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Abstract
Motivated by an original financial network dataset, we develop a statistical method-
ology to study non-negatively weighted temporal networks. We focus on the char-
acterization of how nodes (i.e. financial institutions) concentrate or diversify the 
weights of their connections (i.e. exposures) among neighbors. The approach takes 
into account temporal trends and nodes’ random effects. We consider a family of 
nested models on which we define and validate a model-selection procedure that can 
identify those models that are relevant for the analysis. We apply the methodology to 
an original dataset describing the mutual claims and exposures of Austrian financial 
institutions between 2008 and 2011. This period allows us to study the results in the 
context of the financial crisis in 2008 as well as the European sovereign debt crisis 
in 2011. Our results highlight that the network is very heterogeneous with regard to 
how nodes send, and in particular receive edges. Also, our results show that this het-
erogeneity does not follow a significant temporal trend, and so it remains approxi-
mately stable over the time span considered.

Keywords  Latent variable models · Dynamic networks · Austrian interbank market · 
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1 � Motivation

Recently, the EU was hit by two major financial crises. In 2008, the problems started 
initially in the US subprime mortgage market and were partially caused by lax regu-
lation and overly confident debt ratings. The source of the European sovereign debt 
crisis in 2011, however, was most likely private debt arising from property bubble 
and resulting in government bailouts. The lack of a common fiscal union in the EU 
did not help with the situation, which resulted in the European central bank provid-
ing cheap loans to maintain a steady cash flow between EU banks. During these tur-
bulent times, European banks were facing high levels of uncertainty. It was not clear 
which counter party would remain solvent in the foreseeable future and even sover-
eign bonds were no longer considered a safe option. In the face of these unfavorable 
conditions, the banks were forced to reconsider their interbank investments and re-
adjust their portfolios in order to account for the change in the economic situation.

With the goal of contributing to the discussion on diversification and concentra-
tion of interbank exposures, we focus our attention on an original dataset of the Aus-
trian interbank market between the spring of 2008 and autumn of 2011. Namely, 
we introduce a dynamic network model to quantify exposure concentration of indi-
vidual banks and of the market overall. We accomplish this by extending the current 
literature on latent variable network models to a framework for compositional data 
that evolve over time. This framework can potentially provide bank-dependent meas-
ures of systemic risk, as well as a global measure of the overall level of systemic risk 
in the market. We resort to an intuitive modeling of a single network homogeneity 
(drift) parameter which we use to capture the homogeneity over time, as well as 
node random effects parameters that capture exposure concentration and attractive-
ness of banks, individually. Our model is specifically designed for instances where 
a network needs to be characterized by a single evolving variable, or when one is 
interested in obtaining a model-based quantitative measurement of the inter-tempo-
ral development of network homogeneity. While our approach is strongly motivated 
by our original financial application, it also provides a new methodology extension 
that can be used to analyze any temporal and compositional network data, where 
the main interest lies in studying the concentration/diversification of edge weights. 
This contributes to the literature on the statistical analysis of weighted networks, and 
in particular to the literature on networks indicating proportions, which is a rather 
unexplored topic. The code associated to our methodology is available from the 
public repository (Rastelli and Hledik 2021).

1.1 � Motivating example

In a financial context, a change in a financial network structure can have far-reaching 
and non-trivial consequences. To illustrate this fact further, consider a hypothetical 
financial network of four institutions (banks) represented by nodes and their mutual 
financial exposures (debt) represented by edges. In this simple example, connections 
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are symmetric and every bank splits its investment among its neighbors equally. Fur-
thermore, banks are required by a regulator to always keep a capital buffer to account 
for unexpected withdrawals, unfavorable economic conditions and other factors. There-
fore, we assume that an institution remains safe unless it loses at least half of its invest-
ments in other institutions. If that happens, the institution gets bankrupt and it might 
further negatively affect other banks in the network. To see how network structure 
affects the overall stability, consider a case where one of these four banks gets affected 
by an exogenous shock such that it has to declare bankruptcy. In such case, its neigh-
bors will not get their respective investment and might suffer the same fate, putting 
their own neighbors in danger. This contagious behavior is dependent on how the banks 
are linked together, which illustrates the importance of structure when addressing ques-
tions on systemic importance and financial stability.

For the hypothetical case of four banks, there are up to 11 topologically different 
network structures that can possibly occur: a subset of these are shown in Fig. 1. In the 
case shown in Fig. 1a, there is no danger of contagion since there are no edges to prop-
agate shocks. An analogical result follows from the network shown in Fig. 1c, where a 
failure of one node is not sufficient to take down the rest because every other institution 
only loses one third of its investment. Problems arise in intermediately connected sys-
tems such as Fig. 1b, where an initial shock may wipe out the whole system.

This basic example hints at a much more complex issue of network stability that has 
been extensively studied by financial regulators in the past two decades. It highlights 
that the level of exposure concentration in a system plays a crucial role in determining 
its stability and that assessment of this trait for observed networks can prove challeng-
ing. In this paper, we address this impasse, introducing a statistical model specifically 
designed to measure the concentration of exposures for every bank in the system, hence 
obtaining a measure for one of the facets of systemic risk.

2 � Related literature

This paper is connected to two important strands of research. On the one hand, we 
contribute to the literature on statistical analysis of networks, since we extend the 
current available methodologies, based on latent variables, that can be used to ana-
lyze non-negatively weighted temporal networks. On the other hand, we contribute 
to the established literature on systemic risk and financial networks. This area of 

(a) (b) (c)

Fig. 1   Different loan network structures on a set of four banks
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research has often focused on the stability of financial systems as well as the pos-
sibility of contagious bankruptcies similar to our simple example above. Research 
papers on this subject have been published by both academics in finance as well 
as market regulators.1 Our proposed research borrows from and contributes to both 
fields, ultimately creating a novel perspective on financial systemic risk.

Within the statistics literature, our paper contributes to the research on latent vari-
able network modeling. Prominent contributions include the foundational paper on 
latent space models by Hoff et al. (2002), later extended to the dynamic framework 
by Sarkar and Moore (2006), and the latent stochastic blockmodels (Nowicki and 
Snijders 2001) extended to a dynamic framework by Yang et  al. (2011), Xu and 
Hero (2014) and Matias and Miele (2017), among others. These latent variable mod-
els possess a number of desirable theoretical features, as illustrated in Rastelli et al. 
(2016) and Daudin et  al. (2008) for the latent space model and stochastic block-
model, respectively.

