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Abstract
This paper contributes to the research on the development of comparable compos-
ite indicators by introducing a Functional Weighted Malmquist Productive Index 
that allows for comparative trend analysis. In analogy with entropy-based weighted 
methods, this novel dynamic indicator is derived by measuring the degree of diversi-
fication of the single method through a family of diversity indices. The paper has the 
merit of proposing a new dynamic composite indicator that supplements the analysis 
with Functional Data Analysis (FDA) tools that provide us with useful information 
about the order and dynamics of the composite index trajectories. The simulation 
study set up in this paper raises doubts about the robustness of the entropy-based 
weighted methods while the application of the new index to well-being dataset high-
lights its practical appeal.
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1 Introduction

In recent decades, with the rapid growth in available information, there has been 
a parallel growth of building synthetic indicators. The deep complexity of real 
world makes difficult to measure and evaluate the relevant aspects of the most 
phenomena, like well-being, human development, environmental sustainability, 
industrial competitiveness, and hard to capture them by using a single perspec-
tive. The scientific community has echoed this interest; accordingly, many schol-
ars have focused their efforts on the development and improvement of a meth-
odology known as Composite Indicator (CI). Constructing a CI (or index) is a 
popular approach to achieve a simplified numerical representation of a complex 
phenomenon. A CI is defined as a mathematical combination of individual indi-
cators representing different dimensions into a single index, based on an under-
lying model of the multidimensional concept that is being measured (Saisana 
et al. 2005). Greco et al. (2019) make a huge effort in providing a wide collection 
of numerous publications on techniques and applications related to this field of 
research. Albeit CIs have gained much attention, they remain the subject of con-
troversy. Their construction involves a series of advantages and disadvantages, 
some of them are mentioned below. In particular, as pointed out in Smith (2002), 
arguments for developing CIs include, among others, the possibility to present 
complex or multidimensional issues in one aggregate value, much easier to inter-
pret than trying to find a trend in many separate indicators. Also, they enable to 
place performance at the centre of the policy arena. In fact, CIs are being increas-
ingly recognised as a useful tool for policy analysis, benchmarking comparison, 
performance monitoring, public communication and decisions in various fields, 
including economy, environment, technology development and society, by many 
national and international organizations (Badea et al. 2011; Costa 2015; Filippetti 
and Peyrache 2011). Points against CIs construction, on the other hand, empha-
sise how they can send misleading or ineffective policy messages if they are 
poorly constructed or misinterpreted. Opponents specifically question the cred-
ibility of CIs, stressing the subjectivity that surrounds the various steps involved 
in their construction. According to the recommendations of the OECD document 
(OECD 2008), construction decisions range from the selection of a set of sub-
indicators to the standardization method, weighting, and choice of the aggrega-
tion function.

The subject of this paper is an essential aspect of index aggregation, specifi-
cally the weighting of indicators, which has been subject to considerable scru-
tiny in recent scholarly works (Becker et  al. 2017; Greco et  al. 2019; Keogh 
et al. 2021). The methodological proposal put forward in this study is based on 
a data-oriented weighted method, known as Data Envelopment Analysis (DEA) 
(Charnes et  al. 1978). When exact knowledge of the weights is not available, 
the DEA approach facilitates the aggregation of a number of quantitative sub-
indicators. We address the issue of unit performance change over time within 
this framework by proposing a Functional Weighted Malmquist Productivity 
Index (FWMPI) that allows for comparative trend analysis. The novel aspect of 
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the proposal is that it achieves units ranking by supplementing the analysis with 
Functional Data Analysis (FDA) tools. There are several practical reasons for 
considering functional data. Ramsay and Silverman (2005) described important 
characteristics of FDA and used a strong argument for that approach. In recent 
years, FDA methods have been used in a variety of fields, including medicine, 
economics, meteorology, and many others. In contrast, the use of a functional 
approach for constructing CIs is relatively new (see, for example, Fortuna et al. 
(2022)). In any case, the implementation of a functional approach in the construc-
tion of CIs offers various benefits. Firstly, FDA allows for a more flexible and 
nuanced representation of data by treating them as continuous functions, which 
can capture important features missed by other methods. For example, FDA ena-
bles the observation of indicator behavior over time, providing insights into its 
evolution. Secondly, the functional approach is particularly useful when data 
are not sampled at equally spaced time points, as it can handle irregular inter-
vals. This is important in constructing CIs that are updated at different intervals 
depending on data availability. Thirdly, FDA allows for the introduction of new 
analytical tools that can complement the original data with valuable information. 
It is possible to incorporate external covariates or predictors into the functional 
model, which can help to explain the variation in the CI. This can lead to more 
accurate and robust CIs, as well as a better understanding of the relationships 
between different variables. These advantages are essential for guiding policy 
decisions and measuring progress towards development goals.

The rest of the paper is structured as follows. Section 2 describes the methodo-
logical context, with a focus on the proposed methodology. Section 3 presents the 
results of the simulated data analysis, while in Sect. 4 we summarise the application 
of FWMPI to well-being data. Some concluding remarks are given in Sect. 5.

2  Methodological background

In this section, we provide a detailed overview of the methodological approaches 
employed in our study. Specifically, we begin by examining the use of DEA and 
Benefit of the Doubt (BoD) weighting to construct a CI. Next, we delve into the use 
of an entropy-based Malmquist Productive Index to measure changes in productivity 
over time for the units of analysis. In the third subsection, we introduce the FWMPI 
as a new method for assessing productivity changes over time.

2.1  Data envelopment analysis and “Benefit of the Doubt”‑weighting

When constructing CIs, there are several approaches to aggregating individual 
indicators. Dimensionality reduction methods, such as Principal Component 
Analysis (PCA) or Factor Analysis (FA), are commonly used to reduce the num-
ber of indicators to a smaller set of uncorrelated factors. These multivariate sta-
tistical techniques account for the highest variation in the dataset, replacing the 
original variables with the smallest possible number of factors that reflect the 
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underlying structure of the data. However, these methods do not explicitly take 
into account the relative importance of each indicator in the final index and may 
result in a loss of information. An alternative approach is DEA, a non-parametric 
mathematical programming method that assesses the relative efficiency of homo-
geneous Decision Making Units (DMUs) in combining inputs to produce outputs. 
The first DEA model was proposed by Charnes et al. (1978) in management sci-
ence to measure the production efficiencies of DMUs in combining inputs to pro-
duce outputs of goods or services. Since the mentioned pioneering work, various 
methods and models for ranking the originally efficient units have been put for-
ward over the years. Cook and Seiford (2009) developed a classification of DEA 
models.

DEA models are based on the fundamental concept of evaluating the relative 
efficiency of homogeneous DMUs, such as companies, banks, countries, univer-
sities, and so on. The definition of DMUs has been deliberately kept broad to 
enable the use of DEA in a variety of applications. DEA is concerned with cal-
culating an efficiency score ranging from 0 to 1. DEA assigns an efficiency score 
less than 1 to “inefficient" units while DMUs with a score equal to 1 are deemed 
“efficient". In general, among a group of DMUs, a unit with higher outputs but 
lower inputs has a better chance of achieving a high efficiency rank.

