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Abstract
We consider situations where a model for an ordered categorical response variable 
is deemed necessary. Standard models may not be suited to perform this analysis, 
being that the marginal probability effects to a large extent are predetermined by the 
rigid parametric structure. We propose to use a rank likelihood approach in a non 
Gaussian framework and show how additional flexibility can be gained by modeling 
individual heterogeneity in terms of latent structure. This approach avoids to set a 
specific link between the observed categories and the latent quantities and it is dis-
cussed in the broadly general case of longitudinal data. A real data example is illus-
trated in the context of sovereign credit ratings modeling and forecasting.

Keywords  Ordinal data · Latent variables · Missing data · Gibbs sampler · 
Longitudinal data · Ratings

1  Introduction

Quantitative analyses in many research fields involve data sets which include var-
iables whose distributions cannot be represented by the most common ones such 
as Normal, Binomial or Poisson. Ranked data appear in many problems of social 
sciences, information retrieval and user recommendation. Examples are given by 
i) a document retrieval problem, where the goal is to design a meta-search engine 
according to a ranked list of web pages output by various search algorithms, and 
ii) the problem of ranking candidates by a large number of voters in elections (e.g. 
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instant-runoff voting) (Tang 2019). Distributions of this kind of data and com-
mon survey variables cannot be accurately described by any of the ones mentioned 
earlier. Additionally, in these cases, since the variables of interest are binned into 
ordered categories, interest often lies not in the scale of each individual variable, but 
rather in the associations between the variables (Hoff 2009). A relevant example in 
economics is provided by the sovereign credit ratings. They represent a condensed 
assessment of a government’s ability and willingness to repay its public debt both 
in principal and in interests on time (Miricescu 2012). Therefore these ratings rep-
resent assessments which are forward-looking qualitative measures of the probabil-
ity of default calculated by rating agencies. The credit assessments that the rating 
agencies award to sovereign issuers often can generate controversies in the financial 
markets, especially when the agencies’ ratings for the same country do not coincide, 
which can often occur (Valle and Marín 2005). The relevance of rating the credit-
worthiness of sovereign borrowers arises from the fact that national governments 
represent the largest issuers on capital markets and also because those ratings are 
seen as a ceiling to public and private sector issues (Afonso 2003). So far, the most 
common strands of empirical work in literature are represented, on one hand, by the 
ordinary least squares (OLS) analysis on a numerical representation of the ratings, 
which allows for a straightforward generalization to panel data in terms of linear 
mixed models. On the other hand, ordered response models are widely used (Afonso 
et al. 2006).

In the cases analyzed here, a response variable, represented by the sovereign 
credit ratings for a sample of countries, is binned into ordered categories. For nor-
mally distributed data the association between the quantity of interest and covariates 
can be analyzed using a multivariate normal linear regression model. These models 
can be extended to settings where the data are not normal, by expressing non-nor-
mal random variables as functions of unobserved, or “latent”, normal random vari-
ables. Multivariate normal linear regression models can then be applied to a “latent” 
response data (Hoff 2009). A large number of parametric generalizations have 
been proposed, which include alternative link functions, as well as semi- and non-
parametric approaches, which replace the distributional assumptions of the stand-
ard model, or the predictor function, by flexible semi or non-parametric functional 
forms. General surveys on the parametric and nonparametric literature are available, 
for instance, in Agresti (1999), Barnhart and Sampson (1994), Clogg and Shihadeh 
(1994), Winship and Mare (1984), Bellemare et al. (2002), and Stewart (2005).

The purpose of this paper is to incorporate the rank likelihood approach into the 
Generalized Linear Mixed Effects Models’ (GLMM) framework in order to deal 
with categorical longitudinal data. Our approach can be considered a direct generali-
zation of the rank likelihood analysis presented in Hoff (2009), to the mixed model 
context. Linear mixed models and GLMMs have increased in popularity in the last 
decades (Zuur et al. 2009; Bolker et al. 2009). Both extend traditional linear models 
to include a combination of fixed and random effects as predictor variables.

Section 2 of this article briefly describes some of the already existing models for 
modeling ordinal data and introduces the methodology of the present work. In par-
ticular, Sect. 2.1 is focused on ordered probit regression model with rank likelihood 
description and Bayesian inference, while Sect. 2.2 extends such a model to GLMM 



427

1 3

Generalized linear mixed model with bayesian rank likelihood﻿	

context. Section 2.3 deals with the missing data issue and contains the pseudo-algo-
rithm of Markov Chain Monte Carlo (MCMC) computation. Section 3 describes a 
case study, simulation studies and a discussion of the results.