Our approach also shares a number of similarities with other recent papers that 
apply a latent variable framework on various types of dynamic network data. These 
include, among others, Friel et  al. (2016), where the authors introduce a dynamic 
latent space model to measure the financial stability of the Irish Stock Exchange; 
Sewell and Chen (2016), who introduce a latent space model for dynamic weighted 
networks; and Matias et al. (2018), where the authors propose a dynamic extension 
of the stochastic blockmodel. Our model could be seen as a variant of the works by 
Westveld and Hoff (2011) and Sewell (2018), which deal with temporal latent vari-
able weighted networks, to the context of compositional data. Differently from all 
these works using latent variable frameworks, our approach relies on a new model 
which is designed to measure and study the systemic risk associated to a financial 
system. We point out that our approach also has similarities to Dirichlet regression 
models for compositional data, as per Minka (2000), van der Merwe (2019) and ref-
erences therein; however, differently from these works, we apply compositional data 
analysis to the context of network analysis.

Within the finance literature, one of the earliest papers on the topic of systemic 
risk was the work of Allen and Gale (2000), who have shown that the structure of 
the interbank market is important for the evaluation of possible contagious bank-
ruptcies. Later on, Gai and Kapadia (2010) extended their work from a simple 
model of four institutions to a financial network of an arbitrary size. Other nota-
ble papers on systemic risk include, for example, Glasserman and Young (2016) or 
Acemoglu et  al. (2015), while Upper (2011) provides an excellent survey of reg-
ulatory-published scientific reports on the subject. With respect to the questions 
on diversification, we refer the reader to Elliott et al. (2014) and Frey and Hledik 
(2018), where a nontrivial relationship between diversification, exposure concentra-
tion and contagious defaults is presented, or to Goncharenko et  al. (2018), where 

1  This includes various national central banks as well as the European Central Bank and the FED. Addi-
tional research has been undertaken by the Bank for International Settlements or the International Mon-
etary Fund.
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banks endogenously choose their level of diversification given the network structure 
in an equilibrium setting.

For a better understanding of the topic of systemic risk and financial networks 
and of its apparent interdisciplinary nature, see the literature review of Caccioli et al. 
(2018). For a better picture of how these tools can potentially be used for a macro-
prudential risk assessment, see Gai and Kapadia (2019) or Battiston and Martinez-
Jaramillo (2018). The role of diversification and exposure concentration and its 
intricate effect on financial stability is addressed in Bardoscia et  al. (2017). This 
paper also underlines the importance of network topology and its effects on overall 
stability of the financial system.

Our paper shares similar goals with these works, and we further add to these 
papers by introducing a new generative mechanism and a modeling framework 
where exposure concentration and homogeneity of the system can be studied 
inter-temporally.

Lastly, we also contribute to the literature on the stability of the Austrian inter-
bank market. Related works in this area include Elsinger et al. (2006), Puhr et al. 
(2012) and Boss et al. (2004) who have looked at possible contagious effects and 
descriptive statistics of the Austrian financial network. Compared to these contribu-
tions, one novelty of our work is that we are able to consider the temporal depend-
ency of the network, thus providing an appreciation of the changes in the structure 
of the network over time.

3 � Data and exploratory analysis

We use an original dataset obtained by the Austrian National Bank which contains 
quarterly observations of the Austrian interbank market for a period of four years 
(from spring of 2008 until autumn of 2011). More precisely, the dataset contains 
aggregated mutual claims between any two of N = 800 Austrian banks for all rel-
evant quarters (2008Q1–2011Q4), resulting in 16 observations of the financial net-
work. All of the banks considered exist throughout the whole period.

In order to comply with the privacy rules of the Austrian National Bank, the 
data is anonymized such that the true identities of banks in the system are hid-
den and replaced by non-descriptive IDs. Moreover, we are unable to observe 
the absolute values of banks’ mutual claims, only their scaled equivalents (rela-
tive to the highest exposure value, independently for each time frame). As a con-
sequence, as per privacy protection, the magnitude of claims is effectively not 
comparable across time. This motivated us to seek an approach that could bypass 
this limitation: for the purposes of our model, the true values of the claims are 
not required, since our framework only uses their relative size. In addition, we 
illustrate in Appendix A a procedure that allows us to approximate the true val-
ues of the claims up to a proportionality constant: we do not use these estimated 
quantities in our model, but we use them to reconstruct and approximate a value 
representing the importance of each institution. In order to better clarify these 
concepts, we now give a sequence of definitions to set our notation.
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3.1 � Definitions

A dynamic network of interbank exposures is a sequence of graphs where, for 
each time frame, the nodes correspond to banks and the edges correspond to the 
connections between them. In particular, the edges are directed and carry positive 
values indicating the claim on one bank from another. We note that an observed 
network of interbank exposures between N banks over T time frames may be rep-
resented as a collection of T interaction matrices of the same size N × N , as in the 
following definition:

Definition 3.1  A sequence of true exposures E = {E(t)}t∈T  defined on the set of 
nodes V over the timespan T  consists of a collection of interaction matrices 
E(t) ∀t ∈ T  with elements e(t)

ij
 for t ∈ T  , i ∈ V , j ∈ V , where e(t)

ij
 corresponds to the 

financial exposure of bank i towards bank j in period t.

