
ORIGINAL PAPER

Goodness-of-fit test for a-stable distribution based
on the quantile conditional variance statistics

Marcin Pitera1 • Aleksei Chechkin2,3 • Agnieszka Wyłomańska4
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Abstract
The class of a-stable distributions is ubiquitous in many areas including signal

processing, finance, biology, physics, and condition monitoring. In particular, it

allows efficient noise modeling and incorporates distributional properties such as

asymmetry and heavy-tails. Despite the popularity of this modeling choice, most

statistical goodness-of-fit tests designed for a-stable distributions are based on a

generic distance measurement methods. To be efficient, those methods require large

sample sizes and often do not efficiently discriminate distributions when the cor-

responding a-stable parameters are close to each other. In this paper, we propose a

novel goodness-of-fit method based on quantile (trimmed) conditional variances

that is designed to overcome these deficiencies and outperforms many benchmark

testing procedures. The effectiveness of the proposed approach is illustrated using

extensive simulation study with focus set on the symmetric case. For completeness,

an empirical example linked to plasma physics is provided.
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1 Introduction

The a-stable distributions were first introduced in the 1920s in Lévy (1924); see also

Khinchine and Lévy (1936). They are a natural extension of the Gaussian

distribution which allow more sophisticated noise modelling. Indeed, due to the

Generalized Central Limit Theorem, one could show that a-stable distributions

attract distributions of sums of random variables with diverging variance, in the

same sense that the Gaussian law attracts distributions with finite variance; see

Jakubowski and Kobus (1989).

The a-stable distribution were first applied to financial time series modeling in

Mandelbrot (1960). Then, in Chambers et al. (1976) it was showed that a-

stable distribution is a very suitable model for noise on telephone lines. In the 1990s,

a-stable distribution became of interest to wider audience, mainly due to Shao and

Nikias (1993), which defined the initial signal processing framework, and due to the

book Samorodnitsky and Taqqu (1994) which provided a unified mathematical

treatment. In recent years, the a-stable distributions have found many interesting

applications, e.g. in physics, biology, medicine, climate dynamics, financial

markets, telecommunications, and condition monitoring. We refer the reader to

Majka and Góra (2015); Kosko and Mitaim (2004); Barthelemy et al. (2008);

Sokolov et al. (1997); Lomholt et al. (2005); Durrett et al. (2011); Lan and Toda

(2013); Peng et al. (1993); Rachev and Mittnik (2000); Bidarkota et al. (2009);

Middleton (1999); Li et al. (2019); Yu et al. (2013); _Zak et al. (2017, 2016);

Ditlevsen (1999); Wyłomańska et al. (2015) and references therein. Also, we refer

the reader to the classical book related to the a-stable distributed signals – Nikias

and Shao (1995); see also Janicki and Weron (1994) and Wegman et al. (1989).

While a-stable distributions are characterized by four parameters, the most

important one, arguably, is the stability index a 2 ð0; 2� which is responsible for the

heavy-tailed behavior. In a nutshell, the smaller the a the higher the probability that

the corresponding random variable takes extreme values. For a\2 the a-

stable distributions belong the the wide class of the heavy-tailed distributions and

in this case the corresponding random variable has infinite variance. On the other

hand, the a-stable distribution can be considered as the extension of the Gaussian

one, indeed for a ¼ 2 it reduces to normal distribution.

In the literature, one can find many statistical methods linked to a-stable distri-

butions. This includes estimation methods, Bayesian MCMC frameworks, and

goodness-of-fit tests. See Tuo (2018); Wolpert and Schmidler (2012); Jabłońska

et al. (2017); Nolan (2001); Koblents et al. (2016); McCulloch (1986); Koutrouvelis

(1980); Kratz and Resnick (1996); Bee and Trapin (2018); de Haan and Resnic

(1998); Lombardi (2007); Buckle (1996); Godsill and Kuruoglu (1999); Peters et al.

(2012); Tsionas (2000); Chakravarti et al. (1967); Srinivasan (1971); Watson

(1961); Anderson (1962); Anderson and Darling (1954); Matsui and Takemura

(2008); Beaulieu et al. (2014) for exemplary contributions.

However, under the assumption that the random sample comes from the a-

stable distribution, the fitting algorithms require very large sample size to be

effective and do not efficiently discriminate a-stable distributions when the
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parameters are close to each other; see Burnecki et al. (2012, 2015). In particular,

most goodness-of-fit procedures for a-stable distribution are based on the generic

distance measurement statistics, when the whole empirical and theoretical

cumulative distribution functions (or characteristic functions) are compared with

each other. Consequently, the computational time needed for comprehensive data

assessment is rather high, at least compared to assessments based on simple

statistics (like moments for the finite-variance distributions). To sum up, there is a

need for further development of fast and efficient a-stable distribution testing

methods that are also effective for small number of observations.

In this paper, we propose a new goodness-of-fit method based on the quantile

conditional variance (QCV) class of statistics that is designed to overcome the

aforementioned problems; the set conditional variances are obtained by applying the

standard variance function to a double quantile-trimmed (sample) data; see Sect. 3

for details. Although the theoretical variance for a-stable distribution with a\2 is

infinite, the QCV always exist and can be used to fully characterize the a-

stable distribution. Our approach is the base of a novel testing procedure which

seems to be superior in comparison to benchmark approaches based on the distance

measurement between theoretical and empirical distributions. Moreover, the test

statistics we propose are very easy to implement as they are based on simple

characteristics. As we demonstrated in this paper, the new testing procedure is very

effective, also for small samples, and the proposed approach can be effectively used

to discriminate the light- and heavy-tailed distributions, even if they are close to

each other, e.g. when a is close to 2. While in this paper we focus on tail-impact

assessment tests for symmetric a-stable distributions, our approach could be

generalised to tackle the generic a-stable distribution fit assessment; potential

generalisations are discussed in Sects. 6 and 7.

