
ORIGINAL PAPER

Bayesian GARCH modeling of functional sports data

Patric Dolmeta1 · Raffaele Argiento2,3 · Silvia Montagna3,4

Accepted: 1 September 2022 / Published online: 16 September 2022
© The Author(s) 2022

Abstract
The use of statistical methods in sport analytics has gained a rapidly growing interest
over the last decade, and nowadays is common practice. In particular, the interest in
understanding and predicting an athlete’s performance throughout his/her career is
motivated by the need to evaluate the efficacy of training programs, anticipate fatigue
to prevent injuries and detect unexpected of disproportionate increases in perfor-
mance that might be indicative of doping. Moreover, fast evolving data gathering
technologies require up to date modelling techniques that adapt to the distinctive
features of sports data. In this work, we propose a hierarchical Bayesian model for
describing and predicting the evolution of performance over time for shot put ath-
letes. We rely both on a smooth functional contribution and on a linear mixed effect
model with heteroskedastic errors to represent the athlete-specific trajectories. The
resulting model provides an accurate description of the performance trajectories and
helps specifying both the intra- and inter-seasonal variability of measurements.
Further, the model allows for the prediction of athletes’ performance in future sport
seasons. We apply our model to an extensive real world data set on performance data
of professional shot put athletes recorded at elite competitions.

Keywords Performance analysis · Bayesian functional data analysis · GARCH
models · Sport analytics · Latent factor modelling

1 Introduction

Shot put is a track and field event involving throwing (“putting”) the shot, a metal
ball (7.26 kg/16 lb for men, 4 kg/8.8 lb for women), with one hand as far as possible
from a seven-foot diameter (2.135 m) circle. In order for each put to be considered
valid, the shot must not drop below the line of the athlete’s shoulders and must land
inside a designated 35-degree sector. Athletes commonly put four to six times per
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competition, and their best performance is recorded. The complete Technical Rule
Book is available at the World Athletics website as attachment C2.1.1 The same
source also provides a short history of the sport, up to date rankings, records and All
Time Best lists.

In this work, we are interested in describing (and predicting) the evolution of
performance of professional shot put athletes throughout their careers. Figure 1
displays four examples of performance career trajectories of elite athletes. Each point
represents the athlete’s performance (as measured by throw length in meters) at a
professional competition. Figure 1 suggests that as the athlete ages, his/her
performance steadily increases (due to improved technique, physique, and practice),
plateaus, and then begins to decline. With performance modelling in mind, we notice
that different athletes have different career lengths and participate to a different
number or professional events each year. Some “local” (i.e., yearly) drops (or peaks)
in average performance with respect to the athlete’s ongoing trend are also
noticeable. For example, Christian Cantwell plays professionally for eighteen years,
enjoys several years of consistently good performance, then his average performance
drops on the 15th year of career, a year that can be recognised as a year of “worse”
performances. Zhang Qi, instead, competes professionally only for thirteen years,
generally participates to fewer events each year with respect to Cantwell, but
similarly experiences more variable performance on the 7th year of career, with a
drop in his average performance that year.

Performance results, such as those displayed in Fig. 1 for shot put, are collected at
professional competitions during the sport season, which varies from sport to sport.
Indeed, events are traditionally concentrated in some months of the year or across
consecutive calendar years, depending on the sport. For example, many football
leagues, such as the English Premier League, start in August and end in May of the
following year, whereas the Formula 1 championship begins in March and ends at
the end of November. Further, weather and environmental conditions may affect the
performances or even the practicability of the sport itself (Winter sports as opposed to
outdoor Summer sports). Thus, sport performance data have the distinctive
characteristic of being time-gathered, in that they are collected only during the sport
season. We believe such feature needs to be taken into account when modelling
performance to provide an accurate description of career trajectories. Indeed, in the
early career seasons an athlete will generally underperform with respect to his/her
overall career average performance, and will outperform in later seasons. Shot put
events range over the whole calendar year, with indoor competitions held during
Winter months and major tournaments, like the Olympics, the Diamond League and
the World Championship organised during Summer. Indeed, there are no evident
(off-season) “gaps” in data collection in Fig. 1. Since training sessions take place
during Winter months in preparation for major tournaments, it is reasonable to say
that the shot put season corresponds with the calendar year. Additionally, we have
already noted how the synthesis provided by yearly means captures some distinctive
features of the temporal evolution of performances. In Fig. 1, vertical lines represent
new years’ days: the time point at which seasons change.

1 https://www.worldathletics.org/about-iaaf/documents/book-of-rules.
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The literature associated with career performance in sport has grown considerably
in the last decade. Wimmer et al. (2011) model performance results in decathlon via a
semi-parametric latent variable model. Casals and Martinez (2013) identify variables
which may potentially influence player performance in basketball, and rely on mixed
effects models to study their relative contribution in explaining points and win score
in NBA games. Malcata et al. (2014) derive triathlon athletes’ individual quadratic
performance trajectories for peak performance prediction via linear mixed models,
accounting for covariates. Koulis et al. (2014) use hidden Markov models to assess
cricket players’ reliability and predict their batting performances. More recently, Lee
and Page (2021) study the performance curve, peak and optimal age of a basketball
player. They also quantify the influence of each player on the game, and investigate
which factors are predictive of a successful professional career. For the different
tasks, they rely on several techniques ranging from mixed-effects models, dynamic
time warping of performance curves to popular machine learning methods.