Due to its numerous advantages, the DEA non-parametric technique has 
recently been adopted as an appropriate method for CIs construction. The appli-
cation of DEA to the field of CIs has been dubbed the Benefit of Doubt (BoD), 
which was first proposed by Melyn and Moesen (1991) and has since been used 
by Cherchye et  al. (2007, 2008); Mahlberg and Obersteiner (2001), OECD 
(OECD 2008), Sahoo et al. (2017); Staessens et al. (2019), and Färe et al. (2019). 
The main advantage of using BoD in the construction of CIs is its flexibility in 
retrieving weights from the data itself, allowing for the aggregation of quantita-
tive sub-indicators when exact weight knowledge is not available. The BoD model 
assumes that a unit good relative performance in a particular aspect or dimension 
of performance indicates that this unit considers that dimension to be relatively 
important when estimating these weights. Similarly, poor performance indicates 
that a unit places less importance on that dimension. As a result, BoD generates a 
set of endogenous weights that are most advantageous for every unit: each DMU 
has been placed in its most advantageous position. Thus, if a unit underperform 
in comparison to others, it cannot be attributed to the unfair weighting scheme 
since any other set of weights would have worsened the evaluated unit ranking 
position. The BoD method can be seen as a tool to combine performance sub-
indicators without making explicit reference to the input(s).

In order to clearly convey the underlying idea, the BoD formulation can be 
presented in a step-wise fashion. Let us denote with CIj the composite index for 
unit j, yji the value (possibly normalised) for the unit j on indicator i ( i = 1,… ,m ) 
and wi the weight assigned to indicator i. In Step 1, the composite index score of 
a unit j is calculated as the ratio of the weighted sum of its sub-indicators to the 
sum of the benchmark sub-indicators yB

i
:
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Step 2 involves identifying the benchmark performance, which is determined 
endogenously:

Formally speaking, the presence of the max operator and its associated argument in 
the denominator of Eq. 2 indicates that the benchmark observation is derived from 
an optimization problem.

Step 3 specifies appropriate weights. Because the weights are endogenously 
selected in such a way that they can be inferred from looking at the relative strengths 
and weaknesses of each unit, this stage implies the BoD concept. Taking a nor-
malisation constraint into account, emphasising that the most favorable weights are 
always applied to all observations, and ensuring that weights are not-negative, we 
have:

Formally, the BoD model in Eq. 3 is equivalent to the Charnes, Cooper, and Rhodes 
input-oriented constant-returns-to-scale (CRS) model (Charnes et al. 1978), with all 
indicators treated as outputs and a “dummy input" equal to one for all units. From a 
theoretically point of view, the departure to consistently derive aggregate CI using 
the BoD model is Koopmans’ theorem (Koopmans 1951) and revenue corollaries, as 
shown in Färe and Grosskopf (2004).

2.2  Entropy‑based Malmquist productivity index

DEA literature offers the possibility to determine whether different DMUs are 
grown up, are regressed or remain unchanged in terms of their performance 
over time. The first contribution to measure the productivity change of a DMU 
over time is the Malmquist Productivity Index (MPI). The original so-called 
Malmquist index is a quantity index, introduced by Malmquist (1953) for analys-
ing the consumption of inputs in a consumer theory context. Later, Färe et  al. 
(1994) constructed a MPI index directly from input and output data using DEA. 
Färe et  al. (1994) created a DEA-based MPI by combining Farrell’s efficiency 
measurement (Farrell 1957) with Caves’ productivity measurement (Caves et al. 

(1)CIj =

∑m

i=1
wjiyji

∑m

i=1
wjiy

B
i

.

(2)CIj =

∑m

i=1
wjiyji

max
yz,i∈{studied units}

∑m

i=1
wjiyzi

.

(3)

CIj = max
wji

∑m

i=1
wjiyji

max
yz,i∈{studied units}

∑m

i=1
wjiyzi

s.t.

m�

i=1

wjiyzi ≤ 1

wji ≥ 0.
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1982), and decomposing it into two components to analyse productivity change 
due to technical efficiency and change due to technology. The DEA-based MPI 
relies on first constructing an efficiency frontier over the whole sample realised 
by DEA and then computing the distance of individual observations from the 
frontier.

Therefore, MPI is constructed by utilising distance functions that can serve as 
both input and output. More in detail, an input distance describes the production 
technology by observing the comparative reduction of the input vector, given an 
output vector (Coelli and Prasada Rao 2005); conversely, the output function dis-
tance mirrors a maximum proportional expansion of the output vector, given an 
input vector.

MPI can be formalised using either an output-oriented or an input-oriented 
method.

The output-oriented MPI is the focus of this research. Let us suppose to have 
a set of n DMUs, each with s unitary inputs denoted by a vector xj and m outputs 
denoted by a vector yj , for j = 1,… n , over the periods t and t + 1 . According to 
Färe et al. (1994), the DEA-MPI output for a given DMU0 at time t + 1 and t can 
be expressed mathematically as:

where (xt+1
0

, yt+1
0

) and (xt
0
, yt

0
) represent the input and output vector of the period t + 1 

and t respectively, and the notation Dt
0
(xt

0
, yt

0
) represents the distance from the period 

t0 to period t1 technology. The index in Eq. 4 is the geometric mean of two output-
based Malmquist indices. A magnitude of MPI greater than 1 indicates progress 
(positive growth) from period t0 to period t1 , whereas magnitudes equal to 1 and 
less than 1 indicate the status quo and productivity decay, respectively. The overall 
tendency in DMU productivity changes over time periods is traditionally obtained 
by taking the average of sequential productivity indices, implicitly assuming that all 
sectional indices are equally affecting the productivity level.

In his work, Fallahnejad (2017) suggested the use of Shannon’s entropy to 
derive more objective weights for aggregating MPIs, thereby eliminating the 
problem of equal weighting in the process.

Notably, the Shannon’s entropy technique is one of the most important meth-
ods for determining the relative weights of indicators in multi-criteria decision 
making contexts (Peykani et al. 2022). In information theory, the entropy weight 
method primarily uses the magnitude of the entropy value to measure the indi-
cator weight contained in known data. The lower the entropy value, the greater 
the degree of differentiation and the more information that can be derived, and 
a higher weight should be given to the indicator on the target in the overall 
evaluation.

In the Fallahnejad’s approach the following basic steps can be enucleated:
Step 1, first the MPI matrix (Table  1) is created taking into account the n 

DMUs and MPI measures over times.

(4)MPI0 =

[
Dt

0
(xt+1

0
, yt+1

0
)

Dt
0
(xt

0
, yt

0
)

Dt+1
0

(xt+1
0

, yt+1
0

)

Dt+1
0

(xt
0
, yt

0
)

] 1

2
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Step 2, the MPI matrix is normalised by dividing the value of each column by the 
sum of its column. Thus, the normalised value of the i − th MPI in the t − th sample 
is denoted by pjt and its calculation is as follows:

The above normalisation allows to eliminate anomalies due to different measure-
ment units and scales.

In Step 3, the entropy ht for all normalised MPIs is calculated as:

where h0 =
1

ln(n)
 . For the convenience of calculation, pjt = 0 is generally set when 

pjtlnpjt = 0.
Step 4 involves the computation of the degree of diversification, defined as:

As previously stated, the degree of diversification indicates the amount of useful 
information provided by the relevant MPI measures to the overall aggregated index. 
It follows that if the DMU productivity values are close, the weight of a given year 
can be considered weak in the aggregating process.

In Step 5 the degree of importance of MPI at time t is obtained by setting

where 
∑k

t=1
wt = 1.

In Step (6), the weighted MPI is calculated as:

(5)pjt =
MPIjt

∑n

j=1
MPIjt

, ∀i, t.

