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Abstract
Causal mediation analysis is used to decompose the total effect of an exposure on an

outcome into an indirect effect, taking the path through an intermediate variable,

and a direct effect. To estimate these effects, strong assumptions are made about

unconfoundedness of the relationships between the exposure, mediator and out-

come. These assumptions are difficult to verify in a given situation and therefore a

mediation analysis should be complemented with a sensitivity analysis to assess the

possible impact of violations. In this paper we present a method for sensitivity

analysis to not only unobserved mediator-outcome confounding, which has largely

been the focus of previous literature, but also unobserved confounding involving the

exposure. The setting is estimation of natural direct and indirect effects based on

parametric regression models. We present results for combinations of binary and

continuous mediators and outcomes and extend the sensitivity analysis for mediator-

outcome confounding to cases where the continuous outcome variable is censored

or truncated. The proposed methods perform well also in the presence of interac-

tions between the exposure, mediator and observed confounders, allowing for

modeling flexibility as well as exploration of effect modification. The performance

of the method is illustrated through simulations and an empirical example.
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1 Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University,
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1 Introduction

To estimate causal direct and indirect effects of an exposure on an outcome a key

assumption is unconfoundedness of the relationships between exposure, mediator,

and outcome. Since unconfoundedness is difficult to verify in a given situation

results should be accompanied by a sensitivity analysis to gauge the impact of

violations on the estimated effects (Rosenbaum 2010, Chap. 14).

In mediation analysis the focus has been predominantly on sensitivity against

violations of no unobserved mediator-outcome confounding. The argument used is

that confounding related to the exposure could be handled by randomization or by

adjusting for a ‘‘sufficiently rich’’ set of pre-exposure confounders, while

confounding related to the mediator is more difficult to design or adjust away.

However, in many applications the exposure cannot be randomized and it is often

difficult to guarantee that a sufficiently rich set of pre-exposure confounders has

been adjusted for.

Different approaches have been suggested for sensitivity analysis to unobserved

mediator-outcome confounding. Among these are methods based on correcting

estimates and confidence intervals (CIs) using a bias factor based on the

specification of the relationships between the unobserved confounder and the

mediator, outcome and/or exposure (VanderWeele 2010; Hafeman 2011; le Cessie

2016). An alternative approach using the correlation between the error terms in the

parametric regression models for the mediator and outcome as the sensitivity

parameter was suggested by Imai et al. (2010a) and implemented in the R (R Core

Team 2017) package mediation (Tingley et al. 2014, 2019). This approach

involves deriving expressions for the direct and indirect effects that take this

correlation into account. It offers sensitivity analysis to unobserved mediator-

outcome confounding for continuous mediators and outcomes as well as when either

the mediator or the outcome is binary, with the caveat that the binary outcome

model cannot include any exposure-mediator interactions.

A similar approach was suggested by Lindmark et al. (2018) for cases when both

the mediator and outcome are binary and probit models are used for estimation.

Instead of deriving expressions for the direct and indirect effects this approach

incorporates correlations between error terms of the mediator, outcome and

exposure assignment models into the estimation of the model parameters upon

which the direct and indirect effects estimates are based. This approach is able to

take into account not only mediator-outcome confounding but also exposure-

mediator and exposure-outcome confounding. It is also flexible in that a sensitivity

analysis can be performed also in the presence of interactions involving the

exposure, mediator and observed confounders. The latter allows richer model

specification and also enables performing sensitivity analyses in situations where

the investigation of effect heterogeneity in different subpopulations is of interest.

Estimation of direct and indirect effects is further complicated when there is

censoring or truncation of the data. In the context of structural equation models for

estimation of mediation effects Wang and Zhang (2011) showed that censoring

leads to both reduced accuracy and precision, especially when it is the outcome
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variable that is censored. They suggested a tobit mediational model to account for

censored data in the estimation of effects. However, as their approach was not in the

context of causal mediation analysis no attention was given to assumptions about

unconfoundedness or related sensitivity analyses. The mediation package (Tin-

gley et al. 2014, 2019) allows estimation of causal mediation effects when the

outcome is censored based on a tobit model but does not provide an accompanying

sensitivity analysis method. Aside from these examples, most research into methods

for mediation analysis in the presence of censoring of the outcome has taken place

in the context of time-to-event outcomes (see e.g. Lange and Hansen (2011);

VanderWeele (2011) and VanderWeele (2015), Chap. 4) including suggestions for

sensitivity analyses to unobserved mediator-outcome confounding (Tchet-

gen Tchetgen 2011; VanderWeele 2013). The related but more severe issue of

truncation, i.e. when the outcome is not recorded at all for certain values has to our

knowledge not been examined within the mediation literature.

In this paper we extend the sensitivity analysis method to unobserved mediator-

outcome confounding and confounding involving the exposure for parametric

estimation of direct and indirect effects introduced in Lindmark et al. (2018) to

include cases with continuous mediators and/or outcomes. We also suggest

sensitivity analysis methods for unobserved mediator-outcome confounding for the

more complicated settings when the outcome is censored or truncated, building on

the tobit model for censored outcomes (Tobin 1958) and its equivalent for truncated

outcomes (Hausman and Wise 1977). We illustrate the performance of the method

through simulations and present an empirical example. The approach is imple-

mented in the R package sensmediation (Lindmark 2019) with the exception

of the suggested methods for censored or truncated outcomes where we provide R

code for the analyses performed in this paper.

The paper is structured as follows. In Sect. 2.1 direct and indirect effects are

defined using the counterfactual framework for mediation (Robins and Greenland

1992; Pearl 2001) and the assumptions required for identification are presented. In

Sect. 2.2 the general idea behind the sensitivity analysis method is presented and

parametric estimators of direct and indirect effects with accompanying sensitivity

analyses for different combinations of continuous and binary mediators and

outcomes are suggested. In Sect. 2.3 corresponding results are presented for cases

where the outcome is censored or truncated. The simulation scenarios are outlined

in Sect. 3.1 with simulation results in Sect. 3.2 and an empirical example in

Sect. 3.3. Finally, we summarize the findings and discuss limitations and further

developments in Sect. 4.

