
ORIGINAL PAPER

Chunk-wise regularised PCA-based imputation of missing
data

A. Iodice D’Enza1 • A. Markos2 • F. Palumbo1

Received: 25 October 2020 / Accepted: 13 June 2021 / Published online: 25 June 2021
� The Author(s) 2021

Abstract
Standard multivariate techniques like Principal Component Analysis (PCA) are

based on the eigendecomposition of a matrix and therefore require complete data

sets. Recent comparative reviews of PCA algorithms for missing data showed the

regularised iterative PCA algorithm (RPCA) to be effective. This paper presents two

chunk-wise implementations of RPCA suitable for the imputation of ‘‘tall’’ data

sets, that is, data sets with many observations. A ‘‘chunk’’ is a subset of the whole

set of available observations. In particular, one implementation is suitable for dis-

tributed computation as it imputes each chunk independently. The other imple-

mentation, instead, is suitable for incremental computation, where the imputation of

each new chunk is based on all the chunks analysed that far. The proposed pro-

cedures were compared to batch RPCA considering different data sets and missing

data mechanisms. Experimental results showed that the distributed approach had

similar performance to batch RPCA for data with entries missing completely at

random. The incremental approach showed appreciable performance when the data

is missing not completely at random, and the first analysed chunks contain sufficient

information on the data structure.
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1 Introduction

Missing data are a common and pervasive problem in almost all kinds of studies that

also complicate the execution and interpretation of any supervised or unsupervised

learning technique. In the present work, the focus is on missing data in the context

of principal component analysis (PCA; Jolliffe 2002). Two general strategies are

most common in practice, (i) listwise or pairwise deletion, with the drawback of

possibly discarding a considerable amount of observations and (ii) missing data

imputation before conducting PCA. Imputation by the mean is a simple approach,

where missing values are replaced with the mean value of the attribute: such

approach is straightforward and suitable in case of a small number of missing

entries, but it reduces the variance of the attribute in question. Furthermore, mean

imputation affects the correlation structure considerably (Little and Rubin 2019).

Such strategies, however, do not address two important aspects that need to be

taken into account when dealing with missing data: the underlying relationship

structure of the data set and the missing data mechanism. Concerning the latter

aspect, we refer to missing completely at random (MCAR) and missing not

completely at random (MNCAR) mechanisms (Rubin 1976). Under the MCAR

mechanism, the probability that a given entry is missing does not depend on the

attribute, or any attribute, value. For the MNCAR mechanism, we refer to the Loisel

and Takane (2019) definition: the missing values characterising a target attribute

depend on the values of one (or more) agent attributes, that may or may not be part

of the considered data. The present study treats both MAR (missing at random) and

MNAR (missing not at random) under the umbrella of MNCAR.

Therefore, enhanced strategies to deal with missings are designed to preserve the

underlying data structure, assuming a specific data mechanism. Under the

assumption of data sampled from a multivariate normal distribution, a general

approach for the imputation of missing values is the so-called joint modeling: an

expectation-maximisation algorithm (EM, Dempster et al. 1977) provides the

likelihood estimates of the corresponding parameters; the missing values are then

imputed via linear regression (for details, see, e.g., Schafer 1997).

Other strategies for PCA in case of missing data also exist: e.g., to obtain a PCA

solution of incomplete data by skipping the missing entries. For instance, the PCA

on the matrix of Euclidean distances between observations provides the scores for

the observations: distance computation refers to the complete entries only (Gower

1971). Likewise, the PCA loadings can be obtained by analysing the covariance

matrix computed on the complete entries only. These methods are somewhat

complementary, as they respectively provide the PCA observation scores and

attribute scores: however, they present drawbacks such as the possibility of negative

eigenvalues when it comes to the decomposition of either the distance matrix or the

correlation matrix.

More sophisticated methods to compute PCA in the presence of missing data

have also been developed, see Dray and Josse (2015), Folch-Fortuny et al. (2015),

Van Ginkel et al. (2014), Geraci and Farcomeni (2018) and Loisel and Takane

(2019) for a thorough description of (most of) the different implementations and a
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comparison of their performance on simulated and real data sets. A common aspect

characterising efficient PCA algorithms for missing data is their implementation via

iterative procedures. A regularised iterative PCA algorithm (RPCA, Josse et al.

2009) seems to outperform other approaches, as pointed out in a recent review by

Loisel and Takane (2019).

Iterative procedures may be very efficient for small data sets, but their

application becomes impractical when dealing with tall incomplete data sets, that is,

data sets with a large number of observations compared to attributes. More

generally, having to deal with large and high dimensional data, the feasible

application of PCA is undermined by the computational limitations that affect

eigenvalue decomposition (EVD) and singular value decomposition (SVD) which

are the core step of PCA. There exist several approaches in the literature that aim to

enhance and extend the applicability of SVD; depending on the specific aim, batch
and incremental are two classes of such approaches. Batch methods aim to increase

the computational efficiency of SVD, and therefore, its applicability to matrices of

increased size. On the contrary, incremental methods aim to process the whole data

set as a sequence of incoming chunks and to update the current (SVD) solution as a

new chunk comes in. Throughout the paper, the term ‘‘chunk’’ here refers to a subset

of the whole set of available observations. Splitting data into chunks and processing

them sequentially or in parallel can be a convenient option and, in some cases, even

necessary. This is when the data might be too large to be stored in memory or

produced at a high rate, as in the case of data flows, where the data set is never

available as a whole. Incremental SVD (and, consequently, PCA) approaches are

widely used in rather recent application fields, from recommender systems, e.g., the

Netflix competition (Ilin and Raiko 2010), to image recognition, as in eigenfaces, to

deal with the problem of human face recognition (Navarrete and Ruiz-del-Solar

2002), to name but a few. In extreme scenarios such as data flows, online procedures

are applied that constantly update the solution: we refer the reader to the

notable review of sub-space tracking of data flows with missings proposed by

Balzano et al. (2018).

In this paper, we consider the situation where a large amount of data is generated

according to a steady correlation structure, whereas the missing data mechanism

may change. Such condition is characteristic of process data sets (Severson et al.

