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Abstract
We consider predictions in longitudinal studies, and investigate the well known sta-
tistical mixed-effects model, piecewise linear mixed-effects model and six different 
popular machine learning approaches: decision trees, bagging, random forest, boost-
ing, support-vector machine and neural network. In order to consider the correlated 
data in machine learning, the random effects is combined into the traditional tree 
methods and random forest. Our focus is the performance of statistical modelling 
and machine learning especially in the cases of the misspecification of the fixed 
effects and the random effects. Extensive simulation studies have been carried out to 
evaluate the performance using a number of criteria. Two real datasets from longi-
tudinal studies are analysed to demonstrate our findings. The R code and dataset are 
freely available at https:// github. com/ shuwe n92/ MEML.

Keywords Longitudinal data · Misspecification · Machine learning · Mixed-effects 
model · Regression tree · Support vector machine · Comparison study

1 Introduction

Longitudinal data, which occur frequently in economics, finance, medical sci-
ence and other fields, are measured repeatedly for each subject. The circumstances 
under which the measurements are taken cannot be exactly the same. For example, 
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students could be sampled in different classrooms or patients by different doctors. 
Therefore, the assumption of longitudinal data is that measurements are correlated 
for the same subjects but independent among different subjects. If the number of 
measurements from each subject is the same, the datasets are said to contain bal-
anced data; otherwise, the datasets contain unbalanced data. Laird and Ware (1982) 
introduced the random effects models for longitudinal data because they claimed 
that a general multivariate model with unrestricted covariance structure is not suited 
for the analysis of unbalanced data. Mixed-effects models that include both fixed 
and random effects can handle the correlation in longitudinal data. The fixed effects 
are parameters related to the levels of the entire population or certain repeatable 
experimental factors, while the random effects are related to individual experimental 
units randomly chosen from a population (Pinheiro and Bates 2000). An expecta-
tion-maximisation (EM) algorithm can be used to determine the maximum likeli-
hood and restricted maximum likelihood estimation in the longitudinal data setting 
(Laird et al. 1987). Lindstrom and Bates (1988) developed an efficient and computa-
tionally stable implementation of the Newton-Raphson (NR) algorithm for obtaining 
the parameters in mixed-effects models for longitudinal data.

The misspecification of mixed-effects models can include the misspecification 
of fixed effects or random effects. Grilli and Rampichini (2015) first review the 
literature about the consequences of misspecifying the distribution of the random 
effects. McCulloch and Neuhaus (2011a) investigated the impact of misspecification 
of the distribution of the random effects and claimed that the prediction accuracy 
is little affected for mild-to-moderate violations of the assumptions. Their mild-to-
moderate violations of random effects implies assumption of normal distribution of 
random effects has been misspecified to three different distributions: a skewed and 
truncated distribution, a heavy-tailed distribution, and a mixture distribution. Hui 
et al. (2021) focused on variance components when they studied the effects of ran-
dom effects misspecification in linear mixed models. There are also other references 
(McCulloch and Neuhaus 2011b; Albert 2012; Drikvandi et al. 2017) investigated 
the misspecification of shape/distribution of random effects and they confirmed that 
the mean square error for random effects estimation is robust to the random effects 
misspecification. Misspecification of random components will lead to misspecified 
variance and correlation structures. Therefore, our work with a slightly different 
focus has been that of assessing random effects misspecification from the misspeci-
fication of correlation structure with simulated data generated from marginal model. 
Wang and Carey (2003) provided both asymptotic and numerical results in the GEE 
framework.

There have been very few comparison studies of statistical models and machine 
learning methods in the analysis of longitudinal data. One thing we can notice is 
that statistical models usually have more assumptions than machine learning meth-
ods. However, this is a double-edged sword. Machine learning methods are usually 
recognised as having a ‘black box’ aspect, which means there is less attention paid 
to the processes between their inputs and outputs. Real data sets are usually com-
plex, and it is worthwhile to investigate more about the data before definitive deci-
sions are made. Some papers have compared the predictive performance of statisti-
cal methods and machine learning methods in the area of health (Song et al. 2004; 
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Venkatesh et al. 2020; Shin et al. 2021) and air quality (Wei et al. 2019; Berrocal 
et al. 2020). They confirmed that the nature of data is of primary importance rather 
than the learning technique.

Among the six machine learning methods (trees, bagging, random forest, boosting, 
support-vector machine and neural network) addressed in this work, the trees method is 
the most broadly applied for longitudinal data (Segal 1992; Hajjem et al. 2011, 2014; 
Berger and Tutz 2018; Kundu and Harezlak 2019). Sela and Simonoff (2012) presented 
the random effects expectation-maximisation (RE-EM) tree, which combined the struc-
ture of mixed-effects models with tree-based methods. They showed that the RE-EM 
tree had improved predictive power over traditional linear models with random effects 
and regression trees without random effects. However, Fu and Simonoff (2015) pro-
posed what they claimed are unbiased RE-EM trees by using conditional inference 
trees instead of classification and regression trees (CARTs). In addition, Loh and Zheng 
(2013) had proposed an unbiased regression tree for longitudinal data based on a gener-
alised, unbiased interaction detection and estimation (GUIDE) approach rather than the 
traditional CARTs. Later, Eo and Cho (2014) combined the decision tree and mixed-
effects methods for longitudinal data based on GUIDE. Hajjem et  al. (2014) have 
extended their methodology with the use of random forest instead of regression trees 
,which called mixed effects random forest (MERF). A framework for predicting longi-
tudinal change in glycemic control measured by hemoglobin A1c (HbA1c) using mixed 
effect machine learning is presented by Ngufor et  al. (2019). The machine learning 
methods can be applied to regression as well as classification. There are some progress 
in the development of mixed-effects machine learning methods with application of 
classification, such as generalized mixed-effects regression trees (Hajjem et al. 2017), 
generalized mixed-effects random forest (Pellagatti et al. 2021) and neural networks for 
longitudinal data (Crane-Droesch. 2017; Xiong et al. 2019). Mangino and Finch (2021) 
utilised a Monte Carlo simulation to compare the prediction performance of several 
classification algorithms and they claimed the panel neural network and Bayesian gen-
eralized mixed effects models have the highest prediction accuracy. We focus on the 
regression in this work in order to compare the prediction performance of linear mixed 
models and machine learning methods with or without mixed effects when the model is 
specified correctly or missepcified.

Li and Wu (2015) claimed that the traditional linear mixed model is inferior to the 
machine learning methods for both long- and short-term prediction in milk protein 
data, which is apparently because the linear mixed model is not sufficient to fit this 
data. This milk protein data was also illustrated by Diggle et al. (2002) using a piece-
wise model at breakpoint three with an exponential correlation structure. However, 
we noticed that the quadratic term is not necessary, and a piecewise mixed-effects 
model would have better performance. Yang et al. (2016) illustrated the mathemati-
cal programming for a piecewise linear regression analysis. They showed that the 
piecewise regression method achieved better prediction performance than a number 
of state-of-the-art regression methods, such as random forest (RF), support-vector 
regression (SVR), K-nearest neighbour (KNN) and so on. Kohli et al. (2018) investi-
gated the estimation of a piecewise mixed-effects model with unknown breakpoints 
using maximum likelihood. They found that the maximum likelihood estimates are 
reliable and accurate under the conditions that the observed variables had a small 
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residual variance. The mixed-effects tree-based method is emphasized because it has 
shown strong prediction performance and it is explainable.