We focus on the case where V = {1,… ,N} and T = {1,… , T} . In the Austrian 
interbank market context, the adjacency matrix E(t) contains the true values of all 
mutual claims between any two of N = 800 Austrian banks at the correspond-
ing time frame. However, as explained earlier, we are unable to observe the true 
exposures E due to privacy policy of the Austrian National Bank. By contrast, we 
adopt a procedure (see Appendix A for full details) that allows us to estimate the 
following quantities:

Definition 3.2  A sequence of absolute exposures X = {X(t)}t∈T  on the set of nodes V 
over the timespan T  has elements defined as follows:

In other words, the sequence of absolute exposures is simply a scaled version 
of the non-observable sequence of the true exposures, where every exposure is 
divided by the value of the first period’s largest exposure. Lastly, we define the 
sequence of relative exposures that our statistical model uses as observed data:

Definition 3.3  A sequence of relative exposures Y = {Y(t)}t∈T  on the set of nodes V 
over the time span T  has elements defined as follows:

This transformation constricts the edge weights in our networks to a [0, 1] inter-
val, making it easier to work with from the network homogeneity viewpoint. In this 
network, every nodes’ outgoing edge values always sum up to 1. Differently from X  , 

(1)x
(t)

ij

def
=

e
(t)

ij

max{k,l} e
(1)

kl

∀i, j ∈ V,∀t ∈ T

(2)y
(t)

ij

def
=

x
(t)

ij∑N

k=1
x
(t)

ik

∀i, j ∈ V,∀t ∈ T
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the data Y is not estimated and available to us in exact form, regardless of the trans-
formations and anonymizations.

To summarize, E corresponds to the non-observed real value of interbank con-
nections, X  to their estimated scaled version and Y to the relative interbank con-
nections. Our model only uses Y as observed data, which in fact corresponds to the 
only quantities that are available to us in an exact form. We use X  as a proxy to 
derive a measure of importance of banks. In order to do so, we introduce the bank’s 
relevance:

Definition 3.4  The relevance of bank i in time period t is defined as:

Thus, the relevance simply corresponds to the bank’s overall sum of its inter-
bank assets and liabilities. Again, the relevance variable is not used in the modeling, 
instead it is only used to contextualize the results.

With a clear measure of systemic importance, we can now select a subsample 
of banks with the highest aggregated relevance ri =

∑T

t=1
r
(t)

i
 . This allows us to 

focus on the interactions of systemically important banks and observe emergence of 
unique patterns. We use the aggregated relevance measure to create a smaller dataset 
consisting of the 200 systemically most relevant institutions and their mutual con-
nections. From now on, we shall refer to the full dataset and the reduced dataset as 
OeNB 800 and OeNB 200, respectively.2

3.2 � Exploratory data analysis

In order to have a better overview of the data, we have conducted an exploratory 
analysis. We plot the evolution of the average bank relevance in Fig. 2. As expected 
from its definition, we see a sharp drop in the second half of 2008 as a direct effect 
of the financial crisis.

Table 1 and Fig. 3 contain brief descriptive statistics, where one can see the num-
ber as well as magnitude of connections as a function of time. The number of con-
nections ( 2nd column) shows the number of edges in the network as of time t, while 
the relative size ( 3rd column) is proportional to the overall total exposure, calcu-
lated as the ratio between the average absolute exposure in each year, and the high-
est absolute exposure in the first time observation. We would like to highlight the 
second and third quarter of 2008, where a drop in the overall total exposure in the 
economy can be observed. This period corresponds to the financial crisis associated 
with the failure of Lehman Brothers in the US and the problems stemming from the 
housing market. Interestingly, in the Austrian interbank market, the overall number 

(3)r
(t)

i
=
∑
k∈V

x
(t)

ik
+
∑
k∈V

x
(t)

ki
.

2  Validity of the OeNB 200 subset can be justified further by examining the overall exposure of top 
200 institutions. It turns out that the 200 most systemically relevant banks account for at least 95% of 
all approximate edge weights in any given time frame (according to the definition of absolute exposures 
from 3.2).
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of connections does not seem to be affected by these events as much as their size. 
This shows that, albeit Austrian banks have reduced their mutual exposures signifi-
cantly, they were rarely completely cut off. Another important period is during the 
second and third quarter of 2011, which is roughly when the European sovereign 
debt crisis started. At a first glance, there does not seem to be much in relation to 
this event in our data.

Interbank markets are commonly disassortative, i.e. nodes with a low number of 
neighbors are mostly connected to nodes with high number of neighbors and vice 

Fig. 2   Bank relevance for the full sample (a) and the sample containing only the 200 most relevant banks 
(b), recalculated after the exclusion of the 600 banks

Fig. 3   Number of connections and their relative size in time, for OeNB 800 
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versa, see Hurd (2016). This property in financial networks is quite common and is 
generally referred to as “core-periphery” structure. Social networks tend to be fun-
damentally different, since a high number of “hubs” in the network does not neces-
sarily imply a low number of triangles, see for instance (Li et al. 2014; Watts and 
Strogatz 1998). Financial systems also tend to be very sparse. These same patterns 
are confirmed in the Austrian interbank market, as shown in Fig. 4.

3.3 � Entropy as a measure of concentration

We have observed several interesting patterns in the data which suggest that using 
a more complex model could produce new insights regarding the evolution of bank 
exposure concentration. Since the main interest of our research lies in the connectiv-
ity patterns of agents in an interbank market, we have also looked at the evolution 
of an entropy index for this system. For this purpose, we use a standard definition of 
entropy as follows:

Definition 3.5  The entropy S(t)
i

 of node i ∈ V at time t ∈ T  is defined as:

with the convention that y log y = 0 when y = 0.

(4)S
(t)

i

def
= −

N∑
k=1

y
(t)

ik
log y

(t)

ik

Table 1   Number of connections 
and their relative size in time, 
for OeNB 800 

No. of Relative size
Period connections of connections

2008Q1 2952 1.0000
2008Q2 3109 1.0925
2008Q3 2993 0.1873
2008Q4 3028 0.3287
2009Q1 3178 0.4186
2009Q2 3177 0.5329
2009Q3 3156 0.7016
2009Q4 3188 0.5820
2010Q1 3157 1.1851
2010Q2 3194 1.1340
2010Q3 3223 1.0981
2010Q4 3126 1.0080
2011Q1 3115 0.9860
2011Q2 3825 1.1979
2011Q3 3820 1.2118
2011Q4 3778 1.1310
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Speaking more plainly, this quantity describes how an institution distributes its 
assets among counterparties. A bank with a single debtor would have zero entropy, 
since its relative exposure is trivially one for that one debtor and zero for all the 
other banks. With an increased number of debtors with equal exposures, a node’s 
entropy increases and, for a fixed number of debtors, the entropy of a node is maxi-
mized when its assets are distributed evenly among neighbors. Ergo, if two nodes 
have the same number of outgoing connections, one may view the one with a higher 
entropy as better diversified. We will refer to “better diversified” nodes as ones with 
lower exposure concentration or, alternatively, as the ones with higher exposure 
spread.