A similar approach based on the QCV statistics was recently proposed in Jelito

and Pitera (2020) to assess tail heaviness in reference to the Gaussian distribution. It

has been shown that exemplary normality test based on QCV statistic and the 20/60/

20 Rule outperform many benchmark frameworks including Jarque-Bera, Ander-

son-Darling, and Shapiro-Wilk tests; see Jaworski and Pitera (2016) where the 20/

60/20 Rule in the context of the Gaussian distribution is studied. Also, we refer to

Hebda-Sobkowicz et al. (2020b, 2020a), where a similar approach was used in

signal analysis for fault disgnostics. Moreover, it has been recently shown in

Jaworski and Pitera (2020) that QCV could be used to characterise the underlying

distribution up to an additive constant – this lays out a theoretical basis for efficient

testing procedures based on QCV statistics. While the QCV statistic is a natural

(local) extension of the standard variance, so far it has been not considered in the

literature apart from the mentioned papers. This might be surprising, as the

conditional second moments seem to be a very natural tool e.g. for engineering and

financial applications. In particular, this refers to flexibility coming from using

conditional second moments instead of higher-order unconditional moments, see

e.g. Cioczek-Georges and Taqqu (1995). Our paper builds upon those remarks and

exploits interconnection between Jaworski and Pitera (2020) and Jaworski and

Pitera (2016) in reference to a-stable distributions. While we focus on goodness-of-
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fit testing, our approach is in fact quite general and could be applied in other

contexts, e.g. for parameter fitting.

The rest of the paper is organized as follows: in Sect. 2 we define a-

stable distributions and indicate their main properties which are useful in the further

analysis. In Sect. 3, we introduce the conditional variance characterisation of a-

stable distribution. Next, in Sect. 4 we analyze the sample quantile conditional

variance for a-stable distribution and the properties of the QCV estimatior. Next, in

Sect. 5, we propose an exemplary statistical test for symmetric a-stable distribution

and check it efficiency on simulated datasets. This is the core part of the paper as

our focus is set on the symmetric case. In particular, we compare the effectiveness

of the test with known algorithms used for a-stable distribution testing. Moreover,

we demonstrate the efficiency of the new algorithm for the case when the stability

index is close to 2. In Sect. 6, we comment on a more generic statistical testing for

a-stable distribution. In particular, we show a possible approach to non-symmetric

goodness-of-fit testing. Then, in Sect. 7, we introduce a novel generic a-

stable distribution goodness-of-fit visual test based on the QCV statistics. Finally,

in Sect. 8, we provide empirical analysis which show how the results presented in

this paper could be applied. Datasets analyzed in this paper were studied already in

Burnecki et al. (2015), where the problem of discriminating between the light- and

heavy-tailed distributions was discussed; see also Burnecki et al. (2012). Our results

provide further (statistically significant) quantification of claims made in the past

and point out to additional features embedded into empirical datasets that were not

discussed before. The last section concludes the paper.

2 The a-stable distribution

The a-stable random variable X is typically characterized by four real parameters:

the stability index a 2 ð0; 2�, the scale parameter c[ 0, the skewness parameter

b 2 ½�1; 1� and the location parameter l 2 R. One of the most common definition

of the a-stable distribution is through its characteristic function; see e.g.

Samorodnitsky and Taqqu (1994); Nolan (2020).

Definition 1 We say that X follows the a-stable distribution if its characteristic

function is given by

/XðtÞ ¼ EeitX ¼
exp �cajtja 1 � ib sgn ðtÞ tan

pa
2

� �� �
þ ilt

n o
a 6¼ 1;

exp �cjtj 1 þ ib
2

p
sgn ðtÞ ln jtjð Þ

� �
þ ilt

� �
a ¼ 1;

8>><
>>:

ð1Þ

where a 2 ð0; 2�, b 2 ½�1; 1�, c[ 0, and l 2 R. For brevity, we write

X� Sða; c; b;lÞ. Also, in the case b ¼ 0, we say that X follows the symmetric

(around median l) a-stable distribution and write X� SaSða; c; lÞ.

The a-stable distributions are considered as the generalisation of the Gaussian

distribution. In fact, for a ¼ 2 the a-stable distribution is the Gaussian distribution

with mean equal to l and variance equal to 2c2; b parameter is unimportant here. If
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a\2, then the second moment (and thus the variance) of a-stable distributed

random variable X does not exist. Also, if a\1, then the expected value of X is

infinite. Let us now briefly discuss each parameter’s role.

First, the stability index parameter a 2 ½0; 2� is responsible for the so-called

heavy-tailed property of a-stable distribution. This property is strongly related to the

power-law behavior, which means that for a\2, the distribution tail of

X� Sða; c; b;lÞ is a power function

limx!1 xaPfX[ xg ¼ Da
1 þ b

2
ca;

limx!1 xaPfX\� xg ¼ Da
1 � b

2
ca;

8><
>:

ð2Þ

where Da ¼
R1

0
x�a sinðxÞdx

� 	�1¼ 1
pCðaÞ sinðpa

2
Þ and Cð�Þ is the Gamma function,

see Samorodnitsky and Taqqu (1994).

Second, the skewness parameter b 2 ½�1; 1� gives the information about the

symmetry of the distribution. Note that it cannot be directly linked to the usual

skewness statistic as the the 3rd central moment of a-stable distribution does not

exist when a\2.