The estimation of parameters in the mixed-effects machine learning usually relied 
on two steps: estimation of mean function and random effect component, respec-
tively. As far as we know, the literature lacks a comparison of the performance of 
statistical models and machine learning methods for longitudinal data when the 
fixed effects or random effect are misspecified. However, correctly specification of 
mean function/fixed effects and random effect components are very important in 
the longitudinal data analysis (Wang and Lin 2005). A new metric, true root mean 
square error (TRMSE) is defined to measure how close the predictions would be to 
the true values without noise error in the simulation. The differences between the 
TRMSE and RMSE are also presented according to the simulation parts. Two dif-
ferent ways are utilised to generate correlated data. One way is to generate data from 
mixed-effects models with fixed effects and random effects, the other is to generate 
data from a marginal model.

In this paper, we review and compare the performances of a mixed-effects model 
and six machine learning methods (tree, bagging, random forest, boosting, support-
vector machine and neural network) and two mixed effects machine learning meth-
ods (RE-EM trees and MERF) in the prediction of longitudinal data. The remainder 
of this work is organized as follows. Section 2 describes the various methods that we 
compared in this work. In Sect. 3, a description is made of the extensive simulations 
that are carried out to evaluate the performance of the different methods. Two dif-
ferent kinds of real data (milk protein and wages) are considered as case studies in 
Sect. 4. Section 5 presents some conclusions and further discussion.

2  Methods

In this section, the details of the linear mixed-effects model, tree-based method 
(including the RE-EM tree), support-vector machine and neural network are 
introduced.

2.1  Linear mixed‑effects models

Linear mixed-effects models are an extension of simple linear models by the inclu-
sion of random effects that are used to account for the correlation among measure-
ments within the same subject.

Let response vector Yi be the n × 1 vector (yi1,… , yin)
T , in which yij is the jth 

measurement for the ith subject ( i = 1,… ,K , j = 1,… , n ). The total number of 
subjects is K. Xi (of dimension n × p ) and Zi (of dimension n × q ) are the separate 
fixed-effect and random-effect covariates. � is a p-dimensional vector of the fixed 
effect, and bi is a q-dimensional vector of the random effect, which are assumed to 
be Gaussian distributed with mean zero and variance � . The formulation of the lin-
ear mixed-effects model is as follows:
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The within-groups errors �i and the random effects bi are assumed to be inde-
pendent. It is a special case if 𝚲i = I . Then, it follows that Yi ∼ N(Xi�,�i) , where 
𝚺i = �2(𝚲i + Zi𝚿ZT

i
) . The matrix form for the model is as follows:

where Y =

⎡
⎢
⎢
⎢
⎣

Y1

Y2

⋮

YK
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⎥
⎥
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⎥
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⎦

 , Z = diag (Z1,Z2, ...,ZK) , 

� = diag (�1,�2, ...,�K) , � = diag (�1,�2, ...,�K) and �̃ = diag (�,�, ...,�) . It 
follows that Y are independent multivariate normal vectors with mean X� and the 
covariance matrix is 𝚺 = �2(𝚲 + Z�̃�ZT) . Then, the likelihood function is

where

and � represents the parameters in �̃ and � . An EM algorithm can be used to obtain 
both the maximum likelihood and restricted maximum likelihood estimation accord-
ing to Laird et al. (1987). The lme function of the R-package nlme is implemented to 
fit the linear mixed model (Pinheiro et al. 2020).

2.2  Piecewise linear mixed‑effects models

Piecewise regression is a special type of linear regression that arises when a single 
line is not sufficient to model a data set. Piecewise regression breaks the domain into 
potentially many ‘segments’ and fits a separate line through each one. Breakpoints 
are the values where the slope of the linear function changes. The value of the break-
points are unknown and must be estimated. In some cases, the breakpoints can be 
specified by us according to plots. In other words, it is obvious to the naked eyes 
when one linear trends give way to other. However, this is not fit for all the cases. For 
some data set, it is not easy to detect the breakpoints just from eyes. In statistics, the 
popular way is to compare the errors with different breakpoints, which means mini-
mize the errors between each segment’s regression and the observed data points.

A piecewise linear mixed-effects (PLME) model is an extension of linear mixed-
effects model. The PLME has been used in many areas, such as in analysing lon-
gitudinal educational and psychological data sets (Kohli et  al. 2018, 2015). We 

(1)
Yi = Xi� + Zibi + �i,

bi ∼ N(0,𝚿), �i ∼ N(0, �2𝚲i).

Y = X� + Zb+ �,

L(�,�, �2|Y) = p(Y|�,�, �2) =

K∏

i=1

p(Yi|�,�, �
2),

p(Yi|�,�, �
2) = (2��2)−

n

2 exp

(
Yi − Xi�

T))𝚺−1

i
(Yi − Xi�

)

−2�2
)|𝚺i|

−
1

2
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introduced PLME in this work because of its flexibility for accommodating a differ-
ent mean function in each phase. The mathematical forms of PLME are presented in 
Sect. 4.1 to analyse the milk protein data.

2.3  Tree‑based methods

2.3.1  Decision trees

Tree-based methods, support-vector machine and neural network can be applied 
to regression as well as classification, and we focus on regression problems in 
this work. The decision tree, bagging, random forest, and boosting methods can 
be grouped together as they are all tree-based methods. CART (classification and 
regression tree) is a popular algorithm which was proposed by Breiman et  al. 
(1984). In the tree method, the training data is used to construct a data tree start-
ing at the root node. The predicted space is divided into non-overlapping M regions 
( R1,R2, ...,RM ) determined by recursive splitting, which is a top-down and greedy 
approach (James et al. 2013). In each region, a constant cm would be the response. 
The model is as follows:

The splitting we choose will cause the largest reduction in the mean square error. 
We can split recursively until the mean square error reaches a defined threshold. 
Then it is easy to see that the best value is the average of Y in region Rm:

The predicted response for a test data point is the mean of the training observations 
in the region to which that test point belongs. For each test data point that falls in 
the same region on a path starting from the root node until reaching a terminal (leaf) 
node, the response prediction would be the same. A usual strategy to fit a single tree 
is to grow a large tree and then trim it by weakest link pruning. The R-package tree 
is used to implement the above process in this work (Ripley 2019). Trees can be 
displayed graphically and are easy to explain but can be subject to overfitting. Also, 
trees are not robust, which means small changes in the training data can cause very 
different series of splits. Ensemble decision tree methods, including bagging, ran-
dom forests and boosting, combine many decision trees to produce better predictive 
performances than a single decision tree.