2 � Methodology

There is a large amount of literature on probabilistic ranking models. The earliest 
work dates back to Thurstone (1927), Thurstone (1931), where items are ranked 
according to the order statistics of a Gaussian random vector. Bradley and Terry 
(1952) introduced an exponential family model for pairwise comparisons, and the 
model was extended by Luce (1959) and Plackett (1975) allowing comparisons 
among multiple items.

In what follows, we focus on the analysis of ordinal data, with special reference 
to sovereign credit ratings. However, this method can be useful in all circumstances 
where the response variable is recorded with ordered categories and the “distances” 
among categories are difficult to quantify.

2.1 � Ordered probit regression and the rank likelihood models

Linear or generalized linear regression models, which assume a numeric scale of 
the data, are suitable for quantitative response variables such as GDP or inflation; 
however, they are not appropriate for non-numeric ordinal variables like sovereign 
ratings. A way to model this kind of quantities is through the use of ordered probit 
regression, where the response � is related to a vector of predictors � through a 
regression in terms of a latent variable � . In more detail, the model can be stated as:

where � and g are unknown quantities. The regression coefficients � describe the 
relationship between the explanatory variables and the unobserved latent variable Z , 
while a non decreasing function g(⋅) relates the value of Z to the observed quantity 
Y . In a probit regression model, following Hoff (2009), the variances of �1,… , �n 
are set equal to 1, being the scale of the distribution of Y already represented by g, 
as g is allowed to be any non-decreasing function. Furthermore, g can represent the 
location of the distribution of Y , so there is no need to include an intercept term in 
the model.The analysis requires to specify a prior distribution for � and a (K − 1)

-dimensional vector g(⋅) , which represents the threshold parameters. However, com-
ing up with a prior distribution for g , describing the actual prior information, can be 
a difficult task.An alternative approach for estimating � , which does not require an 
explicit model on g(⋅) , can be considered with the help of the rank likelihood (Hoef-
fding 1951), since it is invariant under monotone transformations, and avoids the 
need to explicitly put a prior on the transformation function.So far this method has 

�1,… , �n
���

∼ N(0, 1)

Zi = �Txi + �i

Yi = g(Zi),
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been applied to model cross-sectional categorical data. In what follows we extend 
it to allow repeated observations as in the panel data context. More specifically, our 
main goal is to incorporate the rank likelihood approach into a GLMM’s framework.

Although we are not able to observe the Zi ’s directly, there is information in the 
data about them that does not require the specification of g(⋅) . Hoff (2009) notices 
that, if the actually observed data are such that y1 > y2 , then g(Z1) > g(Z2) . Since g 
is non-decreasing, this implies that Z1 ≥ Z2 . In other words, having observed � = � , 
we know that the Zi ’s must lie in the set

Since the distribution of Zi ’s does not depend on g , the probability that � ∈ R(�) for 
a given � does not depend on g as well. This suggests that the posterior inference 
can be based on the knowledge that � ∈ R(�) . The posterior distribution for � in this 
case is

where N(w, a, b) is the normal density with mean a, variance b evaluated at w and 
p(�) is a suitable prior distribution. As a function of � , the quantity Pr(� ∈ R(�)|�) 
is known as a rank likelihood. In the context of linear models, the rank likelihood 
was introduced by Pettitt (1982) and its theoretical properties were explored by 
Bickel and Ritov (1997).

The name rank likelihood comes from the fact that, for continuous data, it contains 
the same information about � as knowing the ranks of 

{
y1,… , yn

}
 , i.e., which one 

is the highest value, which one is the second highest value, and so on. For any ordi-
nal outcome variable Y , information about � can be obtained from Pr(� ∈ R(�)|�) 
without having to specify g(⋅) . This property has great consequences from a compu-
tational perspective. Using a Gibbs type algorithm, given a current value � , the full 
conditional density p(�|�,� ∈ R(�)) reduces to p(�|�) (Hoff 2009). Therefore the 
full conditional of � only depends on � and it satisfies p(�|�, �) ∝ p(�)p(�|�) . Using 
a standard g-prior on � (Zellner 1986:

p(�|�) is a multivariate normal distribution with

The full conditional distribution of each Zi conditional on � and the rest of the Zj ’s 
(j ≠ i) , is proportional to a normal density, constrained by the condition � ∈ R(�) . 
This implies that Zi must lie in the interval:

R(�) =
{
z ∈ ℝ

n ∶ zi1 < zi2 if yi1 < yi2 , ∀i1, i2 = 1,… , n
}

p(�|� ∈ R(�)) ∝ p(�)Pr(� ∈ R(�)|�) = p(�)∫R(�)

n∏
i=1

N(zi, �
T�i, 1)dzi,

� ∼ Np(�, n(�
T�)−1),

E[�|�] = n

n + 1
(�T�)−1�T�, Var[�|�] = n

n + 1
(�T�)−1.

max
{
zj ∶ yj < yi

}
< Zi < min

{
zj ∶ yi < yj

}
.
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Letting a and b denote the numerical values of the lower and upper endpoints of this 
interval, the full conditional distribution of Zi is then (Hoff 2009)

2.2 � Generalized linear mixed effects models using rank likelihood

Here we aim to incorporate the rank likelihood approach into the GLMM’s frame-
work. More specifically, the previously described latent variable model is extended 
in the following way: let T be the number of occasions where data are collected; for 
t = 1,… , T  and j = 1,… ,m

where

Let �j = (Y1j,… , YTj) and �j = (Z1j,… , ZTj) be T × 1 response and latent quanti-
ties respectively. Here �j is a T × p design matrix of covariates for the j-th group 
of observations, j = 1,… ,m ; � is a p × 1 vector of uniquely defined ’fixed effects’, 
�j is a random variable which represents the random effect for each group; finally �j 
is a T × 1 vector of random errors. Notice, that the location of the steps of the gt ’s 
change over time. The conditional distribution that generates the latent data is:

Let atj and btj denote the numerical values of the lower and upper endpoints of the 
interval. Then Z is now bound by the following constraints:

For the sake of simplicity, a non-informative prior is selected for the regression coef-
ficients, that is �(�) ∝ 1. More informed prior distribution can be easily introduced. 
We also assume a normal prior for the random effects, namely

with independent scaled inverse chi-squared distributions for their variances,

This is a quite standard assumption, which allows to tune the thickness of the 
tails of the density of the �j ’s through the hyperparameters (�, �2) . There is no a 

p(zi|�, � ∈ R(�)) ∝ N(zi, �
T��, 1) × �(ai,bi)(zi), i = 1,… , n.

Ytj = gt(Ztj); Ztj = �TXtj + �j + �tj

�tj
���

∼ N(0, 1), t = 1,… , T , j = 1,… ,m

�j|�, �j ∼ N(�� + �j, I)�(�j,�j)(�j)

max
{
zth ∶ yth < ytj

}
< Ztj < min

{
zth ∶ ytj < yth

}
.

�j|�2
j

���

∼ N(0, �2
j
), j = 1,…m,

�2
j

���

∼ Scale-Inv-�2(�, �2) j = 1,…m.
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general guidance for selecting the values of (�, �2) . Our model assumes exchange-
able random effects with tail thickness specified by their values. Those values may 
be selected using expert opinion and/or historical data. More pragmatically, it is 
advisable to perform a sensitivity analysis over a reasonable range of values. A more 
thorough analysis can be found in Ariyo et al. (2022). In our simulation study and 
real data application we have checked the sensitivity of the results to (�, �2) and we 
did not notice particular problems. Ideally, one could also assume a hyperprior on 
(�, �2) , but the choice of the parameters of this prior would remain an open question.

The joint posterior density can be written as

where, setting � = (�1,… , �m) , the likelihood term can be written as

More in detail, the prior distributions for the random effects and their variances have 
the following form:

where � represents the shape parameter, and �2 can be interpreted as a prior ’guess’ 
of the appropriate variance. We refer to � and �2 in the algorithm as prior hyper-
parameters, as they can be calibrated in accordance with features or goals of the 
specific application. These hyperparameters are fixed and do not depend on j. All 
the components of � are assumed to be mutually a priori independent, as well as 
independent of � . It is now easy to implement a Bayesian inference through the use 
of a Gibbs sampler algorithm, after deriving the full conditional distributions whose 
detailed computation is described in the Appendix.

