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Abstract
Detecting changes in COVID-19 disease transmission over time is a key indicator of

epidemic growth. Near real-time monitoring of the pandemic growth is crucial for

policy makers and public health officials who need to make informed decisions

about whether to enforce lockdowns or allow certain activities. The effective

reproduction number Rt is the standard index used in many countries for this goal.

However, it is known that due to the delays between infection and case registration,

its use for decision making is somewhat limited. In this paper a near real-time

COVINDEX is proposed for monitoring the evolution of the pandemic. The index is

computed from predictions obtained from a GAM beta regression for modelling the

test positive rate as a function of time. The proposal is illustrated using data on

COVID-19 pandemic in Italy and compared with Rt. A simple chart is also proposed

for monitoring local and national outbreaks by policy makers and public health

officials.

Keywords Pandemic surveillance � GAM beta regression � COVINDEX � Public-
health decision-making

1 Introduction

The World Health Organization (WHO) declared coronavirus disease (COVID-19)

a pandemic on 11 March 2020. Since then, most countries around the world have

addressed this threat by implementing various strategies to fight the pandemic. From

simple preventive measures, such as case identification and contact tracing,

quarantine and isolation, to more severe strategies based on general lockdowns of

all non-essential economical and social activities. Since public health decision-
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making requires the balancing of numerous, and often conflicting, factors, a timely

and data-informed decision making process appears crucial.

Several studies have been recently devoted to the analysis of COVID-19 data.

Referring to the Italian situation, Sebastiani et al (2020) evaluated the impact of

government measures on the evolution of pandemic. Girardi et al (2020) used robust

dose-response curves to predict the contagion dynamics of COVID-19, while

Alaimo Di Loro et al (2021) proposed an extended Generalized Linear Model based

on the Richards’ curve to model and predict incidence indicators. A Poisson

autoregressive model was discussed by Agosto et al (2021) to monitor the time

evolution of the COVID-19 contagion curve, while Bartolucci and Farcomeni

(2021) introduced a spatio-temporal model based on discrete latent variables for the

analysis of weekly positive rates. Finally, Farcomeni et al (2021) investigated an

ensemble approach for short-term prediction of occupancy of intensive care units

due to COVID-19 outbreak.

The basic reproduction number, R0, is an indicator of the epidemic’s virulence. It

is defined as the average number of infections caused by an infected person when

the whole population is susceptible, and for SARS-CoV-2 is between 2 and 3 (Li

et al 2020; Hilton and Keeling 2020). As the pandemic evolves, the effective

reproduction number Rt is a more useful measure. This is the average number of

infections that an infected person will cause. An Rt above 1.0 indicates that the

outbreak is growing, and below 1.0 means that it is shrinking. As a simple

understood measure, Rt is regularly published and discussed by the media, and it has

been used in many countries, including Italy, to decide whether to tighten or loosen

control measures. However, Rt suffers from several drawbacks when used to

monitor the transmission of the disease over time, the main one being the delay with

which it signals the evolution of the pandemic (Gostic et al 2020; Adam 2020).

Therefore, with a delay on the estimate of Rt between ten days to two weeks, the use

of Rt as a near real-time decision-making tool appears rather pointless. For further

discussion on the risks caused by the misuse of the reproduction number in the

COVID-19 surveillance see Maruotti et al (2021).

This paper introduces a COVID-19 index, called COVINDEX, which tries to

assess whether the epidemic is growing, shrinking, or holding steady. The proposed

index is estimated by modelling the test positive rate (TPR) with a GAM beta

regression model. TPR is an easily computed statistic, defined as the fraction of all