2 Methods

2.1 Identification and assumptions

Let Z be an exposure, Y an outcome, and M a mediator of the exposure-outcome

relationship (see Fig. 1).
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Let MiðzÞ denote the potential value of the mediator for individual i under

exposure level z, Yiðz;mÞ, the potential outcome for individual i under exposure

level z and mediator level m and Yiðz;Miðz0ÞÞ, the composite potential outcome if

the exposure Zi were set to the value z and the mediator Mi were set to its value

under exposure level Zi ¼ z0.
We define the natural direct effect contrasting two exposure levels z1 and z0, as

NDEz1;z0ðzÞ ¼ E Yiðz1;MiðzÞÞ � Yiðz0;MiðzÞÞ½ �;

the effect on Y of changing Z from z0 to z1 if the mediator were allowed to vary as it

would naturally if all individuals in the population were under exposure level z.
The natural indirect effect is defined as

NIEz1;z0ðzÞ ¼ E Yiðz;Miðz1ÞÞ � Yiðz;Miðz0ÞÞ½ �;

the effect on Y when, keeping the exposure fixed at z in the population, allowing the

mediator to change from its potential value when z0 to its potential value when z1.
If we make a composition assumption, i.e. that YiðzÞ ¼ Yiðz;MiðzÞÞ (Van-

derWeele and Vansteelandt 2009), the total effect TEz1;z0 ¼ E Yiðz1Þ � Yiðz0Þ½ � can be
decomposed as either TEz1;z0 ¼ NDEz1;z0ðz0Þ þ NIEz1;z0ðz1Þ or

TEz1;z0 ¼ NDEz1;z0ðz1Þ þ NIEz1;z0ðz0Þ. Using terminology introduced by Robins and

Greenland (1992) the former decomposition is into the pure natural direct and total
natural indirect effect and the latter decomposition into the total natural direct and
pure natural indirect effects.

Often we have a binary exposure taking the values Z ¼ 1 if exposed and Z ¼ 0 if

unexposed. The most common decomposition is then

TE1;0 ¼ NDE1;0ð0Þ þ NIE1;0ð1Þ.
To identify natural direct and indirect effects from observed data, we assume

consistency, so that for an individual i with observed exposure Zi ¼ z we have that

Mi ¼ MiðzÞ and Yi ¼ YiðzÞ, and for an individual i with observed exposure Zi ¼ z
and observed mediator Mi ¼ m we have that Yi ¼ Yiðz;mÞ (VanderWeele and

Vansteelandt 2009). Together with the composition assumption this implies

Yi ¼ Yiðz;MiðzÞÞ.
We also assume no interference, i.e. that the exposure level of one individual

does not have an effect on the mediator or the outcome of another individ-

ual (De Stavola et al. 2015). Finally, we make crucial assumptions about

unconfoundedness:

Fig. 1 A directed acyclic graph showing the relationships between exposure Z, mediator M, and outcome
Y
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Assumption 1 Sequential ignorability (Imai et al. 2010a)

1. i.e., there is no unobserved confounding of

the exposure-mediator and exposure-outcome relationship given the observed pre-

exposure covariates Xi.

2. i.e., given Xi and the observed exposure

Zi there is no confounding of the mediator-outcome relationship.

where 0\P Zi ¼ zjXi ¼ xð Þ and 0\P MiðzÞ ¼ mjZi ¼ z;Xi ¼ xð Þ for z 2 Z (the

support of Z), and all x 2 X (the support of X) and m 2 M (the support of M).

Note that Assumption 1 implies a so-called cross-world independence assump-

tion (see e.g. VanderWeele et al. 2014), i.e. independence between the counterfac-

tual outcome under exposure level Z ¼ z0 and mediator level M ¼ m and the

counterfactual mediator under exposure level Z ¼ z, where z0 and z are possibly

different values. Since in reality different values of the exposure cannot be observed

simultaneously this assumption is difficult to verify empirically. The cross-world

independence assumption is violated in cases where there is intermediate

confounding, i.e. mediator-outcome confounders affected by the exposure.

If these assumptions are fulfilled the natural direct and indirect effects

conditional on the covariates are identified by (Pearl 2001)

NDEz1;z0 z; xð Þ ¼
X

m

½E YijZi ¼ z1;Mi ¼ m;Xi ¼ xð Þ

� E YijZi ¼ z0;Mi ¼ m;Xi ¼ xð Þ�
� P Mi ¼ mjZi ¼ z;Xi ¼ xð Þ;

ð1Þ

NIEz1;z0 z; xð Þ ¼
X

m

E YijZi ¼ z;Mi ¼ m;Xi ¼ xð Þ

�
h
P
�
Mi ¼ mjZi ¼ z1;Xi ¼ x

�

� P
�
Mi ¼ mjZi ¼ z0;Xi ¼ x

�i
:

ð2Þ

For continuous mediators we replace the sums and probabilities in (1) and (2) with

integrals and densities. By marginalizing (1) and (2) over x we obtain the

NDEz1;z0 zð Þ and NIEz1;z0 zð Þ, the natural direct and indirect effects at the population

level.