(6)ht = −h0

n∑

j=1

pjtlnpjt,

(7)dt = 1 − ht, t = 1,… k.

(8)wt =
dt

∑k

s=1
ds

, t = 1,… k,

(9)WMPIj =

k∑

t=1

wtMPIjt, j = 1,… n.

Table 1  MPI matrix MPI1 MPI2 ... ... MPIk

DMU
1

MPI
11

MPI
12

... ... MPI
1k

DMU
2

MPI
21

MPI
22

... ... MPI
2k

DMU
3

MPI
31

MPI
32

... ... MPI
3k

... ... ... ... ... ...

... ... ... ... ... ...
DMU

n
MPI

n1
MPI

n2
... ... MPI

nk
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It is apparent that a model which generates scores that are nearly identical for all 
units would have little impact on the ranking and should, therefore, be deemed rela-
tively unimportant.

2.3  The proposed approach: FWMPI

Although the traditional literature has demonstrated that the results of entropy-
weighted methods are reliable and effective, some studies, primarily based on 
engineering practice, have raised concerns about their rationality in decision mak-
ing. For example, Zhu et  al. (2020) point out some flaws in the entropy-weighted 
method that result in distorted decision-making outcomes. The authors pointed out 
that when there are too many zeros in the measured values, the standardised results 
of the entropy-weighted method are prone to distortion. Therefore, the index with 
the lowest actual differentiation degree will be given too much weight. Secondly, in 
multi-index decision-making involving categorisation, the classification degree can 
accurately reflect the information content of the index. The entropy-weighted meth-
ods, on the other hand, only consider the index degree of numerical differentiation 
and ignore rank discrimination.

In this regard, we hold the view that entropy-weighted methods provide only a 
limited viewpoint in the context of the multi-index decision-making problem under 
consideration.

As shown in Sect. 2.2, in the construction of the weighted MPI, the Shannon’s 
entropy can be regarded as a diversity measure of DMUs. However, different indices 
could have been used to delineate such diversity, and different orderings of homoge-
neous DMUs could have been obtained depending on the diversity measures used.

To address this limitation, we propose a set of diversity indices based on a single 
continuous variable that graphically depict a diversity profile. Specifically, we refer 
to the diversity index of degree � , that is Δ� , proposed by Patil and Taillie (1979, 
1982) to quantify the diversity of an ecological population, composed by N units, 
partitioned into S species ( i = 1, 2,… , s ) and formally expressed as:

In Eq.  10 the index captures the multidimensional aspect of diversity and can be 
considered a function of � with parameter p, where pi =

Ni∑s

i=1
Ni

 and Ni represents the 
number of units belonging to the i − th species.

From a mathematical point of view, that index makes sense for any real num-
ber � , i.e. −∞ < 𝛽 < +∞ ; however, to guarantee that Δ� has some desirable 
properties it is necessary to impose the restriction that Δ� ≥ −1 (Patil and Taillie 
1979, 1982). In addition, as stressed by the same authors, it may not be useful to 
calculate and plot Δ� for � ≥ 1 as these profiles tend to converge rapidly beyond 
this point (Patil and Taillie 1979, 1982). Therefore, we examine Δ� as a function 
of � within the specified range of [−1, 1]. By plotting Δ� versus � we graphi-
cally obtain a diversity profile. The profiles of the Δ� family are decreasing and 

(10)Δ� =

s∑

i=1

(1 − p
�

i
)

�
pi, � ≥ −1.
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convex curves. It is easy to verify that some of the most frequently used indices 
of diversity are special cases of the one-parameter family Δ� of diversity indices. 
For each value of � we can obtain a diversity measure. To be specific, Shannon’s 
entropy is a particular case of � diversity profile, resulting when � → 0 , whereas 
the Richness and Simpson indices are got posing � = −1 and � = 1 , respectively.

Following Di Battista et  al. (2017), the one parameter family Δ� of diversity 
indices can be viewed as a function in a fixed domain rather than a sequence of 
observations. More in detail, the authors propose an alternative way to explain 
the diversity profile through the Functional Data Analysis (FDA). As pointed 
out in Ramsay and Silverman (2005), the underlying idea of FDA is to assume 
the existence of some functions, giving rise to the observed data. Analytic tools, 
such as the analysis of � profile derivatives graph, radius of curvature and length 
of a curve, which are essential components of FDA, can be exploited to further 
inspect the diversity profiles and rank the different units (Di Battista et al. 2017).

The framework described above was used to create a dynamic index, namely 
the FWMPI, that addresses the shortcomings of entropy-weighted methods. The 
FWMPI can be obtained by rewriting some steps of Fallahnejad’s original pro-
cedure. To be more specific, we propose measuring the degree of differentiation 
using the one-parameter family Δ� of diversity indices rather than the entropy 
value ht , with the ultimate goal of accounting for all possible diversity measures 
instead of just one represented by Shannon’s index. Accordingly, Steps 3–6 in 
the multi-index decision-making problem will be reformulated as follows. The 
degree of diversification is calculated as:

while the degree of importance of MPI at time t is obtained by setting

Finally, the functional weighted MPI is calculated according to Eq. 13:

It is critical to note that the functional tools can now be used to rank DMUs. In this 
regard, we pursue two alternatives.

First, the comparative analysis of the FWMPI curves is facilitated by consid-
ering the area under the curve (Di Battista et al. 2017) which provides a ranking 
mirroring both the level and the evolutionary dynamics of functions.

Given a set of n FWMPI functions, FWMPI1 (�), FWMPI2 (�) …FWMPIn (�) , 
the DMUs can be sorted in descending order according to the area under the 
curve, defined as:

(11)dt = 1 − Δ� ,

(12)wt(�) =
dt(�)

∑k

s=1
ds(�)

, ∀�.

(13)FWMPIj(�) =

k∑

t=1

wt(�)MPIjt, ∀�.
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Table 2  PANEL A-Simulation results under level of contamination �=0

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. Richness Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size =  30 Size = 60
|ASR| 1.47 1.67 |ASR| 2.07 2.14
|SR|max 5 6 |SR|max 8 8
|SR| > 5 0 3.33 |SR| > 5 5 6.67
|SR| > 10 0 0 |SR| > 10 0 0
Size=100 Size=150
|ASR| 2.10 2.16 |ASR| 0.34 0.30
|SR|max 14 14 |SR|max 3 3
|SR| > 5 10 10 |SR| > 5 0 0
|SR| > 10 1 1 |SR| > 10 0 0
Size=200
|ASR| 11.81 12.35
|SR|max 58 58
|SR| > 5 60 62
|SR| > 10 39.50 42

Table 3  PANEL A-Simulation results under level of contamination �=0.025

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 3.06 3.40 |ASR| 2.5 2.60
|SR|max 14 15 |SR|max 8 9
|SR| > 5 13.33 16.66 |SR| > 5 8.33 10
|SR| > 10 6.66 6.66 |SR| > 10 0 0
Size=100 Size=150
|ASR| 2.44 2.58 |ASR| 4.29 4.41
|SR|max 15 15 |SR|max 21 24
|SR| > 5 9 10 |SR| > 5 31.33 32
|SR| > 10 2 2 |SR| > 10 6.66 7.33
Size=200
|ASR| 9.01 9.57
|SR|max 39 46
|SR| > 5 56.50 59
|SR| > 10 32.50 35
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Table 4  PANEL A-Simulation results under level of contamination � = 0.05