COVID-19 tests performed on a given day that are actually positive. This metric can

be used to understand the spread of the virus, but it also offers a measure of how

adequately a country is testing. TPR can be high if the number of positive tests is too

high, but also if the number of total tests is too low. Most developed countries faced

limited testing capacity during the initial phase of the pandemic, which resulted in

high TPR values due to testing conducted primarily on symptomatic individuals. In

the following months the ability to administer tests using PCR (polymerase chain

reaction) or molecular swabs largely increased, leading to a situation that allows

both symptomatic and asymptomatic individuals to be tested. Although TPR can’t

be used for estimating incidence of the virus in the general population, a

fundamental epidemic parameter that would require a carefully designed sampling

plan, it can be used for monitoring the evolution of infection and transmission in the
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community. Higher positive rates suggest the need for further restrictions, such as

wearing masks and physical distancing, to slow down the spread of the disease. As a

rule of thumb, World Health Organization recommended 5% as the threshold for the

percent positive rate to declare the COVID-19 transmission under control.

The main advantages of the proposed COVINDEX is the use of data routinely

collected and its timely estimation which provides a near real-time tool to assess the

effectiveness of interventions and to inform policy. Furthermore, since it is based on

a statistical model, the associated uncertainty can be estimated.

The paper is organized as follows. Section 2 introduces the GAM beta regression

model, its estimation and uncertainty assessment. Section 3 describes the proposed

COVINDEX and its usage for monitoring the pandemic evolution. Section 4

includes a detailed analysis of COVID-19 pandemic in Italy, including the

estimation of COVINDEX, from early March 2020 to the end of March 2021.

Section 5 contains a comparison between the proposed COVINDEX and the

effective reproduction number, showing the advantages of COVINDEX as near

real-time monitoring tool. The final section provides some concluding remarks.

2 Statistical model for the test positive rate

2.1 GAM beta regression

Let yt be the test positive rate (TPR), defined as the ratio of the number of new

positive cases Pt to the number of tests Tt at time t, with t assuming integer values

between 1 and n, respectively, for the first and last day of the analyzed period. As a

proportion TPR is naturally limited in the range [0, 1]. Several approaches and

models can be used for response variables that are expressed as proportions (Douma

and Weedon 2019), and perhaps the most popular statistical model is the beta

regression model (Ferrari and Cribari-Neto 2004; Zeileis and Cribari-Neto 2010).

Assume that TPR can be modelled by a beta distribution written as

yt �Betaðlt;/Þ;

with mean and variance of the beta distribution given, respectively, by

E ½yt� ¼ lt;

and

V ½yt� ¼
ltð1� ltÞ
1þ /

:

Strictly speaking, the beta distribution can only model data in the open set (0, 1). If

extreme values 0 and 1 can actually be observed, the inflated zero- and/or one beta

distribution of Ospina and Ferrari (2010) could be used. Since in practice TPR

rarely assumes a value of 0 and almost never 1, if needed, the simple approach

proposed by Smithson and Verkuilen (2006) can be adopted by applying the data
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transformation ðytðn� 1Þ þ 0:5Þ=n. The latter is the approach followed in this

paper.

The mean lt can be expressed as a function of the linear predictor gt ¼ b>xt,
where b is a ðpþ 1Þ-dimensional vector of unknown regression coefficients

(including the intercept), and xt is the vector of observed values on p predictors plus

a one for the intercept. Usually, the logistic function is used in beta regression, so

we can write

lt ¼ logistic ðgtÞ ¼
expðgtÞ

1þ expðgtÞ
¼ 1

1þ expð�gtÞ
:

The inverse of the logistic function is the logit function, the so-called link function

in GLM terminology (McCullagh and Nelder 1989), given by:

logit ðltÞ ¼ log
lt

1� lt

� �
¼ gt:

Generalized Additive Models (GAMs; Hastie and Tibshirani 1990) allows to model

the dependence of the response variable in a flexible way using smooth functions of

the predictors by defining the linear predictor as

gt ¼ b0 þ
Xp
j¼1

fjðxtjÞ;

where fjðxtjÞ ¼
PKj

k¼1 bjkBjkðxtjÞ is the smoothing term for the jth predictor with

fBjkðÞgKj

k¼1 a set of known basis functions associated to unknown parameters bjk.
Several smoothers can be defined by adopting different basis functions, such as

penalized regression splines, cubic regression splines, etc. For an overview of the

several smoothing functions available using splines bases see Wood (2017, Chap-

ter 5). Among the various possibilities, thin plate regression splines (TPRS; Wood

2003) represents a convenient form because TPRS (i) do not require to specify the

‘‘knots’’, (ii) use a low rank approximation of the full basis expansion, and (iii) are

isotropic smoothers, so they are unaffected by any rotation or reflection of the

covariates.