Here we use a parametric approach where the natural direct and indirect effects

are estimated by specifying parametric regression models for the outcome and

mediator and rewriting (1) and (2) as functions of the regression parameters. The

resulting estimators are consistent given that the previously outlined assumptions

are fulfilled and the regression models are correctly specified. In the following

section we derive estimators of the natural direct and indirect effects for

combinations of binary and continuous mediators and outcomes (for the combina-

tion binary mediator and outcome, see Lindmark et al. (2018)).
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2.2 Estimators and sensitivity analysis in the absence of censoring
or truncation of the outcome

We specify a parametric regression model for the mediator conditional on the

exposure and observed covariates. For a continuous mediator we specify a linear

regression model

Mi ¼ b0 þ b1Zi þ b02Xi þ b03ZiXi þ gi ¼ b0C1i þ gi; ð3Þ

where the gi are i.i.d. (independent and identically distributed) with zero mean and

standard deviation rg.
For a binary mediator we specify a probit regression model with

Mi ¼ IðM�
i [ 0Þ, where

M�
i ¼ b�0 þ b�1Zi þ b�02 Xi þ b�03 ZiXi þ g�i ¼ b�0C1i þ g�i ; ð4Þ

where g�i �
i:i:d:

Nð0; 1Þ.
We also specify a parametric regression model for the outcome conditional on

the exposure, mediator and observed covariates. For a continuous outcome we

specify

Yi ¼ h0 þ h1Zi þ h2Mi þ h3ZiMi þ h04Xi þ h05ZiXi þ h06MiXi þ h07ZiMiXi þ ni
¼ h0C2i þ ni;

ð5Þ

where the ni are i.i.d.with zero mean and standard deviation rn. For a binary

outcome we specify Yi ¼ IðY�
i [ 0Þ, where

Y�
i ¼ h�0 þ h�1Zi þ h�2Mi þ h�3ZiMi þ h�04 Xi þ h�05 ZiXi þ h�06 MiXi þ h�07 ZiMiXi þ n�i
¼ h�0C2i þ n�i ;

ð6Þ

with n�i �
i:i:d:

Nð0; 1Þ.
In Table 1 expressions for the natural direct and indirect effects are presented for

different model combinations, first when both mediator and outcome are contin-

uous, then when the mediator is binary and the outcome continuous and lastly when

the mediator is continuous and the outcome binary. Note that these are more general

versions of previously derived expressions, see Imai et al. (2010a), adding

interactions between the covariates and exposure and mediator to the regression

models used to allow for moderated mediation, i.e. different direct and indirect

effects for different covariate levels. The natural direct and indirect effects are

estimated by fitting the mediator and outcome models using maximum likelihood

(ML) and plugging the estimated parameters into the appropriate expressions in

Table 1. Approximate standard errors of the effects can be obtained using the delta

method (Oehlert 1992).
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2.2.1 Sensitivity analysis

The sensitivity analysis is presented for mediator-outcome confounding (U2 in

Fig. 2) but can be modified to exposure-mediator (U1) or exposure-outcome (U3)

confounding by replacing the mediator model with a model for the exposure

assignment conditional on the covariates and the outcome model with the mediator

model, or by replacing the mediator model with an exposure model, respectively.

For details see Lindmark et al. (2018).

We assume that the error terms in the mediator and outcome models are bivariate

normal with correlation q. If there is unobserved mediator-outcome confounding

then q 6¼ 0, otherwise q ¼ 0. The sensitivity analysis is performed by deriving the

joint likelihood for M and Y as a function of the regression parameters and q. In
Table 2 the log-likelihoods for a sample of n units (i ¼ 1; :::; n) derived for different

model combinations are presented. We cannot estimate q from the observed data

without further assumptions (Imai et al. 2010b) and instead proceed with a modified

maximum likelihood (ML) procedure, where the log-likelihood is maximized with

regards to the regression parameters for a fixed value of the correlation, q ¼ ~q. The
sensmediation package (Lindmark 2019) uses functions from the maxLik
(Henningsen and Toomet 2011; Toomet and Henningsen 2015) package for the

maximization. The default maximization method is the Newton-Raphson algorithm

which utilizes analytical gradients and Hessians of the log-likelihood functions.

The resulting parameter estimates b̂ ~qð Þ or b̂� ~qð Þ and ĥ ~qð Þ or ĥ� ~qð Þ (plus r̂g ~qð Þ for
a continuous mediator and binary outcome) are then plugged into the expressions

for the NDEz1;z0ðz; xÞ and NIEz1;z0ðz; xÞ (Table 1). This gives estimates of the

conditional natural direct and indirect effects under a given level of unobserved

mediator-outcome confounding, dNDEz1;z0ðz; x; ~qÞ and dNIEz1;z0ðz; x; ~qÞ. Estimates of

the marginal natural direct and indirect effects under given levels of confounding

are given by averaging these estimated conditional effects over the study

Fig. 2 Directed acyclic graph illustrating different kinds of unobserved confounding. Exposure Z,
mediator M, outcome Y, set of observed confounders X, and unobserved confounders U1, U2, and U3
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population. Approximate standard errors of the effects under a given level of

confounding can be obtained through the delta method.

The results of the sensitivity analysis can be presented in different ways. One is

to report the results over a range of the sensitivity parameter. This range can be

defined using subject matter knowledge about the probable nature of the unobserved

confounding, e.g. whether or not an unobserved confounder is expected to affect

both the mediator and the outcome in the same directions and thus induce a positive

error term correlation. In the absence of such prior knowledge a wide range

encompassing both negative and positive correlations can be used. The results can

be summarized through plots of point estimates and CIs and/or so called uncertainty

intervals (UIs) (Vansteelandt et al. 2006; Genbäck et al. 2015, 2018), the union of

all 100� ð1� aÞ% CIs over the range of the sensitivity parameter. An alternative,

or complement, to these is to report the values of the sensitivity parameter where the

100� ð1� aÞ% CIs include 0, i.e. where the effect is no longer significant at an a
level of significance.

