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Abstract
We propose a weighted stochastic block model (WSBM) which extends the

stochastic block model to the important case in which edges are weighted. We

address the parameter estimation of the WSBM by use of maximum likelihood and

variational approaches, and establish the consistency of these estimators. The

problem of choosing the number of classes in a WSBM is addressed. The proposed

model is applied to simulated data and an illustrative data set.

Keywords Weighted stochastic block model � Variational estimators � Maximum

likelihood estimators � Consistency � Model selection

1 Introduction

Networks are used in many scientific disciplines to represent interactions among

objects of interest. For example, in the social sciences, a network typically

represents social ties between actors. In biological sciences, a network can represent

interactions between proteins.

The stochastic block model (SBM) (Holland et al. 1983; Snijders and Nowicki

1997) is a popular generative model which partitions vertices into latent classes.

Conditional on the latent class allocations, the connection probability between two

vertices depends only on the latent classes to which the two vertices belong. Many

extensions of the class SBM have been proposed which include the degree

correlated SBM (Karrer and Newman 2011; Peng and Carvalho 2016), mixed

membership SBM (Airoldi et al. 2008) and overlapping SBM (Latouche et al.

2011).
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The SBM and many of its variants are usually restricted to Bernoulli networks.

However, many binary networks are produced after applying a threshold to a

weighted relationship (Ghasemian et al. 2016) which results in the loss of

potentially valuable information. Although most of the literature has focused on

binary networks, there is a growing interest in weighted graphs (Barrat et al. 2004;

Newman 2004; Peixoto 2018).

In particular, a number of clustering methods have been proposed for weighted

graphs including algorithm based and model based methods. Algorithm based

methods for clustering of weighted graphs can be further divided into two classes:

algorithms which do not explicitly optimize any criteria (Pons and Latapy 2005; von

Luxburg 2007) and those directly optimize a criterion (Clauset et al. 2004; Stouffer

and Bascompte 2011). Model based methods (Mariadassou et al. 2010; Aicher et al.

2013, 2015; Ludkin 2020) attempt to take into account the random variability in the

data. A recent review of graph clustering methods is given by (Leger et al. 2014).

Mariadassou et al. (2010) presents a Poisson mixture random graph model for

integer valued networks and proposes a variational inference approach for

parameter estimation. The model can account for covariates via a regression

model. In Zanghi et al. (2010), a mixture modelling framework is considered for

random graphs with discrete or continuous edges. In particular, the edge distribution

is assumed to follow an exponential family distribution. Aicher et al. (2013)

proposed a general class of weighted stochastic block model for dense graphs where

edge weights are assumed to be generated according to an exponential family

distribution. In particular, their construction produces complete graphs, in which

every pair of vertices is connected by some real-valued weight. Since most real-

world networks are sparse, the constructed model cannot be applied directly. To

address this shortcoming, Aicher et al. (2015) extends the work of Aicher et al.

(2013) and models the edge existence using a Bernoulli distribution and the edge

weights using an exponential family distribution. The contributions of edge-

existence distribution and edge-weight distribution in the likelihood function are

then combined via a simple tuning parameter. However, their construction does not

result in a generative model and it is not obvious how to simulate network

observations from the proposed model. More recently, Ludkin (2020) presents a

generalization of the SBM which allows artbitrary edge weight distributions and

proposes a reversible jump Markov chain Monte Carlo sampler for estimating the

parameters and the number of blocks. However, the use of continuous probability

distribution to model the edge weights implies that the resulting graph is complete

whereby every edge is present. This assumption is unrealistic for many applications

whereby a certain proportion of the real-valued edges is 0. Haj et al. (2020) presents

a binomial SBM for weighted graphs and proposes a variational expectation

maximization algorithm for parameter estimation.

In this paper, we propose a weighted Stochastic Block model (WSBM) with

gamma weights which aims to capture the information of weights directly using a

generative model. Both maximum likelihood estimation and variational methods are

considered for parameter estimation where consistency results are derived. We also

address the problem of choosing the number of classes using the Integrated
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Completed Likelihood (ICL) criteria (Biernacki et al. 2000). The proposed models

and inference methodology are applied to an illustrative data set.

2 Model specification

In this section, we present the weighted stochastic block model in detail and

introduce the main notations and assumptions.

We let X ¼ ðV;X ;YÞ denote the set of directed weighted random graphs where

V ¼ N is the set of countable vertices, X ¼ f0; 1gN�N
is the set of edge-existence

adjacency matrix, and Y ¼ RN�N
þ is the set of weighted adjacency matrix. Given a

random adjacency matrix X ¼ fXijgi;j2N, Xij ¼ 1 if an edge exists from vertex i to

vertex j and Xij ¼ 0 otherwise. The associated weighted random adjacency matrix is

given by: for i 6¼ j, if Xij ¼ 1, Yij [ 0, and Yij ¼ 0 otherwise. Let P be a probability

measure on X.

2.1 Generative model

We now describe the procedure of generating a sample of random graph (V, X, Y)
with n vertices from X.

• Let Z½n� ¼ ðZ1; . . .; ZnÞ be the vector of latent block allocations for the vertices,

and set h ¼ ðh1; . . .; hQÞ with
P

q hq ¼ 1. For each vertex vi, draw its block label

Zi 2 f1; . . .;Qg from a multinomial distribution

Zi �Mð1; h1; . . .; hQÞ.

• Let p ¼ ðpqlÞQ
q;l¼1 be a Q � Q matrix with entries in [0, 1]. Conditional on the

block allocations Z½n�, the entries Xij for i 6¼ j of the edge-existence adjacency

matrix X½n� is generated from independently a Bernoulli distribution

XijjZi ¼ q; Zj ¼ l�BðpqlÞ.

• Let a ¼ ðaqlÞQ
q;l¼1 and b ¼ ðbqlÞQ

q;l¼1 be Q � Q matrices with entries taking

values in the positive reals. Conditional on the latent block allocations Z½n� and

edge-existence adjacency matrix X, the weighted adjacency matrix Y½n� is

generated independently from

YijjXij ¼ 1; Zi ¼ q; Zj ¼ l� Ga ðaql; bqlÞ,
YijjXij ¼ 0; Zi ¼ q; Zj ¼ l� df0g,

where Ga ð�; �Þ denotes the gamma distribution and df�g is the Dirac delta

function.

The generative framework described above is a straightforward extension of the

binary stochastic block model whereby a positive weight is generated according to a
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gamma distribution for each edge. In particular, (X, Z) is a realization of the binary

directed SBM. The gamma distribution is chosen due to its flexibility in the sense

that, depending on the value of its shape parameter, it can represent distributions of

different shapes.

The log-likelihood of the observations X½n� and Y½n� is given by

L2ðY½n�;X½n�; h; p; a; bÞ ¼ log
�X

z½n�

eL1ðY½n�;X½n�;z½n�;p;a;bÞPfZ½n� ¼ z½n�g
�
; ð1Þ

where the sum is over all possible latent block allocations, PfZ½n� ¼ z½n�g ¼
Qn

i¼1 hzi

is the probability of latent block allocation z½n�, and

L1ðY½n�;X½n�; z½n�; p; a; bÞ

¼
X

i 6¼j

h
Xij

�
log pzi;zj

þ log f ðYij; azi;zj
; bzi;zj

Þ
�
þ ð1� XijÞ logð1� pzi;zj

Þ
i

¼
X

i 6¼j

n
Xij log pzi;zj

þ ð1� XijÞ logð1� pzi;zj
Þ
o

þ Xij

n
azi;zj

log bzi;zj
þ ðazi;zj

� 1Þ log Yij � bzi;zj
Yij � logCðazi;zj

Þ
o

ð2Þ

is the complete data log-likelihood, where f ð�; a; bÞ is the gamma probability density

function with shape parameter a and rate parameter b,

2.2 Assumptions

We present several assumptions needed for identifiability and consistency of

maximum likelihood estimates. The following four assumptions were presented in

Celisse et al. (2012) and are needed in this paper.

Assumption 1 For every q 6¼ q
0
, there exists l 2 f1; . . .;Qg such that

pq;l 6¼ pq
0
;l or pl;q 6¼ pl;q

0 :

Assumption 2 There exists f 2 ð0; 1Þ such that for all ðq; lÞ 2 f1; . . .;Qg2

pql 2 ½f; 1� f�:

Assumption 3 There exists 0\c\1=Q such that for all q 2 f1; . . .;Qg,

hq 2 ½c; 1� c�:

Assumption 4 There exists 0\c\1=Q and n0 2 N� such that for all

q 2 f1; . . .;Qg, for all n� n0,
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Nqðz�½n�Þ
n

� c;

where Nqðz�½n�Þ ¼ jf1	 i	 n : z�i ¼ qj and z�½n� is any realized block allocation under

the WSBM.