2017): PCA is, in fact, widely used as multivariate statistical process control, and

missing values may arise, e.g., from sensor failures. By focusing on a computa-

tionally efficient class of incremental eigendecomposition methods with desirable

properties that ease their embedding in PCA (Cardot and Degras 2018; Markos and

Iodice D’Enza 2018), this work proposes two novel chunk-wise RPCA implemen-

tations for the analysis of tall data sets containing missings. One implementation is

referred to as naive1 chunk-wise RPCA (naive CW-RPCA) in which RPCA runs

over every single chunk, and then the chunk-based solutions are merged; the other

1 we use the word naive as in the naive Bayes classifier: the Bayes classifier is naive because it assumes,

within each class, the features to be independent of each other; such assumption is generally not true, yet,

it simplifies the estimation dramatically (see, e.g., Hastie et al. 2009). Similarly, the naive version of the

proposed approach processes each chunk independently from the others, and the imputed values will

depend on that data chunk only.
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implementation is referred to as CW-RPCA (non-naive) in which the data chunks

are imputed sequentially (as in data flows), and the RPCA solution is updated as

each new chunk is processed. Experiments to assess the performance of the

proposed procedures compared to the standard RPCA are carried out on different

simulated data sets, considering different missing data generation mechanisms, as

well as on a benchmark process data set.

The rest of the paper is structured as follows: Sect. 2 presents the definition of

PCA and reviews two efficient iterative approaches to impute missing data in the

PCA context. Section 3 first summarises two incremental eigendecomposition

methods that are then exploited to derive chuck-wise iterative PCA implementations

for single imputation of missing data. Experimental results are reported in Sects. 4,

and 5 concludes the paper.

2 PCA with missing data

Let X be an I � J data matrix, where I is the number of observations, and J is the

number of quantitative attributes. Depending on whether the attributes are scaled to

a unit variance or not, we refer to correlation PCA or covariance PCA, respectively

(see, e.g., Borgognone et al. 2001; Jolliffe 2002).

In case of complete data (that is, no missing entries), the PCA solution of X is

obtained via the singular value decomposition (SVD) of the following matrix (see,

e.g., Greenacre 2010, Equation (6.2), page 60)

S ¼ I�1=2 X�Mð ÞJ�1=2 ¼ VRUT ð1Þ

where M ¼ I� I�111T is the centring operator and 1 is an I-dimensional vector of

ones; V is a I � J orthonormal matrix with left singular vectors on columns, R is a

diagonal matrix containing the J singular values
ffiffiffi

k
p

j, j ¼ 1; . . .; J, and U is a J � J

matrix of right singular vectors; kj is the jth eigenvalue of the matrix STS. There-

fore, the jth singular value corresponds to the standard deviation along the direction

of the jth singular vector, j ¼ 1; . . .; J.

Let V̂; Û and R̂ be the first d singular vectors and values; we refer to F̂ ¼ I1=2V̂R̂

as row principal coordinates, and to Ĝ ¼ J1=2Û as standard column coordinates. In

particular, row principal coordinates on the jth dimension are such that their average

squared sum equals the eigenvalue kj, that is

I�1F̂TF̂ ¼ I�1 R̂V̂TI1=2
� �

I1=2V̂R̂ ¼ R̂2;

similarly, the standard columns coordinates are such that their average sum of

squares equals one

J�1ĜTĜ ¼ J�1 ÛTJ1=2
� �

J1=2Û ¼ I:

By the Eckart and Young (1973) theorem, F̂ĜT represents the best rank-D
approximation of X (centred) in the least squares sense:

123

368 A. Iodice D’Enza et al.



F̂ĜT ¼ I1=2V̂R̂Û
T
J1=2 ¼ n1=2 ^SJ1=2 ¼ X̂�M ! X̂ ¼ Mþ F̂ĜT: ð2Þ

Therefore, the PCA loss function

kX� X̂k2
F ¼ kX�M� F̂ĜTk2

F ð3Þ

is referred to as the low-rank approximation criterion, where k � kF is the Frobenius

norm.

In a model-based perspective, PCA is defined as a bilinear fixed-effect model,

with the data being characterised by a D-rank plus Gaussian noise structure;

formally, the general element of X is

xij ¼ mj þ
X

D

d¼1

fidgjd þ �ij ¼ mj þ
X

D

d¼1

ffiffiffiffiffi

kd
p

vidujd þ �ij; ð4Þ

with i ¼ 1; . . .; I, j ¼ 1; . . .; J and �ij �Nð0;r2Þ. Note that the maximum likelihood

estimates of the PCA model correspond to the least squares solution.

2.1 Single imputation via iterative PCA

In order to account for the presence of missing values in PCA, an I � J weight

matrix W is defined that has general element wij ¼ 0 if the value for the ith

observation of the jth attribute is missing, wij ¼ 1 otherwise. Then the criterion is

X

I

i¼1

X

J

i¼1

wij xij � mj �
X

D

d¼1

fidgjd

 !2

; ð5Þ

showing that the least squares criterion is minimised by only considering the non-

missing entries.

In algebraic form, the loss function in Eq. (3) can be modified as follows

kW � X�M� F̂ĜT
� �

k2 ð6Þ

where the operator ‘�’ indicates the Hadamard product. Equivalently, by defining

~X ¼ W � Xþ 1 �Wð Þ � F̂ĜT;

the loss function can be further re-stated as

k ~X �M� F̂ĜTk2; ð7Þ

as pointed out by Loisel and Takane (2019).

The optimisation of the criterion in Eq. (6) is not possible via a direct solution.

Kiers (1997) proposed a general approach to the weighted least squares (WLS)

fitting procedure by iteratively performing ordinary least square fitting: it can be

viewed as a majorisation-minimisation problem. In particular, the minimisation of

the loss function in Eq. (6) is obtained via repeated minimisations of the majorising

function, which is simpler to optimise than the loss function. The procedure,

123

Chunk-wise regularised PCA-based imputation of missing data 369



introduced by Kiers (1997) and further described by Josse and Husson (2012),

consists of the following steps:

step 1: Initialise the iteration counter ‘ ¼ 0. Replace each missing entry in X with

some initialisation values, e.g. the mean of the complete values of the jth

attribute, obtaining the starting ~X‘;

step 2: Perform a PCA on ~X‘ to obtain F̂‘ and Ĝ‘. Use the reconstruction formula

x̂‘ij ¼
X

D

d¼1

ffiffiffiffiffi

k̂‘d

q

v̂‘idû
‘
jd ¼

X

D

d¼1

f̂idĝjd 8i; j ð8Þ

to obtain X̂‘;

step 3: Impute the missing entries in ~X‘ with the corresponding values of X̂‘,

formally ~X‘ ¼ W � Xþ ð1 �WÞ � X̂‘; and update the counter ‘ ¼ ‘þ 1;

step 4: Repeat steps 2 and 3 until convergence, that is, when the value of Equa-

tion (6) does not decrease from an iteration to the next one.