2.3 Estimation and sensitivity analysis in the presence of censoring
or truncation of the outcome

Here we present estimation methods and sensitivity analyses to mediator-outcome

confounding when we have a continuous mediator and the outcome is either left

censored or left truncated, i.e. where censoring/truncation occurs for values of the

Table 2 Log-likelihoods for sensitivity analysis to unobserved mediator-outcome confounding for dif-

ferent model combinations

Mediator and outcome models Log-likelihood for sensitivity analysisa;b

(3) and (5) ‘ b; h;rg;rn; q
� �

¼
P

i ln
~/2 mi � b0C1i; yi � h0C2ið Þ

(4) and (5)c

‘ b�; h; rn; qð Þ ¼
X

i

(
lnU 2mi � 1ð Þ

b�0C1i þ
q
rn

ðyi � h0C2iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p

0
B@

1
CA

þ ln/
yi � h0C2i

rn

� �)
� n lnrn

(3) and (6)d

‘ b; h�; rg;q
� �

¼
X

i

(
lnU 2yi � 1ð Þ

h�0C2i þ
q
rg

ðmi � b0C1iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p

0
B@

1
CA

þ ln/
mi � b0C1i

rg

� �)
� n lnrg

a ~/2 �ð Þ denotes the pdf of a bivariate normal distribution with zero mean vector and

covariance matrix R ¼ r2g qrgrn
qrgrn r2n

	 

:

b/ �ð Þ and U �ð Þ denote the standard normal pdf and cumulative distribution function, respectively.

c See Appendix A for the derivation of the joint mediator and outcome distribution.

d The joint mediator and outcome distribution is derived as in Appendix A
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outcome variable that are below a certain point. The methods presented here can be

used also for right censoring/truncation, i.e. where censoring/truncation occurs for

values of the outcome variable that are above a certain point. This can be

accomplished by multiplying the right censored/truncated outcome variable by - 1,

thus transforming it into a left censored/truncated variable.

These methods are not currently implemented in the sensmediation package

but analytic gradients of the log-likelihoods are provided in appendices to facilitate

implementation of the optimization to obtain ML estimates. We also provide the

code used to perform the analyses in the simulation study which may be adapted to

other applications. Here, the optimization was performed using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method implemented in the maxLik (Hen-

ningsen and Toomet 2011; Toomet and Henningsen 2015) package, as no analytic

Hessian was derived.

For comments on adapting the methods presented to sensitivity analyses of

unobserved confounding involving the exposure, see Sect. 4.

2.3.1 Sensitivity analysis unobserved mediator-outcome confounding, censored
outcome

Assume that we have a continuous mediator and outcome that follow models (3)

and (5), but that we observe Yi ¼ maxðYi; tÞ, i.e. left censoring at t. To estimate

direct and indirect effects the mediator model could be fitted using e.g. OLS or ML

while the regression parameters in the outcome model could be estimated using e.g.

tobit regression (Tobin 1958). To assess the sensitivity of the estimated effects to

mediator-outcome confounding we again assume that the error terms gi and ni are
bivariate normal with correlation q. The joint distribution of the mediator and

outcome is then given by

f ðyi;miÞ ¼
U

t � h0C2i �
rn
rg

qðmi � b0C1iÞ

rn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p

0

B@

1

CA
1

rg
/

ðmi � b0C1iÞ
rg

� �
if yi\t;

~/2 mi � b0C1i; yi � h0C2ið Þ if yi > t:

8
>>>><

>>>>:

That is, for observations that are not censored the joint distribution is simply a

bivariate normal distribution while for observations that are censored we have:

f ðyi;miÞ ¼ f ðyi\t;miÞ ¼ f ðni\t � h0C2i; gi ¼ mi � b0C1iÞ; with the resulting den-

sity derived as in Appendix A. The joint log-likelihood is
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‘ðb; h; rg; rn; qÞ ¼
X

i

Iðyi > tÞ ln ~/2 mi � b0C1i; yi � h0C2ið Þ

þ
X

i

ð1� Iðyi > tÞÞ
(
lnU

t � h0C2i � rn
rg
qðmi � b0C1iÞ

rn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
 !

� ln rg

þ ln/
ðmi � b0C1iÞ

rg

� �)
:

ð7Þ

To obtain ĥ ~qð Þ and b̂ ~qð Þ, (7) is maximized for a fixed q ¼ ~q (gradients are provided

in Appendix B). These estimates are then plugged into the expressions for the

natural direct and indirect effects in Table 1, model combination (3) and (5) to

obtain estimates under a given level of unobserved mediator-outcome confounding

and censoring.

2.3.2 Sensitivity analysis unobserved mediator-outcome confounding, truncated
outcome

Truncation is a more complicated problem than censoring as observations are

completely missing, meaning that truncation of the outcome also leads to missing

mediator values. To reduce the complexity here we simplify the models (3) and (5)

for M and Y to only include main effects but the results can be extended to models

including interactions. The mediator and outcome models used here are:

Mi ¼ by0 þ by1Zi þ b
y0
2Xi þ gyi ; ð8Þ

Yi ¼ hy0 þ hy1Zi þ hy2Mi þ h
y0
4Xi þ nyi ; ð9Þ

The expressions for the natural direct and indirect effects under these simpler

models are given by

NDEðzÞz1;z0 ¼ hy1ðz1 � z0Þ; ð10Þ

NIEðzÞz1;z0 ¼ hy2b
y
1ðz1 � z0Þ: ð11Þ

Now assume that we only observe Yi [ t, i.e. truncation at t. Since truncation of the

outcome also leads to missing mediator values we simultaneously estimate the

parameters in the mediator and outcome regression models. Assume that gyi and nyi
are bivariate normal with correlation q. Then,

f ðmi; yiÞ ¼
( 0 if yi 6 t;

~/2 mi � by0C3i; yi � hy0C4i

� �

P Yi [ tð Þ if yi [ t;

where C3i ¼ ð1; zi; xiÞ0, C4i ¼ ð1; zi;mi; xiÞ0 and
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P Yi [ tð Þ ¼ 1� U
t � hy0 þ hy1Zi þ hy2b

y0C3i þ h
y0
4Xi

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
ny
þ hy22 r

2
gy þ 2hy2qrnyrgy

q

0
B@

1
CA;

(See Appendix C for derivation). The joint log-likelihood for the mediator and

outcome is given by

‘ by; hy; rgy ; rny ;q
� �

¼
X

i

ln ~/2 mi � by0C3i; yi � hy0C4i

� �

�
X

i

ln 1� U
t � hy0 þ hy1zi þ hy2b

y0C3i þ h
y0
4 xi

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
ny
þ hy22 r

2
gy þ 2hy2qrnyrgy

q

0
B@

1
CA

8
><

>:

9
>=

>;
:

ð12Þ

By maximizing (12) (for gradients see Appendix D) for q ¼ 0 we obtain ĥ
y
and b̂

y

under truncation. The relevant parameters can then be plugged into (10) and (11) to

obtain estimates of the natural direct and indirect effects. For sensitivity analysis we

maximize (12) for non-zero q ¼ ~q to obtain ĥ
y
~qð Þ and b̂

y
~qð Þ and in turn

dNDEz1;z0ðz; ~qÞ and dNIEz1;z0ðz; ~qÞ.