In our application the only feature included as smoothing term in the linear

predictor is time, so x1 is an integer counting the days since the first day of the

analysis. To some extent, the coding of such feature has no practical consequence,

and other equivalent forms could have been used as well. In addition, to account for

the reduced tracing activity during weekends (Saturday and Sunday) and holidays, a

dummy variable x2 is included taking value 1 for data referring to weekends or

holidays, and 0 otherwise. The rationale behind the inclusion of such term is that the

number of swabs processed is noticeably limited during weekends and holidays, so a

significant increase in the test positivity rate is often observed due to the limited

testing capacity and the higher probability of testing only symptomatic cases.

Thus, in our case the linear predictor of GAM simplifies to
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gt ¼ b0 þ
XK
k¼1

b1kB1kðxt1Þ þ b2xt2;

where fB1kgKk¼1 represents the basis of thin plate regression splines. Note, however,

that other smooth functions would have given nearly equivalent results.

2.2 Estimation

Estimation of the GAM model introduced in previous section can be pursued by

REstricted Maximum Likelihood (REML), which amounts to maximize the

penalized log-likelihood

‘PðbÞ ¼ ‘ðbÞ � 1

2
kb>Sb; ð1Þ

where ‘ðbÞ ¼
Pn

t¼1 ‘ðytjbÞ is the log-likelihood for the observed values yt of the
response variable. The last term in the right-hand side represents the smoothing

penalty, with k a smoothing parameter and S a known penalty matrix.

As reported in Wood (2011) and Wood et al (2016), REML is equivalent to

marginal likelihood estimation of b when the model contains Gaussian random

effects, and it also leads to more stable estimates of k with much reduced risk of

under-smoothing compared to GCV. Furthermore, as discussed in the next section,

the REML estimates of regression coefficients have an asymptotically MAP

Bayesian interpretation that is very useful for obtaining simulated credible intervals

for predictions. For a recent review on inference and computation in GAMs see

Wood (2020).

The selection of the smoothing parameter can be obtained, among many other

proposals, by minimizing the conditional Akaike’s information criterion (AIC). This

version of AIC for GAMs uses the log-likelihood evaluated at the penalized MLE,

and with the effective degrees of freedom computed as discussed in Wood et al

(2016).

However, because the number of administered swabs is not constant over time,

we must take into account this fact when modelling the test positive rate. There are

several reasons for this empirical evidence. First of all, during the weekends

(particularly on Sundays) and holidays the number of swabs drops drastically.

Furthermore, during periods of strong expansion of the pandemic, the monitoring

system is unable to carry out effective surveillance and only symptomatic patients

are likely to be tested. Accounting for the different number of swabs in the model

for the positive rate can be achieved by adopting a weighted penalized log-

likelihood criterion. This amounts to replace the log-likelihood ‘ðbÞ in (1) with the

weighted version

‘WðbÞ ¼
Xn
t¼1

wt‘ðytjbÞ;

where wt are prior weights specifying the contribution of each data point to the log-

likelihood. In particular, indicating with �T the average number of administered
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swabs over the period, weights can be defined as wt ¼ Tt= �T so that positive rates yt
computed from number of swabs larger than the average have proportionally larger

weights, and vice versa for those rates based on number of swabs smaller than the

average. Furthermore, with the adopted definition for the weights the contribution of

each datum is specified without changing the overall magnitude of the log-

likelihood.