As Kiers (1997) pointed out, the procedure above is monotonically decreasing; as

the function value is bounded below by zero, the convergence of the procedure is

guaranteed. In general, the procedure is not guaranteed to reach a global minimum

of the WLS loss function, and multiple random starts are suggested/required. In the

context of handling missing data, the weights are binary, and the missing data

entries are usually initialised as described in step 1 (Josse and Husson 2012). A

graphical description of the iterative algorithm behaviour on a toy example with five

bivariate points and one missing entry can be found in Josse and Husson (2016).

Interestingly, the above procedure appears in the literature with many different

names: iterative PCA (iPCA, Dray and Josse 2015), weighted low-rank approxi-

mation (WLRA, Kiers 1997), expectation-maximisation PCA (EM-PCA, Josse and

Husson 2012; Geraci and Farcomeni 2018). The last name is due to the definition of

the procedure as an EM algorithm returning maximum-likelihood estimates of the

parameters for the fixed-effects model in Eq. (4). The iPCA procedure provides both

model parameter estimates and missing values imputation. Therefore, it is a single

imputation method that takes into account both the similarities among individuals

and the correlation structure characterising the attributes. However, iPCA may

suffer from overfitting, as both the number of missing entries and the dimensionality

of the underlying structure increase.

2.2 Single imputation via Regularised PCA

To overcome the limitations of iPCA, a regularised version of the iPCA algorithm

(RPCA) has been proposed by Josse et al. (2009) to deal with the overfitting

problem. Since regularisation affects the singular values, the RPCA algorithm

differs from iPCA in the reconstruction formula used to impute the missing entries

at each iteration. More specifically, RPCA differs from iPCA concerning the

following modification of Eq. (8)
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x̂‘ij ¼
X

D

d¼1

ffiffiffiffiffi

k̂‘d

q

� ðr̂2Þ‘
ffiffiffiffiffi

k̂‘d

q

0

B

@

1

C

A

v̂‘idû
‘
jd ð9Þ

where the singular value

ffiffiffiffiffi

k̂‘d

q

is replaced by its shrunk version

ffiffiffiffiffi

k̂‘d

q

� ðr̂2Þ‘
ffiffiffiffi

k̂‘d
p

� �

and

ðr̂2Þ‘ ¼ 1

J�D
PJ

d¼Dþ1
k̂d

. The idea is to remove the effect of the last dimensions, that

are considered to be noise, on the imputation of the missings. The shrinkage

depends on the so-called tuning parameter D and, in particular, on the J �D
dimensions that are assumed to be noise. Josse and Husson (2016) recommend using

a cross-validation approach to choose D (Bro et al. 2008). In this paper, we do not

concern ourselves with the choice of the tuning parameter; we consider the number

of dimensions D to be given for all the considered approaches.

A review by Loisel and Takane (2019) compared the performance of RPCA to

other methods for PCA with missings that were shown to perform well in previous

comparative studies. In particular, the considered methods are missing data passive

method (MDP, Takane and Oshima-Takane 2003; Benzécri 1973), trimmed scores

regression method (TSR,Folch-Fortuny et al. 2015) and the data augmentation

method (DA, Schafer 1997). Except for MDP and DA, all the best-performing

methods were iterative. Overall, RPCA was found to be the best performing method

in terms of parameter recovery. Furthermore, in the framework of PCA on process

data with missings, an interesting comparative review was conducted by Severson

et al. (2017). The authors concluded that the method to use might depend on the

scenario, which is application domain-specific, yet iterative PCA algorithms

demonstrated good performance in that framework, too.

3 Chunk-wise RPCA for missing data

Iterative PCA methods may be very efficient for small incomplete data sets, but

their application becomes impractical when dealing with tall data sets. In fact, when

the number of observations is large, it can be profitable to analyse the dataset chunk-

wise and update the solution as new chunks are analysed, more so if each chunk is

analysed iteratively.

In this section, we extend the RPCA algorithm to deal with tall incomplete data

sets. The general idea of the chunk-wise RPCA approach is to obtain the PCA

solution of a chunk split dataset by either merging the chunk-based PCA solutions

or by updating the PCA solution incrementally as new chunks are analysed. To

accomplish this, we rely on two efficient approaches for incrementally computing

the EVD/SVD of a data matrix: the eigenspace arithmetics method of Hall et al.

(2002) and the block incremental SVD with mean update, a method proposed by

Ross et al. (2008). The two methods are thoroughly described below.
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3.1 Incremental eigendecomposition

Consider the case where the quantitative I � J data matrix X is split in K chunks

X ¼

X1

X2

:::

XK

2

6

6

6

4

3

7

7

7

5

: ð10Þ

Eigenspace arithmetics. Given two subsequent chunks X1 and X2 we define the

corresponding eigenspaces as Xk ¼ fUk;Rk;Vk; lk; Ikg, k ¼ 1; 2; lk and Ik are the

chunk mean and size, respectively. The approach proposed by Hall et al. (2002)

allows one to merge X1 and X2 to obtain X3, the eigenspace of X3 ¼ X1;X2½ �, that is

X3 ¼ X1 � X2, with ‘�’ being the merge operator. Adding new data to an existing

eigenspace makes the eigenvectors (singular vectors) to rotate and it scales the

eigenvalues according to data spread. Therefore the eigenvectors in V3 are linear

combinations of the already available, V1. In order to deal with a change in

dimension, a basis sufficient span V3 is constructed, that is V1 augmented by v, the

latter given by

v ¼ orth w H; h½ �ð Þ; ð11Þ

the orth operator stands for a Gramm-Schmidt orhogonalisation procedure, w dis-

cards very small column vectors from the matrix, and v is the set of t eigenvectors

that are outside the eigenspace X1; H is the null space of both V1 and V2; h is the

component of the vector joining the means l1 � l2ð Þ that lies in the null space of

both subspaces. More specifically,

H ¼ V2 � V1V
T
1V2 and h ¼ l1 � l2ð Þ � V1V

T
1 l1 � l2ð Þ:

Finally, the merged eigenvectors are given by V3 ¼ V1; v½ �R, where R is an

orthonormal matrix obtained from the SVD of the following block matrix:

R1U
T
1 VT

1V2R2U
T
2

0 vTV2R2U
T
2

" #

þ
VT

1 l1 � l3ð Þ1I1 VT
1 l2 � l3ð Þ1I2

vT l1 � l3ð Þ1I1 vT l2 � l3ð Þ1I2

" #

¼ RRUT; ð12Þ

where 1I is an I-dimensional vector of ones and l3 ¼ 1
I1þI2

l1I1 þ l2I2ð Þ.
The remaining elements of the SVD-based eigenspace X3 are given by

R3 ¼ R and U3 ¼ U: ð13Þ

The PCA observation scores and loadings are given by F ¼ I
1=2
3 V3R3 and

G ¼ J1=2U3, respectively2.