Finally, the scale and location parameters c[ 0 and l 2 R refer to the standard

distributional properties related to affine transformations. Following Samorodnitsky

and Taqqu (1994), we know that if X� Sða; c; b; lÞ then for any b; a 2 R, a[ 0, we

get aX þ b� Sða; ac; b; ~lÞ, where

~l ¼
alþ b if a 6¼ 1;

al� 2

p
a ln jajcbþ b if a ¼ 1:

8<
:

While a-stable random variables are absolutely continuous for any set of parame-

ters, their probability density function (PDF) in general has no closed (analytic)

form. However, there are some instances, where it could be given explicitly. For

example, this refers to the Gaussian distribution family SaSð2; c; lÞ with the PDF

given by

fXðxÞ ¼
1

2pc
e�

ðx�lÞ2

4c2 ; x 2 R; ð3Þ

the Cauchy distribution family SaSð1; c; lÞ with the PDF defined as

fXðxÞ ¼
c

pððx� lÞ2 þ c2Þ
; x 2 R ð4Þ

and the Lévy distribution family Sð1=2; c; 1; lÞ with the PDF given by

fXðxÞ ¼ 1ðl;1ÞðxÞ
c

2p

� �1=2 1

ðx� lÞ3=2
e
� c

2ðx�lÞ; x 2 R: ð5Þ

Also, the PDF of the a-stable random variable X can be represented in a series or
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integral form. For instance, following Shao and Nikias (1993) and assuming that

l ¼ 0 and c ¼ 1, we can represent X� SaSða; 1; 0Þ PDF as

fXðxÞ ¼

1

px

X1
k¼1

ð�1Þk�1

k!
C ak þ 1ð Þjxj�ak

sin
kap

2

� �
; if 0\a\1

1

pa

X1
k¼0

ð�1Þk

ð2kÞ! C
2k þ 1

a

� �
x2k; if 1� a� 2:

8>>>><
>>>>:

ð6Þ

The series given in (6) is absolutely convergent for any x 2 R; see Bergstrom

(1952); Feller (1966). Although, the series expansions of PDF for symmetric a-

stable random variables are known, the asymptotic of series expansions are good

only in the tails. The origin of the PDF deviate from the theoretical PDF for

intermediate values, see Tsihrintzis and Nikias (1993). For other representations, we

refer the reader for instance to Nolan (2020, 1997); Cizek et al. (2005).

3 Conditional variance characterisation of the a-stable distributions

For now, let us assume that X is a generic absolutely continuous random variable.

For any A 2 R, such that P½A� 6¼ 0, we define the conditional variance of Xon A by

Var ½XjA� :¼ E ðX � E½XjA�Þ2 jA
h i

; ð7Þ

where E½�jA� is the standard conditional (set) expectation operator; note that (7)

might be non-finite. For brevity, for any 0� a\b� 1, we also define the quantile

trimmed subdomain of X by AXða; bÞ :¼ fX 2 ðF�1
X ðaÞ;F�1

X ðbÞÞg 2 R and related

quantile conditional variance (QCV) of X given by

r2
Xða; bÞ :¼ Var ½XjAXða; bÞ�: ð8Þ

For completeness, note that: (a) P½AXða; bÞ� ¼ b� a[ 0 so the definition is well

posted; (b) for 0\a\b\1 the value of (8) is finite; (c) for any c[ 0 and l 2 R we

get r2
cXþlð�; �Þ ¼ c2r2

Xð�; �Þ; (d) Var ½X� ¼ r2
Xð0; 1Þ.

Recently, it has been shown in Jaworski and Pitera (2020) that the family of

QCVs could act as law classifiers; see Theorem 2.1

Theorem 2 Let X, Y be (absolutely continuous) random variables such that

r2
Xða; bÞ ¼ r2

Yða; bÞ, for 0� a\b� 1. Then, there exists l 2 R such that
FXðtÞ ¼ FYþlðtÞ, t 2 R, i.e. the laws of X and Y coincide almost surely up to an

additive-constant.

Note that in Theorem 2, using standard limit arguments, we get that consideration

of limit values a ¼ 0 and b ¼ 1 (for which QCV might be non-finite) is in fact not

1 It should be noted that in Jaworski and Pitera (2020) the theorem is stated and proved for any, not

necessarily absolutely continuous, random variable. For simplicity, we decided to state the theorem in a

slightly simplified version.
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required to get full classification. Because of that, from now on, we assume that

0\a\b\1. In particular, this implies that all QCVs in scope are finite.

Based on Theorem 2 we can characterise the a-stable distribution by providing

information about QCVs. While the general analytic formula for the QCV of a-

stable distribution is unknown, it could be efficiently computed using standard

methods. In particular, for SaSða; c; lÞ class, we can use the series expansion given

in (6) to get the formula of QCV; see Proposition 3.

Proposition 3 Let X� SaSða; c; lÞ and let 0\a\b\1. Then, the following holds

r2
Xða; bÞ ¼

c2

pa

X1
k¼0

ð�1Þk

ð2kÞ! C
2k þ 1

a

� �
A2kþ3 �

c

pa

X1
k¼0

ð�1Þk

ð2kÞ! C
2k þ 1

a

� �
A2kþ2

 !2

; if a� 1;

c2

p

X1
k¼1

ð�1Þk�1

k!
C ak þ 1ð Þ sin

kap
2

� �
B2�ak �

c

p

X1
k¼1

ð�1Þk�1

k!
C ak þ 1ð Þ sin

kap
2

� �
B1�ak

 !2

; if a\1;

8>>>>><
>>>>>:

ð9Þ

where Ai :¼ ½F�1
X ðbÞi � F�1

X ðaÞi�=iðb� aÞ, and

Bi :¼ ½signðF�1
X ðbÞÞF�1

X ðbÞi � signðF�1
X ðaÞÞF�1

X ðaÞi�=iðb� aÞ, for i 2 R n f0g.