Some contributions that bear closer similarities with our modelling strategy
(described below) are Scott et al. 1999, Page and Quintana (2015), Vaci et al. (2019),
and Montagna and Hopker (2018). Scott et al. (1999) compare players’ careers in
different sports on the basis of performance. Specifically, they want to compare
athletes competing in different eras accounting for the relative difficulty of each year
within a sport. The proposed model is an additive model with components for the
innate ability of players, the effects of ageing and the differences between years.

Fig. 1 Each panel displays the performance results of a professional shot put athlete throughout his/her
career at elite competitions. Performance is measured in meters (length of the throw) and plotted against
the days elapsed since January 1st of each athlete’s career starting year. The dark vertical lines represent the
sport season changing points, namely new year days, while the step functions show the athlete-specific
yearly empirical mean in performance
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Nonparametric models are suggested for the ageing functions while hierarchical
random curves allow for different ageing effects across athletes. Results are then used
to classify athletes also across different eras. Page and Quintana (2015) treat NBA
players’ performance measurements as error prone observations from underlying
curves, which are flexibly modelled via Bayesian penalised B-splines. Further, a
hierarchical structure allows borrowing of information across trajectories and induces
grouping (clustering) of the athletes guided by the smoothing of the individual
curves. Vaci et al. (2019) describe the ageing curves of elite basketball players. The
contribution relies on Bayesian structural modelling for the extraction of two latent
factors describing development and ageing, respectively. The interaction of these
factors provides insights on the rates of development and deterioration of skills over
the course of a player’s lifetime. Finally, Montagna and Hopker (2018) propose a
Bayesian latent factor regression model for detecting the doping status of athletes
given their shot put performance results and other covariates. However, the authors
limit the analysis to data collected from 2012, whereas our interest is in describing
the trajectories in performance over the whole time span available for our data (1996
to 2016). For this time span, a global smoothness assumption for the trajectories
could be too restrictive. Indeed, data may exhibit jumps across seasons. See, for
example, the distinctive drops and peaks in Cantwell’s performance in Fig. 1. The
presence of jumps between seasons is even more striking when yearly average
performances are considered (step functions in Fig. 1).

In this work, we propose a Bayesian hierarchical additive model to describe the
evolution of performance of professional shot put athletes. Our additive model
consists of three components. First, we consider a smooth functional component for
capturing the overall variability in athletes’ performances, following Montagna et al.
(2012) and Montagna and Hopker (2018). The second additive component is a
random intercept, that quantifies the seasonal mean performance for each athlete as a
deviation from a grand mean. This component captures the inter-seasonal variability
of the data set, whereas the smooth functional component describes the intra-seasonal
evolution of performances. Finally, we complete our model specification accounting
for the effect of covariates through a regressive component. We embed our model in
a Bayesian framework by proposing suitable prior distributions for all parameters of
interest. We believe the presented model represents a flexible tool to analyse
evolution of performances in measurable sports, namely, all those disciplines for
which results can be summarised by a unique measure (e.g., distance, time or
weight). Further, our model can be used to predict the expected performance of an
athlete at future competitions within a given season, or in future seasons. To the best
of our knowledge, this represents a novel contribution in the sport analytics literature,
in particular when considering the attempt to model the seasonal nature of sports
data.

The rest of the paper is organised as follows. In Sect. 2, we describe the
motivating case study. In Sect. 3, we present the proposed model and briefly discuss
possible alternative settings. Moreover, we elicit priors for our Bayesian approach. In
Sect. 4, we outline the algorithm for posterior computation. In Sect. 5, we discuss
posterior estimates, argue on the performance of the model and interpret the model’s
parameters form a sport analytics perspective. Conclusions are presented in Sect. 6.
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2 The world athletics shot put data set

World Athletics (WA) is the world governing body for track and field athletic sports.
It provides standardized rules, competition programs, regulated technical equipment,
a list of official world records and verified measurements. The data at our disposal
was obtained with permission from an open results database (www.tilastopaja.eu)
following institutional ethical approval (Prop_72_2017_18). The data set comprises
56,000 measurements of WA recognized elite shot put competitions for 1115 athletes
from 1976 to 2016. For each athlete, the data set reports the date of the event, the best
result in meters, the finishing position, an indication of any doping violation during
the athlete’s career as well as demographic information (athlete’s name, WA ID
number, date of birth, sex and country of birth).

In this work, we restrict our analysis to results for athletes performing after 1996.
Indeed, we pursue consistency of measurement accuracy, and 1996 represents a
turning point in anti-doping regulation and fraud detection procedures. The resulting
data set is still sufficiently broad for our purposes. It contains 41,033 observations for
653 athletes (309 males and 344 females). The outcome of interest is the shot
distance, which ranges from a minimum if 10.6 up to a maximum if 22.56 m, with a
mean of 17.30 m.

As shown in Fig. 1 for a selection of athletes, data are collected over time.
Hereafter we will denote as tij the time at which the jth observation for athlete i is
recorded. tij corresponds to the time elapsed from January 1st of each athlete’s career
starting year to the date of the competition. Accordingly, equal time values for
different athletes can refer to different calendar years, but represent the same moment
in those athletes’ careers (e.g., three years into their careers). Moreover, different
athletes will have observations ranging over a large time span, according to the
length of their careers. Having described seasons as calendar years, athletes will also
compete in a different number of seasons. Figure 2 shows the total number of

Fig. 2 Left: total number of observations per season for all athletes. Right: each boxplot shows the
distribution of the athletes’ performances within each season
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observations per season as well as boxplots of the distribution of mean performances
across the various seasons. We notice that, after season 4, the number of observations
across all athletes per season decreases. The decreasing number of observations as
seasons increase is indicative of the fact that just a minority of athletes have very
long careers, and fewer athletes imply fewer data in later seasons. 19 years is the
longest observed career among all shot-putters in the dataset. Only three athletes in
our dataset enjoy a 19-years long career, namely, Catarina Andersson, Jon Kalnas,
and Reese Hoffa. The median career length (i.e., number of seasons in sport) is 7
years, and the shortest career length is 2 years of professional play. A general
increasing trend in performance can be observed as a function of career length (right
panel in Fig. 2) or, equivalently, the age of the athlete. In the following, we will
discuss two different modeling choices for age, respectively, accounting for its time
dependence and considering age as a fixed quantity, namely the age of the athlete at
the beginning of his/her career.