2 Note that in the original paper by Hall et al. (2002), the observations are reported on the columns of the

data matrix, which is, therefore, J � I and it can be referred to as XT; in this paper, X is such that I
observations are on rows and J attributes are on columns. As a consequence, in Hall et al. (2002), the

reference decomposition is XT ¼ UðhÞRV
T
ðhÞ, where the columns of UðhÞ represent an orthonormal basis
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Block incremental SVD with mean update. The incremental SVD approach by

Ross et al. (2008) is based on the following Lemma:

Given the SVD of X1 ¼ U1R1V
T
1 ,

X1

X2

� �

¼
U1 0

0 I

� �

R1 0

L CQT

� �

V1

Q

� �

; ð14Þ

where L ¼ X2V
T
1 , Q is the result from the QR-decomposition of C ¼ X2 � LV1 and

I is the identity matrix. In order to take into account the varying mean, the updated

mean vector l3 is added to X2.

Apply the SVD to the matrix
R1 0
L KQT

� �

to obtain UmRmV
T
m.

Finally, U3 ¼ U1 0
0 I

� �

Um , R3 ¼ Rm, V3 ¼ Vm
V1

Q

� �

.

Note that the PCA solution obtained using both approaches described above is

exact: the solutions collapse into the ordinary PCA solution on the covariance

matrix. If the PCA solution on the correlation matrix is needed, then the attributes

need to be scaled in advance. Furthermore, as shown in Ross et al. (2008), the

computational complexity of the incremental SVD algorithm is similar to the

eigenspace arithmetics approach of Hall et al. (2002): in fact, the incremental SVD

incorporates new data directly, without the additional step of computing the

eigenvalue decomposition of each new chunk.

At this point, it is also important to outline that there are no differences in

computational complexity between incremental SVD and ordinary SVD. In

particular, the ordinary SVD of the I � J matrix X requires OðIJ2Þ operations

(see, e.g., Golub and Van Loan 2012), provided that I[ J. Levey and Lindenbaum

(2000) suggest that the optimal chunk size for the incremental SVD is given by

Ik ¼ bJ=
ffiffiffi

2
p

c, where bvaluec indicates that value is rounded down. Therefore, to

obtain chunk-wise SVD of X, k ¼ bI=Ikc updates are required. Furthermore, the

SVD of the central block matrix in Eq. (14) is needed in each update, and it has a

complexity of O Ik þDð Þ2J
� �

, so the computation of the SVD of X has a

complexity O k Ik þDð Þ2J
� �

.

Proposition 1 The complexity of incremental SVD is equivalent to the SVD on the

full matrix X, that is OðIJ2Þ, assuming that I[ J.

Proof For sake of simplicity, and without loss of generality, let I be a multiple of Ik,

thus k ¼ I
Ik
¼

ffiffiffi

2
p

I
J, and let D be fixed. The computational complexity for k updates

of the SVD can be then re-written as follows

Footnote 2 continued

for the observations space, and the columns of VðhÞ are an orthonormal basis for the attributes space.

Since we refer to the decomposition of X ¼ URVT, we consider U to be the basis of the columns space

(attributes) and V to be the basis of the row space (observations). Hence U ¼ VðhÞ and V ¼ UðhÞ.
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O k Ik þDð Þ2J
� �

¼ O
ffiffiffi

2
p I

J

J
ffiffiffi

2
p þD
� �2

J

 !

¼ O
ffiffiffi

2
p

I
J
ffiffiffi

2
p þD
� �2

 !

¼ O
ffiffiffi

2
p

I
J2

2
þD2 þ 2

J
ffiffiffi

2
p D

� �� �

¼ O
ffiffiffi

2
p

I
J2

2
þ

ffiffiffi

2
p

ID2 þ 2
ffiffiffi

2
p

I
J
ffiffiffi

2
p D

� �

¼ O I
J2

ffiffiffi

2
p þ

ffiffiffi

2
p

ID2 þ 2IJD
� �

ð15Þ

Dropping constant and non-dominant (linear) terms from the left-hand side

expression of Eq. (15), leads to

O I
J2

ffiffiffi

2
p þ

ffiffiffi

2
p

ID2 þ 2IJD
� �

¼ O IJ2
	 


h

As it will be illustrated in the next section, eigenspace arithmetics is better suited

to merge chunk-based RPCA solutions in a naive way, whereas block incremental
SVD with mean update is better suited for incremental updates of the RPCA

solution.

3.2 Chunk-wise single imputation via RPCA

Naive CW-RPCA. An incomplete data chunk, Xi, needs to be imputed before the

current PCA solution can be updated. A simple and straightforward strategy is to (i)
impute each single chunk with RPCA and store the corresponding eigenspace, and

(ii) merge the chunk-based solution using the eigenspace arithmetics approach to

obtain the full PCA solution: we refer to this approach as naive CW-RPCA since the

RPCA-based imputation of a chunk is independent of the other chunks. The

advantage of naive CW-RPCA is two-fold: it can be easily parallelised as chunk

imputations are independent of each other; the procedure iterates over every single

chunk, and not on the full matrix. The drawback is that the underlying structure used

to impute the missings is estimated on the single chunk and not on the whole data

matrix. This may harm the accuracy of the results, depending on the scenario, as

pointed out in Sect. 4.

CW-RPCA. As opposed to the naive implementation, the underlying data

structure used to impute each new chunk is based not only on the chunk itself, but

also on the chunks analysed that far. In particular, the CW-RPCA procedure is an

embedding of the incremental SVD and of a suitably modified version of RPCA. In

order to ease the description of the procedure, we will assume the data to be centred

and equally scaled.