(A1) requires that no two classes have the same connectivity probabilities. If this

assumption is violated, the resulting model has too many classes and is non-

identifiable. (A2) requires that the connectivity probability between any two classes

strictly lies within a closed subset of the unit interval. Note that this assumption is

slightly more restrictive compared to assumption 2 of Celisse et al. (2012) in that

we do not consider the boundary cases where pq;l 2 f0; 1g. The boundary cases

require special treatment and are not pursued in this paper. (A3) ensures that no

class is empty with high probability while (A4) is the empirical version of (A3). We

note that (A4) is satisfied asymptotically under the generative framework in Sect.

2.1 since the block allocations are generated according to a multinomial

distribution.

In addition to the four assumptions above, we also have the following constraints

on the gamma parameters.

Assumption 5 For every q 6¼ q
0
, there exists l 2 f1; . . .;Qg such that

ðaq;l; bq;lÞ 6¼ ðaq
0
;l; bq

0
;lÞ or ðal;q; bl;qÞ 6¼ ðal;q

0 ; bl;q
0 Þ

(A5) requires that no two classes have the same weight distribution. This

assumption is the exact counterpart of (A1).

The log-likelihood function (1) contains degeneracies that prevent the direct

estimation of parameters h; p; a; b. To see this, we note that the probability density

function of a gamma distribution Ga ða; bÞ is given by

f ðy; a; bÞ ¼ ya�1 expð�byÞba

CðaÞ .

By Stirling’s formula, we have

CðaÞ ¼
ffiffiffiffiffiffi
2p

p
aa�1=2 expð�aÞð1þOða�1ÞÞ.

Setting y ¼ ab,

f ðy; a; bÞ ¼ ya�1 expð�aÞða=yÞa

CðaÞ ¼ 1
ffiffiffiffiffiffi
2p

p
y

ffiffiffi
a

p

1þOða�1Þ .

Therefore, letting a ! 1 while keeping ab ¼ y, we have f ðy; a; bÞ ! 1. One can

therefore show that the log-likelihood function is unbounded above. To avoid

likelihood degeneracy, we compactify the parameter space. That is, we restrict the

parameter space to a compact subset which contains the true paraemters. Therefore,

we have the following assumption.
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Assumption 6 There exists 0\ac\aC\1 and 0\bc\bC\1 such that for all

ðq; lÞ 2 f1; . . .;Qg,

ac 	 aql 	 aC, bc 	 bql 	 bC.

With this assumption, it is easy to see that the log-likelihood function is bounded for

any sample size.

2.3 Identifiability

Sufficient conditions for identifiability of binary SBM with two classes have been

first obtained by Allman et al. (2009). Celisse et al. (2012) show that the SBM

parameters are identifiable up to a permutation of class labels under the conditions

that ph has distinct coordinates and n� 2Q. The condition on ph is mild since the

set of vectors violating this assumption has Lebesgue measure 0. The identifiability

of weighted SBM is more challenging where the only known result (Section 4 of

Allman et al. (2011)) requires all entries of ðp; a; bÞ to be distinct. We note that the

assumptions in the previous section are not necessarily sufficient but are necessary

to ensure that the identifiability of the parameters.

3 Asymptotic recovery of class labels

We study the posterior probability distribution of the class labels Z½n� given the

random adjacency matrix X½n� and weight matrix Y½n�, which is denoted by

PðZ½n�jX½n�; Y½n�Þ. Since X½n� and Y½n� are random, PðZ½n�jX½n�; Y½n�Þ is also random.

Let P�ðX½n�;Y½n�Þ :¼ PðX½n�;Y½n�jZ½n� ¼ z�½n�Þ be the true conditional distribution of

ðX½n�; Y½n�Þ which depends on the true parameters ðh�; p�; a�; b�Þ. We study the

convergence rate of PðZ½n�jX½n�; Y½n�Þ towards 1 with respect to P�.

The matrices p; a; b are permutation-invariant if one permutes both its rows and

columns according to some permutation r : f1; . . .;Qg ! f1; . . .;Qg. Let pr; ar; br
be the matrices defined by

prql ¼ prðqÞ;rðlÞ, a
r
ql ¼ arðqÞ;rðlÞ, b

r
ql ¼ brðqÞ;rðlÞ

and define the set

R ¼ fr : f1; . . .;Qg ! f1; . . .;Qgjpr ¼ p; ar ¼ a; br ¼ bg.

Two vectors of class labels z and z
0
are equivalent if there exists r 2 R such that

z
0
i ¼ rðziÞ, for all i. We let [z] denote the equivalence class of z and will omit the

square-brackets in the equivalence class notation as long as no confusion arises.

The following result extends Theorem 3.1 of Celisse et al. (2012) to the case of

WSBM.

Theorem 1 Under assumptions (A1)–(A6), for every t[ 0,
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P�

"
X

½z½n��6¼½z�½n��

Pð½Z½n�� ¼ ½z½n��jX½n�; Y½n�Þ
Pð½Z½n�� ¼ ½z�½n��jX½n�; Y½n�Þ

[ t

#

¼ Oðne�jnÞ

uniformly with respect to z�, and for some j[ 0 depending only on p�; a�; b� but

not on z�. Here z� ¼ ðz�i Þ
1
i¼1 with z�i 2 f1; . . .;Qg. Furthermore, P� can be replaced

by P under assumptions (A1)–(A3) and (A5)–(A6).

4 Maximum likelihood estimation of WSBM parameters

For the binary SBM, consistency of parameter estimation have been shown for

profile likelihood maximization (Bickel and Chen 2009), spectral clustering method

(Rohe et al. 2011), method of moments approach (Bickel et al. 2011), method based

on empirical degrees (Channarond et al. 2012), and others (Choi et al. 2012).

Consistency of both maximum likelihood estimation and variational approximation

method are established in Celisse et al. (2012) and Bickel et al. (2013) where

asymptotic normality is also established in Bickel et al. (2013). Abbe (2018)

reviews recent development in the stochastic block model and community

detections.

Ambroise and Matias (2012) proposes a general class of sparse and weighted

SBM where the edge distribution may exhibit any parametric form and studies the

consistency and convergence rates of various estimators considered in their paper.

However, their model requires the edge existence parameter to be constant across

the graph, that is, pql ¼ p; for all q, l, or pql can be modelled as pql ¼
a1Iq¼l þ a2Iq 6¼l where I� is the indicator function and a1 6¼ a2. Furthermore, they also

assume that conditional on the block assignments, the edge weight YijjXi ¼ q;Xj ¼ l
is modelled using a parametric distribution with a single parameter hql. They further

impose the restriction that

hql ¼
hin if q ¼ l;

hout if q 6¼ l:

�

These assumptions are more restrictive than those imposed in this paper. Jog and

Loh (2015) studies the problem of characterizing the boundary between success and

failure of MLE when edge weights are drawn from discrete distributions. More

recently, Brault et al. (2020) studies the consistency and asymptotic normality of the

MLE and variational estimators for the latent block model which is a generalization

of the SBM. However, the model considered in Brault et al. (2020) is restricted to

the dense setting and requires the observations in the data matrix to be modelled by

univariate exponential family distributions.

This section addresses the consistency of the MLE of WSBM. In particular, we

extend the results obtained in the pioneering paper of Celisse et al. (2012) to the

case of weighted graphs. Our proof closely follows the proof of consistency of the

MLE in Celisse et al. (2012). The MLE consistency proof of ðp; a; bÞ and h require

different treatments since there are nðn � 1Þ edges but only n vertices. The

following result established the MLE consistency of ðp; a; bÞ.
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Theorem 2 Assume that assumptions (A1), (A2), (A3), (A5), (A6) hold. Let us define
the MLE of ðh�; p�; a�; b�Þ by

ðĥ; p̂; â; b̂Þ :¼ arg max
h;p;a;b

L2ðY½n�;X½n�; h; p; a; bÞ:

Then for any metric dð�; �Þ on ðp; a; bÞ,

dððp̂; â; b̂Þ; ðp�; a�; b�ÞÞ�!½ n ! 1�P0:

Under additional assumption on the rate of convergence of the estimators

ðp̂; â; b̂Þ of ðp; a; bÞ, consistency of ĥ can be established.

Theorem 3 Let ðĥ; p̂; â; b̂Þ denote the MLE of ðh�; p�; a�; b�Þ and assume that

jjp̂� p�jj1 ¼ oPð
ffiffiffiffiffiffiffiffiffiffi
log n

p
=nÞ, jjâ� a�jj1 ¼ oPð

ffiffiffiffiffiffiffiffiffiffi
log n

p
=nÞ, and jjb̂� b�jj1 ¼

oPð
ffiffiffiffiffiffiffiffiffiffi
log n

p
=nÞ, then

dðĥ; h�Þ�!½ n ! 1�P0

for any metric d in RQ.