Table 1 reports descriptive statistics suggesting how sex, environment and doping
have an effect on the average value of the result. We point out that in our dataset we
only have 18 athletes who tested positive for doping at some point in their career.
Information on the date the test was taken (or if multiple tests were taken) is not
available in the data. As expected, performances for men are, on average, higher than
for women. Similar effects, despite less evident in magnitude, also hold true for the
variable environment, which takes values indoor and outdoor. Regarding environ-
ment, a further remark is in order. We already pointed out that major WA events take
place outdoor (27,800 observations) during Summer months, whereas less compet-
itive events are held inside between November and March (13,200 observations).
Figure 3 displays results in grey when recorded outdoor, and in black otherwise. We
can clearly see that field events gather in Summer months, whereas indoor events
take place during Winter (solid lines).

3 The model

Let n denote the total number of athletes in the study. We assume that shot put
performances for athlete i are given by noisy measurements of an underlying
function giðtijÞ:

Table 1 Performance results
conditioned on covariates

Mean Sd Max Min

Total 17.30 1.78 22.56 10.6

Women 16.09 1.35 21.70 10.6

Men 18.55 1.21 22.56 12.93

Not doped 17.30 1.79 22.56 10.6

Doped 17.77 1.35 20.88 13.55

Indoor 17.17 1.70 22.23 12.15

Outdoor 17.38 1.81 22.56 10.6
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yij ¼ giðtijÞ þ �ij ð1Þ

with �ij �iid Nð0;w2Þ independent errors. Recall tij is the time at which the jth obser-
vation for athlete i is collected, for j ¼ 1; . . .; ni, where ni is the total number of
measurements available on athlete i.

We further suggest an explicit functional form for giðtijÞ:
giðtijÞ ¼ fiðtijÞ þ lis þ xiðtijÞb ð2Þ

where fiðtÞ is a smooth functional component for intra-seasonal variability, lis a
season-specific intercept, and xiðtÞb is an additional multiple regression component.
Here s 2 f1; 2; . . .; Sig indicates the season in which the shot was recorded.

Specifically, lis � liðtijÞ ¼
PSi

s¼1 lis Iðtsi ;tsþ1
i ÞðtijÞ is an athlete-specific step function

taking value lis for all time points in season s, delimited by tsi and tsþ1
i . For a

complete treatment of the notation used insofar, please refer to Table 2.
Before discussing each of the three terms in Eq. (2) in more detail, we remark that

our model can be seen as a generalised additive mixed-effects model (GAMM).
Specifically, time is allowed to have a non-linear impact on an athlete’s performance
via the smooth functional component fi, there is a linear regression component for the
covariates, and the season-specific intercept is itself a functional expansion, taking
constant values over seasons. We acknowledge that GAMMs have been proposed
before in the sport analytics literature [e.g., Vaci et al. (2019)], but not with the direct
intent to capture the major sources of variability of performance data.

3.1 The functional component

The functional component fiðtÞ is meant to capture the subject-specific global
evolution of the response variable. It explains the global dependence of the data from
time. We require that these functions display a smooth behaviour: the latter is assured

Fig. 3 Performance results displayed according to the variable environment, which takes values indoor
(black) and outdoor (gray). Vertical lines corresponding to the label ticks represent season changes,
whereas the two enclosing it indicate the boundaries of winter months
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by assuming ffiðtÞgni¼1 are linear combinations of smooth basis functions, fbrðtÞgpr¼1.
Note that, both the nature and the number p of these bases are to be determined
according to some properties we wish them to satisfy. In particular, we assume:

fiðtÞ ¼
Xp
r¼1

hirbrðtÞ ð3Þ

where fbmðtÞgpr¼1 represent the B-spline basis de Boor (1978) and fhirgpr¼1 are
subject-specific coefficients.

We briefly recall that the B-spline basis of degree k on [L, U] is a collection of p
polynomials defined recursively on a sequence of points, known as knots, and
indicated with L � t1 � . . .� tpþkþ1 � U . We follow the common approach of
choosing k ¼ 3, leading to cubic splines (see, for instance, Marsden (1974)).
Moreover, we assume the knot sequence to be equispaced and ðk þ 1Þ-open. That is,
the first and last k þ 1 knots are identified with the extremes of the definition interval,
whereas the remaining p� k � 1 knots divide said interval into sets of the same
length. Under these assumptions, each basis function bjðtÞ has compact support over
k þ 1 knots, precisely ½tj; tjþkþ1�. Moreover, together they span the space of piecewise

polynomial functions of degree k on [L, U] with breakpoints ftngpþKþ1
n¼1 . Finally, such

functions are twice continuously differentiable at the breakpoints, de facto
eliminating any visible type of discontinuity and providing a smooth result.