Recalling from Sect. 2.1 that, once RPCA has converged, X̂i is the rank-D
approximation of the chunk ~Xi, and ~Xi ¼ W � Xi þ ð1 �WÞ � X̂i, let X be the
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current eigenspace, based on all the chunks insofar processed. Standard RPCA is

applied to the first chunk, X1. The CW-RPCA procedure, for the general chunk Xi

and i[ 1, can be summarised as follows:

step 1 Apply a modified version of the RPCA algorithm, based on block incre-

mental SVD with mean update on Xi to obtain ~Xi;

step 2 Update the current eigenspace X according to the obtained ~Xi.

The RPCA algorithm used in step 1 is modified as follows: in the general

iteration ‘, the singular vectors and values used to obtain X̂‘
i are elements of the

current X updated by ~X‘ using the incremental SVD; therefore, they are not just

resulting from the SVD of ~X‘ (as in the standard implementation of RPCA).

For a further intuition on how CW-RPCA compares to RPCA, consider a new

chunk X2: the application of CW-RPCA on X2 is equivalent to the application of

RPCA on the matrix ~X1;X2

� �

, where ~X1 is the imputed version of X1. More

generally, CW-RPCA of a chunk Xi is equivalent to the application of RPCA on
~X1; ~X2; . . .;Xi

� �

. The advantage of CW-RPCA over RPCA is that the CW-RPCA

iterates over the chunk Xi only and not over ~X1; ~X2; . . .;Xi

� �

. At the same time, the

CW-RPCA-based imputation of Xi takes into account the correlation structure

characterising chunks ~X1 to ~Xi�1.

4 Experiments

A simulation study is implemented to assess (i) how the performances of the CW-

RPCA procedures compare to ordinary RPCA; (ii) how the performance of CW-

RPCA compares to naive CW-RPCA. The methods in question are applied to a

synthetic dataset with a fixed correlation structure and a benchmark sensor data set.

4.1 Simulation setup

To generate the synthetic data set, we partially refer to the simulation setup

proposed by Dray and Josse (2015). Each data chunk is generated according to a

block-wise correlation structure, with three blocks of 4, 3 and 2 attributes that are

characterised by a correlation of q ¼ 0:7; 0:75; 0:8f g, respectively (see Fig. 1 left-

hand side). The number of considered data chunks is 25, each characterised by 500

observations.

The considered missing data mechanisms are missing completely at random

(MCAR) and missing not completely at random (MNCAR) (Rubin 1976). Under the

MCAR mechanism, the probability of a missing entry does not depend on the

attribute, or any attribute, value. In this scenario, 20% of entries are rendered

missing for each attribute in each data chunk.

Under the MNCAR mechanism case, the missing values characterising a target
attribute depend on the values of one (or more) agent attribute that may or may not

be part of the considered data (Loisel and Takane 2019). Among the several ways of

non-randomness in missing data (Josse et al. 2013), we refer to two nonresponse
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mechanisms: a logistic regression model-based mechanism and a correlation-based

mechanism.

Logistic regression model-based mechanism. We consider two different scenar-

ios: in the first one, the non response mechanism of the general attribute X depends

on the attribute itself (in other words, the target and the agent coincide). Let X be

the predictor in the logistic regression model, and the goal is to generate the binary

response Y. When Yi ¼ 1, then the ith observation of X is rendered missing. We

perform a grid search of plausible values for b̂0 and b̂1, and pick up a combination

of values that leads to a target proportion of missings. The proportion of i’s such that

Yi ¼ 1 is set to 10% with a 2% tolerance. Formally, the missings in X depend on the

values of X itself according to the logistic function

PðY ¼ 1 j XiÞ ¼
exp ðb̂0 þ b̂1XiÞ

1 þ exp ðb̂0 þ b̂1XIÞ
; ð16Þ

if PðY ¼ 1 j XiÞ[ :5 then Yi ¼ 1, and the ith value of X is rendered missing.

In the second scenario, a target attribute Xj is randomly chosen within each block

of correlated attributes, and the agents are the other attributes from the same block

of Xj . The rationale is the same as before, we fix a proportion of missings, and we

perform a grid search for the values of b̂, the parameters vector. We use the multiple

logit function

PðY ¼ 1 j X�jÞ ¼
expðX�jb̂Þ

1 þ expðX�jb̂Þ
ð17Þ

where X�j is the matrix of the agent attributes, that is, all the attributes in the block

but j. If PðY ¼ 1 j X�jðiÞÞ[ :5 then Yi ¼ 1, and the ith value of Xj is rendered

missing.

Pairwise correlation-based mechanism. This scenario can be referred to as the

worst case, since the nonresponse mechanism weakens the correlation between the

attributes rendered missing. In particular, given a pair of centred attributes Xa and

Fig. 1 Correlation structure of a complete data chunk (left); MNCAR mechanism undermining the
correlation structure of the first two blocks of attributes of the same chunk
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Xb, let the target be either Xa or Xb; also, let the agent attribute Xab be the product of

Xa and Xb, that is Xab ¼ XaXb. Since Xa and Xb are centered,

meanðXabÞ ¼ covðXa;XbÞ. The values of the target attribute (Xa or Xb) are rendered

missing if the corresponding positions in Xab are such that Xab 	Q3ðXabÞ, where

Q3ðXabÞ indicates the third quartile of the distribution of Xab. A toy example is

reported in Table 1, with Xa and Xb such that corrðXa;XbÞ ¼ 0:75; the rendered

missing target attribute is XH

a and Q3ðXabÞ ¼ 0:81: in this setting, the correlation is

undermined by the presence of missing values; in fact, it results that

corrðXH

a ;XbÞ ¼ 0:4.

Under such MNCAR mechanism, up to three blocks of attributes contain missing

values that hide the correlation structure: an illustration of an incomplete data chunk

correlation structure, with missing entries in attributes from the first and second

block, is reported in Fig. 1 (right-hand side).

The imputation error is used to assess the performance of RPCA and of both the

implementations of CW-RPCA. In particular, the imputation error is given by the

mean absolute difference between the true and imputed values. We decided to use

the imputation error instead of the PCA parameter recovery (as in Loisel and

Takane 2019) to have a more granular measure of performance.