2.3 � Missing data imputation

The missing data issue is widespread in many research fields. Sometimes missing 
data can arise from design, but more often data are missing due to reasons beyond 
the researcher’s control. The extent of damage caused by missing data depends on 
the quantity of records for which data is missing relative to the quantity of com-
plete records, and on the possible influence of incomplete records on the estima-
tion. What most researchers try to do is to fill the gaps in the data with different 
types of guesses and statistical estimates (Honaker and King 2010). If handled 
inappropriately, missing data may lead to biased and inefficient inferences. A 

p(�, �,�2, z|y) ∝ p(y|z)p(z|�, �)p(�|�2)�(�2)�(�)

p(z��, �) =
m�
j=1

T�
t=1

p(ztj��, �j) =
m�
j=1

T�
t=1

1√
2�

exp
�
−
1

2
(ztj − �j − �Txtj)

2
�
.

p(�|�2) ∝

m∏
j=1

1

�j
exp

{
−
1

2

�2
j

�2
j

}
; �(�2) ∝

m∏
j=1

1

�2
j

�

2
+1

exp

{
−
1

2

��2

�2
j

}
,
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variety of approaches has been proposed for dealing with missing data, includ-
ing ad hoc methods such as complete-case analysis and available-case analysis, 
as well as "statistical principled" methods like multiple imputation, maximum 
likelihood and fully Bayesian approach. Regardless of their simplicity, the ad 
hoc approaches are generally inappropriate since they lead to bias and loss of 
precision. “Principled” methods are better alternatives since they consider infor-
mation from the observed data and the uncertainty introduced by the missing 
ones through making assumptions on missing data mechanisms (Mason et  al. 
2010). The Bayesian approach provides a natural way to consider this kind of 
uncertainty(Daniels and Hogan 2008; Ibrahim et  al. 2005). In this framework, 
in fact, missing data are considered random variables, and therefore the miss-
ing variables can be sampled from the corresponding conditional distributions 
through MCMC, and inferences can be obtained from the posterior distributions 
(Ahmed 2011). Recent advances in computation capacity and the fast develop-
ment of efficient algorithms have made Bayesian methods more feasible in a wide 
area of missing data problem (Huang et al. 2005). There are available softwares, 
such as the BUGS family of programs like WinBUGS (Lunn et al. 2009), JAGS 
(Plummer 2003) (Stan Development Team  2012) and Proc MCMC (SAS 2014), 
suitable to handle various types of missing data problems.

In the case of sovereign credit ratings, for some of the years considered in the data 
set, ratings were not available. Therefore, we treated missing data as latent quanti-
ties and produced a sample from the posterior distribution of them. This approach 

Table 1   Time series data of 
sovereign credit ratings across 
6 countries for 16 years. NAs 
represent missing observations

IT US FR DEU ESP JPN

2003 20 22 22 22 22 22
2004 20 22 22 22 NA NA
2005 20 22 22 22 22 22
2006 20 22 22 22 22 22
2007 19 22 22 22 22 22
2008 NA 22 22 NA 22 22
2009 19 NA NA 22 22 22
2010 19 22 22 22 21 21
2011 18 22 22 22 21 21
2012 16 22 22 22 17 17
2013 15 22 21 22 14 14
2014 15 22 21 22 15 15
2015 15 22 20 22 15 15
2016 15 22 20 22 15 15
2017 14 22 20 22 15 15
2018 14 22 20 22 16 16
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provides a means to retain partial information in each transaction with missing data, 
strengthening the overall inference (Knight et al. 1998).

In the sovereign credit ratings case, data are missing in the response variable 
only; however Table 1 does not suggest evident missingness patterns, and one can 
safely assume a missing completely at random mechanism (Rubin 1976).

Treating the missing data as unknown parameters allows us to use Gibbs sam-
pler to make inference on all the parameters of the model, say � , as well as to 
make predictions for the missing values. Let Y be the T × m matrix of all potential 
data, observed and missing, and let O be the T × m matrix in which otj = 1 if Ytj is 
observed and otj = 0 if Ytj is missing; the matrix � can be thought of as consisting of 
two parts:

•	 Yobs =
{
ytj ∶ otj = 1

}
 , observed data;

•	 Ymiss =
{
ytj ∶ otj = 0

}
 , missing data.

Here one needs to compute p(�,Ymiss|Yobs) , that is the posterior distribution of 
unknown and unobserved quantities. Following Hoff (2009), a Gibbs sampling 
scheme for approximating this posterior distribution can be built, adding one step 
to the Gibbs sampler used for the other model’s parameters. Given a starting value {
Ymiss

(0)
}
 , at iteration i, we generate 

{
�(i+1),Ymiss

(i+1)
}
 from 

{
�(i),Ymiss

(i)
}
 by: 

1.	 sampling �(i+1) from p(�|Yobs,Ymiss
(i));

2.	 sampling Ymiss
(i+1) from p(Ymiss|Yobs,�

(i+1)).