5 Variational estimators

Direct maximization of the log-likelihood function is intractable except for very

small graphs since it involves a sum over Qn terms. In practice, approximate

algorithms such as Markov Chain Monte Carlo (MCMC) and variational inference

algorithms are often used for parameter inference. For the SBM, both MCMC and

variational inference approaches have been proposed (Snijders and Nowicki 1997;

Daudin et al. 2008). Variational inference algorithms have also been developed for

mixed membership SBM (Airoldi et al. 2008), overlapping SBM (Latouche et al.

2011), and the weighted SBM proposed in Aicher et al. (2013). This section

develops a variational inference algorithm for the WSBM which can be considered a

natural extension of the algorithm proposed in Daudin et al. (2008) for the SBM.

The variational method consists in approximating PðZ½n� ¼ �jX½n�; Y½n�Þ by a

product of n multinomial distributions. Let Dn denote a set of product multinomial

distributions

Dn ¼
n

Ds½n� ¼
Yn

i¼1

Mð1; si;1; . . .; si;QÞjs½n� 2 Sn

o

where
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Sn ¼
n
s½n� ¼ ðs1; . . .; snÞ 2 ð½0; 1�QÞnj for all i; si ¼ ðsi;1; . . .; si;QÞ;

XQ

q¼1

si;q ¼ 1
o
.

For any Ds½n� 2 Dn, the variational log-likelihood is defined by

J ðY½n�;X½n�; s½n�; h; p; a; bÞ ¼ L2ðY½n�;X½n�; h; p; a; bÞ �KLðDs½n� ;Pð�jX½n�; Y½n�ÞÞ.

Here KLð�; �Þ denotes the Kullback-Leibler divergence between two probability

distributions, which is nonnegative. Therefore, J provides a lower bound on the

log-likelihood function. We have that

J ðY½n�;X½n�; s½n�; h; p; a; bÞ ¼
X

i 6¼j

X

q;l

si;qsjl

�
log b ðXij; pqlÞ þ Xij log f ðYij; aql; bqlÞ

�

�
X

i

X

q

siqðlog siq � log hqÞ

where b ð�; pÞ denotes the probability mass function of a Bernoulli distribution with

parameter p, and recall that f ð�; aql; bqlÞ denotes the density function of a gamma

distribution Ga ðaql; bqlÞ.
The variational algorithm works by iteratively maximizing the lower bound J

with respect to the approximating distribution Ds½n� , and estimating the model

parameters. Maximization of J with respect to Ds½n� consists of solving

ŝ½n� :¼ argmaxs½n�J ðY½n�;X½n�; s½n�; h; p; a; bÞ,

where h; p; a; b can be replaced by plug-in estimates. This has a closed-form

solution given by

ŝiq / hq

Y

j 6¼i

Y

l

b ðXij; pqlÞŝjl f ðYij; aql; bqlÞ
ŝjlXij . ð3Þ

Conditional on ŝ½n�, the variational estimators of ðh; p; a; bÞ are found by solving,

ð~h; ~p; ~a; ~bÞ ¼ argmaxh;p;a;bJ ðY½n�;X½n�; s½n�; h; p; a; bÞ:

Closed-form updates for ~h and ~p exist and are given by

~hq ¼ 1

n

X

i

ŝiq ð4Þ

~pql ¼
P

i 6¼j ŝiqŝjlXij
P

i 6¼j ŝiqŝjl
. ð5Þ

On the other hand, updates for ~a and ~b do not have a closed form since the

maximum likelihood estimators of the two parameters of a gamma distribution do

not have closed forms. However, using the fact that a gamma distribution is a
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special case of a generalized gamma distribution, Ye and Chen (2017) derived

simple closed-form estimators for the two parameters of gamma distribution. The

estimators were shown to be strongly consistent and asymptotically normal. For

q; l ¼ 1; . . .;Q, let us define the quantities

~Wql ¼
X

i 6¼j;Xij¼1

ŝiqŝjl

~Uql ¼
X

i 6¼j;Xij¼1

ŝiqŝjlYij

~Vql ¼
X

i 6¼j;Xij¼1

ŝiqŝjl log Yij

~Sql ¼
X

i 6¼j;Xij¼1

ŝiqŝjlYij log Yij;

then the updates for aql; bql are given by

~aql ¼
~Wql

~Uql

~Wql
~Sql � ~Vql

~Uql

ð6Þ

~bql ¼
~W2

ql

~Wql
~Sql � ~Vql

~Uql

. ð7Þ

We obtain the variational estimators ð~h; ~p; ~a; ~bÞ by computing (3), (4), (5), (6), (7)

until convergence.

We now address the consistency of the variational estimators derived above. The

following two propositions are the counterpart of Theorem 2 and 3 for variational

estimators. We omit the proof since they follow similar arguments as the proof of

Corollary 4.3 and Theorem 4.4 of Celisse et al. (2012).

Proposition 1 Assume that assumptions (A1), (A2), (A3), (A5) and (A6), and let

ð~h; ~p; ~a; ~bÞ be the variational estimators defined above. Then for any distance dð�; �Þ
on ðp; a; bÞ,

dðð~p; ~a; ~bÞ; ðp�; a�; b�ÞÞ�!½ n ! 1�P0:

Proposition 2 Assume that the variational estimators ð~p; ~a; ~bÞ converge at rate 1/n
to ðp�; a�; b�Þ, respectively, and assumptions (A1), (A2), (A3), (A5), (A6) hold. We
have

dð~h; h�Þ�!
½

n ! 1�P0;

where d denotes any distance between vectors in RQ.
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Note a stronger assumption on the convergence rate 1/n of ~p; ~a; ~b is assumed for

Proposition 2 compared to
ffiffiffiffiffiffiffiffiffiffi
log n

p
=n in Theorem 3. The same assumption is also

used in Theorem 4.4. of Celisse et al. (2012).

6 Choosing the number of classes

In real world applications, the number of classes is typically unknown and needs to

be estimated from the data. For the SBM, a number of methods have been developed

to determine the number of classes, including log-likelihood ratio statistic (Wang

and Bickel 2017), composite likelihood (Saldaña et al. 2017), exact integrated

complete data likelihood (Côme and Latouche 2015) and Bayesian framework (Yan

2016) based methods. Model selection for variants of SBM have also been

investigated (Latouche et al. 2014).

We apply the integrated classification likelihood (ICL) criterion developed by

Biernacki et al. (2000) to choose the number of classes for the WSBM. The ICL is

an approximation of the complete-date integrated likelihood. The ICL criterion for

SBM have been derived by Daudin et al. (2008) under the assumptions that the prior

distribution of ðh; pÞ factorizes and a non-informative Dirichlet prior on h. Here we
follow the approach of Daudin et al. (2008) to derive an approximate ICL for the

WSBM.

Let mQ denote the model with Q blocks, the ICL criterion is an approximation of

the complete-data integrated likelihood:

LðY½n�;X½n�; Z½n�jmQÞ

¼
Z

h;p;a;b
LðY½n�;X½n�; Z½n�; h; p; a;b;mQÞgðh; p; a; bÞdhdpdadb

where gðh; p; a; bÞ is the prior distribution of the parameters. Assuming a non-

informative Jeffreys prior on h, a Stirling approximation to the gamma function, and

finally a BIC approximation to the conditional log-likelihood function, the

approximate ICL can be derived. For a model mQ with Q blocks, and assuming a

non-informative Jeffreys prior Dirð0:5; . . .; 0:5Þ on h, the approximate ICL criterion

is:

ICLðmQÞ ¼ max
h;p;a;b

log LðY½n�;X½n�; ~Z½n�; h; p; a; b;mQÞ

� 3

2
ðQðQ þ 1ÞÞ log nðn � 1Þ � Q � 1

2
log n

where ~Z½n� is the estimate of Z½n�. The derivation of above follows exactly the same

lines as the proof of Proposition 8 of Daudin et al. (2008).
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7 Simulation

We validate the theoretical results developed in previous sections by conducting

simulation studies. In particular, we investigate how fast parameter estimates of

WSBM converge to their true values and the accuracy of posterior block allocations.

Additionally, we investigate the performance of ICL in choosing the number of

blocks.

7.1 Experiment 1 (two-class model)

For each fixed number of nodes n, 50 realizations of WSBM are generated based on

the fixed parameter setting given in (8 and 9). The variational inference algorithm

derived in Sect. 5 is then applied to estimate the model parameters and class

allocations.