4.2 MCAR experiment

The chunk-wise approach is compared to the batch approach to impute the MCAR

data; in particular, the RPCA is applied to the data chunks as a whole (that is, up to a

12500 � 9 data set ) using the imputePCA function from the R package missMDA
(Josse and Husson 2016). The experiment runs over an increasing number of

chunks, which is 5; 10; . . .; 25f g, and each analysis is repeated 20 times per number

of chunks.

Figure 2 illustrates the results: the performance of naive CW-RPCA is

comparable with the batch version of RPCA, whereas the non-naive implementation

gives worse results, especially in terms of variability over the 20 replicates. The

difference in performance between the two implementations of the CW-RPCA is

Table 1 Example of

agent/target missing rendering:

the agent attribute Xab values

highlighted are greater than

Q3ðXabÞ ¼ 0:81, XH

a is the

rendered missing version of Xa

Xa Xb Xab XH

a

- 0.20 0.47 - 0.09 - 0.20

- 0.89 - 0.93 0.83 NA

- 0.82 - 1.46 1.20 NA

0.46 1.62 0.75 0.46

0.85 - 0.12 - 0.10 0.85

- 0.13 - 0.69 0.09 - 0.13

- 0.32 - 0.04 0.01 - 0.32

- 0.69 - 0.25 0.17 - 0.69

- 0.62 - 0.20 0.12 - 0.62

2.36 1.60 3.78 NA
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due to the MCAR mechanism. The underlying correlation structure is constant

throughout the data chunks, and the missing entries do not alter it: therefore, the

local, chunk-based, imputation obtained via naive CW-RPCA is just as good as the

global imputation obtained via RPCA. In fact, each incomplete chunk contains

information on the correlation structure that can be captured by CW-RPCA and used

to impute the chunk itself properly. The non-naive CW-RPCA keeps track of the

already processed data to impute the current chunk, and the results show that, in this

case, such information is not needed.

4.3 MNCAR experiment: logistic regression model-based

The two logistic regression model-based scenarios are applied on 23 out of 25

chunks; the first two chunks are rendered missing using a MCAR mechanism, and

their block-wise correlation structure is preserved (see Sect. 4.2). The right-hand

side of Fig. 3 highlights the position of the MCAR chunks. The results for the two

scenarios are reported in the left and right-hand side of Fig. 4, respectively. The

results in scenario 1 show a substantially similar performance of CW-RPCA and

RPCA. Furthermore, the higher the number of processed chunks, the more CW-

Fig. 2 Results on the MCAR considered scenario: imputation errors (mean absolute difference between
the true and imputed values) over 20 replicates for 5 to 25 analysed chunks for the evaluated methods:
CW-RPCA, iPCA and naive CW-RPCA
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RPCA and RPCA outperform the naive CW-RPCA. The results in scenario 2 show

similar performance for the three methods: this is somewhat expected, and it

depends on the missingness mechanism used. In fact, for each block of correlated

attributes, just one of them is randomly selected and rendered missing: this results in

a lower proportion of missing entries overall, and it is easier for each of the RPCA

methods to capture the underlying correlation structure and impute the missing

entries accordingly.

Fig. 3 MNCAR data structures: highlighted chunks are MCAR, with a preserved correlation structure.
The left-hand side of the picture shows the scenario 1 of the correlation-based mechanism, with MCAR
chunks randomly positioned in the data set; the right-hand side shows the logistic regression model-based
scenarios as well as the scenario 2 of the correlation-based mechanism, with structured chunks positioned
in the first rows of the considered data

Fig. 4 Results on logistic regression model-based MNCAR scenario 1 (left-hand side) and 2: imputation
errors (mean absolute difference between the true and imputed values) over 20 replicates for 5 to 25
analysed chunks for the evaluated methods: CW-RPCA, RPCA and naive CW-RPCA
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4.4 MNCAR experiment: correlation-based

For the correlation-based MNCAR mechanism experiment, two different scenarios

are considered. In the first scenario, 5 out of 25 chunks contain missings according

to an MCAR mechanism, whereas the other chunks contain MNCAR values (see

Fig. 3, left-hand side). The rationale is that MCAR chunks preserve the correlation

structure, as opposed to MNCAR chunks, whose structure is hidden away by

missings: therefore, MCAR chunks make the CW-RPCA to learn the underlying

data structure, which is an advantage when it comes to imputing incoming MNCAR

data chunks. Of course, for the naive CW-RPCA that performs an independent

chunk-wise imputation, no gain is expected.

The left-hand side of Fig. 5 shows the results referred to the first considered

MNCAR scenario: the CW-RPCA slightly outperforms RPCA, albeit with an

increased variability over the 20 replicates. The naive CW-RPCA shows a higher

imputation error, albeit with less variability.

In the second MNCAR scenario, the first two chunks contain MCAR entries, and

all the following chunks contain MNCAR entries (Fig. 3, right-hand side). The

results are displayed in the right-hand side Fig. 5 and show how the CW-RPCA

outperforms both the RPCA and naive CW-RPCA. This result confirms that, given a

data set with a steady correlation structure, training the CW-RPCA on a complete

data chunk, or on an incomplete data chunk whose missings do not hide away the

correlation structure (as in the MCAR case), leads to improved results compared to

the data set processed as a whole.

4.5 An application on the tennessee eastman problem dataset

The Tennessee Eastman Problem (TEP) data is a sensor data benchmark simulating

an industrial chemical process (see, e.g., Severson et al. 2017). Indeed, PCA is

Fig. 5 Results on correlation-based MNCAR scenario 1 (left-hand side) and 2: imputation errors (mean
absolute difference between the true and imputed values) over 20 replicates for 5 to 25 analysed chunks
for the evaluated methods: CW-RPCA, RPCA and naive CW-RPCA
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successfully applied to process data as a tool for multivariate process control.

Missing values in process control data are fairly common, and they might be due to

sensor failures, for example. The benchmark data we refer to is available in

.RData format (Rieth et al. 2017) and it consists of observations of both normal

operation of the process and different failures. The attributes mostly (52 out of 55)

refer to sensors that monitor the process in question. While the faulty process

detection is beyond the scope of this paper, we used the fault-free training data set

that contains a total of 250 thousand observations.

In a pre-processing phase, we selected a subset of 24 attributes: in particular, only

one attribute from each collinear pair; furthermore, the attributes with limited to

none correlation were discarded. The pre-processing phase led to a mildly defined

correlation structure depicted in the left-hand side of Fig. 6. The same missing data

mechanism described in Sect. 4.1 was used to generate the missings that hide away

the underlying correlation structure, see the right-hand side of Fig. 6. The proportion

of missing values per attribute ranges from 0 to above 50%, see Fig. 7.