Choices for the number and location of the knots are ultimately driven by the
desired level of smoothness of the estimated trajectories in a particular application.
For simplicity, we have decided to set the interior knots to be equally-spaced,
although a different choice would not pose any conceptual or practically challenges.
For example, if the data was denser in a particular part of the input space one could
choose to place more knots in the corresponding sub-interval to allow for more
flexible estimates locally. We did not deem this to be of practical importance in our
application. Regarding the number of basis functions, splines have overlapping
supports hence, in general, several bases compete in capturing the local behaviour of

Table 2 Mathematical notation

Symbol Meaning

i Index identifying the athlete

j Index identifying a specific observation

n Total number of athletes

N Total number of observations

tij Time point at which the j’th observation of athlete i is recorded

Si Total number of seasons for athlete i

s The currently considered season

gis Number of observations in season s for athlete i

r The number of covariates to be considered

yij Response variable at time j for athlete i
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the function to be approximated. However, if a sufficiently large number of knots is
chosen, some splines will have their support completely contained in a given season.
In the shot put application, we have 19 seasons in total (Fig. 2). If we want at least
one spline to be completely supported in each one of the 19 seasons, we need each
season to contain at least 4 knots. Accordingly, we require about 75 internal knots,
equivalently 80� degrees of freedom. The majority of the resulting bases will have
supports ranging over several seasons, but 19 of them will concentrate uniquely on a
particular season, trying to explain the within-season variability. In general,
sensitivity analysis is required to choose the number and location of the knots, and
changing either possibly requires tuning the other as necessary to find the best
combination to fit the data.

With the sake of tractability, a low dimensional representation of the individual
curves is of interest. Following the approach by Montagna et al. (2012), we exploit a
sparse latent factor model on the basis coefficients:

hir ¼
Xk
l¼1

krlgil þ nir; ð4Þ

for r ¼ 1; . . .; p, where krl are the entries of a ðp� kÞ factor loading matrix K, and
gi ¼ ½gi1; . . .; gik �> is a vector of k latent factors for subject i. Finally, ni ¼
½ni1; . . .; nip�> is a residual vector, independent of all other variables in the model. We
assume:

gi �iid Nkð0; IÞ ð5Þ
and the error terms ni are assumed to have normal distribution with diagonal

covariance matrix, ni �iid Npð0; diagðr�2
1 ; . . .; r�2

p ÞÞ, with r�2
j �iid Gaðar; brÞ.

For the modelling of the factor loading matrix K, we follow the approach in
Bhattacharya and Dunson (2011) and adopt a multiplicative gamma process
shrinkage (MGPS) prior:

krlj/�1
rl ; s

�1
l �iid N 0;/�1

rl s
�1
l

� �
with

/rl �Ga

�
m/
2
;
m/
2

�
sl ¼

Yh
v¼1

-v

-1 �Gaða1; 1Þ -v �Gaðav; 1Þ; v	 1

ð6Þ

The impact on shrinkage and on dimensionality reduction deriving from the adoption
of a MGPS prior on the loadings is discussed extensively in Montagna et al. (2012),
and follows along the same lines here. The number of latent factors, k, is not set a
priori but adaptively learnt, as discussed in Bhattacharya and Dunson (2011) and
Montagna et al. (2012). We defer to Sect. 1 of the Online Supplementary Material for
more details.
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3.2 The seasonal component

Early graphical displays and straightforward exploratory analysis suggest a
significant variability of the average response across seasons, as displayed in
Fig. 1. Namely, performances prove to be gathered over pre-determined time
intervals, the seasons (calendar years). However, it is reasonable to expect some
degree of dependence for the average performance across seasons. To model such
dependence, an autoregressive model for seasonal intercepts can be proposed. The
idea behind this choice is to allow for borrowing of information across seasons, in the
sense that the seasonal intercept lis at season s is influenced by the intercept at season
s� 1 through the autoregressive coefficient qi. Specifically:

lis j qi; r2l �iid N qiliðs�1Þ; r
2
l

� �
ð7Þ

However, when we first implemented this model, we noted how residuals presented a
pattern which we would like to intercept with a finer model (see Sect. 2 in the Online
Supplementary Material). Therefore, we consider a random intercept model with
Normal Generalized Autoregressive Conditional Heteroskedastic (GARCH) errors
Bollerslev (1986). Specifically,

lis j m; his ¼ mþ fis �iid Nðm; hisÞ ð8Þ

his ¼ a0 þ a1f
2
is�1 þ this�1 ð9Þ

where a0 [ 0; a1 	 0 and t	 0 to ensure a positive conditional variance and fis ¼
lis � m with hi0 ¼ fi0 :¼ 0 for convenience. The additional assumption of wide-
sense stationarity with

EðftÞ ¼ 0

VarðftÞ ¼ a0ð1� a1 � tÞ�1

Covðft; fsÞ ¼ 0 for t 6¼ s

is guaranteed by requiring a1 þ t\1, as proven by Bollerslev (1986).
Three parameters of the seasonal component require prior specification: the

overall mean m and the conditional variance parameters, t and a ¼ ða0; a1Þ>. For the
autoregressive and heteroskedastic parameters of the GARCH model, we propose
non-informative priors satisfying the positivity constraint. For the overall mean
parameter, we rely on a more informative Normal prior centred around the mean
suggested by posterior analysis of preliminary versions of the model. In particular:

m�Nðlm0
;Rm0Þ

a�N2ðla;RaÞ Ifa[ 0g
t�Nðlt;RtÞ Ift	 0g

ð10Þ

where a ¼ ða0; a1Þ is a bidimensional vector. We complete the model specification
assuming that the parameters are statistically independent and noticing that the
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hypothesis needed for wide-sense stationarity do not translate into actual prior
conditions on the parameters. Hence, one of the objects of our analysis becomes to
test whether the constraint a1 þ t\1 holds true.