Proof Let 0\a\b\1. From (7), we get

r2
Xða; bÞ ¼ E½X2 jAXða; bÞ� � E2 X jAXða; bÞ½ �. Without loss of generality we can

assume that l ¼ 0 and c ¼ 1. Recalling that AXða; bÞ ¼ fX 2 ðF�1
X ðaÞ;F�1

X ðbÞÞg,

which implies P½AXða; bÞ� ¼ b� a, we get

r2
Xða; bÞ ¼

1

b� a
E 1AXða;bÞX

2

 �

� 1

ðb� aÞ2
E2 1AXða;bÞX

 �

¼
Z F�1

X ðbÞ

F�1
X ðaÞ

x2fXðxÞ
b� a

dx�
Z F�1

X ðbÞ

F�1
X ðaÞ

xfXðxÞ
b� a

dx

 !2

:

ð10Þ

Next, by plugging (6) directly into (10) and doing standard algebraic calculations,

we get (9). h

Note that representation (9) is useful when one wants to quickly calculate the

value of QCV for symmetric a-stable distributions. Also, for some special cases,

representation (6), and consequently (9), reduces to a more elegant non-series form.

In particular, for a ¼ 2, i.e. when X� SaSð2; c; lÞ has Gaussian distribution, we use

(3) to get closed form formula for the conditional variance given by

r2
Xða; bÞ ¼ 2c2 U�1ðaÞ/ðU�1ðaÞÞ � U�1ðbÞ/ðU�1ðbÞÞ

b� a
�

/ðU�1ðaÞÞ � /ðU�1ðbÞÞ
� 	2

ðb� aÞ2
þ 1

 !
;

where Uð�Þ and /ð�Þ denote the standard normal cumulative distribution function

(CDF) and PDF; see Section 13.10.1 in Johnson et al. (1994). Similarly, assuming

a ¼ 1, i.e. when X� SaSð1; c; lÞ has Cauchy distribution, we use (4) to get
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r2
Xða; bÞ ¼

c2

b� a

F�1
X ðbÞ � F�1

X ðaÞ
DXða; bÞ

� 1

� �

� c2

4D2
Xða; bÞðb� aÞ2

ln2 1 þ F�1
X ðbÞ2

1 þ F�1
X ðaÞ2

 !
;

ð11Þ

where DXða; bÞ :¼ tan�1 F�1
X ðbÞ

� 	
� tan�1 F�1

X ðaÞ
� 	

; see Nadarajah and Kotz

(2006) for details.

While in the non-symmetric case the formula for QCV is not available, it is

relatively easy to approximate it using simulated data. Also, using (5), we can get

concise formula for the QCV for (non-symmetric) Lévy distributions, i.e. for

X� Sð1=2; c; 1; lÞ we obtain

r2
Xða; bÞ ¼

c2

3ðb� aÞ F�1
X ðbÞG1ðF�1

X ðbÞÞ � F�1
X ðaÞG1ðF�1

X ðaÞÞ � HXða; bÞ
� 	

� c2

ðb� aÞ2
H2

Xða; bÞ;
ð12Þ

where HXða; bÞ :¼ ½G1ðF�1
X ðbÞÞ � G1ðF�1

X ðaÞÞ� þ ½G2ðF�1
X ðbÞÞ � G2ðF�1

X ðaÞÞ�,
G1ðzÞ :¼

ffiffiffi
2z
p

p
e�

1
2z, G2ðzÞ :¼ erf ðð2zÞ�

1
2Þ, and erf is the standard error function. The

above formula is a consequence of applying the Lévy distribution PDF (5) to the

Eq. (10).

To conclude this section, we illustrate the dynamics of the QCV for exemplary

parameter shifts for a-stable distribution; see Fig. 1. Monotonic behaviour visible

on the graphs indicate that distribution parameters might be represented via QCV.

Nevertheless, the detailed analysis of this fact is out of scope of the paper.

Fig. 1 Illustration of QCV for Sða; 1;b; 0Þ distribution as a function of a (left panel), b (middle panel),
and quantile interval (a, b) (right panel). In the left panel, we present QCV values for five b parameter
values and ða; bÞ ¼ ð0:2; 0:8Þ showing how QCV is changing as a increases. In the middle panel, we
demonstrate QCV values for five a parameter values and ða; bÞ ¼ ð0:2; 0:8Þ showing how QCV is
changing with respect to b parameter. In the right panel, we assume that b ¼ 1 � a and b ¼ 0, and
demonstrate QCV values for a 2 ½0:1; 0:5�. The calculations are performed based on 100 000 Monte Carlo
simulations. To increase the transparency, we restrict a parameter values to (1, 2]
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4 The sample quantile conditional variance estimator and its
properties for the a-stable distributions

In this section we introduce the sample QCV estimator and comment on it basic

properties. This will be a core object used for goodness-of-fit testing. While in this

section we focus on a generic choice of quantile thresholds 0\a\b\1 for a single

QCV, in practical applications one choose specific linear combinations (or ratios) of

QCVs with different predefined thresholds in order to allow efficient statistical

testing of certain distributional assumptions such as heavy-tails or asymmetry. We

refer to Sects. 5 and 6 for details.

Given independent and identically distributed (i.i.d.) sample ðX1; . . .;XnÞ and

quantile values 0\a\b\1, the sample estimator of r2
Xða; bÞ is given by

r̂2
Xða; bÞ :¼

1

½nb� � ½na�
X½nb�

i¼½na�þ1

�
XðiÞ � l̂Xða; bÞ

�2

; ð13Þ

where l̂Xða; bÞ :¼ 1
½nb��½na�

P½nb�
i¼½na�þ1

XðiÞ is the conditional sample mean, XðkÞ is the

kth order statistic of the sample, and ½x� :¼ maxfk 2 Z : k� xg denotes the integral

part of x 2 R. Note that while (13) might look complicated, it could be computed by

applying the following straightforward logic: first, sort the sample; second, take a

subset of observations induced by empirical quantiles linked to a and b2; third,

compute standard sample variance on the subset of observations. Using standard

arguments one can check that for any 0\a\b\0 the QCV estimator r̂2
Xða; bÞ is

consistent and follows the usual CLT dynamics; these facts are summarised in

Proposition 4.