3 Results

3.1 Simulation scenarios and data generation

To demonstrate the performance of the proposed approach a simulation study was

performed. For each replicate, observations of an exposure, an outcome, a mediator

and an observed confounder affecting the exposure, mediator and outcome were

generated (R code is found at by https://github.com/anitalindmark/Sensitivity_

analysis).

Five scenarios were investigated (see Table 3 for a summary). In scenarios a, b, d

and e the data generating mediator and outcome models contained all interactions

involving the exposure and (for the outcome model) mediator. In scenario c where

the outcome was truncated data were generated from models containing only main

effects.

The regression coefficients used to generate the mediators and outcomes were

selected to yield approximately equal effects within each scenario for comparability.

For scenarios a, b, d and e the true effects were obtained by using the data

generating regression coefficients in the expressions in Table 1. To obtain marginal

effects Monte Carlo integration was performed by generating a very large number

(n ¼ 1� 109) of values of the observed covariate, calculating the effects conditional

on these values, and averaging the effects. For scenario c the true effects were given

by (10) and (11), i.e. by the true regression coefficient for the exposure in the

outcome model and the product of the true regression coefficient for the exposure in
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the mediator model and the true coefficient for the mediator in the outcome model,

respectively. True values in all scenarios were NIE1;0ð1Þ � 0:041 and

NDE1;0ð0Þ � 0:038.
In each scenario a–e mediator-outcome confounding was induced by correlating

the error terms of the data generating models, with q ¼ 0:5. For scenarios a, d and e

separate simulations with exposure-mediator and exposure-outcome confounding

were performed. For these simulations confounding was induced by correlating the

error terms in the model used to generate the exposure and the model to generate the

mediator and outcome, respectively.

Samples of size nobs ¼ 500; 1000; 5000 were generated 2000 times from each

scenario. In each of the 2000 replicates effects and standard errors were estimated

based on two values of the sensitivity parameter: ~q ¼ 0 (assuming no unobserved

confounding) and ~q ¼ 0:5 (the true value). The sensmediation package was

used for estimation. For censoring and truncation separate functions for the

optimization, log-likelihoods and gradients were implemented (code for these are

found at https://github.com/anitalindmark/Sensitivity_analysis). Functions from the

sensmediation package were then used to calculate the effects and standard

errors. The input outcome model for scenario b (censored outcome) was estimated

using the tobit function from the AER package (Kleiber and Zeileis 2008, 2020).

3.2 Simulation results

Results were summarized using the rsimsum package (Gasparini 2018) and are

presented according to recommendations in Morris et al. (2019). The performance

measures used are the bias and empirical coverage rate of 95% CIs over the 2000

replicates. In addition, the SEs of the effects estimated using the delta method are

compared to empirical SEs over the 2000 replicates using the relative % error:

Table 3 Simulation scenarios

Mediator Outcome

Scenario Type Generated from Type Generated from

a Continuous (3) Continuous (5)

b Continuous (3) Continuous (5), censoreda

c Continuous (8) Continuous (9), truncateda

d Binary (4) Continuous (5)

e Continuous (3) Binary (6)

aCensoring/truncation points in Scenarios b and c chosen to obtain 20% left censoring/truncation

123

Sensitivity analysis for unobserved confounding in causal... 797

https://github.com/anitalindmark/Sensitivity_analysis


100�
dDeltaSE

dEmpSE
� 1

 !
;

where dDeltaSE is the square root of the average squared delta method SEs over the

2000 replicates and dEmpSE is the empirical standard error for the 2000 replicates.

As the performance measures from the 2000 replicates are estimates of the true

performance measures, simulation uncertainty is taken into account by presenting

95% CIs for the performance measures based on Monte Carlo SEs (Morris et al.

2019). We present the results graphically in lollipop plots (Figs. 3, 4, 5, 8, 9, 10, 11

and 12 in Appendix E), where dots represent the estimated performance measure,

with a line from the dot to the target value of that performance measure. The 95%

CIs are represented by parentheses and thus parentheses not enclosing the target

value indicate evidence that the performance measure does not meet the target.

Fig. 3 Bias for simulations with mediator-outcome confounding based on 2000 replicates for effects
estimated using A: ~q ¼ 0 and B: ~q ¼ 0:5 . The dotted vertical lines indicate no bias. Black dots indicate

bias for dNDE1;0ð0; ~qÞ and gray dots bias for dNIE1;0ð1; ~qÞ. Parentheses represent Monte Carlo 95% CIs.

The range of the scale in panel B has been shaded light gray in panel A to facilitate comparisons
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Results for mediator-outcome confounding and scenarios a-e are summarized in

Figs. 3, 4 and 5. For all scenarios, not taking into account unobserved confounding

(i.e. using ~q ¼ 0) led to substantial bias (Fig. 3a). Note that since the total effect is

not affected by mediator-outcome confounding and is given by summing the natural

direct and indirect effects the biases of the dNDE1;0ð0Þ and dNIE1;0ð1Þ arising from

unobserved mediator-outcome confounding are of similar sizes but opposite signs,

i.e. cancel each other out. The delta method SEs appeared to target the empirical

SEs (Fig. 4a) but the large bias resulted in very poor coverage of the 95% CIs

(Fig. 5a).