3.3 Covariates

We consider the effect of three covariates, gender, age and environment, and assume
conjugate prior choices for the covariates coefficients:

b�iid Nðb0; r2bIÞ

r�2
b �Ga

�
mb
2
;
mbr2b
2

� ð11Þ

4 Estimation and inference

4.1 The Bayesian update

Because of the additive nature of the overall sampling model (1)–(2), we are able to
exploit a blocked Gibbs sampler grouping together the parameters of the three
modelling components described in Sect. 3. Note first that, because of the high
dimensionality of the problem, it is computationally convenient to choose
conditionally conjugate prior distributions for the parameters. Indeed, conjugacy
guarantees analytical tractability of posterior distributions. In some cases, specifically
for the conditional variances of GARCH errors, no conjugate model exists and
updates rely on an adaptive version of the Metropolis Hastings algorithm for
posterior sampling.

Algorithm 1 outlines our sampling scheme, while details are presented in Sect. 3
of the Online Supplementary Material. As far as the parameters of the functional
component hi are concerned, we follow Montagna et al. (2012) by choosing
conditionally conjugate prior distributions so that the update proceeds via simple
Gibbs sampling steps. Analogously, the update of the regression coefficients b and
the error term w proceeds straightforwardly by sampling from their full conditional
posterior distributions. Conjugate priors for the GARCH parameters m;- and a are
not available, therefore we resort to adaptive Metropolis schemes to draw values
from their full conditionals. Specifically, we build an adaptive scale Metropolis such
that the covariance matrix of the proposal density adapts at each iteration to achieve
an optimal acceptance rate (see Haario et al. (2001)).

Further details about the algorithm can be found in Sect. 3 of the Online
Supplementary Material, whereas code is available at https://github.com/
PatricDolmeta/Bayesian-GARCH-Modeling-of-Functional-Sports-Data.
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4.2 Posterior analysis

The idea of estimating trajectories for athletes’ performances is a natural pursuit for
the model specification we adopted. Indeed, describing observations as error prone
measurements of an unknown underlying function suggests evaluating such function,
once retrieved, on any number of points of interest. In practice, we will generate a

fine grid of T equispaced time points: ftkgTk¼1 between 0 � t1 and 1 � tT and evaluate
the function on this grid.

In particular, we start by evaluating the athlete-specific functional component by
exploiting the basis function representation. Being:

Hi ¼

hð1Þi1 hð1Þi2 . . . hð1Þip

hð2Þi1 hð2Þi2 . . . hð2Þip

..

. ..
. . .

. ..
.

hðGÞi1 hðGÞi2 . . . hðGÞip

2
6666664

3
7777775

the matrix of individual-specific spline basis coefficients for all iterations g ¼ 1; . . .G
and
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b> ¼

b1ðt1Þ b1ðt2Þ . . . b1ðtkÞ . . . b1ðtT Þ
b2ðt1Þ b2ðt2Þ . . . b2ðtkÞ . . . b2ðtT Þ

..

. ..
. . .

. ..
. . .

. ..
.

bpðt1Þ bpðt2Þ . . . bpðtkÞ . . . bpðtT Þ

2
66664

3
77775

all values of a p-dimensional, degree-3, spline basis on a set of T þ 1 equispaced
knots in the unit interval, the estimated contribution of the functional component to
the overall trajectory is, at each iteration:

f ðgÞi ðtÞ ¼
Xp
r¼1

hðgÞir brðtÞ ¼ HðgÞ
i b>t for t ¼ t1; . . .; tT ;

where HðgÞ
i corresponds to the i-th row of matrix Hi.

As for the seasonal linear mixed effect, we modelled it as a piecewise continuous
function taking individual- and season-specific values. Hence, when retrieving its
estimated effect on any point in the time grid, we need to determine which season it
belongs to. As discussed in Sect. 3, time is rescaled so that equal values across
individuals indicate the same day of the year, possibly in different years. Therefore,
season changes, that occur at new year’s days, can be easily computed by
straightforward proportions. At this point, the season to which tk belongs to is
obtained by comparison with the season thresholds. In the following Equation, the
indicator variable vðt2sÞ determines to which season each time point belongs to.

Accordingly, the estimated contribution of the seasonal component to the overall
trajectory is, at each iteration:

lðgÞi ðtÞ ¼
XSi
s¼1

lðgÞis vðt2sÞ for t ¼ t1; . . .; tT :

Lastly, the regressive component has to be taken into account. The estimated con-
tribution of the regressive component to the overall trajectory is, at each iteration:

Xr

l¼1

xilðtÞbðgÞl ¼ xiðtÞbðgÞ for t ¼ t1; . . .; tT :

Given the three components, the overall estimate of the underlying function is
obtained by adding these three components. In particular, the estimated mean tra-
jectory can be written as:

dyiðtÞ ¼ 1

G

XG
g¼1

f ðgÞi ðtÞ þ lðgÞi ðtÞ þ xiðtÞbðgÞ for t ¼ t1; . . .; tT ð12Þ

Similarly, 95% credible intervals can be computed to quantify uncertainty around our
point estimate.
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5 Results

5.1 Fitted model

In this Section, we fit different specifications of our model to the data described in
Sect. 2.