Once the model is fitted, the predicted TPR can be computed as

blt ¼ logistic bb0 þ
XK
k¼1

bb1kB1kðxt1Þ þ bb2xt2

 !
: ð2Þ

On certain occasions, for instance when computing the COVINDEX discussed in

Sect. 3, we may want to compute predictions for the TPR with the weekends/

holidays effect ruled out. This is easily accomplished by setting xt2 ¼ 0 for all t.

2.3 Uncertainty and inference

The penalized likelihood approach described above has also a Bayesian interpre-

tation by assuming an improper multivariate normal prior on b. In this case, the

REML estimates of b coefficients are asymptotically the maximum a posteriori

(MAP) of the Bayesian posterior distribution, with the latter given by

bjðy; kÞ�Nðbb; ðbI þ kSÞ�1Þ; ð3Þ

where bI is the observed information matrix (Hessian of the negative log-likelihood)

at bb (Wood 2017, Sect. 6.10). This result is useful for computing approximate

credible intervals for any function of b by simulating from the posterior (Gelman

and Hill 2006, Sect. 7.2). Wood (2017, p. 294) reported good frequentist coverage

properties for such Bayesian credible intervals, with empirical coverage close to the

nominal level when averaged across the domain of the function.

In practice, coefficients b� are simulated from (3), and then plugged in equation

(2) to get the simulated means l�t . The process is replicated a large number of times,

say 10 000 or more, and the percentiles of the simulated distributions at different

values of xt can be used to compute the limits of approximate credible intervals for

the mean. To compute approximate credible intervals for the single prediction we

simulate response values as y�t �Betaðl�t ; b/Þ, where l�t is the simulated mean as

described above, b/ is the model estimate of the precision parameter, and then we

compute the percentiles of the simulated distribution of predicted values for the

response. The empirical coverage of the prediction intervals will be assessed in

Sect. 4.2.
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3 COVINDEX as a monitoring and decision-making tool

The COVINDEX proposed in this paper is an attempt to compute a synthetic index

summarizing the evolution of the COVID-19 pandemic, which can be useful to

policy makers and public health officials for monitoring local and national

outbreaks. In our proposal this is simply computed as

COVINDEXt ¼
bltblt�7

; ð4Þ

the ratio of the predicted positive rate at time t to the prediction 7 days earlier. The

value of 7 is chosen because it is approximately the expected incubation time for

COVID-19 (Nazar and Elfadil 2021), and because it corresponds to the observed

weekly fluctuation in testing. A COVINDEX value larger than 1.0 means that the

pandemic is growing, while a value smaller than 1.0 indicates that new infections

are slowing down.

The COVINDEX estimate is clearly affected by uncertainty and to account for it

the approach outlined in Sect. 2.3 for TPR can be used here as well. In particular, for

each simulated series of values l�t , simulated COVINDEX series can be obtained by

applying equation (4) to get the simulated values COVINDEX�
t ¼ l�t =l

�
t�7.

Approximate credible intervals can then be computed from the percentiles of the

simulated distribution.

We argue that decisions made by policy makers should be based both on the

COVINDEX, which provides an outlook on the likely behaviour of the pandemic in

the near future, and on the level of the estimated TPR, which represents its current

status. Following this idea, a TPR-COVINDEX risk quadrant chart can be drawn

(see Fig. 1). This chart illustrates four potential scenarios which represent a useful

tool for a decision maker. The quadrants are defined by the dashed lines drawn at

selected threshold values. For COVINDEX the natural reference value is 1.0, with

values below it indicating a shrinking outbreak, and values higher than 1.0

indicating epidemic situations that are increasingly worrying and out of control.
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Fig. 1 TPR-COVINDEX risk
quadrant chart
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Note that, since the index is a ratio, the y-axis is expressed in logarithmic scale. For

the positive rate, the threshold value can be set according to the World Health

Organization, which published a set of criteria to inform whether the epidemic is

under control. In particular, one criterion states that ‘‘[...] less than 5% of samples

positive for COVID-19, at least for the last 2 weeks, assuming that surveillance for

suspected cases is comprehensive’’ (World Health Organization 2019).