We can see from Table 1 that the estimated model parameters converge to their

true values as the number of nodes increases while the posterior class assignment is

accurate across any number of nodes. Table 2 shows the ICL criterion tends to select

the correct number of classes, especially when the number of nodes is large.

h ¼ ð0:7; 0:3Þ; ð8Þ

p ¼
0:8 0:2

0:3 0:9

� 	

; a ¼
10:0 0:3

3:0 0:5

� 	

; b ¼
2:0 1:0

0:2 1:0

� 	

: ð9Þ

7.2 Experiment 2 (three-class model)

50 network realizations are obtained under the three-class model with parameter

values given in (10 and 11) for a range of values n.

h ¼ ð0:5; 0:3; 0:2Þ ð10Þ

p¼
0:60 0:20 0:30

0:30 0:90 0:10

0:60 0:50 0:20

0

B
@

1

C
A;a¼

0:50 2:00 1:00

0:30 0:02 6:00

2:00 0:05 3:00

0

B
@

1

C
A;b¼

5:00 0:40 5:00

3:00 12:00 0:70

6:00 0:20 0:60

0

B
@

1

C
A: ð11Þ

We can see from Table 3 that the estimated parameters converge to their true values

quickly as the number of nodes increases. The ICL criterion tends to overestimate

the number of classes when the number of nodes is small, but consistently selects

the correct model when the number of nodes is large (Table 4).

7.3 Computational complexity

The computational complexity of the variational estimators derived in Sect. 5 scales

as Oðn2Þ, which has the same complexity as the variational algorithm developed by

Daudin et al. (2008). Therefore, the algorithm may be prohibitively expensive for
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networks with more than 1000 nodes. The estimated computational time for the

two-class model in Sect. 7.1 and for the three-class model in Sect. 7.2 for various

values of n are shown in Fig. 1. The estimated computing time at each n is the

average running time of the variational algorithm over 20 replications.

8 Application: Washington bike data set

We apply the WSBM to analyse the Washington bike sharing scheme data set.1

Information with respect to start stations and end stations of trips as well as length

(travel time) of trips are available in the data set. We select a time window of one

week staring from January 10th, 2016 and construct the adjacency matrix X and

weight matrix Y as follows:

• Xij ¼ 1 if there is trip starting from station i and finishing at station j.

• Yij is the total length of trips (in minutes) from station i to station j.

The resulting network consists of 370 nodes with an average out-degree of 36.14.

The average total length of trips between any pair of stations is 42.15 minutes. We

apply the ICL criterion to select the number of classes for the WSBM. For each

number of classes Q, the variational inference algorithm is fitted to the network 20

times with 20 random initializations and the highest value of ICL is recorded, and

the six-class model is chosen (Table 5). Each bike station is plotted on the map in

Table 1 Convergence analysis of posterior class allocations and parameter estimates under the two-class

model

n
Pn

i¼1 Izi¼z�i
=n jjh� h�jj2 jjp� p�jjF jja� a�jjF jjb� b�jjF

25 1 0.031 0.057 0.855 0.434

50 1 0.029 0.035 0.654 0.322

100 1 0.027 0.012 0.256 0.070

200 1 0.025 0.006 0.116 0.046

500 1 0.021 0.002 0.053 0.024

Table 2 Frequency of choosing

Q blocks by ICL under different

number of nodes n under the

two-class model

n | Q 1 2 3 4 5

25 0 44 3 3 0

50 0 48 2 0 0

100 0 50 0 0 0

200 0 50 0 0 0

500 0 50 0 0 0

1 Historical data available at https://www.capitalbikeshare.com/.
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Fig. 2 where its colour represents the estimated class assignment. We observe that

bike stations in class 6 (colored in brown) tend to be concentrated in the central area

of Washington wheraas stations in class 3 (colored in red) tend to be located further

from the center. Figure 2 shows some spatial effect in the class assignment of bike

stations whereby stations that are close in distance tend to be in the same cluster,

with the exception of class 3 (colored in red). One potential extension of the model

is to take into account the spatial locations of the bike stations as covariates.

The estimated class proportions ĥ shown in 12 indicate that class 3 has the largest
number of stations whereas class 4 has the smallest number of stations. The

estimated p̂ shows that within class connectivity is generally higher compared to

between class connectivity. We further observe that the connection probabilities

Table 3 Convergence analysis of posterior class allocations and parameter estimates under the three-class

model

n
Pn

i¼1 Izi¼z�i
=n jjh� h�jj2 jjp� p�jjF jja� a�jjF jjb� b�jjF

25 0.961 0.116 0.178 7.86 136.72

50 1 0.039 0.039 1.256 7.866

100 1 0.033 0.026 0.481 1.426

200 1 0.014 0.024 0.228 1.011

500 1 0.003 0.006 0.197 0.222

Table 4 Frequency of choosing

Q blocks by ICL under different

number of nodes n under the

three-block model

n|Q 1 2 3 4 5

25 0 3 37 8 2

50 0 0 43 7 0

100 0 0 50 0 0

200 0 0 49 1 0

500 0 0 50 0 0

Fig. 1 Estimated computing time for the two-class and three-class models
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between bike stations in class 1, 4, and 6 are substantially higher. Interestingly, we

observe a near symmetry in the matrix p̂ indicating that the probability of having a

trip from a station in class k to another station in class l is similar with the

probability of having a trip from class l to class k.
The estimated densities of travel time between each pair of classes are shown in

Fig. 3. We observe that the majority of the estimated densities have mode and mean

close to 0, particularly for the estimated densities in the diagonal of Fig. 3. This

implies that the total travel times between stations in the same class are quite short.

In comparison, the total travel time between stations in different classes tend to be

longer. This is reasonable as the distance between bike stations in different classes

tend to be longer which in turn requires longer travel time.

ĥ ¼ ð0:1985; 0:0975; 0:3256; 0:0270; 0:1377; 0:2136Þ ð12Þ

p̂ ¼

0:2847 0:0539 0:0036 0:4268 0:0125 0:2811

0:0594 0:0630 0:0172 0:1254 0:0156 0:0791

0:0049 0:0156 0:0185 0:0079 0:0092 0:0029

0:4113 0:1140 0:0136 0:8438 0:0532 0:4494

0:0187 0:0318 0:0120 0:0910 0:2159 0:0241

0:2715 0:0514 0:0017 0:4965 0:0159 0:7268

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; ð13Þ

9 Discussion

This paper proposes a weighted stochastic block model (WSBM) for networks. The

proposed model is an extension of the stochastic block model. A variational

inference strategy is developed for parameter estimation. Asymptotic properties of

maximum likelihood estimators and variational estimators are derived, and the

problem of choosing the number of classes is addressed by using an ICL criteria.

Simulation studies are conducted to evaluate the performance of variational

estimators and the use of ICL to determine the number of classes. The proposed

model and inference methods are an illustrative data set.

It is straightforward to extend the WSBM to allow node covariates. Let wi 2 Rd

be the covariates for each node i ¼ 1; . . .; n, and let wij be the covariates for each

pair of nodes, i; j ¼ 1; . . .; n; i 6¼ j. The edge probability pij between a pair of nodes

i, j with node i in block q and node j in block l can be modelled as

log
pij

1� pij
¼ nql;0 þ nT

ql;1wij þ nT
ql;2wi þ nT

ql;3wj;

where nql;0 2 R and nql;1; nql;2; nql;3 2 Rd. Conditional on block assignments and

existence of an edge between a pair of nodes i, j, Yij can be modelled as a Gamma

random variable with mean lij and variance rij where
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lij ¼ EðYijjZi ¼ q; Zj ¼ l;Xij ¼ 1Þ ¼ exp


/ql;0 þ /T

ql;1wij þ /T
ql;2wi þ /T

ql;3wj

�
;

rij ¼ VarðZi ¼ q; Zj ¼ l;Xij ¼ 1Þ ¼ mql

where /ql;0 2 R and /ql;1;/ql;2;/ql;3 2 Rd.

Many possible future extensions are possible. First, it is desirable to investigate

further theoretical properties of maximum likelihood and variational estimators of

WSBM parameters such as asymptotic normality of the estimators. Furthermore,

some of the assumptions imposed in this work in order to ensure consistency of the

estimators maybe relaxed. Moreover, the number of blocks is assumed to be fixed in

the asymptotic analysis of the estimators. It would be interesting to allow the

number of blocks to grows as the number of nodes grows.

Table 5 Model selection for the

Washington Bike dataset using

ICL criterion

Q ICL

1 - 107157.24

2 - 93505.61

3 - 91688.33

4 - 90813.17

5 - 90300.90

6 - 89061.38

7 - 89326.35

Fig. 2 Bike stations. Class 1: blue. Class 2: green. Class 3: red. Class 4: cyan. Class 5: black. Class 6:
brown (color figure online)
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Auxiliary results

Definition 1 A random variable X with mean l ¼ EðXÞ is sub-exponential if there
are non-negative parameters ðm; bÞ such that

EðetðX�lÞÞ 	 e
m2 t2

2 for all jtj\ 1

b
:

The following lemma is a straight forward consequence of the definition.