Proposition 4 Let X� Sða; c; b; lÞ. Then, for any 0\a\b\1, we get

r̂2
Xða; bÞ�!

P
r2
Xða; bÞ; when n ! 1;

i.e. the QCV sample estimator is consistent, and

ffiffiffi
n

p
r̂2
Xða; bÞ � r2

Xða:bÞ
� 	

�!d Nð0; csÞ; when n ! 1;

where s[ 0 is a fixed constant depending on the stability index a, symmetry

parameter b and quantile interval (a, b).

Proof The proof is based on the standard trimmed-mean arguments introduced e.g.

in Stigler (1973). For completeness, let us show an outline of the second part of the

proof; see Jelito and Pitera (2020) for details. Let 0\a\b\1 and let ðXiÞ be a

sample from the same distribution as X. First, noting that X is absolutely continuous,

using (Jelito and Pitera 2020, Lemma 1) and (Jelito and Pitera 2020, Lemma 2) we

know that l̂Xða; bÞ�!
P

lXða; bÞ and
ffiffiffi
n

p
l̂Xða; bÞ � lXða; bÞ½ � �!d Nð0; gÞ, n ! 1,

2 i.e. from ð½na� þ 1Þth observation to [nb]th observation in the sorted sample.
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where lXða; bÞ is the theoretical conditional mean of X and g is some constant. Also,

using (Jelito and Pitera 2020, Lemma 3), we get
ffiffiffi
n

p
r̂2
Xða; bÞ � ŝ2

Xða; bÞ
� 	

�!P 0, as

n ! 1, where

ŝ2
Xða; bÞ :¼

1

½nb� � ½na�
X½nb�

i¼½na�þ1

�
XðiÞ � lXða; bÞ

�2

:

Consequently, it is enough to show that
ffiffiffi
n

p
ŝ2
Xða; bÞ � r2

Xða:bÞ
� 	

�!d Nð0; dÞ, as

n ! 1, for some constant d 2 R. For brevity, we introduce additional notation

Zn :¼
ffiffiffi
n

p
ŝ2
Xða; bÞ; An :¼

Xn
i¼1

1fXi �F�1
X ðaÞg; Bn :¼

Xn
i¼1

1fXi �F�1
X ðbÞg;

mn :¼ ½nb� � ½na�;

and define the directed sum

S
l

i¼k
ai :¼

Pl
i¼kþ1 ai; if k\l;

0; if k ¼ l

�
Pk

i¼lþ1 ai; if k[ l;

8><
>:

for any sequence of numbers ðaiÞ. The first step of the proof is to split Zn into two

parts: one representing the deterministic trimmed mean component and one repre-

senting the residual component from quantile estimated thresholds. Namely, we

have

Zn ¼
ffiffiffi
n

p

mn

 XBn

i¼Anþ1

SðiÞ þ S
An

i¼½na�
SðiÞ þ S

½nb�

i¼Bn

SðiÞ

!
; ð14Þ

where SðiÞ :¼ XðiÞ � lXða; bÞ
� 	2

. Introducing Kð�Þ :¼ F�1
X ð�Þ � lXða; bÞ

� 	2
, we can

rewrite formula (14) as

Zn ¼
ffiffiffi
n

p

mn

  XBn

i¼Anþ1

SðiÞ þ ðAn � ½na�ÞKðaÞ þ ð½nb� � BnÞKðbÞ
!

þ S
An

i¼½na�
SðiÞ � KðaÞ
� 	

þ S
½nb�

i¼Bn

SðiÞ � KðbÞ
� 	!

:

ð15Þ

In the second step of the proof, we show that
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ffiffiffi
n

p

mn
S
An

i¼½na�
SðiÞ � KðaÞ
� 	

�!P 0 and

ffiffiffi
n

p

mn
S
½nb�

i¼Bn

SðiÞ � KðbÞ
� 	

�!P 0: ð16Þ

For brevity, we only show the proof for of the first convergence; the proof for the

second convergence is analogous. First, note that

0�
ffiffiffi
n

p

mn
S
An

i¼½na�
SðiÞ � KðaÞ
� 	









�
An � ½na�
mn=

ffiffiffi
n

p maxfSð½na�Þ � KðaÞ; Sð½An�Þ � KðaÞg


 

:

Second, due to consistency of quantile estimators Xð½na�Þ and Xð½An�Þ, we get Sð½na�Þ �

KðaÞ�!P 0 and SðAnÞ � KðaÞ�!P 0, so it is enough to show that
An�½na�
mn=

ffiffi
n

p converges to

normal distribution. Noting that mn=n ! b� a and ðna� ½na�Þ=
ffiffiffi
n

p
! 0, as

n ! 1, and applying Central Limit Theorem combined with Slutsky’s Theo-

rem (see Ferguson (1996)) to An �B n; að Þ, we get

An � ½na�
mn=

ffiffiffi
n

p ¼
ffiffiffi
n

p
1
n An � a
� 	
mn=n

þ ðna� ½na�Þ=
ffiffiffi
n

p

mn=n
�!d N 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 � aÞ
b� a

r !
:

This concludes the proof of (16). The third and final step of the proof is to apply

Central Limit Theorem to Zn. Noting that ðna� ½na�Þ=
ffiffiffi
n

p
! 0 and

ðnb� ½nb�Þ=
ffiffiffi
n

p
! 0, we can rewrite (15) as

Zn ¼
ffiffiffi
n

p

mn

 XBn

i¼Anþ1

SðiÞ þ ðAn � naÞKðaÞ þ ðnb� BnÞKðbÞ
!