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 2 2 |ASR| 0.16 0.16
|SR|max 8 8 |SR|max 2 2
|SR| > 5 3.33 3.33 |SR| > 5 0 0
|SR| > 10 0 0 |SR| > 10 0 0
Size=100 Size=150
|ASR| 2 2.16 |ASR| 5.62 5.90
|SR|max 15 15 |SR|max 21 23
|SR| > 5 9 11 |SR| > 5 40 40.66
|SR| > 10 1 1 |SR| > 10 16.66 18
Size=200
|ASR| 5.62 5.93
|SR|max 26 27
|SR| > 5 39.50 42.50
|SR| > 10 16.50 18.50

Table 5  PANEL B-Simulation results under level of correlation=0

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 1.86 2.13 |ASR| 0.33 0.30
|SR|max 5 5 |SR|max 3 2
|SR| > 5 0 0 |SR| > 5 0 0
|SR| > 10 0 0 |SR| > 10 0 0
Size = 100 Size=150
|ASR| 2.34 2.46 |ASR| 2.5 2.54
|SR|max 12 12 |SR|max 10 10
|SR| > 5 11 14 |SR| > 5 12 12.66
|SR| > 10 1 1 |SR| > 10 0 0
Size = 200
|ASR| 2.08 2.18
|SR|max 11 11
|SR| > 5 9.50 10.50
|SR| > 10 1 1.50
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Table 6  PANEL B-Simulation results under level of correlation=0.25

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 2.26 2.73 |ASR| 4.16 4.50
|SR|max 8 11 |SR|max 11 12
|SR| > 5 6.66 13.33 |SR| > 5 33.33 36.66
|SR| > 10 0 0.33 |SR| > 10 3.33 6.66
Size = 100 Size=150
|ASR| 2.62 2.80 |ASR| 3 3.33
|SR|max 10 12 |SR|max 12 13
|SR| > 5 14 17 |SR| > 5 17.33 22
|SR| > 10 0 1 |SR| > 10 2 4
Size = 200
|ASR| 2.80 2.90
|SR|max 10 11
|SR| > 5 13.50 16
|SR| > 10 0 0.50

Table 7  PANEL B-Simulation results under level of correlation=0.50

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 2.66 2.86 |ASR| 2.06 2.16
|SR|max 9 10 |SR|max 8 8
|SR| > 5 16.66 20 |SR| > 5 6.66 6.66
|SR| > 10 0 0 |SR| > 10 0 0
Size = 100 Size=150
|ASR| 2.34 2.70 |ASR| 2.56 2.89
|SR|max 9 11 |SR|max 12 14
|SR| > 5 12 13 |SR| > 5 10 14.66
|SR| > 10 0 1 |SR| > 10 0.66 1.33
Size = 200
|ASR| 9.40 10.41
|SR|max 37 43
|SR| > 5 61.5 66.5
|SR| > 10 36.5 41
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Furthermore, by utilising the FDA approach, we can compute the functional depth 
rank. When dealing with a group of functions, the notion of depth for functional 
data enables us to establish the centrality of a function and generates an ordering of 
the sample curves from the center outwards. Functional depth is used to rank func-
tional observations from most unusual to most common. The underlying concept is 
to figure out “how long" a curve stays in the middle of a group of them. Research on 
data depth has gained significant attention over the years, as evidenced by Cuevas 
et al. (2007), who offer a comprehensive review of data depth for high-dimensional 
or functional data.

In this paper, we employ the functional integrated depth introduced by Fraiman 
and Muniz (2001) to compute the integration of a univariate depth along the � axis. 
Let Fn,� be the empirical distribution of sample x1(�),… , xn(�) , the functional inte-
grated depth can be defined as follows:

where Di(�) = 1 − |0.5 − Fn,�(xi(�))| . According to the values Ii it is possible to rank 
the sample curves in descending order, from the most central to the most outlying.

(14)Ai = ∫B

FWMPIi(�)d�, i = 1,… n.

(15)Ii = ∫B

Di(�)d�, ∀� ∈ B, i = 1,… n,

Table 8  PANEL B-Simulation results under level of correlation=0.85

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 1.60 1.83 |ASR| 4 4.83
|SR|max 6 7 |SR|max 12 14
|SR| > 5 6.66 10 |SR| > 5 30 38.83
|SR| > 10 0 0 |SR| > 10 6.66 10
Size = 100 Size=150
|ASR| 2.72 3.36 |ASR| 5.79 12.88
|SR|max 12 15 |SR|max 25 50
|SR| > 5 18 24 |SR| > 5 38 66.66
|SR| > 10 1 4 |SR| > 10 18 47.33
Size = 200
|ASR| 2.14 2.94
|SR|max 9 14
|SR| > 5 9 16
|SR| > 10 0 2
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Table 9  PANEL C-Simulation results from a WEIBULL with shape=2 and scale=1

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 0.06 0.13 |ASR| 3.60 3.93
|SR|max 1 1 |SR|max 14 17
|SR| > 5 0 0 |SR| > 5 20 23.33
|SR| > 10 0 0 |SR| > 10 8.33 10
Size = 100 Size=150
|ASR| 3.02 3.98 |ASR| 2.70 3.42
|SR|max 11 14 |SR|max 10 13
|SR| > 5 20 27 |SR| > 5 9.33 22.66
|SR| > 10 2 10 |SR| > 10 0 0.66
Size = 200
|ASR| 9.86 11.83
|SR|max 39 49
|SR| > 5 59.50 65.50
|SR| > 10 40.50 46.50

Table 10  PANEL C-Simulation results from a WEIBULL with shape = 3 and scale = 2

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 0.06 0.06 |ASR| 4.33 4.56
|SR|max 1 1 |SR|max 20 22
|SR| > 5 0 0 |SR| > 5 30 30
|SR| > 10 0 0 |SR| > 10 8.33 10
Size = 100 Size=150
|ASR| 3.16 3.36 |ASR| 2.74 2.97
|SR|max 11 12 |SR|max 12 12
|SR| > 5 19 21 |SR| > 5 11.33 14.66
|SR| > 10 2 4 |SR| > 10 0.66 0.66
Size = 200
|ASR| 10.97 11.81
|SR|max 43 45
|SR| > 5 57.5 61
|SR| > 10 42.50 44.50
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3  Simulation study

It is widely acknowledged that for CIs to be effective, they must be developed using 
robust methods that ensure both benchmarking and stability over time. In this sec-
tion, we provide evidence to justify the credibility of our proposal by demonstrating 
how various orderings of homogeneous DMUs can arise due to the use of different 
diversity measures.

We set up a simulation experiment in the R environment (R Core Team 2023) to 
gather information on the ranking robustness when a dynamic weighted MPI is con-
structed using Shannon, Simpson, and Richness indices. To track the shift in rank-
ing, we used the absolute value of the average shift in ranking (ARS) as a general 
measure of divergence. The ARS obeys the following formula:

Here, n represents the number of DMUs, while Ranki(CIs1) and Ranki(CIs2) refer 
to the position of the i − th DMU, as determined by the CIs1 obtained through a spe-
cific diversity index and the CIs2 obtained through another diversity index, respec-
tively. The greater the divergence measure, the greater the sensitivity of CI to 
changes in the way indicators are weighted and aggregated; otherwise, the greater 
the robustness.

(16)ARS =
1

n

n∑

i=1

|Ranki(CIs1) − Ranki(CIs2)|.