Lemma 1 If the independent random variables fXign
i¼1 are sub-exponential with

parameters ðmi; biÞ, i ¼ 1; . . .; n, then
Pn

i¼1 Xi is sub-exponential with parameters

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 m
2
i

p
;maxn

i¼1 biÞ.

The following results show that for a Gamma random variable Y and a Bernoulli

random variable X, both XY and X log Y are sub-exponential random variables. They

are useful for the proof of the main theorems.

Proposition 3 If Y �Gaða; bÞ and X �BerðpÞ, YX is a sub-exponential random
variable.

Proof The expectation of YX is given by

Fig. 3 Estimated densities of total travel time between stations
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l :¼ EðYXÞ ¼ p
a

b
;

and thus

EðetlÞ ¼ exp
�

tp
a

b

�
.

The moment generating function of YX is given by

EðetYXÞ ¼ ð1� pÞ þ p
�
1� t

b

��a

which is defined for t\b. Taylor series expansion of ð1� t
bÞ

�a
around t ¼ 0 gives

that

1� t

b

� ��a

¼ 1þ a

b
t þ aða þ 1Þ

b2

t2

2
þOðt3Þ.

Similary, Taylor series expansion of exp �t a
b p


 �
around 0 gives that

exp �t
a

b
p

� �
¼ 1� a

b
pt þ aða þ 1Þ

b2
p

t2

2
þOðt3Þ.

Thus, we have

EðetYXÞ ¼ 1� pþ pþ a

b
pt þ aða þ 1Þ

b2
p

t2

2
þOðt3Þ

¼ 1þ a

b
pt þ aða þ 1Þ

b2
p

t2

2
þOðt3Þ:

This leads to

EðetðYX�lÞÞ ¼
�
1þa

b
ptþaðaþ1Þ

b2
p

t2

2
þOðt3Þ

��
1�a

b
ptþaðaþ1Þ

b2
p

t2

2
þOðt3Þ

�

¼ 1þða2þ2aÞp
b2

t2þOðt3Þ.

Hence, we can choose suitable m;b such that

EðetðYX�lÞÞ 	 exp
� m2t2

2

�
for all jtj\ 1

b
:

h

Proposition 4 If Y �Gaða; bÞ and X �BerðpÞ, X log Y is a sub-exponential random
variable.
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Proof The proof is analogous to the proof of Proposition 3. It is straightforward to

show that

EðetX log YÞ ¼ ð1� pÞ þ p
Cðaþ tÞ
CðaÞbt

and

l :¼ EðX log YÞ ¼ pðWðaÞ � logðbÞÞ

where Wð�Þ is the digamma function. The rest of the proof follows the same line as

the proof of Proposition 3 by considering the Taylor series expansion of e�lt and

EðetX log YÞ around t ¼ 0. h

The following lemma provides an upper bound for the tail probability of a sub-

exponential random variable.

Lemma 2 (Sub-exponential tail bound)Suppose that X with mean l is sub-
exponential with parameters ðm; bÞ. Then

PðX � lþ tÞ	 exp
h
�min

� t2

2m2
;

t

2b

�i
.

The following inequality for suprema of random processes is needed for the proof

of Theorem 2.

Proposition 5 (Baraud 2010, Theorem 2.1) Let ðSðgÞÞg2G be a family of real valued

and centered random variables. Fix some g0 in G.
Suppose the following two conditions hold:

1. There exist two arbitrary norms jj � jj2 and jj � jj1 on G and a nonnegative
constant c such that for all g1; g2 2 Gðg1 6¼ g2Þ,

E
h
etðSðg1Þ�Sðg2ÞÞ

i
	 exp

 
t2jjg1 � g2jj22

2ð1� tcjjg1 � g2jj1Þ

!

for all t 2
h
0; 1

cjjg1�g2jj1

�
.

2. Let S be a linear space with finite dimension D endowed with the two norms
jj � jj1, jj � jj2 defined above, we assume that for constants u[ 0 and b� 0,

G 
 fg 2 S : jjg � g0jj1 	 u1; cjjg � g0jj2 	 u2g:

we have for all x[ 0,
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P
h
sup
g2G

jSðgÞ � Sðg0Þj � jð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðD þ xÞ

p
þ bðD þ xÞÞ

i
	 2e�x:

where j ¼ 18.

Proof

In this section, we prove Theorems 1, 2, 3 for the special case aq;l ¼ a11 for all

ðq; lÞ 2 f1; . . .;Qg. The more general case can be proved similary by using the fact

that Xij log Yij is a sub-exponential random variable.

Proof of Theorem 1

Proof Our proof is adapted from Celisse et al. (2012). Using the fact that for every

z
0

½n� 2 ½z½n��, Pðz
0

½n�jX½n�; Y½n�Þ ¼ Pðz½n�jX½n�; Y½n�Þ, we have that

PðZ½n� ¼ ½z½n��jX½n�; Y½n�Þ ¼
X

z
0
½n�2½z½n� �

Pðz0

½n�jX½n�; Y½n�Þ

¼ j½z½n��jPðz½n�jX½n�; Y½n�Þ

where j½z½n��j is the cardinality of the equivalence class ½z½n��.
By applying a similar approach as in ( Celisse et al. (2012); ‘‘Appendix B2’’), one

can derive an upper bound for P�

"
P

½z½n��6¼½z0½n� �
Pð½Z½n��¼½z½n��jX½n�;Y½n�Þ
Pð½Z½n��¼½z�½n��jX½n�;Y½n�Þ [ t

#

:

P�

"
X

½z½n��6¼½z�½n� �

Pð½z½n��jX½n�; Y½n�Þ
Pð½z�½n��jX½n�; Y½n�Þ

[ t

#

	
Xn

r¼1

X

z½n� 62½z�½n� �;jjz½n��z�½n� jj0¼r

P�

"
Pðz½n�jX½n�; Y½n�Þ
Pðz�½n�jX½n�; Y½n�Þ

[
t

nrþ1ðQ � 1Þr

#

where jjz½n� � z�½n�jj0 is the number of difference between z½n� and z�½n�.

To simplify notation, we write z :¼ z½n�, X :¼ X½n�, and Y ¼ Y½n�. We have that
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P�

"
PðzjX;YÞ
Pðz�jX;YÞ[

t

nrþ1ðQ�1Þr

#

¼P�

"
PðYjX;zÞPðXjzÞPðzÞ

PðY jX;z�ÞPðXjz�ÞPðz�Þ[
t

nrþ1ðQ�1Þr

#

¼P�

"

log
PðY jX;zÞ
PðY jX;z�Þþ log

PðXjZÞPðzÞ
PðXjz�ÞPðz�Þ[ log

t

nrþ1ðQ�1Þr

#

	P�

"�
�
�
�
�
log

PðY jX;zÞ
PðYjX;z�Þ�EZ¼z�

�
log

PðY jX;zÞ
PðYjX;z�Þ

�
�
�
�
�
�

[
1

2

�
log

t

nrþ1ðQ�1Þr �EZ¼z�
�
log

PðY jX;zÞ
PðYjX;z�Þ

�
�EZ¼z�

�
log

PðXjzÞPðzÞ
PðXjz�ÞPðz�Þ

��
#

þP�

"
�
�
� log

PðXjzÞPðzÞ
PðXjz�ÞPðz�Þ�EZ¼z�

�
log

PðXjzÞPðzÞ
PðXjz�ÞPðz�Þ

��
�
�

#

[
1

2

�
log

t

nrþ1ðQ�1Þr �EZ¼z�
�
log

PðY jX;zÞ
PðYjX;z�Þ

�
�EZ¼z�

�
log

PðXjzÞPðzÞ
PðXjz�ÞPðz�Þ

��
#

¼: I1þ I2

Consider the first term on the RHS of the last inequality,

log
PðY jX; zÞ
PðYjX; z�Þ � EZ¼z�

�
log

PðY jX; zÞ
PðY jX; z�Þ

�

¼
X

i 6¼j

�
a�11 log

b�zi;zj

b�z�i ;z�j

�
ðXij � p�z�i ;z�j Þ þ ðb�z�i ;z�j � b�zi;zj

Þ
�

YijXij �
a�11
b�z�i ;z�j

p�z�i ;z�j

�

The summand in the summation above vanishes when b�zi;zj
¼ b�z�i ;z�j . For two vectors

z and z
0
, we define

Dðz; z
0 Þ ¼ fði; jÞji 6¼ j; b�zi;zj

6¼ b�
z
0
i ;z

0
j

g

and let NrðzÞ ¼ jDðz; z�Þj denote the number of terms in the summation. Set

s ¼ 1

NrðzÞ
1

2

n
log

t

nrþ1ðQ � 1Þr � EZ¼z�
�
log

PðY jX; zÞ
PðYjX; z�Þ

�

� EZ¼z�
�
log

PðXjzÞPðzÞ
PðXjz�ÞPðz�Þ

�o
;

one can show by Lemma B.3 of Celisse et al. (2012) that there exists some positive

constant c� such that s� c� [ 0. We have that
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P�

"
1

NrðzÞ

�
�
�
�
�
log

PðYjX; zÞ
PðYjX; z�Þ � EZ¼z�

�
log

PðY jX; zÞ
PðY jX; z�Þ

�
�
�
�
�
�
[ 2s

#

	P�

"
1

NrðzÞ

�
�
�
�
�

X

i 6¼j

a�11 log
b�zi;zj

b�z�i ;z�j
ðXij � p�z�i ;z�j Þ

�
�
�
�
�
[ s

#

þ P�

"
1

NrðzÞ

�
�
�
�
�

X

i6¼j

ðb�z�i ;z�j � b�zi;zj
Þ
�

YijXij �
a�11
b�z�i ;z�j

p�z�i ;z�j

�
�
�
�
�
�
[ s

#

Assumption (A6) implies that the random variable a�11ðlog b
�
zi;zj

=b�z�i ;z�j ÞXij is bounded

for all i, j. An application of Hoeffding’s inequality yields that

P�

"
1

NrðzÞ

�
�
�
�
�

X

i6¼j

a�11 log
b�zi;zj

b�z�i ;z�j
ðXij � p�z�i ;z�j Þ

�
�
�
�
�
[ s

#

	 exp

 

� NrðzÞs2
L1

!

ð14Þ

for some constant L1 [ 0.

By Proposition 3, the random variable YijXij is sub-exponential and the tail bound

for sub-exponential random variables (Lemma 2) implies that

P�

"
1

NrðzÞ

�
�
�
�
�

X

i 6¼j

ðb�z�i ;z�j � b�zi;zj
Þ
�

YijXij �
a�11
b�z�i ;z�j

p�z�i ;z�j

�
�
�
�
�
�
[ s

#

	 max

�

exp

�

� NrðzÞs2
L2

	

; exp

�

� NrðzÞs
L3

	 ð15Þ

for some constants L2; L3 [ 0. Proposition B.4 of Celisse et al. (2012) shows that

NrðzÞ is bounded below by

NrðzÞ�
c2

2
njjz½n� � z�½n�jj0. ð16Þ

Combining inequalities (14), (15), (16), it is straight forward to show that

I1 ¼Oðexpð�A1nÞÞ.

By Theorem 3.1 of Celisse et al. (2012), we have

I2 ¼Oðexpð�A2nÞÞ

for some constant A2 [ 0. Therefore, with A :¼ minfA1;A2g
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P�

"
X

½z½n� �6¼½z�½n� �

Pð½z½n��jX½n�; Y½n�Þ
Pð½z�½n��jX½n�; Y½n�Þ

[ t

#

	
Xn

r¼1

n

r

� �
ðQ � 1ÞrOðexpð�AnÞÞ

! 0

as n ! 1. Since the upper bound does not depend on z�, P� can be replaced

by P. h

Proof of Theorem 2

Proof As the first step of the proof, we define the normalized complete data log-

likelihood function

/nðz½n�; p; a; bÞ ¼
1

nðn � 1Þ L1ðX½n�;Y½n�; z½n�; p; a; bÞ

¼ 1

nðn � 1Þ

hX

i6¼j

n
Xij log pzi;zj

þ ð1� XijÞ logð1� pzi;zj
Þ
o

þ Xij

n
azi;zj

log bzi;zj
þ ðazi;zj

� 1Þ log Yij � bzi;zj
Yij � logCðazi;zj

Þ
oi

;

and its expectation

Unðz½n�; p; a; bÞ ¼ E
h
/nðz½n�; p; a; bÞ

�
�
�Z½n� ¼ z�½n�

i

¼ 1

nðn � 1Þ

�X

i6¼j

n
p�z�i ;z�j log pzi;zj

þ ð1� p�z�i ;z�j Þ logð1� pzi;zj
Þ
o

þ p�z�i ;z�j

�

azi;zj
log bzi;zj

þ ðazi;zj
� 1Þðlog b�z�i ;z�j þ wða�z�i ;z�j ÞÞ

� bzi;zj

a�z�i ;z�j
b�z�i ;z�j

� logCðazi;zj
Þ
�

.

The following proposition shows that /nðz½n�; p; a; bÞ uniformly converges to

Unðz½n�; p; a; bÞ. This result is an extension of Proposition 3.5 of Celisse et al.

(2012).

Proposition 6 Under assumptions (A1), (A2), (A5), (A6), we have
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sup
P

j/nðz½n�; p; a; bÞ � Unðz½n�;p; a; bÞj �!
½

n ! 1�P0

where P :¼ fðz½n�; p; a; bÞ : ðA1Þ; ðA2Þ; ðA5Þ; ðA6Þg.

Proof We have that

j/nðz½n�; p; a;bÞ � Unðz½n�; p; a; bÞj

	 qn

�
�
�
X

i 6¼j

ðXij � p�z�i ;z�j Þ
�
log

pzi;zj

1� pzi;zj

þ azi;zj
logbzi;zj

� logCða11Þ
��
�
�

þ qn

�
�
�
X

i 6¼j

�
XijYij � p�z�i ;z�j

a�zi;zj

b�z�i ;z�j

�
bzi;zj

�
�
�

þ qn

�
�
�
X

i 6¼j

Xij log Yij � p�z�i ;z�j log b
�
z�i ;z

�
j
� p�zi;zj

wða�z�i ;z�j Þ
� �

ðazi;zj
� 1Þ

�
�
�

ð17Þ

where qn ¼ 1=nðn � 1Þ. Notice that under Assumption (A2) and (A6),

Unðz½n�; p; a; bÞ\þ1.

Therefore, by Proposition 3.5 of Celisse et al. (2012),

sup
P

qn

�
�
�
X

i 6¼j

ðXij�p�z�i ;z�j Þ
�
log

pzi;zj

1�pzi;zj

þazi;zj
logbzi;zj

� logCðazi;zj
Þ
��
�
��!

½
n!1�P0

To bound the second term on the RHS of the inequality 17, we apply Proposition 5

(Theorem 2.1 of Baraud (2010)). We first define

SnðbÞ ¼
X

i 6¼j

�

XijYij � p�z�i ;z�j

a�z�i ;z�j
b�z�i ;z�j

	

bzi;zj
.

Now, for two parameters bð1Þ and bð2Þ,

Snðbð1ÞÞ � Snðbð2ÞÞ ¼
X

i 6¼j

�

XijYij � p�z�i ;z�j

a�z�i ;z�j
b�z�i ;z�j

	

ðbð1Þzi;zj
� bð2Þzi;zj

Þ

¼
X

q;l

X

i 6¼j;zi¼q;zj¼l

�

XijYij � p�z�i ;z�j

a�z�i ;z�j
b�z�i ;z�j

	

ðbð1Þql � bð2Þql Þ.

Since XijYij is sub-exponential with parameters ðm; bÞ,
P

i 6¼j;zi¼q;zj¼l XiXj is sub-

exponential with parameters ð ffiffiffiffiffiffi
nql

p
m; bÞ by Lemma 3, where

nql ¼ jfði; jÞ : zi ¼ q; zj ¼ lgj. Therefore, define the norms
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jjbð1Þ � bð2Þjj22 ¼ n2m2
X

q;l

ðbð1Þql � bð2Þql Þ
2

jjbð1Þ � bð2Þjj21 ¼
X

q;l

ðbð1Þql � bð2Þql Þ
2
,

we have

E
h
expðtðSnðbð1ÞÞ � Snðbð2ÞÞÞ

i

¼
Y

q;l

E
h
exp

�
tðbð1Þql � bð2Þql Þ

X

i 6¼j;zi¼q;zj¼l

�
XijYij � p�z�i ;z�j

a�z�i ;z�j
b�z�i ;z�j

��i

	
Y

q;l

exp
n nqlm2t2ðbð1Þql � bð2Þql Þ

2

2

o

	 exp
n n2m2t2ðbð1Þql � bð2Þql Þ

2

2

o

¼ exp
n t2jjbð1Þ � bð2Þjj22

2

o

	 exp
n t2jjbð1Þ � bð2Þjj22
2ð1� tcjjbð1Þ � bð2Þjj1Þ

o

for all

t 2
h
0;

1

cjjbð1Þ � bð2Þjj

�
,

where c is some negative constant. Therefore, the first condition of Proposition 5 is

satisfied.