In Fig.  5, we plot the change in nodes’ entropies in consecutive periods 
( S(t+1)

i
− S

(t)

i
 ). One can observe an increase in both mean and variance during the 

second and third quarter of 2011, which corresponds to the sovereign crisis in 
Europe. At that point, future bailouts of several EU countries were uncertain which 
might have added to the volatility in the market. Interestingly, no similar effect can 
be seen during the 2008 crisis. We point out that there are other ways of assessing 
the temporal evolution of node exposure homogeneity. We have chosen the entropy 
index for our exploratory analysis, as it constitutes a simple, clean and easily tracta-
ble approach, but one could easily turn to other measures, e.g. the Herfindahl index 
as is common practice in economics literature.

Fig. 4   Adjacency matrix for the first time period, for OeNB 800, consisting of 2952 edges represented 
as dots (a) and a graphical representation of the network snapshot for the nodes with at least one connec-
tion (b)
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4 � The model

4.1 � The full model

The observed data are the relative interbank exposures y(t)
ij

 from Definition 3.3. We 
assume that there are no self-connections, i.e., when not stated otherwise, we always 
work with t ∈ T  , i, j ∈ V and i ≠ j . Since these exposures are relative, it follows 
from definition that they satisfy (for all i and t):

We propose to model the vector y(t)
i⋅

=
(
y
(t)

i1
,… , y

(t)

iN

)
 as a Dirichlet random vector 

characterized by the parameters �(t)

i⋅
=
(
�
(t)

i1
,… , �

(t)

iN

)
 , where 𝛼(t)

ij
> 0 . The values y(t)

ii
 

are excluded from the analysis for all i ∈ V and t ∈ T  . Following the established 
standard in latent variable models, the data are assumed to be conditionally inde-
pendent given the latent parameters � =

{
�
(t)

ij

}
i,j,t

 . Hence, the model likelihood 

reads as follows:

where, again, j varies in V and is different from i, and Γ(⋅) denotes the gamma 
function.

As concerns the � parameters, we separate a trend component from the sender 
and receiver random effects through the following deterministic representation:

(5)y
(t)

ij
∈ [0, 1] and

∑
j∈V∶j≠i

y
(t)

ij
= 1.

(6)LY(�) =

T�
t=1

N�
i=1

⎧⎪⎨⎪⎩

Γ
�∑

j �
(t)

ij

�

∏
j Γ
�
�
(t)

ij

� �
j

�
y
(t)

ij

��(t)
ij
−1
⎫⎪⎬⎪⎭

(7)log
(
�
(t)

ij

)
= �(t) + �i + �j

Fig. 5   Distribution of entropy 
change in time, for OeNB 800 
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With this formulation, the model parameters � =
{
�(t)

}
t∈T

 , � =
{
�i
}
i∈V

 and 
� =

{
�j
}
j∈V

 possess a straightforward interpretation, which we illustrate in the next 
section. Note that the relation between the model parameters and � is deterministic, 
meaning that � is used only to clarify the notation, and it may be omitted from the 
model specification.

4.2 � Interpretation of model parameters

Before we move to parameter interpretation, we would like to highlight how a 
symmetric parameter vector � = {�,… , �} can affect the realizations of the ran-
dom vector y ∼ Dir(�) . If the value of � increases, then the variance of the com-
ponents of the random vector y tend to decrease. Since the values generated from 
a Dirichlet distribution lie in an N-dimensional simplex, low variance translates to 
yi ≈ 1∕N,∀i ∈ V , e.g. the values are more or less equally distributed (as per their 
marginal distributions). High variance, however, is obtained when the value of 
� is small, and it implies that one of the components turns out to be close to one 
while all the others are close to zero. These two examples closely mimic the high-
entropy homogeneous regime and the low-entropy heterogeneous regime introduced 
in Sect. 3, respectively. Similarly, when the Dirichlet parameter is a non-symmetric 
random vector y ∼ Dir

(
�1,… , �N

)
 , an increase in a single parameter component �j 

determines a higher expected value in yj , at the expense of the other elements in y.
In our formulation, the log-additive structure in Eq. (7) decomposes � in three 

parts. The contribution given by �(t) + �i affects all of the components of �(t)

i⋅
 in a 

symmetric fashion. Hence, in accordance with our explanation above, these param-
eters capture the level of homogeneity in the network through a homogeneity trend 
parameter �(t) and a node specific homogeneity random effect �i . In financial terms, 
an increase in either �(t) or �i corresponds to lower concentration of exposures for 
bank i at time t, resulting in a more homogeneous network structure. Vice versa, a 
decrease in �(t) or �i is linked with an increase in exposure concentration which in 
turn results in a more heterogeneous network structure.

The interpretation of �j is similar. In our context, an increase in �j tends to increase 
the weight of all edges that j receives from its counter parties. Equivalently, one can 
say that in such case the bank j becomes more attractive, in the spirit of other banks 
concentrating their exposures more towards j.

To summarize, there is a clear way to interpret the main parameters of our model. 
The parameter �(t) indicates the global homogeneity level at time frame t ∈ T  , the 
parameter �i characterizes the individual bank i homogeneity level as a sender ran-
dom effect (its exposure diversification), and the parameter �j represents the bank j’s 
attractiveness as a receiver random effect.
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4.3 � Nested models

We consider simpler versions of our full model, where some of the elements that 
compose the � s are removed. The models that we consider are defined by differ-
ent versions of Eq. (7), as follows: 

full: log
(
�
(t)

ij

)
= �(t) + �i + �j

sender-receiver: log
(
�
(t)

ij

)
= c + �i + �j

trend-receiver: log
(
�
(t)

ij

)
= �(t) + �j

trend-sender: log
(
�
(t)

ij

)
= �(t) + �i

trend: log
(
�
(t)

ij

)
= �(t)

sender: log
(
�
(t)

ij

)
= c + �i

receiver: log
(
�
(t)

ij

)
= c + �j

null: log
(
�
(t)

ij

)
= c

Here, the value c is a parameter that replaces � when � is not included in the 
model, thus absorbing any effect that is homogeneous across all nodes and time 
frames. The models above represent simpler frameworks whereby each of the ele-
ments of our model (exposure diversification trend � , exposure diversification 
random effect � , attractiveness � ) can be removed.