Bias over the 2000 replicates for scenarios a–e when using the true value ~q ¼ 0:5
for estimation of effects is illustrated in Fig. 3b. The bias is generally small,

especially for the larger sample sizes, although a slightly larger bias was observed

for dNDE1;0ð0; ~q ¼ 0:5Þ in scenario c with a sample size of 500. The relative % error

in delta method SE shown in Fig. 4b indicates that the delta method SEs generally

Fig. 4 Relative % error for simulations with mediator-outcome confounding. Relative % error in delta
method standard errors compared to empirical standard errors based on 2000 replicates for effects
estimated using A: ~q ¼ 0 and B: ~q ¼ 0:5. The dotted vertical lines indicate 0% error. Black dots indicate

relative % error in delta method SE for dNDE1;0ð0; ~qÞ and gray dots relative % error for dNIE1;0ð1; ~qÞ.
Parentheses represent Monte Carlo 95% CIs
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appear to target empirical SEs. There is a tendency for a slight overestimation by the

delta method SE of the dNIE1;0ð1; ~q ¼ 0:5Þ for sample sizes nobs ¼ 500; 5000 in

scenario c, truncated outcome. Values of the empirical and delta method SEs are

found in Tables S1 and S2 of Online Resource 1. Looking at the empirical coverage

of 95% CIs in all scenarios (Fig. 5b) these are generally close to the nominal level.

Results for scenarios a, d and e with unobserved exposure-mediator confounding

are found in Figs. 8, 9 and 10 in Appendix E and Tables S3 and S4 in Online

Resource 1. Here the sensitivity parameter is the correlation between error terms in

the exposure and mediator models, ~qzm. Corresponding results for unobserved

exposure-outcome confounding are found in Figs. 11, 12 and 13 in Appendix E and

Tables S5 and S6 in Online Resource 1. Here the sensitivity parameter is the

correlation between error terms in the exposure and outcome models, ~qzy. We see

similar results as in the simulations with unobserved mediator-outcome confound-

ing, with small bias when using the correct correlation value (Figs. 8b and 11b) and

Fig. 5 Empirical coverage of 95% CIs for simulations with mediator-outcome confounding based on
2000 replicates for effects estimated using A: ~q ¼ 0 and B: ~q ¼ 0:5. The dotted vertical lines indicate

95% coverage. Black dots indicate coverage for dNDE1;0ð0; ~qÞ and gray dots coverage for dNIE1;0ð1; ~qÞ.
Parentheses represent Monte Carlo 95% CIs. The range of the scale in panel B has been shaded light gray
in panel A to facilitate comparisons
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empirical coverage of 95% CIs generally close to the nominal level (Figs. 10b

and 13b). A notable difference is that unobserved exposure-mediator confounding

leads to large bias for dNIE1;0ð1; ~qzm ¼ 0Þ but small bias for dNDE1;0ð0; ~qzm ¼ 0Þ and
conversely unobserved exposure-outcome confounding leads to large bias for

dNDE1;0ð0; ~qzy ¼ 0Þ but small bias for dNIE1;0ð1; ~qzy ¼ 0Þ.

3.3 Empirical example

To illustrate the method we use the publicly available data set UPBdata from the R

package medflex (Steen et al. 2020). The data were used to illustrate functions in

the medflex package in Steen et al. (2017) and are a subsample of 385 individuals

that participated in a survey study as part of the Interdisciplinary Project for the

Optimization of Separation trajectories (Ghent University and Catholic University

of Louvain 2010). The individuals had divorced between March 2008 and March

2009 and were asked to respond to various questionnaires related to romantic

relationship and breakup characteristics (De Smet et al. 2012).

Following the example in Steen et al. (2017) we look at the relationship between

attachment style towards the ex-partner prior to the breakup and unwanted pursuit

behaviors (UPBs) towards the ex-partner after the breakup and the extent to which

this is mediated by level of emotional distress experienced during the breakup. A

binary exposure is used, indicating whether or not the individual’s self-reported

anxious attachment level was higher than the sample mean. The outcome is whether

or not the individual reported that they had displayed UPBs towards their ex-partner

after the breakup. The mediator is standardized self-reported experienced level of

negative affectivity (emotional distress) during the breakup, a continuous variable.

We adjust for age, highest attained education level (high, intermediate, low) and

gender (male, female). The hypothesized relationships between the variables are

illustrated in Fig. 6. All analyses are performed using the sensmediation
package (Lindmark 2019), code found at https://github.com/anitalindmark/

Sensitivity_analysis.

We begin with estimation of the natural direct and indirect effects assuming no

unmeasured confounding and then proceed with sensitivity analyses to the three

types of unmeasured confounding.

Fig. 6 Directed acyclic graph empirical example
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Since we have a continuous mediator and a binary outcome the analyses are

based on models (3) and (6) and the corresponding estimators from Table 1. In this

example we investigate effect modification (moderation) by gender. To this end we

include an interaction between the exposure and gender in the model for the

mediator (Table S7 of Online Resource 1) as well as interactions between gender

and both exposure and mediator in the outcome model (Table S8 of Online

Resource 1). An interaction term between exposure and mediator is also included in

the outcome model, as recommended by VanderWeele (2015) to fully capture the

dynamics of mediation.

Estimated effects averaged over all observed confounders (marginal effects) as

well as conditional on male and female gender are presented in Table 4. Looking at

the estimated total effects we see that anxious attachment increases the risk of UPBs

both marginally and conditional on gender, with a larger effect for men than for

women. Over half of this total effect is an indirect effect of anxious attachment on

UPBs operating through negative affectivity, with a slightly larger proportion for

males than for females.

Fig. 7 Results of sensitivity analyses. A: Unobserved negative affectivity (mediator)-UPBs (outcome)
confounding. B: Unobserved anxious attachment (exposure)-negative affectivity (mediator) confounding.
C: Unobserved anxious attachment (exposure)-UPBs (outcome) confounding. Solid lines correspond to
point estimates and shaded areas to 95% CIs
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To gauge the effect of possible unobserved confounding on the results we

perform sensitivity analyses. Here we choose to focus on the natural indirect effect,

which was statistically significant in the original analysis. We present results for all

three types of confounding, with sensitivity parameters ranging from - 0.9 to 0.9 in

increments of 0.1. Plots of point estimates of the marginal natural indirect effect

with corresponding CIs over the range of the sensitivity parameters are presented in

Fig. 7. For both mediator-outcome confounding (Fig. 7a) and exposure-mediator

confounding (Fig. 7b) the overall pattern is that the natural indirect effect decreases

over the range of the sensitivity parameter. If additional adjustment were made for a

confounder inducing an error term correlation (~q or ~qzm) of 0.3 or higher the CIs of

the effect would include 0 and additional adjustment for a confounder inducing a ~q
of at least 0.6 or a ~qzm of at least 0.5 would lead to CIs entirely below 0. The natural

indirect effect is not sensitive to unobserved exposure-outcome confounding

(Fig. 7c). Note that as the exposure and outcome are both binary the sensitivity

analyses to exposure-outcome confounding were performed using methods

presented in Lindmark et al. (2018).