Since our model does not assume any specified distribution for the observed quan-
tities � , one needs some extra assumption in the presence of missing data. In 
what follows we take the simplest assumption that � follows a uniform distribu-
tion over the admissible values. More precisely, the full conditional distribution of 
each missing ytj is uniformly distributed on a compact set determined by the con-
straints introduced by the �’s. In details, for all values of t = 1,… , T  and for h ≠ j , 
yth < ytj ⟹ zth < ztj; then

then we make the additional assumption that

This assumption, however exogenous, does not compromise the Markov structure of 
the algorithm, since the other full conditional distributions are only based on rela-
tive comparisons among the values of the Y’s. In theory, one could also replace the 
missing value with the midpoint of the corresponding interval. Assuming a uniform 
distribution allows us to introduce a sort of nugget effect.

The general pseudo-code can be represented as follows:

max(yth ∶ zth < ztj) ≤ ytj ≤ min(yth ∶ ztj < zth);

(1)ymiss
tj

|yobs, ztj ∼ Unif
(
max(yth ∶ zth < ztj), min(yth ∶ ztj < zth)

)
.
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Algorithm 1 Gibbs sampling for Generalized Linear Mixed Effects Model using Rank

Likelihood considering missing data imputation
For j = 1, . . . ,m and t = 1, . . . , T initialize γj, ztj and y∗tj where y∗tj represents missing

data

Initialize β

Fix S (number of iterations) and the prior hyperparameters of the model ν and τ 2

for i = 1, . . . , S do

for j = 1, . . . ,m do

σ
2(i)
j |γ(i−1)

j ∼ Inv-scaled-χ2(ν + 1, τ 2 +
γ
2(i−1)
j

ν
).

for t = 1, . . . , T do

γ
(i)
j |σ2

j
(i)
, z

(i−1)
tj ∼ N(

∑T
t=1(z

(i−1)
tj −βT (i−1)xtj)

T+ 1

σ
2(i)
j

, 1
T+ 1

σ
2(i)
j

)

end for
end for

for t = 1, . . . , T do

for j = 1, . . . ,m do

set a(i)tj = max
{
z
(i−1)
th : yth < ytj

}
; b(i)tj = min

{
z
(i−1)
th : ytj < yth

}

z
(i)
tj ∼ N(Xβ(i−1) + γ

(i)
j , I)δ(atj ,btj)ztj

set ay(i)tj = max
{
yth : z(i)th < z

(i)
tj

}
; by(i)tj = min

{
yth : z(i)tj < z

(i)
th

}

y
∗(i)
tj ∼ Unif((ay(i)tj , by

(i)
tj )

end for
end for

β(i)|z(i) ∼ Np((
∑m

j=1 x
T
j xj)−1 ∑m

j=1(x
T
j (z

(i)
j − γ

(i)
j )), (

∑m
j=1 x

T
j xj)−1)

end for

Finally, an important step when dealing with time series is the possibility to make 
some statistical statements on future values. Since we did not make any specific 
assumption on the function � , it is actually not possible to predict the values of � at 
any time t∗ > T  . For the sake of simplicity, consider the case t∗ = T + 1 . The only 
available information is given by the relative positions of zT+1,j ∀j = 1, ...,m . There-
fore, predictions can be only done in, admittedly, a quite approximate way: after 
computing the posterior means of z(i)

T+1,j
 for all j = 1,… ,m , one can consider the 

relative ranking for the corresponding and unknown values of the �T+1 . The weak-
ness of this approach is that it completely ignores the quantification of the 
uncertainty.

3 � Case study. Sovereign credit ratings

Rating agencies deal with a set of variables that are incorporated in a risk model 
to give a particular score to each sovereign issuer. These ratings form a classifica-
tion that is ordinal in character and there is a division between what is known as an 
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investment grade, rated from AAA​ to BBB according to S &P and Fitch, and from 
Aaa to Baa according to Moody’s, and what is termed as speculative grade, rated 
from BB to C or from Ba to C, respectively (Afonso et al. 2012).