2.3.2  Ensemble decision tree methods

Bagging trees, random forest and boosting trees are called ensemble decision trees. 
The simple flowchart of these three different ensemble decision trees is presented in 
Fig. 1.

f (X) =

M∑

m=1

cmI(X ∈ Rm).

ĉm = ave (Y|X ∈ Rm).
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Bagging is the application of the bootstrap procedure to decision trees in order 
to lower the variance. There are three main steps: firstly, generate random sub-
samples of the training data set with replacement; secondly, train the decision 
tree method on each sample; and thirdly, calculate the average prediction from 
each model using the test data. The average prediction would be the final predic-
tion for each test data point. Bagging will improve the prediction accuracy com-
pared to the tree method at the cost of interpretability.

Random forest is a popular tree-based ensemble method that builds a large 
collection of de-correlated trees and then averages them based on the bagging 
(Breiman 2001). When building this algorithm, a random sample of features is 
chosen as split candidates from the full set of predictors rather than using all the 
features in bagging. This forces each split to consider only a subset of the pre-
dictors, which is reasonable, especially when there is a very strong predictor in 
the training data set. After a certain number of trees are grown, the predictor is 
obtained by the average (for regression) or the majority vote (for classification) 
(James et al. 2013). This algorithm contains four main parameters: total number 
of observations, total number of predictor variables, randomly chosen features for 
determining the decision tree and the total number of decision trees. The R-pack-
age randomForest is used to implement the algorithm of bagging and random for-
est (Liaw and Wiener 2002).

The different trees based on the bootstrapped data are independent in bagging. 
Boosting works in a similar way to bagging, but the difference is the trees are con-
structed sequentially, which means that the growth of each tree depends on the trees 
that have already been constructed. It is a forward stagewise approach. Boosting 
regression trees (BRT) have three parameters: the number of trees, the shrinkage 
parameter that controls the learning rate and the number of splits in each tree that 
determines the complexity of the boosted ensemble. The BRT algorithm has three 
main steps: firstly, a regression tree is fitted; secondly, another tree is fitted to the 
residuals of the first tree; and thirdly, the model is updated to have two trees with 
a shrinkage parameter (this last step is repeated hundreds or thousands of times). 

Fig. 1  Three different ensemble trees
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The final model is a linear combination of these trees. The R-package gbm is imple-
mented for this algorithm (Greenwell et al. 2019).

2.4  Mixed‑effects regression trees and random forest

Segal (1992) was the first to apply regression trees to longitudinal data. The mixed-
effects tree method we have used in this work, the RE-EM tree, was proposed by 
Sela and Simonoff (2012). The notation in an RE-EM tree follows the linear mixed-
effects model:

in which the Yi,Xi,Zi, bi and �i analogous to their use in equation (1). If f is a lin-
ear function, f (Xi) = Xi� , then the model is a linear mixed model. Generally, this f 
function can be estimated by a tree method when the random effects bi are known. 
However, when neither the fixed effects nor the random effects are known, an itera-
tive two-step process is utilised. Firstly, the random effects b̂i are set to zero ini-
tially, and a regression tree is used to estimate function f based on Yi − Zib̂i . A lin-
ear mixed-effects model is then fitted to estimate the random effects based on the 
tree regression results: yij = Zijbi + I(Xij ∈ gp)�p + �ij , in which I(Xij ∈ gp)�p means 
the estimated value for yij at terminal node gp . The algorithm will not stop until the 
estimates of random effects b̂i converge. We used R package REEMtree (Sela and 
Simonoff 2012) in this work.

Hajjem et al. (2014) proposed mixed-effects random forest (MERF) for clustered 
data which implemented using a standard random forest algorithm within the frame-
work of the expectation-maximization (EM) algorithm. The notations of MERF are 
the same with Equation (2) and the random forest is used to estimate the fixed part 
of the model, i.e., the estimation of function f. The MERF algorithm is similar to 
the EM algorithm for the linear mixed-effects model and the detailed steps of the 
MERF algorithm can be found in Hajjem et al. (2014). Louis (2020) implemented 
this MERF algorithm in R package LongituRF.

2.5  Support‑vector machine

The initial idea of a support-vector machine (SVM) is to construct a linear partition 
of the high-dimensional space into two sub-spaces for classification or regression 
(Scholkopf and Smola 2002). We will focus on the regression application in this 
work. Given the training data (X1, Y1), (X2, Y2), ..., (XN, YN) , the prediction is shown 
as a linear function f (X) = �TX + b0 , and the error function is

where ��(z) = max {0, |z| − �} is the �-insensitive loss. After minimising the error 
function, the solution is

(2)Yi = f (Xi) + Zibi + �i,

(3)1

2
||�||2 + C

N∑

k=1

��(f (Xk) − Yk),
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where �̂�k and �k are Lagrange multipliers. The nonzero Lagrange multipliers that 
indicate the training vector makes (�̂�k − 𝛼k) ≠ 0 in Equation (4) are called support-
vectors. Obviously, the non-support-vectors do not contribute directly to the solution 
. Besides this linear case, the data are often not linearly separable. A kernel function 
is then used to transform the nonlinear system in the input space to a linear system 
in the feature space. Popular kernel functions are polynomial kernel, radial kernel, 
among others (James et al. 2013). We will also include the support-vector regression 
with a polynomial kernel in our simulations. The svm function of the R-package 
e1071 is used (Meyer et al. 2019).

2.6  Neural network

In this work, we consider the neural network as a multilayer perceptron (MLP), 
which is a class of feedforward artificial neural network. The multilayer perceptron 
is a popular network for classification and regression. The formula is as follows:

where vk are the weights, gk(X) are the hidden functions (or hidden units), NH is the 
number of hidden nodes, X is the input vector and Ŷ  is the output. Here, the hidden 
function g0 takes a fixed value of one to allow a constant term in the equation. The 
sigmoid function is commonly used: gk(u) = 1∕(1 + exp (−u)) . Also, the tangent 
hyperbolicus function tanh x = (ex − e−x)∕(ex + e−x) is used in the simulation. The 
general approach to fit this method is minimizing the sum-of-squared errors by gra-
dient descent, which is called back-propagation. The R-package neuralnet is used to 
implement the neural network algorithm (Fritsch et al. 2019).

3  Simulation studies

In this section, we describe the investigation of the performances of linear mixed-
effects models and machine learning methods through extensive simulations.