In general, we consider the additive structure of the sampling model illustrated in
Eq. 2. Table 3 reports an overview on of the six models we compare. In Model M1,
the B-spline basis functions have 80 degrees of freedom, the seasonal component has
GARCH errors and three regressors are taken into account: sex, age and
environment. M2 represents a slight modification of M1 given by the fixed-age
implementation. Here we consider the covariate age not as a time dependent variable,
but as a fixed value given by the age at the beginning of each athlete’s career. In
model M3 a simpler dependence structure among the seasonal effects is used.
Namely, we assume an autoregressive model for lis (see Eq. 7). For model M4, we
simply consider a larger number of basis functions, i.e. 120, accounting for up to
three splines having support in a season and hence meant to better capture the intra-
seasonal variability. Finally, models M5 and M6 allow for doping as additional
covariate, both in the case of the time-dependent and time-independent specification
of age.

Priors were chosen as discussed in Sect. 3, and with hyperparameter choices
summarised in Table 4. To argue on the choice of the informative prior for the overall
mean parameter m, in Table 5 we also report the results under a slight modification of

model M1, that we denote M ð2Þ
1 , yielding a vague prior for m.

For all experiments, inference is obtained via posterior samples drawn by the
Gibbs sampler introduced in Sect. 4. In particular, we ran 20, 000 iterations with a
burn-in period of 60% and a thinning of 5. Performances are compared by means of
the logarithm of the pseudo marginal likelihood (LPML) index Geisser and Eddy
(1979). This estimator for the log marginal likelihood is based on conditional
predictive densities and provides an overall comparison of model fit, with higher
values denoting better performing models. The reader may refer to Sect. 4 in the
Online Supplementary Material for posterior convergence diagnostics results under
model M1.

Table 3 Models name and description

Symbol Meaning

M1 80 df B-splines, GARCH, covariates: sex, age (time dependent), env.

M2 80 df B-splines, GARCH, covariates: sex, age (time constant), env.

M3 80 df B-splines, AR, covariates: sex, age (t. dep.), env.

M4 120 df B-splines, GARCH, covariates: sex, age (t. dep.), env.

M5 80 df B-splines, GARCH, covariates: sex, age (t. dep.), env., doping

M6 80 df B-splines, GARCH, covariates: sex, age (t. const.), env., doping
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Performances for the different models are fairly similar: as a matter of fact, the
model specifications do not differ in a significant way. Despite having a slightly
lower LPML than the best performing model, M2, we prefer looking at results for
model M1 with 80� of freedom splines, GARCH errors and three regressors (sex, age,
and environment), with the time-dependent age definition because regression
parameters prove to be significant in this setting. For the estimation of performance
trajectories, we use the method discussed in Sect. 4.2. Figure 4 displays the estimate
(with 95% credible bounds) for a random selection of athletes (black) together with
one-season-ahead performance prediction (grey). The results are graphically pleasing
in terms of model fit, but some comments are of order. First, the amount of variability

Table 4 Hyperparameter choices. In the first column, we refer to the Equation where the hyperparameter
first appears

Ref. Hyp. Value Description

(4) ar 1.0 1st Gamma coeff. of error term in the factor exp.

(4) br 0.3 2nd Gamma coeff. of error term in the factor exp.

(6) m/ 9 Gamma coeff.s of local shrink. param. /ml

(6) a1 2.1 1st Gamma coeff. of the 1st global shrink. factor d1

(6) b1 1.0 2nd Gamma coeff. of the 1st global shrink. factor d1

(6) al 2.1 1st Gamma coeff. of the lth global shrink. factor dl

(6) bl 1.0 2nd Gamma coeff. of the lth global shrink. factor dl

(10) lm0
�0:2 Mean of the overall mean m

(10) Rm0 0.0001 Variance of the overall mean m

(10) la (0.0, 0.0) Mean vector of the a GARCH coeff.

(10) Ra I2 Covariance matrix of the a GARCH coeff.

(10) l- 0.0 Mean of the - GARCH coeff.

(10) R- 1 Variance of the - GARCH coeff.

(11) mb 0.5 1st Gamma coeff.s regression param.

(11) rb 0.5 2nd Gamma coeff.s of regression param.

(1) lw 1.0 Mean of the error variance w

(1) rw 1.0 Variance of the error variance w

Table 5 Model and
hyperparameter comparison for
the models in Table 3

Model LPML

M1 �45; 943

M ð2Þ
1

�46; 573

M2 �45; 472

M3 �46; 544

M4 �46; 314

M5 �48; 565

M6 �48; 122

123

Bayesian GARCH modeling of functional sports data 415



explained by the random intercepts given the amount of variability explained by the
functional component is about 56% of the total variance, thus the random intercepts
capture the majority of the variability in the data (refer to Sect. 5 in the Online
Supplementary Material for a discussion). Second, the functional component reduces
to capture the intra-seasonal variability. Interestingly, the number on non-local bases
selected by the adaptive procedure in Bhattacharya and Dunson (2011) is exactly
equal to the number of seasons in the data set. This effect seems to be consistent with
the choice of degrees of freedom, that limits the support of each spline to a unique
season.