Table 11  PANEL C-Simulation results from a WEIBULL with shape = 4 and scale = 3

WPMI WMPI WPMI WMPI
Shannon vs. 
Simpson

Shannon vs. 
Richness

Shannon vs. 
Simpson

Shannon 
vs. Rich-
ness

Size = 30 Size = 60
|ASR| 0 0 |ASR| 4.80 4.93
|SR|max 0 0 |SR|max 18 18
|SR| > 5 0 0 |SR| > 5 36.66 36.66
|SR| > 10 0 0 |SR| > 10 10 10
Size = 100 Size=150
|ASR| 3.04 3.14 |ASR| 2.48 2.62
|SR|max 10 10 |SR|max 8 9
|SR| > 5 20 21 |SR| > 5 9.33 11.33
|SR| > 10 0 0 |SR| > 10 0 0
Size = 200
|ASR| 11.43 11.86
|SR|max 53 55
|SR| > 5 62.50 63
|SR| > 10 41.50 43
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In addition, we have included some specific divergence measures in our study. 
This decision is based on the observation that metrics which indicate a particular 
outcome on average can sometimes be contradicted by an analysis of the individ-
ual DMUs average shift in ranking. Therefore, our simulation study also incorpo-
rates the maximum absolute shift in ranking (SR max), the proportion of absolute 
shifts in ranking that exceed five positions (SSR > 5 ), and the proportion of abso-
lute shifts in ranking that exceed ten positions (SSR > 10).

In order to assess the ability of the dynamic CIs constructed using diversity 
indices to handle potential challenges, we created various scenarios. Specifically, 
we aimed to determine the degree to which the ranking of units is affected by the 
presence of outliers, collinearity and skewness between indicators, and variations 
in sample size. We perform a dataset where four single indicators ( I1, I2, I3, I4 ) are 
analysed over three different time periods.

The initial scenario was created to examine how extreme values affect the 
ranking of CIs constructed using different diversity measures based indices. In 

Table 12  PANEL A ( � = 0 vs. 
� = 0.025)

FWPMI WMPI WPMI WMPI
Shannon Richness Simpson

Size = 30
|ASR| 9 11.07 10.87 10.67
|SR|max 28 28 29 27
|SR| > 5 63.33 60 60 63.33
|SR| > 10 33.33 40 43.33 43.33
Size = 60
|ASR| 19.27 22.37 19.77 20
|SR|max 48 55 55 56
|SR| > 5 78.33 83.33 83.33 76.67
|SR| > 10 70 76.67 68.33 66.67
Size = 100
|ASR| 34.80 32.22 36.38 32.92
|SR|max 91 94 87 91
|SR| > 5 94 89 89 90
|SR| > 10 82 83 80 83
Size = 150
|ASR| 46.89 49.01 52.23 52.97
|SR|max 138 139 141 141
|SR| > 5 94 94 94.67 92
|SR| > 10 88.67 89.33 89.33 88.67
Size = 200
|ASR| 64.10 69.65 67.45 68.13
|SR|max 193 190 195 192
|SR| > 5 95 94 94 93
|SR| > 10 89.50 89.50 88.50 88.50
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this scenario, we generated indicators from a Uniform distribution within the 
range of [5,15], without any collinearity present between them. Next, we intro-
duced extreme values into the simulated dataset for each indicator, drawing from 
a Uniform distribution in accordance with the following scheme:

̃I1c ∼ U (k
1
max(I

1
); k

2
max(I

1
)),

̃I2c ∼ U (k
1
max(I

2
); k

2
max(I

2
)),

̃I3c ∼ U (l
1
min(I

3
); l

2
min(I

3
)),

̃I4c ∼ U (l
1
min(I

4
); l

2
min(I

4
)).

It is worth noting that the parameters k1 and k2 contribute to the outlying 
nature of extreme values on the right tail of the distribution, while l1 and l2 are 
responsible for the left tail. For this study, we have set k1 = 2 , k2 = 3 , l1 = 0.2 , 
and l2 = 0.3 . Additionally, we have increased the outlyingness of extreme values 
over time by raising k1 and k2 to 4 and 6 for the second time period, and to 6 and 
10 for the third time period, respectively. To randomly select which observations 
would be contaminated, we have defined a contamination level of � . Specifically, 

Table 13  PANEL A ( � = 0 vs. 
� = 0.05)

FWPMI WMPI WPMI WMPI
Shannon Richness Simpson

Size = 30
|ASR| 9.40 8.87 11 11
|SR|max 28 21 28 28
|SR| > 5 63.33 70 73.33 73.33
|SR| > 10 33.33 36.67 43.33 43.33
Size = 60
|ASR| 20.24 19.40 19.47 24.87
|SR|max 56 55 52 56
|SR| > 5 86.67 88.33 706 96.67
|SR| > 10 75 68.33 65 85
Size = 100
|ASR| 31.04 37.14 35.66 31.78
|SR|max 78 93 95 85
|SR| > 5 88 93 92 88
|SR| > 10 75 82 85 79
Size = 150
|ASR| 51.85 47.63 48.33 51.39
|SR|max 141 129 139 131
|SR| > 5 89.30 94 92 96.67
|SR| > 10 85.30 91.33 85.33 91.33
Size = 200
|ASR| 64.88 70.51 68.87 65.99
|SR|max 173 185 196 192
|SR| > 5 95.50 96.50 95.50 92.50
|SR| > 10 90.50 93 92 87
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we have analyzed three different situations: no contamination ( � = 0 ), and con-
tamination levels of 2.5% ( � = 0.025 ) and 5% ( � = 0.05 ), respectively.

In the second scenario, the interest was in generating correlated normal dis-
tributed indicators. To denote the strength of the linear relationship between two 
different indicators, we varied the collinearity between them, setting four values, 
namely 0, 0.25, 0.5 and 0.85.

The third scenario involved examining the changes in ranking position when 
dealing with skewed indicators. To achieve this, we generated values from a 
Weibull distribution, varying the shape and scale parameters.

Additionally, we compared the outcomes across different sample sizes for each 
data-generating mechanism, producing data with sample sizes of n = 30, n = 60, 
n=100, n=150, and n=200.

Tables 2, 3, and 4 display the simulation outcomes for the scenario involving 
extreme values generated by the Uniform distribution as described earlier. These 
results are presented in Panel A.

Table 14  PANEL B (correlation 
= 0 vs. correlation = 0.25)

FWPMI WMPI WPMI WMPI
Shannon Richness Simpson

Size = 30
|ASR| 11.13 11.67 11.20 11.27
|SR|max 27 22 21 21
|SR| > 5 70 86.67 80 80
|SR| > 10 63.33 56.67 63.33 63.33
Size = 60
|ASR| 18.83 20.17 20.40 20.57
|SR|max 56 58 58 44
|SR| > 5 73.33 81.67 80 86.67
|SR| > 10 58.33 61.67 68.33 78.33
Size = 100
|ASR| 37.02 33.94 33 34.16
|SR|max 85 84 86 95
|SR| > 5 86 92 91 87
|SR| > 10 81 82 77 78
Size = 150
|ASR| 49.44 51.99 51.51 47.81
|SR|max 128 148 149 129
|SR| > 5 93.33 95.33 93.33 89.33
|SR| > 10 86.66 89.33 84.67 87.33
Size = 200
|ASR| 68.28 67.67 67.83 68.03
|SR|max 192 186 178 185
|SR| > 5 96 92.50 96.50 95
|SR| > 10 88.50 90 93 90.50
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According to the average shift in ranking measures, there are differences in the 
rankings observed for both comparisons: Shannon vs. Simpson and Shannon vs. 
Richness. The largest values in the metrics utilized are observed when the sample 
size is increased and when we introduce a contamination level of 5 % of extreme val-
ues into the simulated data.

