential distribution: false positive rates for different sample sizes n and different thresholds 
�.

In each cell are reported the value of the rates using the Jeffreys’ prior and the conjugate one [in brackets]

� = 0.90 � = 0.95 � = 0.99

n n n

10 100 1000 10 100 1000 10 100 1000

e-value
r(�) ∝ 1

0.102
[0.031]

0.100
[0.089]

0.099
[0.100]

0.052
[0.012]

0.050
[0.043]

0.051
[0.049]

0.011
[0.001]

0.010
[0.009]

0.011
[0.009]

e-value
r(�) = g0(�)

0.101
[0.064]

0.102
[0.098]

0.100
[0.101]

0.051
[0.033]

0.050
[0.048]

0.051
[0.050]

0.010
[0.009]

0.010
[0.010]

0.011
[0.010]

�H 0.103
[0.091]

0.102
[0.099]

0.101
[0.102]

0.053
[0.045]

0.049
[0.050]

0.052
[0.049]

0.010
[0.009]

0.009
[0.011]

0.011
[0.009]

Table 2   Poisson distribution: false positive rates for different sample sizes n and different thresholds �

In each cell are reported the value of the rates using the Jeffreys’ prior and the conjugate one [in brackets]

� = 0.90 � = 0.95 � = 0.99

n n n

10 100 1000 10 100 1000 10 100 1000

e-value
r(�) ∝ 1

0.091
[0.412]

0.099
[0.138]

0.101
[0.102]

0.041
[0.299]

0.050
[0.080]

0.051
[0.052]

0.010
[0.099]

0.010
[0.022]

0.011
[0.011]

e-value
r(�) = g0(�)

0.095
[0.013]

0.095
[0.072]

0.101
[0.095]

0.046
[0.006]

0.047
[0.032]

0.051
[0.047]

0.011
[0.002]

0.011
[0.006]

0.011
[0.009]

�H 0.091
[0.299]

0.099
[0.126]

0.103
[0.102]

0.043
[0.205]

0.045
[0.070]

0.051
[0.051]

0.011
[0.080]

0.011
[0.015]

0.010
[0.011]
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is on the hypothesis H ∶ �H = �∗ = 3 . For both choices of the prior, the Jeffreys’ 
g0(�) ∝ �

−
1

2 and the conjugate Gamma(�|�0, �0) , we have a Gamma posterior 
Gamma(�|�1, �1) , with parameters respectively equal to �1 =

∑
yi +

1

2
 , �1 = n and 

�1 = �0 +
∑

yi , �1 = �0 + n.
Table 1 shows the simulation results for three different values of the threshold 

� = {0.90, 0.95, 0.99} , for S = 50000 simulations and D = 50000 posterior draws 
for the Exponential model. Concerning the Exponential model with the Jeffreys’ 
prior across the different sample sizes considered, the false-positive rates are very 
similar for both tests (two different version of the FBST and the BDM) and, as we 
expect since we are using objective priors (see Bayarri and Berger (2004)), they 
are close to the error of the first type � = {0.10, 0.05, 0.01} , related to � . With 
the conjugate prior the BDM seems to perform better w.r.t. the two versions of 
the FBST. Concerning the Poisson model, we have good results for large sample 
sizes, but also for smaller n expecially with the conjugate prior (see Table 2).

4.1.2 � Some examples

In order to compare the BDM and the e-value, let us consider different situations 
and then examine the results.

Example 8  (Continuation of Example 1) As a first comparative scenario, consider the 
test performed in Example 1 in which �H = 2.4 and additionally the case in which 
�H = 0.7 . Since the posterior g1(�|x) has a positive skewness and m1 < 𝜃H = 2.4 
then ev(H) > 𝛿H , on the contrary, for m1 > 𝜃H = 0.7 then ev(H) < 𝛿H . Indeed, we 
find the results reported in Table 3.

The differences between the e-value and �H , which in this example appear to be 
modest, can actually become meaningful when the posterior has a greater asymme-
try and heavier tails. In such case, comparing different hypotheses, the FBST always 
leads to favour the hypothesis with higher density. Moreover, the e-value may be 
more or less robust w.r.t. the position of �H , as it is highlighted in the example below.

Table 3   Results, for the three different cases examined in Example 1, of �
H

 and the e-value considering, 
as a reference distribution, both a flat reference function and a Jeffreys’ prior

�H = 2.4 �H = 0.7

e-value �
H e-value �

H

r(�) ∝ 1 r(�) = g0(�) r(�) ∝ 1 r(�) = g0(�)

[A] n = 6 0.909 0.866 0.832 0.646 0.847 0.886
[B] n = 12 0.978 0.968 0.960 0.899 0.957 0.968
[C] n = 24 0.999 0.998 0.997 0.991 0.997 0.997
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Example 9  - Test on the mean of the Inverse Gaussian distribution Consider a ran-
dom variable X with Inverse Gaussian distribution X ∼ IG(x|�, �0) , � ∈ ℝ

+ and �0 
known. Given an iid sample x of size n, the likelihood function for � is 
L(𝜇|x) ∝ exp

{
−n𝜈0 ⋅

(
x̄

2𝜇2
−

1

𝜇

)}
. Adopting the Jeffreys’ prior g0(�) ∝

1√
�3

 , we 
obtain the posterior

We are interested in testing the hypothesis H ∶ � = �H and we consider a sam-
ple of size n = 8 for which x̄ = 4.2 and m1 = 4.483 . For �0 = 5 , we choose to test 
HA ∶ � = 2.5 and HB ∶ � = 12 . The results of the analysis are displayed in Table 4 
and Fig. 9. If we choose � = 0.95 as a rejection threshold in both cases, and with 
both references, we are lead to opposite inferential conclusions.