3.1  Design of simulations

There are two types of misspecification in the linear mixed model: misspecification 
of fixed effects and misspecification of random effects. Therefore, in our design of 
simulations, we generate the longitudinal data in two different ways to deal with 
these two different kinds of misspecification. To analyse misspecification of the fixed 
effects, we consider two different true mean functions: linear and quadratic in our 
setting. The performance of various models only with linear mean function would be 

(4)f (X) =

N∑

k=1

(�̂�k − 𝛼k)X
T

k
X + b0,

Ŷ =

NH∑

k=0

vkgk(X),
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investigated, which means the fixed effects are misspecified if the true mean function 
is quadratic. The longitudinal data can also be generated from the marginal model 
with different correlation structures, such as AR(1) or exchangeable correlation. This 
data generation aimed to reflect the misspecification of random effects. The data gen-
erated from the linear mixed-effects model with random intercept are equivalent to 
that generated from the marginal model with the same mean function and exchange-
able correlation. If the data are generated with exchangeable correlation structure, 
the linear mixed effects model with random intercept is the true model. Otherwise, 
it could be considered as the misspecification of random effects. The details of data 
generation are provided in the following paragraph and Table 1.

Two different ways are used to generate the longitudinal data. One is from the 
mixed model:

where �ij = �0 + �1xij + �2gi + �3x
2
ij
 is the overall mean response, bi is the random 

effects from the normal distribution N(0, �2
b
) and �ij come from an iid normal distri-

bution N(0, �2) . In addition, xij and gi are sampled from the uniform distribution 
(0,  1). In our simulation, there are two different true mean function: 
� = (�0, �1, �2, �3)

T = (0.5, 1, 1.2, 0)T and � = (�0, �1, �2, �3)
T = (0.5, 1, 1.2,−5)T , 

which demonstrate the true mean function is linear and quadratic respectively. In 
this simulation, we set � = 1 and �b = 2.

Another way to generate the longitudinal data from the following marginal model:

where �ij = �0 + �1xij + �2si + �3x
2
ij
 , xij is sampled from the uniform distribution 

(0, 1), and si is sampled from the binary distribution, which can represent the sex 
variable in the real dataset. In order to compare the performances between different 
methods under a scenario in which the mean function is correctly specified and mis-
specified, we have set different values for � . In the model in which the mean func-
tion is correctly specified, � = (�0, �1, �2, �3)

T = (0, 0.5, 1, 0)T . This indicates the 
true mean function of the simulated data is linear (without a quadratic term). In con-
trast, � = (�0, �1, �2, �3)

T = (0, 0.5, 1,−5)T is used when the mean function is mis-
specified, which indicates the data are generated from a quadratic model. We used 

(5)yij = �0 + �1xij + �2gi + �3x
2
ij
+ bi + �ij, i = 1,… ,K, j = 1,… , n,

(6)yij = �0 + �1xij + �2si + �3x
2
ij
+ �ij, i = 1,… ,K, j = 1,… , n,

Table 1  The design of simulations

Longitudinal data generation

Mixed model Marginal model

Linear mean function Quadratic mean function Exchangeable AR(1)
⇓ ⇓ ⇓ ⇓

Correctly specified Misspecified Correctly specified Misspecified
Fixed effects Random effects
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the linear mean function in various prediction models. We had two different scenar-
ios for �ij : the first is �ij are correlated with an exchangeable structure, in other words, 
cor (�ij, �ij� ) = 0.5 if j ≠ j

′ ; and the second is for each i, (�i1,… , �in) are correlated 
with an autoregressive AR(1) structure that also had a correlation coefficient of 0.5. 
It is worth noting that when the data are generated from the linear mean function 
with first scenario (i.e., the correlation structure is exchangeable), the linear mixed-
effects model with a random intercept is the true model. Otherwise, when the data 
are correlated with the AR(1) structure, the linear mixed-effects model is not the 
true model even if the mean function of simulated data is linear.

3.2  Evaluation metrics

There are few references about how to measure the predictive power of methods 
for longitudinal data. The stratified cross-validation method cannot be used directly 
because the observations from longitudinal data contain sequences. Based on Sela 
and Simonoff (2012), three different ways are utilised: (1) predicting the future 30% 
of observations based on the previous 70% of observations for K different subjects, 
denoted as future observation; (2) predicting another new K/2 objects based on the 
previous K different subjects, denoted as new object; and (3) predicting a future 
30% of observations for new K/2 objects based on the previous K different subjects 
and the previous 70% of observations in the new K/2 subjects, denoted as future 
new observation. In this case, there are 100 subjects (K = 100), and each subject is 
observed 10 times (n = 10).

We also proposed another one-step prediction and two-step prediction in order 
to see the performances of different methods in real-time prediction. In this case, 
K = 100 and n = 5 . This is a bit similar to the future observation method described 
above but did not just consist of the overall prediction. We can obtain the prediction 
performance at the time of each observation. In the one-step prediction, we used 
the first observation to predict the second observation; the first two observations are 
then used to predict the third, and so on. In contrast, the first observation is used to 
predict the third observation in the two-step prediction. The results based on 1000 
simulations are presented in Tables  2,  3,   4 and 5. The numerosity of the gener-
ated data is 1000 and 500 for the two different prediction performance evaluations, 
respectively.

To measure the prediction performance of the different methods, the root mean 
square error (RMSE) is used:

where yi is the measured value, and ŷi is the predicted value. Because the true values 
of �i are known in the simulations and the curious is about how close the predictions 
would be to the true values without noise, we defined another metric, the true root 
mean square error (TRMSE), to measure the prediction performance as follows:

RMSE =

�∑K

i=1

∑n

j=1
(yij − ŷij)

2

K ∗ n
,
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According to the formula of mean square error,

TRMSE =

�∑K

i=1

∑n

j=1
(𝜇ij − ŷij)

2

K ∗ n
.

RMSE =

√
avex∈ test (ŷ − y)2

=

√
avex∈ test (ŷ − (𝜇 + � + 𝜖))2

=

√
avex∈ test [(ŷ − 𝜇)2 − 2(ŷ − 𝜇)(� + 𝜖) + (� + 𝜖)2]

=

√
avex∈ test [(ŷ − 𝜇)2] + avex∈ test [−2(ŷ − 𝜇)(� + 𝜖) + (� + 𝜖)2]

Table 2  The one-step prediction for different methods in simulated data generated from a mixed-effects 
model