To better understand the contribution of the three model components on the
overall model fit, we focus on a single athlete (Reese Hoffa, ID 226) and visualise the
separate effect of the components in Fig. 5. The first panel (top-left) displays the

Fig. 4 Performance trajectory estimates for a random selection of athletes. The x-axis denotes the time
measured in days from January 1st of the first season of career, whereas on the y-axis there is the length of
throw in meters. Vertical lines represent calendar years (seasons in our notation). The final part of each
trajectory (grey) for which no observations are available, represents one-season-ahead performance
prediction
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observed data and Hoffa’s overall estimated trajectory. The top-right panel reports the
functional contribution (i.e, an estimate of f226ðtÞ). The third panel (bottom-left)
shows the seasonal contribution (i.e, the estimate of lis; i ¼ 226; s ¼ 1; . . .; S19).
Finally, the bottom-right panel shows the effect of the linear regression component.
Differently from the other panels, here we visualise the estimated performance
associated with different levels of a covariate of interest (environment). In particular,
the continuous line represents the trajectory according to Hoffa’s observed
covariates, while the dashed line represents the estimated performance were all
competitions held indoor, all other things being equal. Indoor competitions are

Fig. 5 Single contributions to the whole additive model as in Eq. 12. The first panel is the complete
additive model, whereas the second (top-right) displays the functional contribution. The third panel
(bottom-left) displays the estimate of the seasonal random intercept, while the bottom-right panel displays
the estimated trajectories associated with the different levels of the environment covariate (continuous line
for Hoffa’s observed covariates, dashed line if all competitions took place indoor). Estimates are embedded
into 95% credible bands
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typically held in Winter months. We notice an expected drop in performance when
competitions take place indoor. Because of the generally small effect in magnitude, it
is rather difficult to visualise the effect that different levels of a covariate have on the
response, so we omit other plots from the manuscript. We discuss the effect of all
other covariates more in detail separately below (Sect. 5.2).

Following a suggestion raised by one reviewer, we investigated further how the
different additive components of our model contribute to the overall model fit.
Specifically, we performed a model comparison across the included hierarchical
levels and components. Please refer to Sect. 6 in the Online Supplementary Material
for results.

5.2 Interpretation of the estimated parameters

The regression parameters can be easily interpreted from a sport analytics
perspective. It is important to stress that, to improve convergence of the MCMC
algorithm, we fitted our model centring athlete-specific data around their average.
Accordingly, in our experiments the raw data yij were substituted by the centered
points:

~yij ¼ yij �
Pni

j¼1 yij

ni
¼ yij � yi for i ¼ 1; . . .; n and j ¼ 1; . . .; ni

as data-input for the model. We have to take into account this transformation when
interpreting the regression parameters, especially when dealing with dummy
variables.

We report the posterior mean estimate of the regression coefficients, their standard
deviation, the effective sample size (ESS) and the 95% posterior credible bounds for
the most interesting models. Table 6 displays the results under model M1, where
covariates are sex (x1), age (x2) and environment (x3). Even if the covariate effect is
small in magnitude, we observe that the 95% credible intervals do not contain zero,
showing a significant effect. Sex is a binary covariate, taking value equal to one for

male athletes. The estimated coefficient for sex is negative (bbsex ¼ �0:120). We
remark that, having demeaned the outcome, bsex quantifies the difference in
variability of an athlete’s performance around his/her average �yi. Accordingly, males’
trajectories express more variability around their average than females. Differently,
when using data in the original scale, the estimated gender effect is significant and

positive (bbsex ¼ 1:243), suggesting that the length of a throw for a male athlete is
expected to be, approximately, 1.2 metres longer than that of a female athlete. The
second covariate, age, is time-dependent: as time increases, so will age at a
proportional rate, since time is measured in days and age in years. The estimated
coefficient for age is positive. This indicates that, generally, performance is expected
to improve as the athlete grows older. Finally, environment is a time-dependent,
binary covariate taking value equal to one for outdoor events. The estimated effect

(bbenv ¼ 0:0453) indicates an expected increase in performance when competitions
take place outdoor, typically in Summer months, as noted visually in Fig. 5.
Parameter estimation under the other models considered in the paper are similar in
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sign with respect to the ones discussed here. We report complete results in Section 7
of the Online Supplementary Material.

A final comment on results obtained using doping as additional regressor is
required. We stressed that the LPML indices for models M5 and M6 are quite low,
however, this may be due to the fact that the data set is imbalanced, i.e., there are too
few doped athletes (18 out of 653). In fact, the ESS of the parameter corresponding to
doping (b4) is very low. Nevertheless, it is interesting to observe that estimates are
similar for all common parameters and that the coefficient of the doping regressor is
negative (even if the credible intervals contain zero). We conclude that the use of
performance-enhancing drugs seems to have a negative effect on the variability of
athletes’ performances.

5.3 Predictive performance and model validation

Having insofar discussed the model fit to the data, we now turn our attention to
performance prediction. Our model can be used for out-of-season prediction of an
athlete’s performance, that is, to predict his/her expected performance in future
seasons. Further, the model can also provide intra-seasonal predictions, that is, the
expected evolution within a given season for which partial data is already available.
Further, the Bayesian framework our model is embedded into provides us with an
automatic mechanism to quantify uncertainty in the predictions. Arguably, major
interest from a sport analytics perspective is in predicting the evolution of an athlete’s
performance in future seasons (e.g., past observed data or out-of-sample), as this
quantity provides insights in the future expected development of the athlete (e.g., is
the athlete expected to perform better/worse in the future). The estimated value of the
athlete’s trajectory at time points tij in season Si þ 1, for which no data is yet
available, is obtained as:

dyiðtijÞ ¼ 1

G

XG
g¼1

f ðgÞi ðtijÞ þ lðgÞi ðtijÞ þ xiðtijÞbðgÞ; ð13Þ

where g denotes g � th MCMC iteration and G is the total number of posterior
samples. Thus, the evaluation (on a future time point) of the functional and regressive
components follows the description in Sect. 4.2. One simply needs to evaluate the
basis functions on the future time point(s) and needs the future values of the