Example 10  (Continuation of Examples 3, 4, 5) Let us now compare the results 
obtained with the FBST and the BDT for the Examples 3, 4 and 5, when fixing a 
value of 0.95 as a rejection threshold.

The conclusions reached with the FBST and with the BDT for Example 3, which 
can be seen in Table  5, are the same (for both reference functions considered) 
although, in some cases, there are substantial differences between the values of the 
evidence measures. To summarise, the hypothesis HB has to be rejected while not 
enough evidence is available for the rejection of the hypotheses HA and HC.

g1(𝜇�x) ∝ 1√
𝜇3

⋅ exp

�
−n𝜈0 ⋅

�
x̄

2𝜇2
−

1

𝜇

��
.

Table 4   For the two different hypotheses examined in Example 9, the table shows �
H

 and the e-value 
considering, as a reference distribution, both a flat reference function and a Jeffreys’ prior

e-value �
H

r(�) ∝ 1 r(�) = g0(�)

HA ∶ � = 2.5 0.803 0.848 0.975
HB ∶ � = 12 1 1 0.907

Fig. 9   Posterior density function g1(�|x) associated to Example 9. In [A] we have 𝜇H = 2.5 < m1 , while 
in [B] 𝜇H = 12 > m1.
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Moving on to Example 4 we can say that the analysis of the findings with the 
two different tests appears to be more complex than the previous one, see Table 6. 
In case [A], for both BDT and FBST with the flat reference function, there is not 
enough evidence to reject the hypothesis. On the contrary, if one considers the FBST 
with the Jeffreys’ prior as reference function, one is led to reject this hypothesis. In 
case [B], by rejecting the hypothesis, the BDT is in agreement with the FBST with 
the Jeffreys’ reference function in contrast to the FBST with the flat reference func-
tion for which there is not enough evidence to reject it.

Finally, in the case illustrated in Example 5, the conclusion reached with the 
FBST and with the BDT is the same (for both reference functions considered), 
i.e. there is not enough evidence to reject the hypothesis (see Table  7). It should 
be noted that, again, there are substantial differences between the values of the evi-
dence measures.

The calculation of the FBST for a scalar parameter of interest without nuisance 
parameters, has been carried out through the function defined in the ‘fbst’ pack-
age for R (Kelter 2022). Instead, tangential sets T  and its integrals, for Examples 3, 
4 and 5, were determined by means of the Mathematica software. Browsing through 

Table 5   Results of the Example 
3 on the test on the shape 
parameter, mean and variance of 
the Gamma distribution

For the e-value we have considered, as a reference distribution, both 
a flat reference function and a Jeffreys’ prior

e-value �
H

r(�) ∝ 1 r(�) = g0(�)

HA ∶ � = 2.5 0.557 0.186 0.570
HB ∶ � = 6 0.984 0.963 0.976
HC ∶ �2 = 2 0.784 0.562 0.846

Table 6   Results of the Example 
4 on the test of the coefficient 
of variation for a Normal 
distribution

For the e-value we have considered, as a reference distribution, both 
a flat reference function and a Jeffreys’ prior

e-value �
H

r(�) ∝ 1 r(�) = g0(�)

[A] n = 10 0.364 0.999 0.570
[B] n = 40 0.924 1 0.972

Table 7   Results of the Example 
5 on the test of the skewness 
coefficient of the Inverse 
Gaussian distribution

For the e-value we have considered, as a reference distribution, both 
a flat reference function and a Jeffreys’ prior

e-value �
H

r(�) ∝ 1 r(�) = g0(�)

H ∶ � = 2 0.650 0.691 0.844
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the code that leads to the calculation of these measures (see Manca (2022)), it is evi-
dent that more work is required for the calculation of the integration region related 
to the FBST. In this sense, the BDT appears to be easier to apply.

5 � Conclusions

We propose a new measure of evidence in a Bayesian perspective. From an exami-
nation of the examples illustrated, the conceptual simplicity of the proposed method 
is evident as well as its theoretical consistency. We have presented some simple 
cases where the computation of the BDM is straightforward.

In some situations, the BDM can be usefully applied adopting a subjective prior. 
It is indeed interesting the situation where one or more statisticians choose the 
hypothesis H and the prior according to his or their knowledge. In such cases the 
BDT would have a confirmatory value. The use of subjective priors must be accom-
panied by a robustness study especially in the case of small sample sizes.

So far we have considered only hypotheses that induce a partition on the param-
eter space, but the extension of the definition and the analysis of the BDT to more 
complex hypotheses is under investigation. Theoretical and computational develop-
ments in more general contexts are also being explored.
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