þ rn;

where rn �!
P

0. Thus, recalling definitions of SðiÞ, An and Bn, we get

Zn ¼
ffiffiffi
n

p

mn

Xn
i¼1

 
1 F�1

X ðaÞ�Xi �F�1
X ðbÞf g Xi � lXða; bÞð Þ2

þ ð1fXi �F�1
X ðaÞg � aÞKðaÞ þ ðb� 1fXi �F�1

X ðbÞgÞKðbÞ
!

þ rn:

Applying Central Limit Theorem combined with Slutsky’s Theorem to the sum and

noting that for 1� i� n we get

1

b� a
E 1 F�1

X ðaÞ�Xi �F�1
X ðbÞf g Xi � lXða; bÞð Þ2

h i

¼ r2
Xða; bÞ; E 1fXi �F�1

X ðaÞg � a
h i

¼ 0; and E b� 1fXi �F�1
X ðbÞg

h i
¼ 0;

we conclude the proof. h
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Note that the constant s[ 0 in Proposition 4 might be easily approximated using

Monte Carlo simulations. Moreover, in some specific cases one might provide an

explicit formula for s; see Appendix A in Jelito and Pitera (2020) where closed-form

formula for s in the case of the Gaussian distribution is provided. Also, it should be

noted that using Proposition 4 and (multivariate) Central Limit Theorem we

immediately get that any linear combination of QCV sample estimators is also

asymptotically normal, i.e. we get

ffiffiffi
n

p Xk
i¼1

dir̂
2
Xðai; biÞ �

Xk
i¼1

dir
2
Xðai; biÞ

 !
�!d Nð0; csÞ n ! 1; ð17Þ

where 0\ai\bi\0 and di 2 R for (i ¼ 1; 2. . .; k), and s[ 0 is some fixed con-

stant. Dividing (17) by another (non-degenerate) linear combination of quantile

conditional variances we get a statistic that is a pivotal quantity with respect to both

location parameter l 2 R and scale parameter c[ 0. This could be easily shown

using e.g. Slutsky’s Theorem; see Ferguson (1996). For an outline of the proof of

those facts, we refer to the proof of Theorem 6.1 in Jelito and Pitera (2020).

5 Statistical test for symmetric a-stable distribution based
on the quantile conditional variances statistics

Based on (17), we know that one can use the linear combination of sample QCVs

for efficient goodness-of-fit parameter testing. Arguably, the stability index

parameter a 2 ð0; 2� is the most important a-stable distribution shape parameter

as it controls tail-heaviness. In fact, most a-stable distribution goodness-of-fit test

focus on this parameter in the symmetric case; location and scale oriented testing is

usually performed using more standard methods. We refer to Matsui and Takemura

(2008) and Wilcox (2017) for details.

In this section we present a test statistic family that might be used to test stability

index a parameter specification for SaSða; c; lÞ distributions. We refer to Sect. 6 for

a discussion about skewness parameter inclusion in the proposed goodness-of-fit

method and to Sect. 7 for a more generic QCV overall distribution fit framework

that takes into account stability index, skewness, and scale parameters.

Recalling that the stability index a could be linked to tail behavior, we decided to

follow the approach similar to the one introduced in Jelito and Pitera (2020). More

explicitly, we decided to compare tail QCVs with central region QCV to assess how

heavy are the tails.

The generic family of test statistics we consider that could be used for goodness-

of-fit testing for any distribution is given by

N :¼
ffiffiffi
n

p d1r̂
2
xða1; a2Þ þ d2r̂

2
xða2; a3Þ þ d3r̂

2
xða3; a4Þ

r̂2
xða1; a4Þ

; ð18Þ

where x ¼ ðx1; . . .; xnÞ is a sample from the same distribution as the random variable

X, d1; d2; d3 2 R are fixed weight parameters, 0\a1\a2\a3\a4\1 correspond to

quantile split parameters, and r̂2
xða; bÞ denote QCV empirical estimator for sample x
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on quantile interval (a, b). Note that r̂xða1; a4Þ is used for normalisation purposes: it

makes N invariant to affine transformations of X. In other words, the choice of

location parameter l and scale parameter c do not impact values of N making it a

pivotal quantity. Next, we find specific choices of parameters that could be used for

generic a-stable goodness-of-fit testing.

5.1 Specific choice of parameters of test statistic for symmetric a-
stable distribution

Taking into account that X is symmetric, we decided to set a4 :¼ 1 � a1,

a3 :¼ 1 � a2, and d1 :¼ d3, which reduced the number of input specification

parameters to four, i.e. a1, a2, d1, and d2. For given a1 and a2, we fix values of d1

and d2 in such a way, that the resulting test statistic N is normalised when a ¼ 2. To

be more precise, we assume that d1 [ 0 and find values of d1 and d2 in such a way

that N is (asymptotically) close to standard normal (for a ¼ 2Þ; please recall that

theoretical QCV values could be obtained from Proposition 3. Consequently, we

can focus on the choice of the quantile parameters ða1; a2Þ.
For transparency, we decided to take three ða1; a2Þ quantile splits. Namely, we

take values ð5%; 25%Þ, ð0:5%; 25%Þ and ð0:5%; 4%Þ; they correspond to quantile

ratio data splits

5=20=50=20=5; 0:5=24:5=50=24:5=0:5; and 0:5=3:5=92=3:5=0:5:

The first parameter set, ð5%; 25%Þ, is a generic choice which should be good for

general testing for all sample sizes. We compare 50% central region QCV with the

trimmed tail QCVs; the top and bottom 5% trimming should ensure finiteness of tail