Upon analyzing the sensitivity of the outcomes under the correlation scenario 
(displayed in Panel B of Tables 5, 6, 7, and 8), we observe that the ranking diver-
gence is primarily identified through specific SR metrics that indicate a notable 
degree of volatility as the sample size and correlation between indicators increase.

In addition, we examine the level of stability of the rankings in cases where we 
are dealing with skewed indicators generated from a Weibull distribution. The out-
comes, which are presented in Tables 9, 10, and 11, indicate that there is a consider-
able amount of variability in the ranking positions of each DMU, particularly when 
the indicators are drawn from a Weibull distribution with a slope parameter of 4 and 

Table 15  PANEL B (correlation 
= 0 vs. correlation = 0.50)

FWPMI WMPI WPMI WMPI
Shannon Richness Simpson

Size = 30
|ASR| 9.2 9.93 10.40 10.40
|SR|max 25 22 20 20
|SR| > 5 60 70 76.67 76.67
|SR| > 10 33.33 46.67 46.67 46.67
Size = 60
|ASR| 20.16 20.37 20.3 21.47
|SR|max 56 52 50 55
|SR| > 5 88.33 76.67 80 88.33
|SR| > 10 76.66 66.67 66.67 80
Size = 100
|ASR| 34.42 33.44 33.54 33.46
|SR|max 91 86 88 93
|SR| > 5 90 87 88 88
|SR| > 10 78 80 81 80
Size = 150
|ASR| 53 46.51 45.81 51
|SR|max 138 131 132 134
|SR| > 5 92.66 88.67 94 92.67
|SR| > 10 85.33 86 84 86.67
Size = 200
|ASR| 69.16 67.95 69.07 65.23
|SR|max 185 187 187 192
|SR| > 5 99 94.50 96.50 94
|SR| > 10 95 91 93.50 87.50
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a scale parameter of 3. This variability has a significant impact on the divergence 
measures, particularly when the sample size is increased to n=200.

Besides, in order to assess the effectiveness of the proposed methodology, we 
conduct a comparison between the performance of FWMPI and other methods that 
rely on a single diversity measure. This comparison is carried out across the various 
scenarios described earlier.

In particular, for the initial scenario, we compare the metrics used on rankings 
generated from uncontaminated artificial data with the metrics obtained when we 
introduced outliers into the data (Panel A: Tables 12, 13).

In the second scenario, for each index, we contrast the rankings resulting from 
uncorrelated data with those obtained when different levels of correlation are taken 
into consideration (Panel B: Tables 14,15,16 ).

Finally, we replicated the comparison of metrics for artificial data that exhibit dif-
ferent levels of indicator skewness (Panel C: Tables 17,18).

Table 16  PANEL B (correlation 
= 0 vs. correlation = 0.85)

FWPMI WMPI WPMI WMPI
Shannon Richness Simpson

Size = 30
|ASR| 10.67 11.47 11.13 11.13
|SR|max 25 23 22 22
|SR| > 5 73.33 80 70 70
|SR| > 10 46.67 53.33 56.67 56.67
Size = 60
|ASR| 18.87 19.90 20.57 20.67
|SR|max 51 58 58 44
|SR| > 5 80 80 80 93.33
|SR| > 10 61.67 66.67 68.33 73.33
Size = 100
|ASR| 34.08 33.70 33.50 33.58
|SR|max 94 85 85 94
|SR| > 5 90 91 95 87
|SR| > 10 79 82 84 80
Size = 150
|ASR| 50.15 52.61 52.53 47.33
|SR|max 140 148 149 134
|SR| > 5 90.67 96.67 96 89.33
|SR| > 10 83.33 91.33 88.67 82.67
Size = 200
|ASR| 66.81 67.41 66.87 68.25
|SR|max 184 184 178 183
|SR| > 5 94.50 94 95 96
|SR| > 10 89 90.50 90.50 88.50
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In the initial scenario, the results suggest that when outliers are present, the 
FWMPI methodology generally outperforms the alternative methods most of the 
time. Upon examining the outcomes of the second scenario, it becomes evident that 
the performance of the novel approach decreases as the sample size and level of cor-
relation increase.

The findings from the last scenario imply that the proposed methodology demon-
strates superior performance when dealing with smaller sample sizes and minimal 
skewness among the indicators.

4  Empirical evidence: application to BES data

In this section, we present the findings of our FWMPI proposal on the well-being 
dataset. In recent years, several scholars have expressed concerns about the limita-
tions of GDP as a measure of well-being and as a benchmark for evaluating and 

Table 17  PANEL C (WEIBULL 
with shape = 2 and scale = 1 vs. 
WEIBULL with shape = 3 and 
scale = 2)

FWPMI WMPI WPMI WMPI
Shannon Richness Simpson

Size = 30
|ASR| 12 12.67 12.60 12.60
|SR|max 26 26 26 26
|SR| > 5 80 83.33 76.67 76.67
|SR| > 10 53.33 60 66.67 66.67
Size = 60
|ASR| 21.23 20.57 23.03 23.03
|SR|max 54 58 49 49
|SR| > 5 80 81.67 91.67 91.67
|SR| > 10 71.67 66.67 76.67 76.67
Size = 100
|ASR| 35.60 33.66 32.34 32.34
|SR|max 93 90 85 85
|SR| > 5 91 84 84 36.84
|SR| > 10 85 76 79 79
Size = 150
|ASR| 47.88 50.72 47.85 47.84
|SR|max 146 141 138 138
|SR| > 5 93.33 94 90 90
|SR| > 10 88.67 86 82.67 82.67
Size = 200
|ASR| 66.61 65.17 67.64 67.64
|SR|max 169 187 197 197
|SR| > 5 96.50 96 95.50 95.50
|SR| > 10 94 90 88.50 88.50
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comparing the development of regions and countries (see, among others, Larraz and 
Pavia (2010); Costanza et al. (2009); Fleurbaey (2009)).

The concept of well-being and its measurement have been significant topics of 
discussion in European research debates. Following the EU “beyond GDP" initiative 
in 2009, many projects have been suggested and implemented to combine indicators, 
datasets, domains, and dimensions. The Stiglitz Commission, established in France, 
made the most notable contribution to this effort (Stiglitz et al. 2009).