Consistently with the experiment described in Sect. 4.4, we considered a chunk-

size of 500 observations and an increasing number of analysed chunks; more

specifically, the number of chunks is such that Ich 2 5; 10; 15; 20; 25f g. The total

number of observations in each scenario is, therefore, 500 � Ich.

An appraisal of the CW-RPCA performance compared to naive CW-RPCA and

RPCA was carried out with regard to (i) the imputation error, as shown in the

previous section, and (ii) the accuracy of the obtained PCA solution. The second

considers on the RV coefficient (Escoufier 1973), calculated to assess the similarity

between the PCA solutions obtained on the data with and without missings. In

particular, the RV coefficient measures the closeness of two configurations, and it

can be considered as a multivariate generalisation of Pearson’s correlation

coefficient, ranging from 0 to 1 (Robert and Escoufier 1976). Let F and FH be

the I � d matrices of object scores resulting from the PCA on the data with and

without missings, respectively. Then the RV coefficient is

Fig. 6 Tennessee Eastman Problem dataset complete data correlation structure (left) vs correlation
structure with missings
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RV F;FH
	 


¼
tr FTF FHTFH
	 


tr FTF
	 
2

tr FHTFHÞ2

;
� ð18Þ

When RV F;FH
	 


¼ 1 it means that the two configurations of points are superim-

posed, i.e., the PCA solutions on data with and without missing entries coincide.

The first chunk of observations is characterised by an MCAR mechanism that is

not detrimental to the data correlation structure, whereas each further chunk comes

from the MNCAR version of the TEP dataset. The imputation error results, referring

to 20 replicates of the experiment, are reported in Fig. 8 (top): a similar pattern for

the three methods is evident, with the imputation error increasing with the number

of analysed chunks. Such a result is not surprising as the proportion of observations

with defined correlation structure (that is, observations from the MCAR chunk)

decreases as more MNCAR chunks are analysed. Furthermore, CW-RPCA is

characterised by a lower imputation error compared to RPCA and, more so, to the

naive CW-RPCA. The RV’s for observations and attributes are depicted in the

bottom left and right Fig. 8: the results confirm that the CW-RPCA outperforms the

other methods in terms of parameter recovery.

Analogously to previous experiments, the CW-RPCA learns the correlation

structure by analysing the first MCAR chunk and takes it into account when

processing the forthcoming chunks. Instead, the RPCA processes the observations

as a whole, and so the correlation structure information carried by the MCAR

chunks is diluted in the full set of observations. Finally, the naive CW-RPCA that

processes each chunk independently has the highest imputation error. The RV index

Fig. 7 Tennessee Eastman Problem dataset with missings: 27:2% average proportion of missings, yet
single attributes have up to 56% of missings
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results confirm the behaviour of the methods, with the CW-RPCA showing a better

performance in terms of solution recovery: a further aspect to point out is that the

methods performance decays as the number of chunks increases, but such decay is

lower in the CW-RPCA case.

Fig. 8 Results on TEP data: imputation errors (top) (mean absolute difference between the true and
imputed values) over 20 replicates for 5–25 analysed chunks for CW-RPCA, RPCA and naive CW-
RPCA; RV index for observations (bottom-left) and attributes (bottom-right) PCA scores

123

Chunk-wise regularised PCA-based imputation of missing data 383



5 Conclusion and future work

This work presented a chunk-wise extension of RPCA for data sets with missings.

The general idea is grounded on the imputation of the missing entries of a chunk

using the low-rank structure of all the chunks insofar analysed, together with the

current one. The performance of CW-RPCA was compared with RPCA on the full

data set and with a naive version of CW-RPCA. The naive approach consists in

applying RPCA on each chunk and then simply merge the chunk-based RPCA

solutions (Iodice D’Enza et al. 2018).

The results of the MCAR experiment on synthetic data sets with a well-defined

correlation structure showed that the naive CW-RPCA performed better than CW-

RPCA and similar to RPCA on the full data set, as expected. Each MCAR chunk

had a correlation structure similar to the full data set. Therefore, tracking the low-

rank structure of the analysed chunks did not provide an imputation performance

gain; in fact, it was detrimental. The logistic regression model-based MNCAR

scenarios can be referred to as MAR, since the non response mechanism of a

attribute depends on the values of the attribute itself, or of other observed attributes.

In scenario 1, CW-RPCA and RPCA had similar performance, and both

outperformed the naive implementation of CW-RPCA. This is not surprising since

the naive CW-RPCA learns the correlation structure using a single chunk, as

opposed to CW-RPCA that learns the structure from all the previously processed

chunks, and to RPCA that learns the structure from all the available observations. In

the scenario 2 the three methods performed equally well because the proportion of

entries rendered missing was limited: since one attribute per block was considered

as target, with the other attributes from the same block being agents.

The pairwise correlation-based MNCAR scenarios can be considered worst case
since the missing entries alter the correlation structure, and it is realistic in some

application domains, such as sensor data. The CW-RPCA has shown appreciable

performance, mainly when the first analysed chunks were informative about the

correlation structure (Sects. 4.4 and 4.5).

While different non response mechanism have been considered, other MNCAR

mechanisms may be at work, depending on the application domain. As pointed out

by Severson et al. (2017), the choice of the best method to apply PCA on data with

missings may depend on the missing data mechanism, the proportion of missings,

and the available computational resources. While the latter two aspects are easily

determined, the identification of the missing data mechanism is non-trivial: it

involves the determination of why some data are missing. Recent approaches

proposed by Geraci and Farcomeni (2016) and Sportisse et al. (2018) aim to model

the MNCAR mechanisms explicitly.