The results in Fig. 7 are summarized in Table 5 which also shows the 95% UIs

over the range of the sensitivity parameter. Corresponding results for men and

women are also shown, indicating similar results as those seen for the marginal

effect. For exposure-outcome confounding the lower bounds of the 95% UIs over

the range of the sensitivity parameter all lie above 0, indicating that the effects are

not sensitive to unobserved exposure-outcome confounding.

4 Discussion

In this paper we have extended results from Lindmark et al. (2018) to provide

methods for sensitivity analysis of unobserved confounding in mediation analysis

for combinations of continuous and binary mediators and outcomes, as well as for

censored or truncated outcomes. Where previous methods focus exclusively on

mediator-outcome confounding (VanderWeele 2010; Imai et al. 2010a; Hafeman

2011; le Cessie 2016), this approach is flexible due to the ability to take into account

not only mediator-outcome confounding but also exposure-mediator and exposure-

outcome confounding. The latter two are of particular importance in observational

studies, where the exposure has not been randomized, due to the difficulty in

guaranteeing that all relevant confounders have been adjusted for. It also has the

advantage that sensitivity analyses can be performed also in the presence of

Table 4 Estimated marginal and conditional indirect, direct and total effects (absolute risk differences).

Estimate (95% CI)

dNIE1;0(1) dNDE1;0(0) cTE1;0

Marginal 0.088 (0.045, 0.131) 0.075 (� 0.018, 0.168) 0.163 (0.067, 0.258)

Men 0.118 (0.039, 0.197) 0.090 (� 0.054, 0.235) 0.209 (0.056, 0.361)

Women 0.067 (0.018, 0.116) 0.064 (� 0.059, 0.186) 0.131 (0.007, 0.255)
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interactions involving the exposure, mediator and covariates, allowing more

complicated models and facilitating sensitivity analyses also when the interest lies

in exploration of effect modification.

We performed simulations that showed that the method targets the true effects

when the error term correlation induced by unobserved confounding is taken into

account in the estimation. Generally this illustrates that the method does indeed

capture the effect that would have been observed under a given level of correlation.

In reality this correlation will be unknown to the researcher and therefore further

simulation studies investigating, e.g. the performance of UIs based on a range of

correlation levels is of interest.

The method has some limitations that should be subjects for future development.

One such limitation is the reliance on the specification of parametric regression

models with distributional assumptions on the error terms. The results may therefore

be sensitive to model misspecification and the nature of this sensitivity should be

subject to further study. On the other hand, since the method allows inclusion of

interactions involving the exposure, mediator and covariates, rich parametric

models can be specified which can reduce the risk of model misspecification bias.

This under the condition that the data allow such a specification and are large

enough to lessen the impact of the increase in variance. In any case, further

developments utilizing either semi-parametric techniques (Tchetgen Tchetgen and

Shpitser 2012; Huber 2014) or retaining parametric regression models but relaxing

the multivariate normality assumption of the error terms upon which the method

introduced here relies are warranted.

Table 5 Summary of the results of the sensitivity analysis for the natural indirect effect

Confounding type

Mediator-outcome Exposure-mediator Exposure-outcome

Marginal

95% UIa (� 0.172, 0.214) (� 0.290, 0.472) (0.021, 0.133)

95% CI including 0 for ~q 2 ð0:3; 0:5Þ ~qzm 2 ð0:3; 0:4Þ –

95% CI below 0 for ~q 2 ð0:6; 0:9Þ ~qzm 2 ð0:5; 0:9Þ –

Men

95% UIa (� 0.191, 0.262) (� 0.347, 0.575) (0.015, 0.198)

95% CI including 0 for ~q 2 ð0:3; 0:6Þ ~qzm 2 ð0:2; 0:5Þ –

95% CI below 0 for ~q 2 ð0:7; 0:9Þ ~qzm 2 ð0:6; 0:9Þ –

Women

95% UIa (� 0.190, 0.219) (� 0.293, 0.464) (0.009, 0.120)

95% CI including 0 for ~q 2 ð0:2; 0:5Þ ~qzm 2 ð0:2; 0:4Þ –

95% CI below 0 for ~q 2 ð0:6; 0:9Þ ~qzm 2 ð0:5; 0:9Þ –

a95% uncertainty interval over the range of the sensitivity parameter (-0.9, 0.9)
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The issue of model misspecification is even more important for the proposed

methods for censoring or truncation since maximum likelihood estimators for

regression parameters when the outcome is censored or truncated have been shown

to be sensitive to violations of distributional assumptions (Vijverberg 1987). Semi-

parametric estimators that impose fewer assumptions on the error term have been

developed both for censoring, e.g. Powell (1986), and truncation, e.g. Powell

(1986); Lee (1993); Laitila (2001). Further research into the usefulness of such

models in the context of mediation is of interest.

For the cases with a censored/truncated outcome and a continuous mediator we

have presented results for sensitivity analyses to mediator-outcome confounding

only. Since we assume that only the outcome is censored, not the exposure or

mediator, a sensitivity analysis to exposure-mediator confounding is straight-

forward and can be performed using the methods presented in Sect. 2.2.1. For a

truncated outcome this would be more complicated since truncation of the outcome

means that values will be missing for the exposure and mediator as well, which

would need to be taken into account. For exposure-outcome confounding and a

censored outcome, if the exposure is continuous and can be modeled with a linear

regression model a sensitivity analysis could be performed by replacing the

mediator model with the exposure model in the joint log-likelihood. The situation is

again less straight-forward for truncation where the joint exposure-outcome

distribution would need to be derived.