4.4 � Bayesian hierarchical structure

We complete our models by introducing the following Bayesian hierarchical 
structure on the parameters that we have mentioned earlier.

Whenever the drift parameters � are present in the model, we assume a random 
walk process prior on them:

where �t ∼ N(0, 1∕��) and �� ∼ Gamma(a� , b�) . The model parameter c follows the 
same distribution of �1 . The hyperparameter �� is user-defined and set to a small 
value to support a wide range of initial conditions. The hyperparameters a� and b� 
are also user-defined and set to small values (0.01) to allow a flexible prior structure.

Whenever the parameters � and � are present in the model, they are assumed to 
be i.i.d. Gaussian variables with:

𝜇1 ∼ N(0, 1∕𝜏𝜇),𝜇t = 𝜇t−1 + 𝜂t, ∀t > 1,

�i ∼ N
(
0, 1∕��

)
, �� ∼ Gamma(a� , b�),

�j ∼ N
(
0, 1∕��

)
, �� ∼ Gamma(a� , b� )
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Similarly to the other hyperparameters, a� , b� , a� and b� are also set to small values 
(0.01). The arrangement of parameters in Fig. 6 summarizes the dependencies in the 
full model graphically.

5 � Parameter estimation

In this section, we focus on the estimation procedure for the full model only, noting 
that the estimation of the nested models follows analogous procedures, whereby the 
removed parameters are set to zero and are not updated.

Our proposed model has T drift parameters (denoted by � ), N exposure diversifica-
tion parameters (denoted by � ), N attractiveness parameters (denoted by � ), and three 
precision parameters (denoted by � ). We describe in this section a procedure to jointly 
estimate all of these model parameters.

5.1 � Identifiability

The additive structure in Eq. (7) yields a non-identifiable likelihood model. For exam-
ple, one could define 𝜃i = 𝜃i + d and 𝛾̃j = 𝛾j − d for some d ∈ ℝ and the likelihood 
value would be the same for the two configurations, i.e. LY

(
�, �̃, �̃

)
= LY(�,�, �) . 

One way to deal with such identifiability problem would be to include a penalization 
through the priors on � and � . One could specify more informative Gaussian priors cen-
tered in zero, which would in turn shrink the parameters to be distributed around zero.

However, such approach may also interfere with the results, since the model would 
not be able to capture the presence of outliers. Hence, we opt for a more commonly 
used method, and impose the � s to sum to zero as expressed through the following 
constraint:

(8)�1 = −

N∑
j=2

�j.

Fig. 6   Graphical representation of model dependencies
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This new model, characterized by T + 2N − 1 parameters, is now identifiable with 
respect to its posterior distribution.

5.2 � Markov chain Monte Carlo

The posterior distribution associated to our model factorizes as follows:

We adopt a fully Bayesian approach, relying on a Markov chain Monte Carlo algo-
rithm to obtain a random sample from the posterior distribution (9). We use a 
Metropolis-within-Gibbs sampler that alternates the following steps3: 

1.	 Sample �s for all s ∈ T  from the following full-conditional using Metropolis-
Hastings with a Gaussian proposal: 

2.	 Sample �k for all k ∈ V from the following full-conditional using Metropolis-
Hastings with a Gaussian proposal: 

3.	 Sample �
�
 for all � ∈ V ⧵ {1} from the following full-conditional using Metrop-

olis-Hastings with a Gaussian proposal: 

(9)
�(�,�, �, �|Y) ∝ LY(�,�, �)�

(
�|��

)
�
(
�|��

)
�
(
�|��

)
×

× �
(
��|a� , b�

)
�
(
��|a� , b�

)
�
(
�� |a� , b�

)

(10)
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�
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��
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Γ

�
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�
j

e𝛾j

��⎧⎪⎨⎪⎩
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(s)

ij

�𝛼(s)
ij
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Γ
�
𝛼
(s)

ij

�
⎫⎪⎬⎪⎭

⋅

�
exp

�
−
𝜏𝜇
�
𝜇s

�2
2

��1{s=1}

⋅

�
exp

�
−
𝜏𝜂
�
𝜇s − 𝜇s−1

�2
2

��1{s>1}

⋅

�
exp

�
−
𝜏𝜂
�
𝜇s+1 − 𝜇s

�2
2

��1{s<T}

.

(11)�
�
�k�…

�
∝

��
t

Γ

�
e�t e�k

�
j

e�j

��⎧⎪⎨⎪⎩

�
t,j

�
y
(t)

kj

��(t)
kj
−1

Γ
�
�
(t)

kj

�
⎫
⎪⎬⎪⎭
exp

�
−
��

2
�2
k

�
.

3  Note that, in the equations for the parameter updates, the products are defined over the spaces T  and 
V , with the only restriction that j and � are always different from i. Also, 1A is equal to 1 if the event A is 
true or zero otherwise.
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4.	 Sample �� from the following conjugate full-conditional: 

5.	 Sample �� from the following conjugate full-conditional: 

6.	 Sample �� from the following conjugate full-conditional: 

In output, the algorithm returns a collection of sampled observations for each 
model parameter, which are then used to empirically characterize the targeted 
posterior distribution.

6 � Model selection

In our analysis, we have 8 competing models, so we need to define an optimality 
criterion to select the best model for each dataset.

Some of the most commonly used criteria for model selection, especially in 
nested generalized regression models, are the AIC, or Akaike information crite-
rion from Akaike (1974), and the BIC, or Bayesian information criterion from 
Schwarz (1978). In practice, these two criteria correspond to a penalised log-
likelihood, where the penalization term grows with the number of parameters 
in the model considered, so that parsimony is promoted. These criteria define a 
quantitative framework to characterize the trade-off between model complexity 
and how good the model fit is.

(12)

�
�
�
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(13)𝜋
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∼ Gamma

(
a𝜂 +

T − 1

2
, b𝜂 +

∑
t>1

(
𝜇t − 𝜇t−1

)2
∕2

)
.

(14)�
(
��|…

)
∼ Gamma

(
a� + N∕2, b� +

∑
i

�2
i
∕2

)
.