According to the above mentioned threshold values, the upper-right quadrant

represents the worst-case scenario, with high values of both TPR and COVINDEX.

On the contrary, the best-case scenario is the lower-left quadrant which has both low

TPR and COVINDEX less than 1.0 indicating a decreasing circulation of the virus.

The remaining quadrants are intermediate cases. Typical situations will move in a

clockwise direction, moving from the worst-case, represented by the red quadrant

on top-right, to the orange quadrant at bottom-right, and eventually reaching the

yellow quadrant indicating an outbreak under control. However, in some cases the

pandemic could regain strength by getting COVINDEX values greater than 1.0, thus

moving towards the top-left orange quadrant or directly towards the worst-case

situation described by the red quadrant. A description of the Italian situation since

March 2020 is discussed in Sect. 4.

4 Application to Italian COVID-19 pandemic

4.1 Data

The Italian Department of Protezione Civile provides daily information on the

COVID-19 pandemic, both at the national and the regional level, in a public GitHub

repository (Presidenza del Consiglio dei Ministri – Dipartimento della Protezione

Civile, 2020). Among the data contained in this repository, the cumulative number

of naso-pharyngeal or molecular swabs and the corresponding positive tests are

provided. Starting with January 15th, 2021, antigen tests are also officially recorded,

while previously only some regions included them in the recorded statistics since

autumn 2020. The reliability of such information is at best questionable and not

available uniformly for the year 2020. For these reasons, in our analyses we

considered the information from daily molecular swabs (not persons tested) to

compute the test positive rate (TPR), a commonly used screening and diagnostic

tool for COVID-19 (World Health Organization 2020). The plot on Fig. 2 shows the

observed TPR over time with points proportional to the administered swabs.

4.2 GAM beta regression model estimate

Table 1 reports the summary output of the estimated GAM beta regression model

for the test positive rate in Italy from March 1st 2020 to June 30th 2021. The

parametric terms include the intercept and a dummy variable for the days following

the weekends (Saturday and Sunday) and holidays. The smooth term captures the

evolution of underlying trend in the observed test positive rate. The amount of

smoothing applied to the time predictor is selected by minimizing the AIC, as
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shown in Fig. 3. The graphs of the autocorrelation and partial autocorrelation

functions for the deviance residuals in Fig. 4 show no significant remaining

correlation at different lags.

Figure 5 reports the estimated curve for the test positive rate with 95% credible

intervals for the mean and the single value obtained by simulating from the posterior

distribution as described in Sect. 2.3. The highest positive rates are achieved in

March 2020 during the first wave of pandemic, and on November 2020,

corresponding to the second wave. A resurgence of spread during the end of

2020 is followed by a quick decrease in earlier 2021. Subsequently, the situation

remained stable for about a month, but in the second part of February another sharpe

increase occurred due to the appearance of COVID-19 variants in the Italian
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Fig. 2 Plot of test positive rate from beginning of COVID-19 pandemic in Italy to the end of
observational period with size of points proportional to the number of molecular swabs administered

Table 1 GAM beta regression

model summary
Num. of obs. = 487 Dispersion par. = 1467.3

Log-likelihood = 1828.7 Deviance expl. = 0.9891

REML = 1726.3 AIC = -3583.1

Parametric coefficients:

Estimate Std. error z-value p-value

(Intercept) -3.1904 0.01177 -271.07 \0:001

Weekend 0.1681 0.01023 16.44 \0:001

Smooth terms:

edf Ref. df ChiSq-value p-value

s(t) 35.11 39.67 16820 \0:001
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territory (in particular the Alpha or english variant). Starting from the beginning of

April, a marked decline in the TPR can be observed, likely favored by the increased

full vaccination coverage of the Italian population.