The methods presented in this paper evaluate sensitivity to each type of

unobserved confounding separately, assuming that the other two kinds are not

present. Extending the method to investigate sensitivity to all three types of

confounding simultaneously is therefore of interest.

In this paper we present results for natural direct and indirect effects on the mean

difference scale. Adapting the methods to other scales is of interest, in particular for

cases with a binary outcome where the researchers may be interested in effects on

the risk ratio or odds ratio scales (VanderWeele and Vansteelandt 2010; Valeri and

VanderWeele 2013; Doretti et al. 2021).

Finally, it is important to note that the natural direct and indirect effects are not

identified when the cross-world assumption introduced in Sect. 2.1 is violated. Such

violations include the presence of mediator-outcome confounders that are affected

by the exposure, regardless of whether these are observed or not. In such cases we

either need to make additional parametric assumptions (Robins and Greenland

1992; Petersen et al. 2006; De Stavola et al. 2015) or use different effect

definitions, e.g. so called interventional direct and indirect effects (see e.g.

VanderWeele et al. 2014; Lok 2016).

To summarize, we have provided sensitivity analysis methods for unobserved

confounding that are useful when performing parametric estimation of natural direct

and indirect effects even when more complex models including interactions
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involving the exposure and/or mediator are used. With further developments these

methods can be made even more flexible.

Appendix A Derivation of the joint distribution of M and Y
under a binary probit mediator model (4) and a linear outcome
model (5)

To obtain the joint distribution of Mi; Yi given Zi;Xi, with Mi following model (4)

and Yi following model (5) we see that:

P Mi¼1;Yi¼ yijZi;Xið Þ¼P M�
i >0;Yi¼ yijZi;Mi;Xi
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Using the same reasoning we have
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and finally the joint distribution
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� �
:

Appendix B Gradients of the joint log-likelihood, censored outcome
(7)

Let C ¼
t�h0C2i�

rn
rg
qðmi�b0C1iÞ

rn
ffiffiffiffiffiffiffiffi
1�q2

p . Then,
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Appendix C Derivation of P(Yi > t), the probability of being included
in the sample

Assume that Mi and Yi can be modeled with (8) and (9) and that only Yi [ t are

observed. We have that P Yi [ tð Þ ¼ 1� P Yi 6 tð Þ ¼ 1� P ni 6 t � hy0C4i

� �
, and

P nyi 6 t � hy0C4i

� �
¼ P nyi 6 t � hy0 þ hy1Zi þ hy2Mi þ h

y0
4Xi

� �� �

¼ P nyi 6 t � hy0 þ hy1Zi þ hy2 by0C3i þ gyi
� �

þ h
y0
4Xi

� �� �

¼ P nyi þ hy2g
y
i 6 t � hy0 þ hy1Zi þ hy2b

y0C3i þ h
y0
4Xi

� �� �
;

where in the second equality we replace Mi with by0C3i þ gyi , thus incorporating the

regression parameters of the mediator model in the part of the distribution that takes

truncation into account (similarly to the suggestion of Hausman and Wise (1977) for
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a two equation model). Since nyi þ hy2g
y
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i:i:d:
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2
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Appendix D Gradients of the joint log-likelihood, truncated outcome
(12)
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Appendix E Simulation results exposure-mediator and exposure
outcome confounding

Fig. 8 Bias for simulations with exposure-mediator confounding based on 2000 replicates for effects
estimated using A: ~qzm ¼ 0 and B: ~qzm ¼ 0:5. The dotted vertical lines indicate no bias. Black dots

indicate bias for dNDE1;0ð0; ~qzmÞ and gray dots bias for dNIE1;0ð1; ~qzmÞ. Parentheses represent Monte Carlo

95% CIs. The range of the scale in panel B has been shaded light gray in panel A to facilitate comparisons
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Fig. 9 Relative % error for simulations with exposure-mediator confounding. Relative % error in delta
method standard errors compared to empirical standard errors based on 2000 replicates for effects
estimated using A: ~qzm ¼ 0 and B: ~qzm ¼ 0:5. The dotted vertical lines indicate 0% error. Black dots

indicate relative % error in delta method SE for dNDE1;0ð0; ~qzmÞ and gray dots relative % error for

dNIE1;0ð1; ~qzmÞ. Parentheses represent Monte Carlo 95% CIs

Fig. 10 Empirical coverage of 95% CIs for simulations with exposure-mediator confounding based on
2000 replicates for effects estimated using A: ~qzm ¼ 0 and B: ~qzm ¼ 0:5. The dotted vertical lines indicate

95% coverage. Black dots indicate coverage for dNDE1;0ð0; ~qzmÞ and gray dots coverage for

dNIE1;0ð1; ~qzmÞ. Parentheses represent Monte Carlo 95% CIs. The range of the scale in panel B has

been shaded light gray in panel A to facilitate comparisons
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Fig. 11 Bias for simulations with exposure-outcome confounding based on 2000 replicates for effects
estimated using A: ~qzy ¼ 0 and B: ~qzy ¼ 0:5. The dotted vertical lines indicate no bias. Black dots

indicate bias for dNDE1;0ð0; ~qzyÞ and gray dots bias for dNIE1;0ð1; ~qzyÞ. Parentheses represent Monte Carlo

95% CIs. The range of the scale in panel B has been shaded light gray in panel A to facilitate comparisons

Fig. 12 Relative % error for simulations with exposure-outcome confounding. Relative % error in delta
method standard errors compared to empirical standard errors based on 2000 replicates for effects
estimated using A: ~qzy ¼ 0 and B: ~qzy ¼ 0:5. The dotted vertical lines indicate 0% error. Black dots

indicate relative % error in delta method SE for dNDE1;0ð0; ~qzyÞ and gray dots relative % error for

dNIE1;0ð1; ~qzyÞ. Parentheses represent Monte Carlo 95% CIs
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