In response to the need for measurements of individual and societal well-being 
that surpass conventional measures, such as GDP, Italy developed the BES frame-
work (short for Benessere Equo e Sostenibile, which means equitable and sustain-
able well-being). According to Riccardini and De Rosa (2016), the BES is “a meas-
urement tool for progress in Italy" and is based on the theoretical model published by 
the OECD (Hall et al. 2010). The BES conceptualises well-being as a phenomenon 

Table 18  PANEL C (WEIBULL 
with shape = 2 and scale = 1 vs. 
WEIBULL with shape = 4 and 
scale = 3)

FWPMI WMPI WPMI WMPI
Shannon Richness Simpson

Size = 30
|ASR| 11.53 12.80 12.80 12.80
|SR|max 26 26 26 26
|SR| > 5 73.33 83.33 80 80
|SR| > 10 46.67 60 63.33 63.33
Size = 60
|ASR| 22.57 20.33 23 23
|SR|max 54 58 50 50
|SR| > 5 86.67 80 91.67 91.67
|SR| > 10 68.33 66.67 75 75
Size = 100
|ASR| 34.18 33.70 32.30 32.30
|SR|max 87 91 86 86
|SR| > 5 88 82 87 87
|SR| > 10 81 77 78 78
Size = 150
|ASR| 49.05 50.69 47.63 47.63
|SR|max 143 141 138 138
|SR| > 5 94 94 92 92
|SR| > 10 84.67 88.67 83.33 83.33
Size = 200
|ASR| 67.60 64.98 67.83 67.83
|SR|max 186 187 198 197
|SR| > 5 95.50 95.50 94 94
|SR| > 10 89.50 91 90 90



1 3

A Functional approach for constructing dynamic Composite…

comprised of two fundamental elements: equity within and between generations, 
and sustainability from an environmental, economic, and social perspective.

It is worth mentioning that the objective of the BES project is to create statisti-
cal indicators that are deemed important for a country progress, using a formative 
approach (Diamantopoulos et al. 2008). This type of approach assumes that the indi-
cators define the underlying trait that represents the phenomenon, as opposed to the 
reflexive approach, which assumes that the indicators reflect the phenomenon itself 
(Diamantopoulos and Winklhofer 2001; Diamantopoulos and Siguaw 2006; Magg-
ino 2017). As per Diamantopoulos’ approach, the internal consistency of the forma-
tive indicators is of minimal relevance since two non-correlated indicators can both 
be significant for the same construct.

The BES indicators were chosen through a participatory process in which all 
sectors of society, including academics, institutions, associations, and citizens, 
expressed their preferences. The elementary indicators are clustered in 12 domains, 
namely: Health, Education and training, Work and work-life balance, Economic 
prosperity, Social relationships, Politics and institutions, Security, Subjective well-
being, Landscape and Cultural heritage, Environment, Innovation, Research and 
Creativity, Quality of services (see BES (2013)).

Subsequently, the Italian National Institute of Statistics (ISTAT) has expanded 
the BES project by introducing other initiatives that focus more on the local level. 
The “Benessere Equo e Sostenibile dei Territori (BESdT)" is one such initiative, 
which applies the BES framework to a provincial (NUTS 3) scale.

Measuring well-being at the local level is highly significant in formulating poli-
cies aimed at achieving fair and sustainable development while taking into account 

Fig. 1  Graphical representation of BESdT framework
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Table 19  Descriptive statistics of Indicators-year 2017

Indicator Min Max Mean Median Q.5 Q.25 Q.75 Q.95 IQ.range Std.dev

PeopleTerzEduc 12.0 41.2 24.9 24.5 17.0 21.0 28.6 34.6 7.7 5.6
NEET 11.3 44.9 22.9 20.5 12.4 16.5 27.8 39.2 11.4 8.5
UpperSecondEdu 43.4 75.7 60.4 61.3 46.4 55.6 65.8 70.8 10.2 7.4
PartLifeLongLearn 3.9 14.4 7.8 7.5 4.3 6.5 9.2 11.4 2.7 2.1
LandfillWaste 0.0 574.0 31.4 11.4 0.0 0.0 33.7 113.5 33.7 68.0
SepCollecWaste 11.3 87.8 55.2 58.9 23.0 44.2 68.5 77.8 24.3 17.4
LifeExp 80.7 84.0 82.7 82.7 81.5 82.2 83.3 83.9 1.1 0.8
 InfMortRate 0.0 6.4 2.5 2.2 0.8 1.7 3.4 4.9 1.7 1.2
RoadAccidMortRate 0.0 2.4 0.7 0.7 0.0 0.4 1.0 1.8 0.6 0.5
CancerMortRate 6.6 11.3 8.5 8.4 6.9 7.8 9.0 10.3 1.2 1.0
MortRateDementia 22.5 60.5 34.0 33.4 24.7 29.2 37.9 44.4 8.8 6.4
WomenMunCouc 21.7 39.9 32.0 32.1 24.9 28.9 35.6 38.8 6.7 4.4
MunCoucUnder40Ys 19.0 44.9 30.8 31.0 22.4 27.7 33.9 40.0 6.3 5.2
PrisonDensity 0.0 187.9 116.8 116.1 62.5 102.8 133.2 177.6 30.4 33.9
EarlyChilhoodServ 0.5 36.1 13.6 11.9 2.7 7.3 18.0 28.3 10.7 7.9
ExtraRegHospMigr 1.5 25.3 8.2 6.6 2.2 4.1 10.7 19.5 6.6 5.5
IrregElectriPower 0.5 5.7 2.1 1.7 0.9 1.2 2.6 4.5 1.4 1.2
SeatKmPubTransp 0.5 5.7 2.1 1.7 0.9 1.2 2.6 4.5 1.4 1.2
HomicideRate 0.0 4.3 0.6 0.5 0.0 0.2 0.7 1.3 0.5 0.6
ViolentCrime 8.5 31.5 15.0 14.3 9.5 12.5 17.0 22.2 4.5 4.1
RoadMort 1.0 15.5 4.9 4.5 2.4 3.3 6.0 9.1 2.7 2.4
EmployRate 40.7 78.4 62.4 67.6 43.0 53.5 71.3 74.1 17.8 10.9
NonPartRate 4.3 44.3 20.6 15.5 9.5 12.0 28.9 41.1 17.0 11.0
YouthEmployRate 12.0 48.9 31.4 33.4 17.6 24.5 38.1 43.0 13.6 8.5
YouthNonPartRate 8.0 76.0 37.6 32.8 17.7 24.8 51.7 65.4 26.9 16.1

Fig. 2  Heatmap of correlation matrices
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the distinctive characteristics of each region (Calcagnini and Perugini 2019; Cracol-
ici et al. 2018; Scott and Bell 2013; Nissi and Sarra 2018; Sarra and Nissi 2020). In 
Italy, the BES and BESdT frameworks are the only institutional statistical resources 
that systematically work towards this goal.

To apply our functional dynamic index, we utilize the BESdT framework, 
which evaluates well-being through a range of variables. Due to a lack of data 
and missing values, our analysis is confined to 103 provincial capital cities and 
only seven of the twelve domains from the original Ur-Bes dataset. In particular, 

Fig. 3  FWMPI of Avellino city from 2004 to 2017 across the � domain

Fig. 4  FWMPI of Piacenza city from 2004 to 2017 across the � domain
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Table 20  Ranking of Provinces 
according to the area under the 
curve

Rank Province/District Rank Province/District

1 Avellino 53 Palermo
2 Livorno 54 Lodi
3 Milano 55 Napoli
4 Lecco 56 Massa-Carrara
5 Bergamo 57 Prato
6 Campobasso 58 Belluno
7 Trieste 59 Pisa
8 Vercelli 60 Ragusa
9 Vicenza 61 Biella
10 Perugia 62 Torino
11 Modena 63 Treviso
12 Trapani 64 Salerno
13 Venezia 65 Lucca
14 Caltanissetta 66 Isernia
15 Frosinone 67 Siracusa
16 Bolzano/Bozen 68 Sondrio
17 Savona 69 Siena
18 La Spezia 70 Verbano-Cusio-Ossola
19 Grosseto 71 Pordenone
20 Trento 72 Padova
21 Rieti 73 Aosta
22 Firenze 74 Pesaro e Urbino
23 Ferrara 75 Viterbo
24 Lecce 76 Potenza
25 Novara 77 Chieti
26 Mantova 78 Catania
27 Cosenza 79 Pavia
28 Udine 80 Matera
29 Ravenna 81 Terni
30 Macerata 82 Taranto
31 Gorizia 83 Reggio nell’Emilia
32 Pescara 84 Rovigo
33 Cremona 85 Cuneo
34 Parma 86 Agrigento
35 Como 87 Catanzaro
36 Caserta 88 Nuoro
37 L’Aquila 89 Latina
38 Rimini 90 Benevento
39 Ascoli Piceno 91 Cagliari
40 Foggia 92 Oristano
41 Teramo 93 Arezzo
42 Asti 94 Forlì-Cesena
43 Genova 95 Reggio Calabria
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we focus on the following pillars: “Health”, “Education and Training”, “Work 
and Life Balance”, “Environment”, “Safety”, “Politics”, “Quality of Services” 
(see Fig. 1).