4.3 Empirical coverage of credible intervals for predictions

To investigate the accuracy of the simulated prediction intervals, we considered all

the dates from February 1st 2021 to May 31st 2021 and the time horizon for the

predictions from 1 day to 14 days. For each date we fitted the GAM beta regression

model using all the data available up to that day, and then we used the estimated

model to compute the simulated credible intervals for the following 14 days. This
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Fig. 3 Trace plot of AIC as a function of k, the number of basis functions used by the thin plate regression
smoother, with the corresponding effective degrees of freedom (EDF). The EDF expresses the complexity
of the smoother, with larger values indicating more wiggly smoothers, and it cannot be larger than k. The
vertical dashed line is drawn at the minimum AIC used for the selection of the final model
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Fig. 4 Autocorrelation and partial autocorrelation functions for the deviance residuals of the estimated
GAM beta regression in Table 1
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process was replicated for the all the days in the specified range and the empirical

coverage calculated. Figure 6 reports on the left panel a graph showing the inclusion

or exclusion of the observed values of TPR in the simulated prediction intervals,

while on the right a plot of the empirical coverage for the time horizon from 1 up to

14 days. Overall the coverage is close to the nominal level, with all the values above

90% for the forecasts of the first week, and between 85% and 90% for the second

week. It is interest to note that most of the coverage errors occur in periods of abrupt

changes, for instance at the sharp rise of TPR in the last week of February or at the
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Fig. 5 GAM estimate of test positive rate (blue line) in Italy during 2020 and first half of 2021, with 95%
simulated credible intervals for the mean (dark grey area) and for the single value (light grey area)
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beginning of TPR decline in mid-March. As expected, the empirical coverage

decreases as the prediction horizon increases.

4.4 COVINDEX estimate

Based on the estimated model and uncertainty for the test positive rate, the

COVINDEX is computed following equation (4). Figure 7 shows the estimated

COVINDEX with 95% credible intervals. Notice that the y-axis is expressed on

logarithmic scale, the natural scale to visualize ratios ( Wilke 2019, , Sec. 3.2). The

index fluctuates widely throughout the year 2020, following the periods of

expansion and contraction of the spread of the pandemic. After the first wave in

spring 2020 we observe a quick decreasing trend, followed by a slowly increase

during the summer, corresponding to a relaxation of the containment measures, with

values significantly larger than 1.0 during August. This represents the first signal of

a resurgence of the pandemic. Sharpe and large increases are also observed during

October in conjunction with the second wave that strongly affected Italy. Two

additional peaks are detected at the end of 2020 and on February 2021,

corresponding to gradual relaxation of containment measures before Christmas

and mid January, with the latter that occurred during the period of political

instability associated with the change of government.

From the adopted definition of equation (4), COVINDEX is computed by taking

the ratio of the estimated TPR with respect to a 7-days-before estimate. In Sect. 3

we provide the rationale for this choice. However, it may be interesting to

investigate how the index changes assuming different lags. Figure 8 shows the

COVINDEX estimates obtained when different lag values are used. The general
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Fig. 7 Evolution of COVINDEX (on logarithmic scale) for Italy during 2020 and first half of 2021, with
approximate 95% simulated credible intervals
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behaviour of the curves is similar across different lags, but the amplitude of the

oscillation increases as the lag increases. This appears reasonable since, essentially,

COVINDEX compares the estimated TPR at time t with the value at time t � lag.

Thus, for smaller values of the lag the index fluctuates less and is more stable than at

higher lag values. However, lag values that are too small cannot highlight the

dynamics of TPR because too close values tend to be quite similar. In this sense, the

selected 7-day lag appears to be a sensible choice.