Best/smallest RMSE/TRMSE values are in bold

Second observation Third observation Fourth observation Fifth observation

RMSE TRMSE RMSE TRMSE RMSE TRMSE RMSE TRMSE

(a) Correct specification of the mean
lme 1.379 1.960 1.206 1.881 1.148 1.914 1.113 1.931
tree 2.276 0.745 2.209 0.775 2.147 0.926 2.056 1.120
re-em 1.432 2.004 1.268 1.904 1.204 1.939 1.163 1.952
bag 2.176 1.022 1.990 1.086 1.851 1.173 1.723 1.255
rf 2.146 0.919 2.029 0.974 1.961 1.024 1.899 1.055
merf 1.550 1.393 1.282 1.821 1.219 1.891 1.181 1.925
boost 2.148 1.037 1.873 1.498 1.667 1.663 1.530 1.767
svm 2.238 0.380 2.223 0.344 2.222 0.325 2.219 0.315
svmk 2.282 0.602 2.245 0.487 2.238 0.444 2.234 0.423
nn 2.270 0.499 2.270 0.526 2.279 0.554 2.276 0.554
nntanh 2.311 0.650 2.265 0.513 2.267 0.505 2.268 0.522
(b) Misspecification of the mean
lme 1.379 1.967 1.206 1.893 1.144 1.927 1.107 1.946
tree 2.249 0.874 2.183 0.948 2.101 1.102 1.988 1.259
re-em 1.435 2.031 1.270 1.919 1.207 1.953 1.166 1.966
bag 2.118 1.064 1.913 1.170 1.747 1.273 1.604 1.382
rf 2.144 0.946 2.023 1.004 1.942 1.049 1.869 1.092
merf 1.548 1.416 1.284 1.829 1.215 1.900 1.178 1.937
boost 2.145 1.059 1.871 1.490 1.664 1.668 1.521 1.770
svm 2.286 0.613 2.267 0.541 2.264 0.518 2.253 0.507
svmk 2.349 0.832 2.320 0.748 2.312 0.716 2.297 0.702
nn 2.548 1.273 2.557 1.284 2.574 1.304 2.570 1.307
nntanh 2.549 1.284 2.528 1.222 2.513 1.178 2.572 1.262
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where ŷ is the prediction value, y is the observed value, � is the true value and � is 
the error. Also, avex∈ test [(ŷ − 𝜇)2] is the square of TRMSE. If the data are generated 
from marginal model (i.e. � is zero) and error is independent of the observations (i.e. 
avex∈ test [−2(ŷ − 𝜇)𝜖] = 0 ), the RMSE values would be larger than the TRMSE val-
ues, which is consistent with the simulation results from Tables 4 and 5.

3.3  Simulation results

The objective of our extensive simulations is to compare the prediction perfor-
mances among the different methods in the longitudinal data. The parameters in the 
linear mixed-effects model are estimated with maximum likelihood and they are var-
ied according to the different sizes of training data. Ten-fold cross-validation was 
used to tune the parameters in tree-based methods. For the tree method, the com-
mon and default tree growth is limited to a depth of 31 by the use of integers to 

Table 3  The two-step prediction 
for different methods in 
simulated data generated from a 
mixed-effects model

Best/smallest RMSE/TRMSE values are in bold

Third observation Fourth observa-
tion

Fifth observation

RMSE TRMSE RMSE TRMSE RMSE TRMSE

(a) Correct specification of the mean
lme 1.373 1.957 1.205 1.875 1.142 1.911
tree 2.270 0.747 2.201 0.782 2.149 0.940
re-em 1.424 2.002 1.267 1.898 1.200 1.935
bag 2.175 1.028 1.987 1.090 1.841 1.172
rf 2.143 0.922 2.028 0.976 1.955 1.019
merf 1.545 1.388 1.280 1.818 1.213 1.891
boost 2.144 1.045 1.875 1.493 1.657 1.660
svm 2.232 0.380 2.220 0.339 2.222 0.321
svmk 2.278 0.604 2.240 0.482 2.237 0.437
nn 2.265 0.501 2.269 0.529 2.283 0.557
nntanh 2.306 0.652 2.264 0.513 2.271 0.508
(b) Misspecification of the mean
lme 1.381 1.965 1.204 1.886 1.141 1.919
tree 2.251 0.880 2.185 0.941 2.103 1.077
re-em 1.440 2.028 1.269 1.913 1.205 1.945
bag 2.121 1.066 1.916 1.156 1.750 1.262
rf 2.145 0.949 2.023 0.996 1.935 1.042
merf 1.552 1.416 1.283 1.822 1.216 1.893
boost 2.145 1.060 1.868 1.480 1.648 1.661
svm 2.284 0.615 2.259 0.539 2.248 0.515
svmk 2.348 0.843 2.313 0.750 2.296 0.716
nn 2.549 1.275 2.548 1.284 2.560 1.308
nntanh 2.550 1.286 2.520 1.222 2.490 1.163
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Table 4  The one-step prediction for different methods in simulated data which correlated with the 
exchangeable and AR(1) structure

Second observation Third observation Fourth observation Fifth observation

RMSE TRMSE RMSE TRMSE RMSE TRMSE RMSE TRMSE

(a) Correct specification of the mean
(i) EXC

lme 0.949 0.876 0.821 0.577 0.790 0.611 0.775 0.631
tree 1.024 0.248 1.015 0.217 1.009 0.204 1.006 0.195
re-em 0.965 0.896 0.834 0.596 0.804 0.627 0.790 0.646
bag 1.145 0.572 1.146 0.582 1.145 0.586 1.147 0.586
rf 1.020 0.242 1.008 0.194 1.002 0.173 1.000 0.161
merf 0.884 0.537 0.828 0.588 0.797 0.618 0.781 0.637
boost 1.070 0.403 1.040 0.316 1.024 0.275 1.018 0.250
svm 1.011 0.196 1.002 0.149 0.997 0.134 0.995 0.123
svmk 1.023 0.250 1.008 0.189 1.002 0.166 0.999 0.151
nn 1.123 0.526 1.126 0.532 1.126 0.537 1.124 0.531
nntanh 1.142 0.565 1.105 0.485 1.067 0.399 1.036 0.309

(ii) AR(1)
lme 0.950 0.881 0.920 0.579 0.939 0.533 0.961 0.493
tree 1.024 0.260 1.021 0.222 1.010 0.206 1.014 0.191
re-em 0.965 0.900 0.933 0.597 0.950 0.552 0.972 0.514
bag 1.144 0.575 1.152 0.583 1.148 0.587 1.157 0.586
rf 1.018 0.246 1.013 0.195 1.003 0.173 1.009 0.156
merf 0.882 0.540 0.927 0.590 0.946 0.551 0.968 0.512
boost 1.071 0.407 1.043 0.317 1.026 0.276 1.027 0.248
svm 1.009 0.193 1.006 0.151 0.999 0.131 1.004 0.118
svmk 1.022 0.251 1.013 0.192 1.003 0.165 1.008 0.148
nn 1.122 0.528 1.129 0.532 1.127 0.537 1.132 0.531
nntanh 1.140 0.565 1.110 0.487 1.070 0.402 1.046 0.302
(b) Misspecification of the mean

(i) EXC
lme 2.203 2.169 1.775 1.558 1.755 1.564 1.747 1.568
tree 1.238 0.744 1.156 0.602 1.139 0.570 1.130 0.552
re-em 1.306 1.196 1.028 0.773 0.939 0.759 0.886 0.753
bag 1.156 0.601 1.142 0.581 1.145 0.578 1.145 0.578
rf 1.252 0.765 1.233 0.740 1.229 0.732 1.230 0.726
merf 1.393 1.200 1.203 0.967 1.159 0.961 1.131 0.960
boost 1.158 0.603 1.061 0.386 1.039 0.319 1.028 0.282
svm 1.853 1.562 1.829 1.541 1.821 1.533 1.825 1.528
svmk 1.147 0.551 1.104 0.465 1.089 0.424 1.078 0.402
nn 1.880 1.592 1.876 1.594 1.876 1.594 1.873 1.583
nntanh 1.925 1.645 1.857 1.572 1.829 1.543 1.827 1.531