To assess the credit risk of governments, it is necessary to take into account both 
solvency facts and aspects such as the stability of the political system, social cohe-
sion and the degree of interdependence with international economic and financial 
systems. See, for instance, Bulow and Rogoff (1988) and Bulow (1992) for the dif-
ferences between corporate and sovereign default. It is also important to highlight 
that sovereigns, unlike corporate issuers, are less likely to face claims from creditors 
if a circumstance of a default arises. This is true even when governments have an 
incentive to make payments, resulting from the possibility of capital market autarky 
(Afonso 2003). Reinhart (2002) indicates that sovereign credit ratings are useful in 
predicting sovereign distress. When a sovereign defaults, it can suffer reputation 
costs, lose the assets abroad, worsen its access to international capital markets and 
even delay international trade (Bulow and Rogoff 1988; Duffie et al. 2003). Fitch’s 
credit ratings for the issuers represent an opinion on a relative stability of an entity, 
in our case of a specific country, to meet financial commitments, such as interest, 
preferred dividends, repayment of principal, insurance claims or counterparty obli-
gations. We consider the categorization of the 22 Fitch rating categories, where 1 
(DDD-D) refers to the lowest, and 22 (AAA) to the highest credit rating category. 
Notice that we assign 1 to all three default categories, more precisely, to D, DD and 
DDD sovereign ratings.

3.1 � Explanatory variables

The credit ratings actually awarded are based on a mixture of quantitative and quali-
tative variables. According to Fitch, in the list of variables to take into account in the 
rating of sovereign issuers, up to fourteen subgroups are distinguished, as follows: 
demographic, educational and structural factors, labor market analysis, structure of 
output and trade, dynamism of the private sector, balance of supply and demand 
in the economy, balance of payments, constraints to medium term growth, macro-
economic policy, trade and foreign investment policy, banking and finance, external 
assets, external liabilities, politics and the State, and international position. In total 
128 variables are monitored (Valle and Marín 2005). After a first analysis, where 
the plausibility of the economic relations was assessed, the following variables have 
been selected:

•	 GDP per capita (OECD);
•	 Estimate of governance (The World Bank);
•	 Inflation, annual in percentage (The World Bank).

Cantor and Packer (1996) and Mellios and Paget-Blanc (2006) find that GDP per 
capita plays an important role in determining a country’s credit rating. This indica-
tor represents a measure of the country’s development and can be seen as an indica-
tor of the tax basis available in the economy. Countries with lower GDP per capita 
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may be less able to solve debt service problems by implementing austerity measures. 
Therefore, the bigger GDP per capita, the more likely is the attribution of a higher 
rating level. The estimate of governance reflects perceptions of the quality of public 
services, the quality of the civil service and the degree of its independence from 
political pressures, the quality of policy formulation and implementation, and the 
credibility of the government’s commitment to such policies. The values of this rat-
ing range from approximately -2.5 (weak) to 2.5 (strong) governance performance. 
Inflation rate has two opposite effects on the existing stock of government debt. An 
increase of inflation improves the public debt dynamics by reducing the real value of 
government debt. Nevertheless, at the same time, a rise in inflation negatively con-
tributes to debt dynamics because it makes it necessary for the government to pay 
higher nominal interest rates. High inflation may flag excess demand or labor market 
distortions; additionally it can also imply a lack of capacity for a country to finance 
its public expenditures using only public revenues and issuing public debt. There-
fore it should be expected to see a negative relation between the level of rating and 
inflation rate (Afonso 2003). In our analysis we have considered ratings from 2003 
to 2018 for the following countries: Italy, USA, France, Germany, Spain and Japan.1 
In order to analyse sensitivity to the hyperparameter values, we have performed sev-
eral replicates of the algorithm with different values of (�, �2) . In detail, we run a 
Gibbs sampler for �2 = 0.2, 0.5, 1, 2, 5 and � = 1, 5, 12, 16, 18 . The hyperparameters 
combination that provided the most satisfying results in terms of convergence and 
accuracy was ( �2 = 0.5 , � = 16 ). All the covariates have been previously standard-
ized. The initial values of the chains were set equal to 0 for �j , j = 1,… , 3 , to 0.1 for 
z’s and for the random effects. As for the missing data, their initial values were set to 
the average rating for each considered country.