(15)𝜋
(
𝜏𝛾 |…

)
∼ Gamma

(
a𝛾 +

N − 1

2
, b𝛾 +

∑
j>1

𝛾2
j
∕2

)
.



1711

1 3

A dynamic network model to measure exposure concentration…

In this paper, we adopt both the AIC and BIC as model choice criteria, and 
derive our optimal models using these approaches.

7 � Simulation study

In this section, we illustrate our methodology on artificial data, to demonstrate 
its correctness and efficiency in estimating parameters and choosing the cor-
rect model. We consider artificial networks with T = 10 and N = 40 , and model 
parameters generated as follows:

for all is, js and ts. In order to create an agreement with the constraint in Eq. (8), 
we apply a translation to �1,… , �N by subtracting 

∑N

j=1
�j∕N . We consider values of 

�0 in the set {0.25, 0.5, 1} , reflecting different levels of difficulty in estimating the 
model. This is due to the fact that the effect of each parameter diminishes with �0 , 
since they all get closer to zero in our additive model. Vice versa, a larger �0 creates 
stronger effects which are easier to infer.

In addition, we generate data from four different models, as follows: 

Model 1, sender-receiver: log
(
�
(t)

ij

)
= c + �i + �j

Model 2, trend-receiver: log
(
�
(t)

ij

)
= �(t) + �j

Model 3, trend-sender: log
(
�
(t)

ij

)
= �(t) + �i

Model 4, full: log
(
�
(t)

ij

)
= �(t) + �i + �j

Under each model, and under each value of �0 , we generate 200 networks 
using our likelihood model, and then use our procedure to select the model and 
estimate all parameters. To do so, we run the full sampling procedure using the 
same four models as candidates, for each dataset. We use 1000 iterations as burn-
in, and then save one sample every tenth, until a posterior sample of 100 values is 
obtained for each parameter. The proposal variances are all set to 1. Clearly, these 
sampling parameters are arbitrary, however, we show in the results that they work 
very well for the datasets considered.

Once we have run the sampling procedure for every �0 , for every true model, 
for every candidate model, and for every network, we compare our candidate fit-
ted models using the two model choice criteria: AIC and BIC.

The accuracy of the two model-choice criteria (expressed as the number of 
correctly identified models, out of 200) is shown in Table 2.

Here, we see that, generally, both criteria perform reasonably well under a 
variety of settings. This is a very positive result, considering that the real model 
parameters are generated with a fairly small standard deviation. In particular, AIC 

�(1) ∼ N
(
0, �2

0

)
; �(t+1) ∼ N

(
�(t), �2

0

)
; �i ∼ N

(
0, �2

0

)
; �j ∼ N

(
0, �2

0

)
;
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achieves the best results in recovering the correct model from the data, whereas 
BIC tends to infer a wrong model when �0 = 2 . However, as expected, results 
generally improve when �0 increases. It is important to note that BIC tends to 
select Model 2 very often. This happens because Model 2 is the one containing 
the smallest number of parameters (T and N − 1 , for � and � , respectively), so this 
is the model where the heavier penalization of the BIC has the least effect.

In Fig. 7, we show the estimation error for the best AIC models, for each of the 
model parameters and �0 ∈ {0.2, 0.4}.

This figure illustrates that, although the datasets are fairly small, the errors are 
very contained and there is little to no evidence of bias, regardless of the model 
considered. For the parameter � , we notice some bias which is justifiable by the 
near-non-identifiability of the additive model (see Sect. 5.1). This bias seems to be 
compensated by the parameter � . In both cases, points are still distributed on a line 
roughly parallel to the bisector line, indicating no errors up to a translations of the 
parameters.

8 � OeNB 200 and OeNB 800 results

8.1 � Technical details

We ran our Metropolis-within-Gibbs sampler on both datasets OeNB 200 and 
OeNB 800, and for all models, for a total of 100, 000 iterations. For all runs, the 
first 75, 000 iterations were discarded as burn-in. For the remaining sample, every 

Table 2   Confusion tables indicating the number of datasets (out of 200) for every combination of true 
model vs. estimated model, for three model selection criteria (over three rows of tables) and three values 
of �

0
 (over three columns of tables)

AIC �
0
= 0.2 AIC �

0
= 0.3 AIC �

0
= 0.4

Estimated Estimated Estimated

1 2 3 4 1 2 3 4 1 2 3 4

True 1 200 0 0 0 True 1 200 0 0 0 True 1 200 0 0 0
2 0 200 0 0 2 0 200 0 0 2 0 200 0 0
3 0 0 200 0 3 0 0 200 0 3 0 0 200 0
4 0 0 0 200 4 0 0 0 200 4 0 0 0 200

BIC �
0
= 0.2 BIC �

0
= 0.3 BIC �

0
= 0.4

Estimated Estimated Estimated

1 2 3 4 1 2 3 4 1 2 3 4

True 1 153 47 0 0 True 1 200 0 0 0 True 1 200 0 0 0
2 0 200 0 0 2 0 200 0 0 2 0 200 0 0
3 0 0 200 0 3 0 0 200 0 3 0 0 200 0
4 2 108 0 90 4 0 0 0 200 4 0 0 0 200
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5-th draw was saved to produce the final results. In summary, we used samples of 
5000 observations to characterize the posterior distribution of each model parameter.

The first 75, 000 iterations of the burn-in period were also used to adaptively tune 
the Gaussian proposal variance individually for each parameter, to make sure that all 
of the acceptance rates were approximately 33% . The proposal variances were hence 
fixed to these ideal values for the rest of the process. The trace plots and conver-
gence diagnostic tests all showed very good mixing of the Markov chains, suggest-
ing a satisfactory convergence.

Similarly to many other latent variable models for networks, the computational 
cost required by our sampler grows as TN2 . We implemented the algorithm in C++ 
to speed up the procedure, and then wrapped the functions into an R package which 
is available from our public repository (Rastelli and Hledik 2021).

8.2 � Model comparisons

We calculate the AIC and BIC for all 8 models and for both datasets; the results are 
shown in Tables 3 and 4, which give more numerical details regarding the ranking 
of the models according to the criteria.

Fig. 7   True value of model parameters vs. estimated values. The top row corresponds to �
0
= 0.2 and 

the bottom row corresponds to �
0
= 0.4 . Colors indicate the true underlying model number. The plots 

include only parameter estimates corresponding to correctly identified models
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We discuss the results according to the AIC and BIC optimal models in the fol-
lowing subsections.