(ii) AR(1)
lme 2.196 2.169 1.792 1.559 1.793 1.550 1.789 1.541
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label nodes. Therefore, the range of tree maximum depth is from 20 to 40 for tuning. 
The random effect in RE-EM trees is the grouping variable (subject). We used 500 
trees in total in bagging and random forest method. The number of variables ran-
domly sampled as candidates at each split is 2 and 1 in bagging and random forest, 
respectively because we have two covariates xij and ti . Otherwise, the number of 
trees ranged from 200 to 5000 for tuning in the boosting method. In the SVM, the 
cost of constraints violation is 1 and the epsilon in the insensitive-loss function is 
0.1 ( C = 1 and � = 0.1 in Eq. 3). The degree of polynomial kernel in SVM is 3. For 
the parameters of neural network, there are one layer and the hidden neurons in each 
layer is 2. The threshold for the partial derivatives of the error function as stopping 
criteria is 0.1.

Figures  2,  3 and  4 presents the prediction results of future observation, new 
object and future new observation respectively when the fixed effects is specified 
correctly. Meanwhile, the boxplots of prediction results of future observation, new 
object and future new observation respectively when the fixed effects is misspeci-
fied can be found in Figs. 5, 6 and 7. We can see that the linear mixed model per-
formed the best when the fixed effects/mean function is specified correctly in terms 
of predicting future observations and future new observations. However, the support 
vector machine and neural network methods have better performance when we need 
to predict the observations from new objects. It is expected that the support vector 
regression with polynomial kernel (‘svmk’) and neural network with hyperbolic tan-
gent activation function (‘nntanh’) would also have better performance if the mean 
function is misspecified. However, it seems that we should be careful to choose 
the nonlinear function according to the data structure which is the quadratic in this 
case. The RE-EM trees and mixed effects random forest (MERF) performed better 
when the mean function is misspecified in terms of predicting future observations 
and future new observations. It is interesting to find that RE-EM trees and MERF 
performed worse than trees and RF in terms of predicting new objects (see Fig. 6), 
which means that mixed effects machine learning needs to be used in caution when 

Table 4  (continued)

Second observation Third observation Fourth observation Fifth observation

RMSE TRMSE RMSE TRMSE RMSE TRMSE RMSE TRMSE

tree 1.239 0.745 1.155 0.605 1.147 0.566 1.137 0.550
re-em 1.300 1.192 1.090 0.782 1.074 0.714 1.069 0.670
bag 1.158 0.602 1.143 0.582 1.152 0.576 1.148 0.579
rf 1.250 0.764 1.232 0.738 1.233 0.729 1.228 0.726
merf 1.386 1.198 1.250 0.969 1.240 0.920 1.233 0.886
boost 1.160 0.598 1.058 0.386 1.046 0.317 1.033 0.280
svm 1.849 1.564 1.830 1.542 1.824 1.531 1.817 1.528
svmk 1.148 0.555 1.106 0.477 1.096 0.432 1.081 0.410
nn 1.878 1.596 1.876 1.594 1.876 1.593 1.865 1.584
nntanh 1.921 1.648 1.855 1.570 1.828 1.537 1.822 1.533

Best/smallest RMSE/TRMSE values are in bold
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Table 5  The two-step prediction 
for different methods in 
simulated data which correlated 
with the exchangeable and 
AR(1) structure

Third observation Fourth observa-
tion

Fifth observation

RMSE TRMSE RMSE TRMSE RMSE TRMSE

(a) Correct specification of the mean
(i) EXC

lme 0.949 0.880 0.820 0.576 0.790 0.611
tree 1.023 0.254 1.014 0.220 1.008 0.208
re-em 0.965 0.901 0.833 0.595 0.803 0.627
bag 1.145 0.577 1.149 0.583 1.145 0.587
rf 1.019 0.244 1.008 0.198 1.001 0.178
merf 0.882 0.539 0.827 0.587 0.796 0.618
boost 1.068 0.403 1.040 0.321 1.023 0.278
 svm 1.010 0.195 1.002 0.156 0.997 0.139
svmk 1.023 0.253 1.009 0.194 1.002 0.171
nn 1.121 0.526 1.124 0.532 1.125 0.536
nntanh 1.140 0.566 1.103 0.484 1.065 0.400

(ii) AR(1)
lme 1.158 0.877 1.046 0.577 1.041 0.532
tree 1.030 0.255 1.023 0.222 1.015 0.206
re-em 1.173 0.898 1.056 0.596 1.052 0.552
bag 1.147 0.572 1.159 0.585 1.156 0.585
rf 1.024 0.243 1.017 0.198 1.009 0.172
merf 1.018 0.537 1.052 0.589 1.050 0.550
boost 1.074 0.404 1.049 0.320 1.032 0.276
svm 1.015 0.194 1.009 0.151 1.003 0.133
svmk 1.027 0.249 1.018 0.195 1.008 0.166
nn 1.127 0.527 1.130 0.533 1.129 0.536
nntanh 1.147 0.565 1.109 0.486 1.072 0.396
(b) Misspecification of the mean

(i) EXC
lme 2.196 2.170 1.777 1.565 1.752 1.564
tree 1.239 0.749 1.154 0.601 1.139 0.569
re-em 1.309 1.204 1.024 0.777 0.938 0.756
bag 1.153 0.598 1.143 0.578 1.144 0.579
rf 1.246 0.763 1.232 0.741 1.225 0.731
merf 1.385 1.198 1.203 0.973 1.155 0.960
boost 1.157 0.602 1.058 0.384 1.038 0.317
svm 1.854 1.573 1.830 1.544 1.814 1.528
svmk 1.147 0.554 1.104 0.472 1.084 0.431
nn 1.877 1.597 1.877 1.599 1.867 1.589
nntanh 1.921 1.649 1.856 1.575 1.821 1.536

(ii) AR(1)
lme 2.306 2.174 1.824 1.560 1.813 1.540
tree 1.239 0.745 1.163 0.603 1.145 0.566
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predicting unseen data. The TRMSE values that measured the differences between 
the predictions and mean values without random effects and errors. According to the 
TRMSE values, the support-vector machine with a linear kernel had the best perfor-
mance whether the mean function is correctly specified or misspecified.