Fix some bð0Þ, (A6) implies that there exist u1 ¼ OðnÞ and u2 ¼ Oð1Þ such that

jjb� bð0Þjj2 	 u1, and jjb� bð0Þjj2 	 u2. Therefore the second condition of Propo-

sition 5 is also satisfied with D ¼ Q2 . Now, we have

P�ðqn sup
b

jSnðbÞj[ gÞ	P�ðqn sup
b

jSnðbÞ � Snðbð0ÞÞj[
g
2
Þ

þ P�ðqnjSnðbð0ÞÞj[
g
2
Þ.

ð18Þ

Since
P

i 6¼j XijYijb
ð0Þ
zi;zj

is a sub-exponential random variable with parameters ðnm; bÞ,
the second term on the RHS of inequality 18 can be bounded by

P�ðqnjSnðbð0ÞÞj[
g
2
Þ ¼ Oðexpð�n2ÞÞ. ð19Þ

To bound the first term on the RHS of inequality 18, we introduce the set Pz½n� ¼
fðp; a; bÞ : ðz½n�; p; a;bÞ 2 Pg for every z½n�, and define the event
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Xnðz½n�Þ ¼
n

sup
Pðz½n�Þ

qnjSnðbÞ � Snðbð0ÞÞj 	 qnj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðQ2 þ xnÞ

p
þ qnbðQ2 þ xnÞ

o
.

We have

P�ðXnðz½n�ÞcÞ ¼ 2e�xn ð20Þ

by Proposition 5. Combining 18, 19, and 20,

P�
h
qn

�
�
�
X

i 6¼j

�
XijYij �p�z�i ;z�j

a�z�i ;zj

b�z�i ;z�j

�
bzi;zj

�
�
�[g

i

	
X

z½n�

P�
hn

sup
Pðz½n�Þ

qnjSnðbÞ� Snðbð0ÞÞj[
g
2

oi
þP�

h
qnjSnðb0Þj[

g
2

i

	
X

z½n�

P�
hn

sup
Pðz½n�Þ

qnjSnðbÞ� Snðbð0ÞÞj[
g
2

o
\Xnðz½n�Þ

i
þ
X

z½n�

2e�xn þ
X

z½n�

Oðe�n2Þ

	
X

z½n�

P�
h
qnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðDþ xnÞ

p
þqnbðDþ xnÞ[

g
2

i
þ
X

z½n�

2e�xn þ
X

z½n�

Oðe�n2Þ

Since z½n� belongs to a set of cardinality at most Qn, by choosing xn ¼ n logðnÞ, the
three sums converge to 0.

By using the fact that Xij logYij is a sub-exponential random variable, we can

similarly show that

P�
h
sup
P

qn

�
�
�
X

i6¼j

Xij logYij � p�z�i ;z�j log b
�
z�i ;z

�
j
� p�z�i ;z�j wða

�
z�i ;z

�
j
Þ

� �
ðazi;zj

� 1Þ
�
�
�[ g

i
�!½ n ! 1�P0:

Since the convergence is uniform with respect to z�½n�, P� can be replaced by P and

the proof is completed. h

Proposition 6 allows us to establish the following result concerning the

convergence of the normalized log-likelihood function. Proposition 7 is an

extension of Theorem 3.6 of Celisse et al. (2012) and allows us to establish the

consistency of MLE of ðp; a; bÞ.

Proposition 7 We assume that assumptions (A1), (A2), (A3), (A5), (A6) hold. For
every ðh; p; a; bÞ, set

Mnðh; p; a; bÞ ¼ ðnðn � 1ÞÞ�1L2ðY½n�;X½n�; h; p; a; bÞ;

and

123

1390 T. L. J. Ng, T. B. Murphy



Mðp; a; b;AÞ ¼
X

q;l

h�qh
�
l

X

q
0
;l
0

aq;q
0 al;l

0

h
p�ql log pq

0
;l
0 þ ð1� p�qlÞ logð1� pq

0
;l
0 Þ

þ p�qlEa�
ql
;b�ql

�
log f ð:; aq

0
;l
0 ; bq

0
;l
0 Þ
�i

where

A ¼ fA ¼ ðaq;lÞ1	 q;l	Qjaq;l � 0;
XQ

l¼1

akl ¼ 1g:

Then for any g[ 0,

sup
dððp;a;bÞ;ðp�;a�;b�ÞÞ � g

Mðp; a; bÞ\Mðp�; a�; b�Þ,

sup
h;p;a;b

jMnðh; p; a; bÞ �Mðp; a; bÞj �!½ n ! 1�P0:

Proof We define the following:

ẑ½n�ðp; a; bÞ ¼ argmaxz/nðz½n�;p; a; bÞ,
~z½n�ðp; a; bÞ ¼ argmaxzUnðz½n�; p; a; bÞ,
Ap;a;b ¼ argmaxA2AMðp; a; b;AÞ,
Mðp; a; bÞ ¼ Mðp; a; b;Ap;a;bÞ.

By a similar reasoning as in the proof of Theorem 3.6 of Celisse et al. (2012), we

can show that Ap�;a�;b� ¼ IQ and is unique. To show that for all g[ 0,

supdððp;a;bÞ;ðp�;a�;b�ÞÞ� g Mðp; a; bÞ\Mðp�; a�; b�Þ, we let ðaqlÞq;l denote coefficients

of Ap;a;b. We have that

Mðp; a; bÞ �Mðp�; a�; b�Þ
¼ �

X

q;l

h�qh
�
l

X

q
0
;l
0

aq;q
0 al;l

0 fKLBðp�ql; pq
0
;l
0 Þ þ p�qlKLGðða�ql; b

�
qlÞ; ðaq

0
;l
0bq

0
;l
0 ÞÞg,

where KLBðp; qÞ denotes the Kullback-Leibler divergence between two bernoulli

distributions Ber ðpÞ and Ber ðqÞ, and KLGðða;b1Þ; ða2; b2ÞÞ denotes the Kullback-
Leibler divergence between two gamma distributions Ga ða1; b1Þ and Ga ða2; b2Þ.
Since the set fðp; a; bÞjdððp; a; bÞ; ðp�; a�; b�ÞÞ� gÞg is compact by assumptions,

there exists

ðp0; a0; b0Þ 6¼ ðp�; a�; b�Þ such that
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sup
dððp;a;bÞ;ðp�;a�;b�ÞÞ� g

Mðp; a; bÞ �Mðp�; a�; b�Þ

¼ Mðp0; a0; b0Þ �Mðp�; a�; b�Þ\0.

Next we show that

sup
h;p;a;b

jMnðh; p; a; bÞ �Mðp; a; bÞj �!½ n ! 1�P0.

We first have the following bound:

jMnðh; p; a; bÞ �Mðp; a; bÞj	 jMnðh; p; a; bÞ � /nðẑ; p; a; bÞj
þ j/nðẑ; p; a; bÞ � Unð~z; p; a; bÞj
þ jUnð~z; p; a; bÞ �Mðp; a; bÞj.

ð21Þ

We first consider the first term on the RHS of inequality (21):

sup
h;p;a;b

jMnðh;p; a; bÞ � /nðẑ; p; a; bÞj

¼ sup
h;p;a;b

jL2ðY½n�;X½n�; h; p; a; bÞ � L1ðY½n�;X½n�; ẑ½n�; p; a; bÞj
nðn � 1Þ

	 logð1=cÞ
n � 1

�!½ n ! 1�0.

ð22Þ

Consider the second term on the RHS of inequality (21), if

/nðẑ;p; a; bÞ\Unð~z; p; a; bÞ, we have

j/nðẑ; p; a; bÞ � Unð~z; p; a;bÞj ¼ Unð~z; p; a; bÞ � /nðẑ; p; a; bÞ
	Unð~z; p; a; bÞ � /nð~z; p; a; bÞ.

On the other hand, if /nðẑ; p; a; bÞ�Unð~z; p; a; bÞ,

j/nðẑ; p; a; bÞ � Unð~z; p; a;bÞj ¼ /nð~z; p; a; bÞ � Unðẑ; p; a; bÞ
	/nðẑ; p; a; bÞ � Unðẑ; p; a; bÞ.

Therefore, Proposition 6 implies that

sup
p;a;b

j/nðẑ; p; a; bÞ � Unð~z; p; a; bÞj �!
½

n ! 1�P0: ð23Þ

Last, we notice that under our assumptions (A2) and (A6), and using the strong law

of large number,

sup
p;a;b

jUnð~z;p; a; bÞ �Mðp; a; bÞj �!½ n ! 1�P0: ð24Þ

Combining (22), (23) and (24), we have the desired result. h
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The consistency of ðp̂; â; b̂Þ follows from Proposition 7 and Theorem 3.4 of

Celisse et al. (2012). h

Proof of Thereom 3

Proof We denote P̂ðZ½n� ¼ z½n�jX½n�;Y½n�Þ as the conditional distribution of Z½n� under

the parameters ðĥ; p̂; â; b̂Þ. The following result is an extension of Proposition 3.8 of

Celisse et al. (2012) and is needed to establish the consistency of ĥ.