Our goal is to employ the FWMPI to assess and illustrate the advancement of 
Italian provincial capital cities in promoting equitable and sustainable well-being 
between 2004 and 2017.

Table 19 presents the basic indicators that are used in constructing the dynamic 
composite index, and it also displays the summary statistics for the year 2017. 
Additionally, Fig. 2 depict the correlation matrices heatmap, categorised accord-
ing to the BES pillars.

By following our approach, it is possible to visualise the variations of the 
FWMPI within the range of [-1,1]. This graphical representation facilitates a 
thorough comparison of the index values across different provinces. As an illus-
tration, we have included in Figs 3 and 4 the FWMPI values for a couple of prov-
inces as � changes. This example demonstrates how the graphical representation 
can capture the subtleties of the index values and provides a framework for con-
ducting similar analyses on other provinces.

Specifically, we notice a contrasting pattern in the dynamic index within the beta 
domain (ranging from -1 to +1) for the two provinces being studied. Through the use 
of FDA tools, we can reconstruct the FWMPI profile within the � domain and derive 
a singular ranking of Italian provinces by calculating the area under the curve, as 
described in Sect. 2. This ranking is highly beneficial as it retains the valuable infor-
mation contained within the entire domain of the diversity profile. In our context, it 
enables a precise and comprehensive assessment of the advancements made by Italian 
provincial capital cities in promoting equitable and sustainable well-being. Based on 
the area under the curve metric, as defined in Eq. 14, the cities of Avellino, Livorno, 
Milano, Lucca, and Bergamo demonstrated the most significant strides in promoting 
equitable and sustainable well-being during the studied time frame. Conversely, the cit-
ies with the lowest area under the curve were Bari, Ancona, Enna, Varese and Pia-
cenza, experiencing a decline throughout the entire period. The comprehensive ranking 
obtained by calculating the area under the curve is presented in Table 20.

Table 20  (continued) Rank Province/District Rank Province/District

44 Bologna 96 Sassari
45 Brindisi 97 Crotone
46 Brescia 98 Messina
47 Pistoia 99 Bari
48 Alessandria 100 Ancona
49 Roma 101 Enna
50 Vibo Valentia 102 Varese
51 Imperia 103 Piacenza
52 Verona



 A. Sarra et al.

1 3

Table 21  Ranking of Provinces 
according to the depth measure

Rank Province/District Rank Province/District

1 Piacenza 53 Foggia
2 Bolzano/Bozen 54 Messina
3 Parma 55 Brescia
4 Aosta 56 Salerno
5 Viterbo 57 Reggio Calabria
6 Milano 58 Ferrara
7 Novara 59 Livorno
8 Cremona 60 Siracusa
9 Cuneo 61 Genova
10 Firenze 62 Catania
11 Alessandria 63 Trieste
12 Caserta 64 Nuoro
13 Potenza 65 Vercelli
14 Bergamo 66 Enna
15 Treviso 67 L’Aquila
16 Chieti 68 Trapani
17 Roma 69 Rieti
18 Lecco 70 Catanzaro
19 Verbano-Cusio-Ossola 71 Rovigo
20 Pesaro e Urbino 72 Ascoli Piceno
21 Padova 73 Napoli
22 Mantova 74 Como
23 Savona 75 Biella
24 Verona 76 Frosinone
25 Venezia 77 Ragusa
26 Rimini 78 Ancona
27 Pordenone 79 Terni
28 Reggio nell’Emilia 80 Lucca
29 Ravenna 81 Caltanissetta
30 Torino 82 Lecce
31 Teramo 83 Benevento
32 Pavia 84 Avellino
33 La Spezia 85 Pisa
34 Arezzo 86 Sassari
35 Grosseto 87 Oristano
36 Bologna 88 Cosenza
37 Massa-Carrara 89 Isernia
38 Crotone 90 Cagliari
39 Belluno 91 Vibo Valentia
40 Modena 92 Palermo
41 Prato 93 Bari
42 Udine 94 Campobasso
43 Macerata 95 Siena
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The functional integrated depth, defined in Eq. 15, can be used to obtain an addi-
tional overall ranking. Table 21 displays the depth-ranking of the Italian province capi-
tal cities according to the FWMPI.

Piacenza, Bolzano, Parma, Aosta, Viterbo, and Milano are the most central cities, 
with Pescara, Matera, Brindisi, Pistoia, and Asti ranking last.

As a result, in the last positions there are the most outlying province capital cities. It 
should be noted that the depth-based rank does not allow for the inference of the direc-
tion of departure from the central observations.

5  Concluding remarks

The existing literature offers many different methods for constructing CIs. In 
accordance with ideas discussed in the DEA-framework, we addressed the issue 
of change of performance of units over time and proposed a novel method for 
capturing the dynamic of composite indices.

We accomplished this goal by developing a FWMPI. Our proposal is built on 
an extension of Shannon’s entropy, which is widely used in multi-index decision 
making problems. To assess the degree of differentiation of DMUs, we used a 
family of diversity indices based on a single continuous variable. Unlike entropy-
based methods, which only provide a partial view of the multi-index decision 
making problem, our new dynamic CI captures the multidimensional aspect of 
diversity and can graphically depict the composite index trend. As a result, we 
have the distinct advantage of supplementing the analysis with FDA tools.

We documented some pitfalls in using entropy-weighted based methods to further 
support the utility of our novel approach.

A simulation experiment has shown how different rankings of homogeneous 
DMUs can occur when different diversity measures are used. We ascertained the 
loss in robustness of CIs rankings under various scenarios that take into account 
outlier contamination, correlation and skewness among indicators, and sample size 
variation. The applicability and versatility of our proposal are validated by apply-
ing FWMPI to BESdT data. FDA tools like the area under the curve and the depth 

Table 21  (continued) Rank Province/District Rank Province/District

44 Forlì-Cesena 96 Agrigento
45 Imperia 97 Lodi
46 Perugia 98 Varese
47 Sondrio 99 Pescara
48 Gorizia 100 Matera
49 Taranto 101 Brindisi
50 Vicenza 102 Pistoia
51 Trento 103 Asti
52 Latina
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measure give us useful information about the order and dynamics of the FWMPI 
trajectories. The depth measure describes the centrality of functional data, whereas 
the area under the FWMPI curves allows for a clear, unambiguous ranking of Italian 
province capital cities across the entire domain.

An intriguing future research direction would be to apply the novel approach to 
other CIs to judge the evolutionary dynamic in various application areas.
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