The performance of different methods in simulated data generated from the 
marginal model with exchangeable and AR(1) correlation structure is presented in 
Figs. 8, 9 and 10. In Figs. 8 and 10, because the linear mixed model is the true model 
when the correlation structure is exchangeable, it is not a surprise to see that the lin-
ear mixed model performed the best when the mean model is specified correctly and 

Table 5  (continued) Third observation Fourth observa-
tion

Fifth observation

RMSE TRMSE RMSE TRMSE RMSE TRMSE

re-em 1.440 1.200 1.185 0.776 1.152 0.713
bag 1.164 0.610 1.153 0.583 1.152 0.577
rf 1.259 0.771 1.241 0.742 1.233 0.728
merf 1.486 1.206 1.325 0.968 1.294 0.911
boost 1.163 0.608 1.069 0.389 1.045 0.318
svm 1.861 1.572 1.834 1.542 1.824 1.527
svmk 1.153 0.562 1.108 0.473 1.097 0.436
nn 1.889 1.603 1.881 1.599 1.876 1.588
nntanh 1.930 1.652 1.861 1.575 1.828 1.531

Best/smallest RMSE/TRMSE values are in bold

Fig. 2  The prediction results of future observation. RMSE root mean square error, TRMSE true root mean 
square error, lme linear mixed-effects model, tree decision tree method, re-em RE-EM trees with ran-
dom intercept, bag bagging method, rf random forest method, merf mixed-effects random forest, boost 
boosting method, svm support-vector regression with linear kernel, svmk support-vector regression with 
polynomial kernel, nn neural network method with logistic activation function, nntanh neural network 
method with hyperbolic tangent activation function
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in terms of predicting future observations and future new observations. The support-
vector machine with a linear kernel and the neural had good performances when 
predicting the observations from new object (see Fig. 9). However, when the cor-
relation structure is AR(1), which means that the random effect component is mis-
specified, the random forest had better performance. RE-EM trees and MERF do not 
show an advantage because these two methods were not designed for this case of 
correlation structure misspecification.

If the mean function is misspecified, the RE-EM trees and support-vector 
machine with a polynomial kernel had the advantages in terms of predicting future 
observations and future new observations regardless of whether the random effect 
component is misspecified or not (see Figs. 11, 12 and 13). It is not a surprise to see 
that the support-vector machine with a polynomial kernel had smaller RMSE values 

Fig. 3  The prediction results of new objects. The notations are the same as Fig. 2

Fig. 4  The prediction results of future new observations. The notations are the same as Fig. 2
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than when a linear kernel is used if the mean function is misspecified. The results 
according to TRMSE values are a slightly different from the conclusions accord-
ing to RMSE values. The boost method had the best performance according to the 
TRMSE values.

The results from the one-step and two-step predictions are presented in 
Tables 2,  3, 4 and 5, respectively. Regardless of how the correlated data was gener-
ated, the linear mixed model had the best performance both in the one-step and two-
step predictions when the mean function is correct. It is noted that in the simulated 

Fig. 5  The prediction results of future observation under fixed effects misspecification. The notations 
are the same as Fig. 2. The results of ‘nntanh’ is omitted in the plots because the range of RMSE and 
TRMSE is too large (the maximum of RMSE and TRMSE is 38.79 and 38.68, respectively)

Fig. 6  The prediction results of new objects under fixed effects misspecification. The notations are the 
same as Fig. 2. The results of ‘nntanh’ is omitted in the plots because the range of RMSE and TRMSE is 
too large (the maximum of RMSE and TRMSE is 327.38 and 327.14, respectively)
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data generated from the mixed-effects model, support vector machine had better 
performance when the mean function is misspecified according to TRMSE val-
ues. We can also conclude that the RE-EM trees and support-vector machine with 
a polynomial kernel performed well when the mean function is misspecified. The 
performances between the one-step and two-step predictions are different when the 
mean function is specified correctly while the correlation structure is different, see 
Table 4(a)(ii) and Table 5(a)(ii). In the one-step prediction, the linear mixed model 
is still comparable but not for the two-step prediction. The support vector machine 
method had the best performance when the random effect component is misspecified 
in the two-step prediction.

4  Application to real data

Two real data sets are analysed using these different methods in this section.

4.1  Case study 1: milk protein data

In this data set, milk was collected weekly from 79 Australian cows and analyses 
for its protein content. There are three diets: 25 cows received a barley diet, 27 cows 
a mixture of barley and lupins, and 27 cows a diet of lupins only. The observation 
period of each cow is not necessarily the same and each cow is observed for between 
12 weeks and 19 weeks (Fig. 14). There are 1337 observations of protein in total.

It appears from the Fig.  14 that barely gives higher values than the mixture, 
which in turn have higher values than lupins alone. The mean response profiles are 
approximately parallel, showing an initial sharp decline associated with a settling-in 

Fig. 7  The prediction results of future new observations under fixed effects misspecification. The nota-
tions are the same as Fig. 2. The results of ‘nntanh’ is omitted in the plots because the range of RMSE 
and TRMSE is too large (the maximum of RMSE and TRMSE is 4909.26 and 4908.88, respectively)
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period, followed by an approximately constant mean response through the following 
period and a slow rise towards the end.

Diggle et al. (2002) used the following mean response profiles model:

where i = 1, 2, 3 denotes treatment group with an exponential correlation function 
Cov (�j, �k) = �2 exp (−�|tj − tk|) . The covariates include time and quadratic of 
time.

However, the quadratic term is not significant and the breakpoint is not necessar-
ily to be a integer. According to the mean square error, the breakpoint we chose for 

�i =

{
�0i + �1t if t ≤ 3,

�0i + 3�1 + �2(t − 3) + �3(t − 3)2 if t>3,

Fig. 8  The results of future observations for the simulated data generated from marginal model with 
exchangeable correlation structure and AR(1) correlation structure. The notations are the same as Fig. 2
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this milk protein data is 2.6. So we use the piecewise mixed model with the mean 
response profiles model as follows:

where i = 1, 2, 3 denotes treatment group and with the different mean function

yi =

{
𝛽0i + 𝛽1t + bi1 + tbi2 + 𝜖i if t ≤ 2.6,

𝛽0i + 2.6𝛽1 + 𝛽2(t − 2.6) + bi1 + tbi2 + 𝜖i if t > 2.6,

𝜇i =

{
𝛽0i + 𝛽1t if t ≤ 2.6,

𝛽0i + 2.6𝛽1 + 𝛽2(t − 2.6) if t > 2.6.

Fig. 9  The results of new objects for the simulated data generated from marginal model with exchange-
able correlation structure and AR(1) correlation structure. The notations are the same as Fig. 2
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The bi1 and bi2 are the corresponding random effects for different groups. The esti-
mated parameters of �0i, �1, �2, bi1 and bi2 (i = 1, 2, 3) varied a bit according to the 
different size of training data in piecewise linear mixed-effects model. We focus on 
the predictive performance of the different models and the estimation of the param-
eters is not reported here. The one-step prediction and two-step prediction results are 
presented in Table 6(a). We can see that the piecewise linear mixed model has the 
best performance in one-step prediction. RE-EM trees also has advantages. Tree-
based methods have smaller RMSE values than support-vector machine and neural 
network methods.