8.3 � OeNB 200 dataset

In OeNB 200, the AIC-optimal model is sender-receiver, whereas the 
BIC-optimal model is receiver, which essentially corresponds to the same 
model where also � has been removed. We further note that all models that 
include � are worse than their simpler counterparts that do not include � . This 
highlights very strong evidence that the global exposure diversification trend 
parameter � is not relevant for this dataset, and thus it should not be included in 
the analysis.

In the context of our application, our procedure selects a model without the 
trend component, meaning that the exposure concentration level depends only on 
the bank’s individual value and it does not depend on time. Thus, our method 

Table 3   OeNB_200: Ranking 
of the models according to AIC

The lowest AIC and BIC have been subtracted to all values in the 
respective columns

Model Parameters Rescaled AIC Rescaled BIC

sender-receiver 400 0.0 1413.6
full 415 33.2 1617.3
receiver 200 859.2 0.0
trend-receiver 215 896.4 207.6
sender 201 5677.7 4829.8
trend-sender 216 5731.7 5036.3
null 1 6190.7 3070.3
trend 16 6229.3 3279.1

Table 4   OeNB_800: Ranking 
of the models according to AIC

The lowest AIC and BIC have been subtracted to all values in the 
respective columns

Model Parameters Rescaled AIC Rescaled BIC

receiver 800 0.0 2808.8
trend-receiver 815 44.1 3065.1
sender-receiver 1600 933.3 15054.6
full 1615 1039.6 15373.0
null 1 8489.5 0.0
trend 16 8533.5 256.2
sender 801 9601.2 12424.1
trend-sender 816 9643.4 12678.4
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indicates that the most relevant banks did not uniformly change their exposure 
concentration between 2018 and 2012, rather they adopted different strategies and 
reacted in different ways to the crises.

The AIC-optimal model sender-receiver characterizes the exposures of 
these banks using the attractiveness parameter of each bank ( � ), and the indi-
vidual exposure diversification of each bank ( � ). We show the estimated posterior 
expectations of these parameters in Fig. 8. In both histograms we see that the dis-
tributions are skewed, in that there are some banks that have very large values of 
either exposure spread or attractiveness. In fact, from the left panel of Fig. 9, we 
see that those banks that have high exposure spread (low concentration) also tend 

Fig. 8   Empirical distribution of posterior expectations of � (left panel) and � (right panel) for the 200 
most relevant banks

Fig. 9   Left panel: posterior expectations of � vs. the posterior expectations of � , for the OeNB 200 
dataset (sender-receiver model). Both size and color of the points indicate the relevance. Right 
panel: posterior expectations of � vs. the aggregated relevance of banks, for OeNB 200 (sender-
receiver model)
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to have high attractiveness, and vice versa. This figure highlights that large rel-
evant banks tend to have higher exposure spread while simultaneously also being 
more attractive, and, vice versa, small banks often play a more peripheral role in 
the network, usually as offspring of some larger bank. A similar observation of 
heavy tailed degree distribution has also been reported by Boss et al. (2004).

The right panel of Fig. 9 focuses more directly on the relation between the esti-
mates of � and the aggregated relevance of banks. This scatter-plot indicates that 
more relevant banks tend to have a more pronounced exposure spread, whereas 
small banks concentrate their exposures more. This observation further confirms our 
ideas about a stylized financial network where the disassortative behavior is very 
common.

The left panel of Fig. 10 highlights instead a different aspect of our analysis: we 
show that the parameter estimates for � are essentially the same for the two optimal 
models, indicating that the parameters � and � capture different aspects and patterns 
in the data.

This means that it is important to investigate the effect of both of these param-
eters through the model choice framework, since they give relevant and rather inde-
pendent contributions in explaining the data. The reason why the � s are removed 
from one model is purely because of the penalization value which inevitably must 
lead to a model with fewer parameters.

The Bayesian approach employed for the inferential procedure permits a full 
characterization of the posterior distribution of each of the parameters. We take 
advantage of this to investigate whether there is any pattern in the quantified uncer-
tainty around each parameter estimate. For this purpose, the right panel of Fig. 10 
shows the relation between the posterior variances of the � vs. � . We note that there 

Fig. 10   Left panel: posterior expectations of � in the sender-receiver model vs. posterior expecta-
tions of � in the receiver model, for OeNB 200. Right panel: posterior variance of � vs. posterior 
variance of � , with nodes’ sizes and colors representing aggregated relevance for OeNB 200 (sender-
receiver model)
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seems to be no explicit pattern between the parameters, and no apparent relation 
with the relevance of the corresponding banks. The posterior variances of � s tend to 
be higher than the posterior variances of �s.

8.4 � OeNB 800 dataset

In OeNB 800, the model receiver is optimal according to the AIC, whereas the 
null model is optimal according to BIC. This is primarily determined by the fact 
that the full dataset involves a very large number of parameters, and thus the penali-
zation term becomes substantial.

The null model is the simplest and it describes a homogeneous network structure, 
whereby all the banks exhibit the same behaviour at all time frames. While the expecta-
tion for all edge weights is the same, the variance associated to the Dirichlet distribu-
tion makes it possible that a variety of different values and patterns are observed. So, 
according to this model, it is still perfectly reasonable that some banks will be exposed 
to very few counterparts whereas others will distribute their risks on a more wide set of 
partners. Still, the most fundamental message that we extract from either of the optimal 
models is that there is no evidence of a relevant change over time, at a global level, for 
the connectivity patterns.

The optimal receiver model characterizes the exposures using only the attrac-
tiveness parameter for each bank. This is essentially equivalent to a fitness model, 
whereby banks with higher “fitness” are more often receiving edges than those with 
lower fitness. In our context, highly attractive banks tend to borrow from more partners, 
so they are key institutions to monitor since they can put pressure on a large number of 
other institutions.