Table 6 Posterior mean estimate of the regression coefficients for model M1(Table 3), together with the
standard deviation of their estimate, effective sample size (ESS) with respect to 1600 retained samples, and
95% posterior credible bounds

Coeff Mean Sd ESS 2:5% 97:5%

Sex �0:120 0.0270 274 �0:175 �0:0675

Age 6:22e� 03 9:95e� 04 231 4:20e� 03 8:20e� 03

Environment 0.0453 9:55e� 03 1820 0.0269 0.0643
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covariates. The new seasonal intercept follows the probabilistic dynamic suggested
by the GARCH model:

liSiþ1 j m; hiSi ¼ mþ fiSi �
iid
Nðm; hiSiÞ ð14Þ

hiSi ¼ a0 þ a1f
2
iSi�1 þ -hiSi�1 ð15Þ

One-season-ahead predictions (with 95% credible bands) are shown, for a random
selection of athletes, in Fig. 4. Concerning intra-seasonal predictions, the whole
continuous trajectory itself represents the intra-seasonal performance prediction at all
those time points for which no data is available. When data is missing completely for
a whole season (i.e., the athlete did not compete professionally in a given year to
recover from an injury, or when predicting a future season), the task of predicting
counterfactual performances is certainly more challenging for the model.

To validate the model, we tested its predictive performance against some held-out
data. In particular, we performed two analyses. In both cases, we randomly chose 100
athletes from the data set and for these “test set” athletes: (1) we held out and
predicted data on a mid-career season (“Mid-career” analysis), and; (2) we held out
and predicted data on their last available season (“End of career” analysis). Prediction
performance in both cases is quantified in terms of mean squared error between the
observed test data and predicted values, and is reported in Table 7. The mid-career
prediction error is smaller than the end-of-career’s. Likely, this is due to the
borrowing of information from both past and future seasons in estimating the current
(mid-career) one. The end-of-career predictions resemble the careers’s average
performance, which might be explained by the centring of the seasonal component
around a grand mean. The magnitude of these errors can be explained by the scale of
the data, which are centered prior to the analysis, and is comparable to the training
MSE (0.273 Mid-career, 0.281 End-career).

Estimated performance trajectories for three randomly selected test set athletes in
both the mid-career and end-of-career analyses are displayed in Section 8 of the
Online Supplementary Material.

Table 7 Mean squared error
between the observed test data
and predicted values

Season MSE

Mid-career 0.304

End-of-career 0.949

Mid-career: data on a mid-career season was held-out and predicted
for a random selection of 100 athletes; End-of-career: data on the last
season in career was held-out and predicted for a random selection of
100 athletes
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6 Discussion

In this paper, we proposed an additive hierarchical Bayesian model for the analysis of
athletes’ performances in a longitudinal context. Following Montagna and Hopker
(2018), we proposed a smooth functional contribution for explaining the overall
variability in the data set. The functions are represented by means of a high-
dimensional set of pre-specified basis functions, and a factor model on the basis
coefficients ensures dimensionality reduction. We enriched the model by allowing for
covariates to affect estimates through a linear model regression component. Finally,
we addressed the issue of seasonal gathering of sports data by introducing a mixed
effects model with GARCH errors which provides evolving random intercepts over
different time intervals in the data set. To the best of our knowledge, our additive
modelling strategy represents an original contribution to the sport analytics literature,
with reasonable predictive performances and statistically significant estimation of
performance-driving parameters.

The Bayesian latent factor methodology was originally developed for very sparse
longitudinal data, with the purpose of capturing a global trend in subject-specific
trajectories. We balanced the model with the requirement of smoothness using a B-
spline basis system and adding a seasonal random intercept. However, it is evident
that the latter explains the majority of variability in the dataset. Therefore, it might be
worth considering a functional basis that batter captures the intra-seasonal variability.
Further, we observed that the contribution of the regressive component is consistent
across various modelling choices.

We looked at the effect of doping on results, by including it into the linear
regression model-component as a covariate. Despite not being significant, the
negative effect seems to suggest that performances of doped athletes are less variable.
This is in line with previous literature suggesting that doping is more likely used to
enhance performances in periods of decreasing fitness than to consolidate already
good performances, generally exposed to strict controls. We think this aspect
deserves further investigation, considering, for instance, more specific modelling
techniques. We remark, however, that investigating doping further by relying on the
current data set proves very challenging, both because the data is severely
imbalanced (less than 3% of the athletes tested positive at least once throughout their
careers), and also because we do not have information on when they tested positive
during their career.

Finally, having recognised that the majority of the variability in the data is
captured by the seasonal component, alternative modelling choices for the seasonal
random intercepts are of interest. A possible direction of research consists in
modelling the seasonal intercepts non-parametrically via a hierarchical Dirichlet
process mixture model, with the aim of clustering athletes and seasons on the basis of
performance. This model will allow to cluster data within a subject’s career and
across subjects, so to explain the majority of variability in the data set by means of a
small number of driving parameters. The non-parametric procedure will further be
able to learn the number of required clusters directly from the data.
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While the motivation of our work comes from the analysis of shot put data, the
methodology presented in this work is applicable to the analysis of performance data
collected in all “centimeter-gram“ sports, that is, all those activities where results
have the form of a distance, a weight, a speed and, in general, a measurable quantity,
collected over time. In conclusion, the attempt of extending existing tools of
functional data analysis to the modelling of (shot put) performance data seems
promising because of the adaptability of these methodologies to all sorts of
performance longitudinal data in measurable sports.
Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10260-022-00656-z.
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