4.5 TPR-COVINDEX risk quadrant chart analysis

Figure 9 shows the TPR-COVINDEX risk quadrant chart for Italy, with points

connected following the temporal path, a graph also known as connected scatterplot

(Haroz et al 2015). The curve concisely represents the evolution of both indices

during the pandemic. Starting with the critical situation in March 2020, the situation

improved in the following months, moving from the red quadrant to the orange

bottom-right quadrant and then the yellow quadrant during summer 2020. By the

end of summer 2020 we observe a worsening of the situation that lead to the red

quadrant in November. In the following months there has been a constant oscillation

between the red and right-orange quadrants, indicating a serious pandemic situation.

A scatterplot of TPR vs COVINDEX is also useful for surveillance of the

pandemic in different Italian regions. Figure 10 summarizes the status of the

pandemic for the Italian regions at selected time points. A high-risk situation is

observed at the beginning of November 2020, where all regions belong to the red
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Fig. 8 A comparison of COVINDEX (on logarithmic scale) computed at different lags for Italy on 2020
and first half of 2021
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quadrant. The following month saw an improvement with most regions moving

towards the bottom-right orange quadrant. A more complex and varied situation is

observed between February and March 2021, with some regions moving from the

red to the orange quadrant, and vice versa for other regions.

5 A comparison of COVINDEX with the effective reproduction
number

The main index used in Italy for pandemic surveillance is Rt, the effective

reproduction number. The procedure employed for estimating Rt is described by

Guzzetta and Merler (2020) and it is based on the Bayesian methodology of Cori

et al (2013). Details can be found at https://www.epicentro.iss.it/coronavirus/sars-

cov-2-sorveglianza-dati. An archive containing both the data and the R script used

by the Italian National Institute of Health (ISS) for computing Rt is available at

https://www.epicentro.iss.it/coronavirus/open-data/calcolo_rt_italia.zip.

In this Section we provide a comparison of the proposed COVINDEX with the

values of Rt estimated following the procedure outlined above for Italy from March

2020 to June 2021. Furthermore, since the effective reproduction number does not

provide a timely snapshot of the evolution of the pandemic, we also provide two

examples showing the failure of Rt to highlight the likely evolution of the pandemic

and we compare its behaviour with the proposed COVINDEX.

The top graph reported in Fig. 11 shows the estimated curves for COVINDEX

and Rt. Overall, a similar trend can be observed for the two curves, particularly

since October 2020. Rt appears to be more wiggly than COVINDEX, especially

during the summer 2020. Likely, this is related to the large uncertainty in that period

due to the relative small number of positive cases (around few hundreds) observed
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highlighted to provide a temporal reference

123

894 L. Scrucca

https://www.epicentro.iss.it/coronavirus/sars-cov-2-sorveglianza-dati
https://www.epicentro.iss.it/coronavirus/sars-cov-2-sorveglianza-dati
https://www.epicentro.iss.it/coronavirus/open-data/calcolo_rt_italia.zip


in that period. One of main drawbacks of using Rt for real-time monitoring is shown

in the final part of the graph. In fact, if at the end of the June the COVINDEX curve

seems to suggest a resumption of the pandemic, the Rt index continues to show a

decreasing trend This behaviour can also be seen in other time periods, as discussed

below.

As mentioned in Sect. 4.4, the second wave of COVID-19 epidemic hit Italy

between the second half of October and the beginning of November 2020, followed

by a rapid decrease during the remainder of the month. However, from the

beginning of December 2020 it was evident that this decline had stopped and that

the situation was starting to get worse. This is clearly indicated by the upward slope

of the COVINDEX computed on December 5th and shown in the bottom-left graph

of Fig. 11. On the contrary, the Rt index calculated on the same day, with estimates

considered valid up to 14 days before, produces a curve which erroneously suggests

a decline in the spread of the pandemic. However, if the Rt curve is estimated a

week later, we begin to see an increase in the spread of the pandemic (see the dotted
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Fig. 10 TPR-COVINDEX plot for Italian regions at different time points
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red curve in bottom-left graph of Fig. 11). The main problem is that such alert is

reported too late.