QCVs while not inducing severe (reduced conditional sample size) volatility. The

second choice, ð0:5%; 25%Þ, might be seen as a modification of the first one for

larger samples. We reduced top and bottom trimming from 5% to 0.5% while

maintaining the central 50% area. This should increase sensitivity of tail QCVs

allowing more accurate a testing when the underlying sample size is large. The third

statistic, ð0:5%; 4%Þ, is designed to detect minor a changes for large sample sizes. It

is focused on extreme tail QCVs and should be good for very small a change tests;

note this is aligned with results observed in the right plot in Fig. 6. To sum up, we

introduce three different versions of test statistic (18) that are given by

N1 :¼
ffiffiffi
n

p
� 1:00 � r̂2

xð5%; 25%Þ � 1:01 � r̂2
xð25%; 75%Þ þ 1:00 � r̂2

xð75%; 95%Þ
r̂2
xð5%; 95%Þ

;

ð19Þ

N2 :¼
ffiffiffi
n

p
� 0:60 � r̂2

xð0:5%; 25%Þ � 1:61 � r̂2
xð25%; 75%Þ þ 0:60 � r̂2

xð75%; 99:5%Þ
r̂2
xð0:5%; 99:5%Þ

;

ð20Þ

123

Goodness-of-fit test for a-stable... 399



N3 :¼
ffiffiffi
n

p
� 1:15 � r̂2

xð0:5%; 4%Þ � 0:17 � r̂2
xð4%; 96%Þ þ 1:15 � r̂2

xð96%; 99:5%Þ
r̂2
xð0:5%; 99:5%Þ

:

ð21Þ

For completeness, in Fig. 2 we present the plots of the limit values of Ni, i ¼ 1; 2; 3

depending on a 2 ð1; 2� without the factor
ffiffiffi
n

p
. Note that in the limit all test statistic

are decreasing functions of a, so that their asymptotic power is equal to one (within

the class of symmetric a-stable distributions).

Test statistics N1, N2, and N3 establish a generic statistical framework that could

be used for efficient goodness-of-fit testing for (symmetric) a-stable distributions for

all possible choices of parameters and sample sizes. Essentially, the specific choice

of an appropriate statistic depends on the underlying goal and sample size. If one is

interested in generic a-stable goodness-of-fit test for moderate sample size, then N1

is the best choice. If the sample size is larger and we want to test a parameter values

which are relatively close to 2, e.g. when 1:5\a\1:9 then one should use N2.

Finally, if we are interested in efficient discrimination of parameters for values of a
very close to 2, e.g. when 1:9\a then we recommend using N3. See Sects. 5.2.2

and 5.2.3 when a comprehensive comparison study with focus set on test power is

made. Nevertheless, it should be noted that our choice of three conditioning sets and

related specifications are just exemplary choices – QCV based tests allow very

flexible statistic construction which could be tailored to particular testing needs.

Still, given a specific sample at hand, one should avoid specific tuning of parameters

ai and di as it would effectively reduce the statistical power of the test, see Miller

(2012) and references therein.

5.2 Power simulation study

In this section we check the effectiveness of the proposed testing procedure by

Monte Carlo simulations. More precisely, we calculate the power of the introduced

goodness-of-fit tests based on N1;N2 and N3 test statistics defined in (19), (20) and

(21), respectively. We compare the powers of the tests based on the QCV statistics

with benchmark tests for a-stable distribution that are based on the empirical and

theoretical distribution distance.

Fig. 2 Illustration of the values
of N statistic for SaSða; 1; 0Þ
distribution for three exemplary
parameter specifications, see
(19)-(21), with respect to the a
parameter. For transparency, we
restrict parameter set to
a 2 ð1; 2�; similar behaviour is
observed on the full parameter
range
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5.2.1 Comparison to other tests

In order to demonstrate how effective is the test based on the QCV statistics, we

consider the power of the tests based on N1, N2 and N3 statistics defined in (19)-(21).

In this subsection, for simplicity, we consider only the two-sided (TS) tests; in the

further analysis we show results for one-sided tests as well. We perform the analysis

under H0 hypothesis stating that the sample comes from the symmetric a-

stable distribution SaSða0; 1; 0Þ, where a0 :¼ 1:5; note that scale and location

parameters are not important here as test statistics N1, N2 and N3 are invariant to

affine transformations. The values of N1, N2, and N3 statistics under the H0

hypothesis are calculated based on the 100 000 strong Monte Carlo simulation for

various sample size n 2 f20; 50; 100; 500; 1000; 2000g. We check the powers of the

tests for H1 hypotheses stating that random sample comes from distribution

SaSða1; 1; 0Þ, where a1 2 f1:1; 1:2; . . .; 2:0g. It should be mentioned that in the real

application the a-stable distribution with a� 1 is rarely applied, thus we decided

present the results for a[ 1. For each case, the power is calculated using the 10 000

simulations for the sample corresponding to the H1 hypothesis.

For comparison, powers of N1, N2, and N3 tests are confronted with powers of the

benchmark tests for a-stable distribution. We decided to consider the standard

goodness-of-fit tests that are based on measuring the distance between the empirical

and theoretical distributions. Namely, we consider Kolmogorov-Smirnov (KS)

cumulative probability test, the Kuiper test, the Watson test, the Cramer-von Mises

(CvM) test, and the Anderson-Darling (AD) test, see Chakravarti et al. (1967);

Srinivasan (1971); Watson (1961); Anderson (1962); Anderson and Darling (1954).

These statistical tests could be considered as benchmark choices that are commonly

used for the a-stable distribution testing and are considered to be very efficient in

the real data analysis; see Cizek et al. (2005) for details. For consistency, all

benchmark test powers are calculated using similar framework with the same

number of strong Monte Carlo simulations for H0 and H1 hypotheses, for

n ¼ 20; 50; 100; 500; 1000; 2000. In particular, please note that this gives us control

over Type I errors that are encoded into the underlying significance levels.

In Fig. 3, we present test powers for the significance level 5%. Results for

significance level 1% are similar and deferred to the Appendix; see Fig. 13.