3.2 � Results

The standard approach for assessing the convergence of MCMC algorithm is based 
on simply plotting and inspecting traces of the observed series. Trace-plots (not 
reported here) did not suggest any particular concern about the Markov chain’s evo-
lution through the 30.000 iterations, both for fixed and random effects’ parameters 
of the model. Only the trace-plot of the first regression coefficient, related to the 
GDP per capita shows a slower convergence compared with the other �’s. The third 
explanatory variable always has a negative impact on Y; indeed the posterior mean 
of �3 is −0.32 , which highlights how the negative effect of Inflation on the govern-
ment debt dynamics prevails on the positive one expressed by reduction of its real 
value. Regarding the other regression coefficients, it is not easy to interpret their 
impact, since the value of �2 corresponding to Government Effectiveness seems to 
fluctuate between -1 and 1 with the posterior mean equal to -0.06, and a similar situ-
ation is observed for GDP per capita.

1  See the website https://​tradi​ngeco​nomics.​com/​italy/​rating.

https://tradingeconomics.com/italy/rating
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A similar analysis has been conducted for the random effects �j , j = 1,… , 6 ; in 
this case all the chains mixed well. We also performed more formal diagnostics, by 
running multiple chains and using the Gelman and Rubin statistics. As suggested 
in Brooks and Gelman (1998), the approximate convergence is diagnosed when the 
so-called potential scale reduction factor (PSRF) for all model parameters is close 
to 1. Here, we have run three Markov chains for the same number of simulations as 
before. For almost all the parameters, the PSRF does not exceed the value of 1.01, 
except for �3 with PSRF equal to 1.02 and �1 with PSRF equal to 1.07. So, no severe 
convergence issues were detected.

In order to check the prediction performance, we have run the algorithm remov-
ing the last observations and then predicted their values through the model. We 
report the result in Fig. 1. Looking at the predictions of ratings, several considera-
tions are in order. First, one should notice how the model succeeds in correctly esti-
mating the order of the sovereign debt ratings of the considered countries. In par-
ticular, USA and Germany show approximately the same ratings, higher than those 
of the other countries. France has a lower rating compared to USA and Germany, 
but higher than Italy, Spain and Japan. Finally, Italy has the lowest sovereign credit 
rating. Notice that the scale of the predictions in Fig. 1 is different from the scale of 
the original dependent variable, due to the fact that prediction is carried out in terms 
of the latent variable z. In addition, one should also notice that, for some countries 
with approximately equal rating histories, like Spain and Japan, relative ratings are 
not predicted so precisely. In fact, in the case of Spain and Japan, the rating pre-
dicted for the latter is lower than the one predicted for the former country. Figure 2 
shows the estimated � paths for all countries and the relative predictions (red dots). 
Figures 3 and 4 contain the box-plots of the posterior distributions of the latent vari-
ables � at each considered time unit.

To better assess the performance of the proposed model, a comparison with 
already existing methods is in order. To this end, ordinal Logit and ordinal Probit 
models were also implemented. In particular, we used the Cumulative Link Mixed 
Model function in the R package ordinal, where the maximum likelihood esti-
mates of the parameters are provided using a Laplace approximation. Figure  5 
shows predictions of the ratings at time T + 1 with the logit link function. Similar 

Fig. 1   Real values (blue circles) 
and predictions (red triangles) 
of the last observation using 
GLMM with Rank Likelihood. 
Predictions are expressed in the 
Z scale
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results were obtained using a probit link function. Again, one can notice the switch-
ing in rating prediction for Spain and Japan. For the sake of completeness, a Bayes-
ian Generalized Logistic and Probit Mixed models have been also fitted using the R 

Fig. 2   Estimated latent values for all countries; red points at the end of the paths denote predictions

Fig. 3   Box-plots of the posterior distribution of the latent variables �’s: Italy, USA and France. Box-plots 
for 2018 denote predictions
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Fig. 4   Box-plots of the posterior distributions of the latent variables �’s: Germany, Spain and Japan. 
Box-plots for 2018 denote predictions

Fig. 5   Sovereign debt ratings: 
real values (blue circles) and 
predictions (red triangles) of the 
last observation using a logit 
ordered model

Fig. 6   Sovereign debt ratings: 
real values (blue circles) and 
predictions (red triangles) of the 
last observation using a Bayes-
ian Generalized Logit Mixed 
model
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package brms, which implements a Hamiltonian MCMC for Bayesian Multilevel 
Models using Stan. Figure  6 reports the corresponding predictions, using default 
choices for the hyperparameters’ values and a logit link. One can notice that, over-
all, the predicted values reflect the order of the real sovereign credit ratings, even 
though point prediction of the Y’s values are not quite accurate. In particular, the 
logit model underestimates ratings for France, Spain and Japan. Again, a probit link 
model produced very similar results.