In the left panel of Fig. 11, we see that the distribution of the � posterior means 
is very heavy tailed, in that a number of institutions exhibit very high attractiveness 
values (histogram bins become very thin for values larger than 0.2). This highlights 
the heterogeneous structure of this network where the nodes can exhibit very diverse 
patterns of connections. The right panel of Fig. 11 underlines more clearly the connec-
tion to a fitness model, in that it essentially shows that the � parameters clearly capture 
the in-degrees of the nodes. We also highlight the relation between � and the relevance 
of the banks in the left panel of Fig. 12, where we notice that high relevance tends to 
translate into a high attractiveness.

For completeness, we show the posterior density for the only parameter c under the 
null model, in the right panel of Fig. 12.

9 � Conclusions

This paper contributes to the literature on networks by extending the current avail-
able network frameworks to model temporal non-negatively weighted interactions, 
and to capture systematic parts of their development. Our original application to the 
Austrian interbank market gives a new perspective on the recent crises and demon-
strates how our model can be used as a means to measure exposure concentration 
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and bank’s attractiveness as drivers of systemic risk. Differently from Friel et  al. 
(2016), our measure is not affected by banks entering or leaving the system, since 
our available data only contains banks which are active throughout the whole period.

In our analysis we have shown that, for the Austrian market, the financial institu-
tions did not change substantially their connectivity patterns over time, regardless 
of the financial instabilities experienced in 2008 and 2011. Our results are fairly in 
agreement with the exploratory data analysis, which highlighted some substantial 
changes with regard to the overall exposure sizes, but only one noticeable change in 
terms of concentration of exposures, during the second quarter of 2011. Our model-
based approach showed that no change of patterns were significant, however we 
point out that our models that included the temporal dependency would capture a 
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Fig. 11   Left panel: empirical distribution of the posterior means of � under the receiver model. Right 
panel: empirical distribution of the posterior means of � plotted against the total incoming weights for 
each node, under the receiver model. The color of points indicates the relevance

Fig. 12   Left panel: posterior means of � plotted against the log-relevance of each bank, for the 
receiver model. Right panel: empirical posterior density for the only parameter c in the null model
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major change in that same time period (results not shown). A critical reason why 
our approach does not consider the time trend significant is that the trend is assumed 
to be the same across all network participants. Clearly this can be a rather strong 
assumption, in that if time trends are present, then they would likely differ across 
participants. This strongly suggests a very interesting future development of this 
work whereby one can extend the model to include node-specific time trends.

The findings of our analysis may be of a particular use to regulators and central 
banks to assess and design future policy measures. In addition, our results showed 
that the roles played by the different banks can be vastly different, particularly in 
the context of exposure concentration. This emphasizes that larger banks, which are 
generally more susceptible to systemic risk, tend to use more conservative strategies 
and to spread out evenly their credit risks.

One limitation of our modeling framework is that it only focuses on the rela-
tive exposures, hence discarding the real magnitudes of the claims. Future exten-
sions of this work may consider a joint modeling of the exposure values and how 
they are diversified among neighbors. Another possible extension of our framework 
would include a more sophisticated modeling structure, to account for transitivity 
or reciprocity. Also, one could easily resort to clustering, where, for example, dif-
ferent clusters are characterized by different network homogeneity drifts � . Finally, 
we would like to remark that in our dataset all nodes are present at all time frames, 
however, this assumption is unlikely to hold in a more general setting. As a conse-
quence, a relevant extension of our work would introduce mechanisms to let nodes 
join or exit the study at any point in time, perhaps in reflection of potential financial 
defaults.

Appendices

A. Data transformation
The source data from the Austrian National Bank is in the form of four variables: a 
timestamp, an ID of a lender bank, an ID of a borrower, and the relative exposure 
from one towards the other. We use the term relative since the largest exposure in 
each time period is assumed to be of size 1, and all other exposures in that time 
period are scaled accordingly to keep their relative size unchanged. As a result, in 
each time-period, all exposures are located in a (0, 1] interval with the highest expo-
sure attaining a value of 1. Formally, making use of Definition 3.2, the observable 
data in our sample can be viewed as a dynamic adjacency matrix D:

Definition A.1  A sequence of observable exposures D = {D(t)}t∈T  on the set of 
nodes V over the time span T  is defined as follows:

(16)d
(t)

ij

def
=

e
(t)

ij

max
k, l

e
(t)

kl

∀i, j, k, l ∈ V,∀t ∈ T
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It is not possible to make inter-temporal analysis of changes in exposures by 
using the sequence D , because every exposure is scaled against the highest exposure 
in its time period. In order to circumvent this issue and obtain information which is 
comparable in time, we have devised the following procedure.

We make an assumption about the stability of the Austrian market. Namely, when 
looking at the change of a particular edge value between two consecutive periods, 
say from d(t)

ij
 to d(t+1)

ij
 , the ratio 

d
(t)

ij

d
(t+1)

ij

 with highest likelihood of occurrence in the sam-

ple corresponds to banks keeping the absolute value of their exposures unchanged. 
Indeed, after examining this ratio in all consecutive periods, we observe that the 
most frequent value is situated in the middle of the sample and is always a clear out-
lier in terms of likelihood of occurrence.4

It is straightforward to re-scale the whole dataset using this procedure. Despite 
the fact that we still cannot observe the actual levels of exposures between banks 
in our sample, we are now able to approximate these values up to a proportionality 
constant. We denote the values that we obtain with this procedure with X  through-
out the paper, and use these to calculate the relevance of the banks. We point out 
that these values are not used in the statistical model that we introduce.

To summarize, there are four different types of dynamic adjacency matrices used 
in our paper: E corresponds to the true data with the actual connection values (exact 
values not available), D represents the scaled data where edge weights are normal-
ized with respect to the highest value in each period (exact values are available), X  
contains the scaled data where all edge weights are normalizes with respect to the 
highest value in the first period (available in approximate form), and Y contains the 
relative exposures of banks (exact values are available) which are derived from X  or 
equivalently from D.
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4  In most cases, this value is around 1 which suggests that the largest exposure in the network is mostly 
stable. An exception arises between dates 2 and 3 which correspond to the second and third quarter of 
2008. As this is the exact time of the height of US subprime mortgage crisis, we believe that the “big 
players” in our dataset have been influenced by these events, resulting in the change of their exposures 
and subsequent substantial re-scaling of the whole system. According to our methodology, the largest 
exposure in the network has dropped to almost one third of its value in the span of two quarters, but it 
returns gradually back to its former level eventually.
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