We suggest two main directions for future research: (i) generalize the application

of CW-RPCA to categorical and mixed-type data sets, by embedding in a chunk-

based setting PCA-related methods such as multiple correspondence analysis

(MCA, Greenacre 2017), and factor analysis of mixed data (FAMD, Pagès 2004);

(ii) discuss the CW-RPCA model selection procedure and evaluate its performance
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in case of attributes on different scales.3

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-
CARE Agreement.Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

References

Balzano L, Chi Y, Lu YM (2018) Streaming pca and subspace tracking: The missing data case. Proc IEEE

106(8):1293–1310

Benzécri JP (1973) L’analyse des données. L’analyse des correspondances, Dunod, Tome II

Borgognone MG, Bussi J, Hough G (2001) Principal component analysis in sensory analysis: covariance

or correlation matrix? Food Qual Preference 12(5–7):323–326

Bro R, Kjeldahl K, Smilde AK, Kiers HAL (2008) Cross-validation of component model: a critical look

at current methods. Analy Bioanal Chem 390:1241–1251

Cardot H, Degras D (2018) Online principal component analysis in high dimension: which algorithm to

choose? Int Stat Rev 86(1):29–50

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM

algorithm. J R Stat Soci Ser B 39(1):1–38

Dray S, Josse J (2015) Principal component analysis with missing values: a comparative survey of

methods. Plant Ecol 216(5):657–667

Eckart C, Young G (1973) The approximation of one matrix by another of lower rank. Psychometrika

1:211–218

Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics pp 751–760

Folch-Fortuny A, Arteaga F, Ferrer A (2015) PCA model building with missing data: new proposals and a

comparative study. Chemom Intell Lab Syst 146:77–88

Geraci M, Farcomeni A (2016) Probabilistic principal component analysis to identify profiles of physical

activity behaviours in the presence of non-ignorable missing data. J R Stat Soc Ser C (Appl Stat)

65(1):51–75

Geraci M, Farcomeni A (2018) Principal component analysis in the presence of missing data. Advances in

Principal Component Analysis. Springer, New York, pp 47–70

Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press, Maryland

Gower JC (1971) Statistical methods of comparing different multivariate analyses of the same data.

Mathematics in the archaeological and historical science. pp 138–149

Greenacre M (2017) Correspondence analysis in practice. Chapman and Hall/CRC, NewYork

Greenacre MJ (2010) Biplots in practice. Fundacion BBVA, Spain

Hall P, Marshall D, Martin R (2002) Adding and subtracting eigenspaces with eigenvalue decomposition

and singular value decomposition. Image Vis Comput 20(13–14):1009–1016

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and

prediction, 2nd edn. Springer, NewYork

Hegde A, Principe JC, Erdogmus D, Ozertem U, Rao YN, Peddaneni H (2006) Perturbation-based

eigenvector updates for on-line principal components analysis and canonical correlation analysis.

J VLSI Signal Process Syst Signal Image Video Technol 45(1–2):85–95

3 The GitHub repository available at https://github.com/amarkos/CW-RPCA-Experiments contains the

supplementary material needed to replicate the experiments described in Sect. 4. Basic guidelines to

replicate the experiments can be found in the Supplementary_script, available in both .html and

.Rmd formats

123

Chunk-wise regularised PCA-based imputation of missing data 385

http://creativecommons.org/licenses/by/4.0/
https://github.com/amarkos/CW-RPCA-Experiments


Ilin A, Raiko T (2010) Practical approaches to principal component analysis in the presence of missing

values. J Mach Learn Res 11:1957–2000

Iodice D’Enza A, Markos A, Buttarazzi D (2018) The idm package: incremental decomposition methods

in R. J Stat Softw Code Snippets 86(4):1–24

Jolliffe IT (2002) Principal Component Analysis, 2nd edn. Springer-Verlag, New York

Josse J, Husson F (2012) Handling missing values in exploratory multivariate data analysis methods.

J Soc Fr Stat 153(2):79–99

Josse J, Husson F, Pagès J (2009) Gestion des données manquantes en analyse en composantes

principales. J Soci Fr Stat 150(2):28–51

Josse J, Timmerman ME, Kiers HA (2013) Missing values in multi-level simultaneous component

analysis. Chemom Intell Lab Syst 129:21–32

Josse J, Husson F et al (2016) missMDA: a package for handling missing values in multivariate data

analysis. J Stat Softw 70(1):1–31

Kiers HA (1997) Weighted least squares fitting using ordinary least squares algorithms. Psychometrika

62(2):251–266

Levey A, Lindenbaum M (2000) Sequential karhunen-loeve basis extraction and its application to images.

IEEE Trans Image Process 9(8):1371–1374

Little RJ, Rubin DB (2019) Statistical analysis with missing data. John Wiley & Sons, Hoboken

Loisel S, Takane Y (2019) Comparisons among several methods for handling missing data in principal

component analysis (PCA). Adv Data Anal Classif 13(2):495–518

Markos A, Iodice D’Enza A (2018) A framework for the incremental update of the MCA solution. Ital J

Appl Stat 29(2–3):217–231

Navarrete P, Ruiz-del-Solar J (2002) Analysis and comparison of eigenspace-based face recognition

approaches. Int J Pattern Recognit Artif Intell 16(07):817–830

Pagès J (2004) Analyse factorielle de données mixtes. Revue de Stat Appl 52(4):93–111

Rieth CA, Amsel BD, Tran R, Cook MB (2017). Additional Tennessee Eastman process simulation data

for anomaly detection evaluation. https://doi.org/10.7910/DVN/6C3JR1

Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-

coefficient. Appl Stat 25(3):257–265

Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput

Vis 77(1–3):125–141

Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–592

Schafer JL (1997) Analysis of incomplete multivariate data. Chapman and Hall/CRC, New York

Severson KA, Molaro MC, Braatz RD (2017) Principal component analysis of process datasets with

missing values. Processes 5(3):38

Sportisse A, Boyer C, Josse J (2020) Imputation and low-rank estimation with Missing Not At Random

data. Stat Comput 30(6):1629–1643

Takane Y, Oshima-Takane Y (2003) Relationships between two methods for dealing with missing data in

principal component analysis. Behaviormetrika 30(2):145–154

Van Ginkel JR, Kroonenberg PM, Kiers HAL (2014) Missing data in principal component analysis of

questionnaire data: a comparison of methods. J Stat Comput Simul 84(11):2298–2315

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

386 A. Iodice D’Enza et al.

https://doi.org/10.7910/DVN/6C3JR1

	Chunk-wise regularised PCA-based imputation of missing data
	Abstract
	Introduction
	PCA with missing data
	Single imputation via iterative PCA
	Single imputation via Regularised PCA

	Chunk-wise RPCA for missing data
	Incremental eigendecomposition
	Chunk-wise single imputation via RPCA

	Experiments
	Simulation setup
	MCAR experiment
	MNCAR experiment: logistic regression model-based
	MNCAR experiment: correlation-based
	An application on the tennessee eastman problem dataset

	Conclusion and future work
	Open Access
	References