Fig. 10  The results of future new observations for the simulated data generated from marginal model 
with exchangeable correlation structure and AR(1) correlation structure. The notations are the same as 
Fig. 2
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4.2  Case study 2: wages data

Wages data came from the National Longitudinal Survey of Youth (NLSY), 
which was previously studied by Singer and Willett (2003), Eo and Cho (2014) 
and Fu and Simonoff (2015). The data has the information of 888 individu-
als’ hourly wage. Each individual has the different observation times, ranged 
from 1 to 13. There are 6402 observations in total. In the linear mixed-effects 
model, the log of individual’s hourly wage (logwage) is the response variable, 
the covariates include exper, hgc and race. The individual’s races are White, 
Black and Hispanic. The variable hgc means the highest grade completed by 

Fig. 11  The results of future observations for the simulated data generated from marginal model with 
exchangeable correlation structure and AR(1) correlation structure under fixed effects misspecification. 
The notations are the same as Fig. 2
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the individual. Figure 15 present the plots of the time variable (exper, which is 
the duration of the working experience) and the log of wages at different race 
and hgc. The random intercept is included to indicate the differences between 
individuals. We used the eight cross-validation method to compare the predic-
tion performances between statistical models and machine learning methods. 
According to Table 6(b), RE-EM methods has the smallest RMSE. Tree-based 
methods and support-vector machine have similar results while the average 
RMSE values of LME and neural network are close in this case.

Fig. 12  The results of new objects for the simulated data generated from marginal model with exchange-
able correlation structure and AR(1) correlation structure under fixed effects misspecification. The nota-
tions are the same as Fig. 2
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5  Conclusions and discussion

We have presented the performances of the statistical models and six machine 
learning methods and two mixed effects machine learning methods for the longi-
tudinal data analysis. The parameters in the machine learning methods we used in 
the work are indicated and justified. Overall, the simulation results showed that 
the linear mixed-effects model is comparable with the various machine leaning 
methods when the models are correctly specified, included the fixed effects and 
random effects because we knew the truth model in the simulations. The per-
formances under the scenarios of the different mean function and the different 

Fig. 13  The results of future new observations for the simulated data generated from marginal model 
with exchangeable correlation structure and AR(1) correlation structure under fixed effects misspecifica-
tion. The notations are the same as Fig. 2
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correlation structures (exchangeable and AR(1)) are compared. Otherwise, even 
with the milk dataset (a real world dataset), the statistical model (especially, the 
piecewise linear mixed model) still performed better than the machine learning 
methods. This means that the piecewise linear mixed model provided an adequate 
fit to the original data. It can also be concluded that the model diagnostics are 
very important before making decisions regarding performance.

There are few references about how to measure the predictive power of meth-
ods in longitudinal data. The prediction accuracy according to a cross-validation 
method are not reasonable because longitudinal data are always sequential. In this 
work, we used one-step and two-step prediction along with future observation, 
new object and future new observation prediction. The performances of all kinds 
of methods are demonstrated comprehensively. In addition, we also presented the 
differences between RMSE and TRMSE values in the predictions. It is not sur-
prising to see that the TRMSE values are smaller than the RMSE values in data 
generated from marginal model because we measured that differences between 
the predictions and true values without noise. However, this is not always true, 
which can be found from the predictions in the data generated from a mixed-
effects model.

There are still some limitations in this study. The predictions between the differ-
ent methods are discussed rather than the parameter estimates and inferences in the 
longitudinal data. Misspecified models, including the mean function are considered 
in this work. Wang and Lin (2005) also investigated the effects of variance function 
and correlation structure misspecification in the analysis of longitudinal data. In this 
work, we only investigated the popular exchangeable and AR(1) correlation struc-
tures that are appropriate for equally spaced (in time) longitudinal data. However, 
unequally spaced observations and time-dependent correlated errors deserves more 
attention by researchers (Nunez-Anton and Woodworth 1994). It would be of great 
interest to evaluate machine learning performance in these settings. There are also 
other modified methods that combine mixed-effects models and tree methods (Fu 
and Simonoff 2015; Loh and Zheng 2013; Eo and Cho 2014) that deserve further 
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Fig. 14  The mean of protein for three different kinds of diet in milk protein data
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examination. An extended comparison with more recently developed machine learn-
ing methods, such as deep learning, would be of interest.

Table 6  The RMSE values for different methods in Milk data and Wages data

Best/smallest RMSE/TRMSE values are in bold
plme Piecewise Linear Mixed-Effects Model, diggle Diggle’s Model, re-em RE-EM trees with random 
intercept, tree Decision Tree Method, bag Bagging Method, rf Random Forest Method, boost Boosting 
Method, svm Support-Vector Regression Method, nn Neural Network Method

plme diggle re-em tree bag rf boost svm nn

(a) Milk data
One step prediction
Week 8 0.211 0.303 0.227 0.306 0.311 0.303 0.314 0.368 0.324
Week 9 0.226 0.292 0.237 0.301 0.291 0.293 0.292 0.360 0.310
Week 10 0.247 0.291 0.264 0.282 0.275 0.275 0.276 0.300 0.294
Week 11 0.291 0.322 0.300 0.308 0.307 0.307 0.306 0.304 0.317
Week 12 0.273 0.281 0.284 0.289 0.280 0.283 0.280 0.281 0.295
Week 13 0.223 0.293 0.248 0.286 0.296 0.287 0.296 0.306 0.297
Week 14 0.230 0.320 0.296 0.315 0.318 0.316 0.320 0.320 0.315
Week 15 0.282 0.317 0.304 0.316 0.315 0.315 0.315 0.330 0.315
Week 16 0.342 0.363 0.339 0.353 0.340 0.347 0.341 0.372 0.387
Week 17 0.264 0.309 0.272 0.307 0.284 0.291 0.284 0.319 0.294
Week 18 0.234 0.302 0.260 0.301 0.293 0.290 0.294 0.307 0.292
Week 19 0.263 0.315 0.263 0.314 0.308 0.309 0.305 0.314 0.310
Two step prediction
Week 9 0.259 0.294 0.247 0.303 0.311 0.299 0.309 0.419 0.341
Week 10 0.276 0.312 0.270 0.284 0.273 0.275 0.275 0.359 0.272
Week 11 0.333 0.383 0.312 0.307 0.314 0.310 0.315 0.315 0.315
Week 12 0.329 0.321 0.298 0.290 0.288 0.288 0.285 0.284 0.295
Week 13 0.266 0.289 0.261 0.287 0.292 0.285 0.291 0.309 0.284
Week 14 0.265 0.319 0.311 0.316 0.318 0.315 0.318 0.328 0.331
Week 15 0.311 0.317 0.314 0.316 0.316 0.316 0.316 0.333 0.313
Week 16 0.377 0.355 0.351 0.354 0.355 0.353 0.348 0.384 0.381
Week 17 0.314 0.324 0.285 0.309 0.293 0.302 0.296 0.334 0.296
Week 18 0.268 0.304 0.270 0.303 0.299 0.295 0.294 0.315 0.332
Week 19 0.292 0.315 0.272 0.315 0.311 0.311 0.310 0.315 0.319

lme re-em tree bag rf boost svm svmk nn

(b) Wages data
RMSE value 0.399 0.314 0.407 0.439 0.402 0.432 0.401 0.401 0.398
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