3.3 � Simulation study

In order to explore the performance of the proposed model in more complex sce-
narios, we have also performed a simulation study. We have simulated 3 datasets of 
length t = 30 for 5, 10 and 15 different statistical units, respectively. We have set the 
fixed effects parameters as �1 = 4 , �2 = −0.8 , �3 = −3 for the dataset with 5 groups 
and �1 = −0.4 , �2 = 3 , �3 = −2 for datasets with 10 and 15 groups. The variance of 
the random effects has been set equal to 0.83, corresponding to the expected value 
of the prior of the same parameter in the previous real data example. Regarding the 
values of the explanatory variables, we assumed Xj ∼ U(0, 5) and errors �tj ∼ N(0, 1) 
for all t = 1,… , T  , and for all j = 1,… ,m where m is the number of considered 
units. After simulating the latent variables z, we produced the “real” data using the 
simple transformation Y = ⌈Z⌉ , where the operator ⌈a⌉ is the smallest integer not less 
than a. We obtained a final data set with values between −17 and 19 in the scenario 
with 5 groups and between −10 and 14 in the case of 10 and 15 groups. We binned 
the generated values into categories of size 3 in the case of 5 unit and of size 2 
in the other cases, in order to obtain 12 categories for both settings. For each cat-
egory we took the central value to be representative of the class. The random effects 
prior hyperparameters were set to �2 = 0.5 and � = 23 for the data sets with 5 group, 
�2 = 0.5 and � = 30 for 10 groups case, � = 0.5 and �2 = 10 for 15 groups case.

Figure 7 reports the predictions of the last observation for the simulated dataset 
with 30 observations and 15 groups; those predictions must be considered largely 
satisfactory. Figure  8 shows predictions computed using the Logit ordinal model, 
while Fig. 9 refers to predictions obtained using a Bayesian Logit model in brms. 
Performances are very similar: the ranking of the sovereign ratings is correctly 

Fig. 7   Simulated data: Real 
(blue circles) and predicted 
(red triangles) values of the 
last observation using GLMM 
with Rank Likelihood ( n = 30 , 
m = 15 ). Predictions are 
expressed in the Z scale
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predicted, although some numerical predictions are over or underestimated, and this 
behavior is even more evident as the number of groups increases. Additional results 
of the simulation study are reported in the Supplementary Material.

As a final comment, the proposed model performed well in all the simulation 
studies. In the more difficult scenarios with a large number of “short” series, all the 
considered methods show some common issues and the exact ordering of the predic-
tion is hard to obtain.

4 � Conclusions

Ordered categorical data are difficult to manage without resorting to strict assump-
tions. In this paper we exploit the ideas described in Bickel and Ritov (1997) and Hoff 
(2009) in order to generalize the use of rank likelihood based methods to the case of 
repeated measurements, i.e. in the presence of short time series of ordinal data. In com-
parison with the existing methods, a GLMM based on rank likelihood has pros and 
cons. The main advantage over the ordered logit and probit models is that we are not 
bound to choose a specific parametric form of the link function. Like any nonparamet-
ric alternative to an existing parametric model, this sort of robustness is paid in terms 
of efficiency when the parametric model is approximately true. In this respect we have 

Fig. 8   Simulated data: Real 
(blue circles) and predicted 
(red triangles) values of the 
last observation using a Logit 
ordered model ( n = 30 , m = 15)

Fig. 9   Simulated data: Real 
(blue circles) and predicted 
(red triangles) values of the last 
observation Bayesian Gen-
eralized Logit Mixed model. 
( n = 30 , m = 15)
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noticed that the proposed method is generally superior to the parametric models as the 
number of different groups increases.

The method discussed here does not assume any specific parametric form other 
than the standard Gaussian distribution for the latent variables. We have compared the 
method with some of the existing alternative approaches and our results were definitely 
satisfactory. An additional issue not discussed here is related to predictions. We made 
predictions assuming a stationary behavior of the short series: as suggested by a ref-
eree, in some situations, in the presence of specific information, one could assume a 
more refined model, for example in terms of cointegration of the short series. We are 
currently working in this direction.
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Full conditional distributions
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or

•�j , for j = 1,… ,m,

Since the last expression is proportional to a normal kernel, in order to find the mean 
and variance of the resulting distribution, it can be more appropriate to find the max-
imum density point, which would correspond to the mean. As for the variance, it 
is necessary to compute the second derivative of the log density with respect to �j , 
which would provide us with the negative value of the inverse variance of the given 
distribution.
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also,

and the variance is
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and

and finally
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