A similar situation is also faced at the beginning of March 2021. After a period of

almost constant positive rate during February 2021, with both COVINDEX and Rt

oscillating around 1.0, by the end of the month there was a clear increase of the test

positive rate. This was immediately signalled by COVINDEX computed on

February 28th 2021 (see bottom-right graph in Fig. 11), but Rt computed on the

same day was still signalling a steady state and only after a week an increasing value

of Rt would have signalled the resurgence of the pandemic.

The comparison between COVINDEX and Rt can also be conducted at the

regional level. Here we present a comparison for two Italian regions, Lombardia and

Umbria. These are two very different regions, both in size and geographical

position, but also in terms of pandemic history. If Lombardia was the most affected

region of Italy during the 1st wave of the COVID-19 pandemic, Umbria suffered
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only marginal effects in this phase. On the contrary, the so-called 3rd wave that

occurred in winter/spring 2021 hit Umbria earlier than in the rest of Italian regions,

including Lombardia.

Likewise the national level, there is a substantial similarity between the trend of

COVINDEX and Rt for the two regions, with the former which appears to have a

smoother behaviour (see Fig. 12). Both indices correctly identified the peak of the

pandemic in October 2020 and at the end of 2020. But if for Umbria the beginning
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of 2021 is marked by the arrival of the third wave caused by the circulation of

SARS-CoV-2 variants, namely Alpha (or English) and Gamma (or Brazilian), in

Lombardia the presence of these variants only occurred from mid-February.

Subsequently, starting from spring 2021, a decline in the epidemic can be observed

in both regions.

However, there are also differences that are worth pointing out. For Lombardia

there are two values of Rt, in mid-February and early June, which appear suspicious

as they are placed outside the apparent trend, underestimating in the first case and

overestimating the trend in the second case. For Umbria, the Rt seems to increase

starting from the last week of May, while the COVINDEX still suggests a

decreasing trend. This behaviour of Rt is also suspect as the TPR of the region

remains substantially stable or slightly decreasing in this period, with all the TPR

values less than 1% in the last 10 days of June.

6 Final comments

In this paper we have proposed an index, named COVINDEX, that can be used for

near real-time monitoring of COVID-19 pandemic. The index is computed as the

ratio of the estimated test positive rate on a given day with respect to the value

estimated for a week before. Estimation of test positive rates is obtained by

statistical modelling the daily empirical positive rates calculated from the observed

data. To this end, a GAM beta regression model with weights proportional to the

administered tests is fitted. By exploiting the relationship of penalized likelihood for

GAMs with MAP Bayesian estimation, credible intervals for COVINDEX can be

obtained via simulation to express the associated uncertainty.

We applied the proposed methodology to the Italian COVID-19 outbreak and we

compared the trend of COVINDEX to the effective reproduction number Rt. The

analyses carried out confirm that Rt is a delayed index of epidemic trend, and for

this reason may provide a biased picture of the current pandemic status. On the

contrary, COVINDEX seems to provide a more up-to-date information which can

be used as a decision-making tool. This aspect is of crucial importance for all policy

makers and public health officials. We defer to future research the evaluation of the

implications deriving from the adoption of the proposed index.

Although the main focus of the analysis in this paper was the national level,

similar considerations can be made for territorial administrative divisions, such as

regions and provinces. In these cases, however, it should be noted that further

assumptions are necessary, in particular the independence of the epidemic trend

between neighbouring territories. However, an improved approach should account

for the spatio-temporal dependency structure. For instance, Mingione et al (2021)

fitted a spatio-temporal CAR model with spatial dependence expressed by

specifyicing an adjacency matrix derived from a network model of links and

transport exchanges among Italian regions (Della Rossa et al 2020). The study of

these aspects is deferred to future research.

All the analyses have been performed in R version 4.1.0 (R Core Team 2021),

using the package mgcv (Wood 2021) and functions written by the author. Code to
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reproduce the analyses is available in a GitHub repository at https://github.com/

luca-scr/COVINDEX.
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