Proposition 8 Assume that assumptions (A1)-(A6) hold, and there exists estimators

p̂; â; b̂ such that jjp̂� pjj1 ¼ oPðvnÞ, jjâ� ajj1 ¼ oPðvnÞ, jjb̂� bjj1 ¼ oPðvnÞ,
with vn ¼ oð

ffiffiffiffiffiffiffiffiffiffi
log n

p
=nÞ. Let also ĥ denote any estimator of h�. Then for every �[ 0,

P�

"
X

z½n� 6¼z�½n�

P̂ðZ½n� ¼ z½n�jX½n�; Y½n�Þ
P̂ðZ½n� ¼ z�½n�jX½n�; Y½n�Þ

[ �

#

	 j1ne
�j2

ðlog nÞ2

nv2n þ P½jjp̂� p�jj1 [ vn�

þ P½jjâ� a�jj1 [ vn�
þ P½jjb̂� b�jj1 [ vn�

for n large enough, and for some constants j1; j2 [ 0 and

log

 
P̂ðZ½n� ¼ z½n�jX½n�; Y½n�Þ
P̂ðZ½n� ¼ z�½n�jX½n�; Y½n�Þ

!

¼ log

 
P̂ðX½n�jZ½n� ¼ z½n�ÞPðZ½n� ¼ z½n�Þ
P̂ðX½n�jZ½n� ¼ z�½n�ÞPðZ½n� ¼ z�½n�Þ

!

þ log

 
P̂ðY½n�jX½n�; Z½n� ¼ z½n�Þ
P̂ðY½n�jX½n�; Z½n� ¼ z�½n�Þ

!

¼
X

i 6¼j

(

Xij log
� p̂zi;zj

p̂z�i ;z
�
j

�
þ ð1� XijÞ log

� 1� p̂zi;zj

1� p̂z�i ;z
�
j

�
)

þ
X

i

log
ĥzi

ĥz�i

þ
X

i6¼j

(

Xijðâzi;zj
log b̂zi;zj

� âz�i ;z
�
j
log b̂z�i ;z

�
j
Þ þ ðâzi;zj

� âz�i ;z
�
j
ÞXij log Yij

þ XijYijðb̂z�i ;z
�
j
� b̂zi;zj

Þ þ XijðlogCðâz�i ;z
�
j
Þ � logCðâzi;zj

ÞÞ
)

:¼ T0 þ T1
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Proof We can write

T1 ¼
X

D�

(

p�z�i ;z�j

a�z�i ;z�j
b�z�i ;z�j

ðb�z�i ;z�j � b�zi;zj
Þ þ p�z�i ;z�j a

�
zi;zj

log
b�zi;zj

b�z�i ;z�j

)

þ
X

D�

(
�

XijYij �
a�z�i ;z�j
b�z�i ;z�j

p�z�i ;z�j

�
ðb�z�i ;z�j � b̂zi;zj

Þ þ ðXij � p�z�i ;z�j Þa
�
zi;zj

log
b�zi;zj

b�z�i ;z�j

)

þ
X

D̂[D�

(
a�z�i ;z�j
b�z�i ;z�j

p�z�i ;z�j ðb̂z�i ;z
�
j
� b�z�i ;z�j Þ þ

a�z�i ;z�j
b�z�i ;z�j

p�z�i ;z�j ðb̂zi;zj
� b�zi;zj

Þ

þ p�z�i ;z�j

�

âzi;zj
log

b̂zi;zj

b̂z�i ;z
�
j

� a�zi;zj
log

b�zi;zj

b�z�i ;z�j

	)

þ
X

D̂[D�

(

ðXij � p�z�i ;z�j Þ
�

âzi;zj
log

b̂zi;zj

b̂z�i ;z
�
j

� a�zi;zj
log

b�zi;zj

b�z�i ;z�j

	)

þ
X

D̂[D�

(�

XijYij �
a�z�i ;z�j
b�z�i ;z�j

p�z�i ;z�j

	

ðb̂z�i ;z
�
j
� b�z�i ;z�j Þ

þ
�

XijYij �
a�z�i ;z�j
b�z�i ;z�j

p�z�i ;z�j

	

ðb�zi;zj
� b̂zi;zj

Þ
)

¼: T1;1 þ T1;2 þ T1;3 þ T1;4 þ T1;5

where

D� : ¼ fði; jÞ : i 6¼ j; p�zi;zj
6¼ p�z�i ;z�j g;

D̂ : ¼ fði; jÞ : i 6¼ j; p̂zi;zj
6¼ p̂z�i ;z

�
j
g:

By the proof of Proposition 3.8 of Celisse et al. (2012), we have

P�

"� X

½z½n� �6¼½z�½n� �

P̂ðZ½n� ¼ z½n�jX½n�; Y½n�Þ
P̂ðZ½n� ¼ z�½n�jX½n�; Y½n�Þ

[ �



\ Xn

#

	
Xn

r¼1

X

z½n� 62½z�½n��;jjz½n��z�½n� jj0¼r

P�

"�

log
P̂ðZ½n� ¼ z½n�jX½n�; Y½n�Þ
P̂ðZ½n� ¼ z�½n�jX½n�; Y½n�Þ

[ � 5r log n



\ Xn

#

¼
Xn

r¼1

X

z½n� 62½z�½n� �;jjz½n��z�½n�jj0¼r

P�½fT0 þ T1 [ � 5r log ng \ Xn�.

We have that
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P�½fT0 þ T1 [ � 5r log ng \ Xn� 	P�½fT0 [ � 10r log ng \ Xng
þ P�½fT1 [ 5r log ng \ Xn�.

The proof of Proposition 3.8 of Celisse et al. (2012) shows that

P�½fT0 [ � 10r log ng \ Xng	C1

�

exp

�

8n log n � C2

ðlog nÞ2

nv2n

	r

. ð25Þ

We have that

T1;1 ¼
X

D�
p�z�i ;z�j

a�z�i ;z�j
b�z�i ;z�j

ðb�z�i ;z�j � b�zi;zj
Þ þ p�z�i ;z�j a

�
11 log

b�zi;zj

b�z�i ;z�j
	 jD�j max

ðq;lÞ6¼ðq0 ;l0 Þ
�KLGðða�ql; b

�
qlÞjjða�q0 ;l0b

�
q
0
;l
0 ÞÞ

¼ �jD�jK�

Since XijYij is a sub-exponential random variable and Xij is bounded for all i, j, one

can show that

P�½T1;2þ
1

2
T1;1[ t�	max

�

exp
�
�C1

ðtþjD�jK�Þ2

jD�j



;exp
�
�C2ðtþjD�jK��



.

ð26Þ

Using similar techniques as in the proof of Proposition 3.8 of Celisse et al. (2012),

one can show that

P�½fjT1;3j[ tg \ Xn� 	P�
�

vn [
C3t

nr

	

, ð27Þ

P�½fT1;4 [ tg \ Xn� 	
X

k

X

D;jDj¼k

Q2 exp

�

� C4t
2

v2nðk þ jD�jÞ

	

, ð28Þ

P�½T1;5 þ
1

2
T1;1 [ t�

	
X

k

X

D;jDj¼k

Q2 max

(

exp

�

� C5ðt þ ðjD�j þ kÞK�Þ
vn

�

;

exp

�

� C6ðt þ ðjD�j þ kÞK�Þ2

ðjD�j þ kÞv2n

�)

ð29Þ

Combining inequalities 25, 26, 27, 28, 29, and letting vn ¼ oð
ffiffiffiffiffiffiffiffiffiffi
log n

p
=nÞ, we have

for some B1;B2;B3 [ 0,
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P�
hn X

½z½n� �6¼½z�½n� �

P̂ðz½n�jX½n�; Y½n�Þ
P̂ðz�½n�jX½n�; Y½n�Þ

[ �
o
\ Xn

i

	
Xn

r¼1

n

r

� �
ðQ � 1ÞrB1

�
exp

h
B2n log n � B3xðn log nÞ

i�r

¼ B1½ð1þ ðQ � 1Þu0

nÞ
n � 1�

where u
0
n ¼ exp

h
B2n log n � B3

ðlog nÞ2
nv2n

i
. Since ð1þ ðQ � 1Þu0

nÞ
n ! 1 as n ! 1,

and the proof is completed. h

The proof of the consistency of ĥ is a consequence of the proposition above and

follows the same lines as the proof of Theorem 3.9 of Celisse et al. (2012). h
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