Surprisingly, as one can see, the tests based on the QCV statistics outperform all

other considered tests, even for small sample sizes (n ¼ 20 and n ¼ 50).

It should be highlighted that the N1-based test seems to be the most effective for

a1\1:5, i.e. when the tested a corresponding to H1 hypothesis is smaller than the a
corresponding to the H0 hypothesis, while the N2 test is the best one in the case

a1 [ 1:5, i.e. when a from H1 hypothesis is higher than a for H0 hypothesis. This

might be potentially traced back to the fact that the higher the a the more

stable (slimmer) the tails. In consequence, the standard error of the QCV estimator

of r̂2
Xð0:5%; 25%Þ in (20) is decreasing. This improves the performance of N2 in

reference to N1.

The N3 test is ineffective for small sample size (n ¼ 20) because of the extreme

quantile specification. Due to the fact that b20 � 0:04c\1 we have only one
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Fig. 3 Power of the tests based on the QCV statistics (N1;N2;N3) with comparison to other benchmark
goodness-of-fit tests for different sample lengths. For the comparison we took into consideration the
following tests: Kolmogorov-Smirnov two-samples test (KS), Kuiper test (Kuiper), Watson test (Watson),
Cramer-von Mises test (CvM) and Anderson-Darling test (AD). The H0 hypothesis is SaSð1:5; 1; 0Þ.
Powers are calculated on the basis of 10 000 Monte Carlo simulations for samples corresponding to H1

hypothesis, i.e. for SaSða; 1; 0Þ. The significance level is equal to 5%. For all sample sizes, the QCV based
tests outperform benchmark frameworks; note that in the top left plot (n ¼ 20) the values for N3 are not
available due to low quantile specification for this test statistic. For transparency, we added the legend
only to the top left plot. See Figure 13 for results for significance level 1%

Table 1 Comparison of the powers of the tests for SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against

SaSða1; 1; 0Þ distribution for (H1 hypothesis)

a1 N1 test N2 test N3 test KS test Kuiper test Watson test CvM test AD test

1.1 0.9997 0.8697 0.3973 0.1532 0.7808 0.0994 0.5948 0.9333

1.2 0.9734 0.5992 0.2349 0.0442 0.3489 0.0464 0.2256 0.5638

1.3 0.7163 0.2852 0.1216 0.0332 0.1090 0.0377 0.0806 0.2020

1.4 0.2440 0.1063 0.0702 0.0416 0.0539 0.0432 0.0507 0.0691

1.5 0.0479 0.0558 0.0557 0.0478 0.0513 0.0506 0.0526 0.0481

1.6 0.1618 0.2188 0.1143 0.0420 0.0518 0.0397 0.0460 0.0568

1.7 0.4465 0.6560 0.3292 0.0325 0.0698 0.0297 0.0510 0.0797

1.8 0.7344 0.9507 0.7049 0.0271 0.1334 0.0325 0.0838 0.1597

1.9 0.8848 0.9981 0.9674 0.0265 0.2846 0.0332 0.1532 0.3322

2.0 0.9580 1.0000 1.0000 0.0268 0.6033 0.0449 0.2996 0.6442

The sample length is n ¼ 500The following tests are taken under consideration: the two-sided N1, N2 and

N3 tests proposed in this paper, Kolmogorov-Smirnov (KS) two-samples test, Kuiper test, Watson test,

Cramer-von Mises (CvM) test and Anderson-Darling (AD) test. The results are presented for 5% sig-

nificance level; best results are marked in bold. Results for other sample sizes

(n ¼ 20; 50; 100; 1000; 2000) are provided in Appendix tables 4, 5, 6,7, 8
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observation in the tail conditioning sets which is not sufficient to estimate tail QCV.

In general, N3 test is more effective when a1 [ 1:5.

For large sample sizes, all considered tests seem to be effective. However, the

tests based on the QCV statistics are more restrictive. In Table 1, we demonstrate

the details of the results presented in Fig. 3 for exemplary sample size n ¼ 500. One

can see the difference between the powers of the tests proposed in this paper (N1 test

and N2 test) are clearly higher that the powers of other considered tests. For

completeness, test powers for other sample sizes are collected in tables 4, 5, 6,7, 8 in

Appendix B.

To provide further insight in reference to Type I and Type II errors as well as

sample size impact analysis we pick one representative H1 alternative hypothesis for

a1 ¼ 1:7 and study corresponding p-value distributions. Also, we study test powers

for more granular sample size specification. The results for other alternative

hypotheses are essentially the same and are available from the authors upon request.

In Fig. 4 we present comparison of p-value distributions of the tests for

SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against SaSð1:7; 1; 0Þ distribution (H1

hypothesis) for various sample sizes n. In particular, one can observe stochastic

dominance of N2 test p-values with respect to all benchmark tests. Overall, the

results prove that within a-stable framework our test should give best control over

both Type I and Type II errors; please recall that all p-values are based on sample-

size tailored Monte Carlo simulation which links them to Type I errors.

Next, in Fig. 5 we present test power as a function of sample size n 2 ½10; 2000�
for a0 ¼ 1:5 and a1 ¼ 1:7. For completeness, we include the results for significance

Fig. 4 Comparison of p-value cumulative distributions of the tests for SaSð1:5; 1; 0Þ distribution (H0

hypothesis) against SaSð1:7; 1; 0Þ distribution (H1 hypothesis) at t 2 ½0; 0:15� for various sample sizes n.
The following tests are taken under consideration: the two-sided N1, N2 and N3 tests proposed in this
paper, Kolmogorov-Smirnov (KS) two-samples test, Kuiper test, Watson test, Cramer-von Mises (CvM)
test and Anderson-Darling (AD) test. For all sample sizes, N2 test p-values stochastically dominate all
benchmark test p-values; note that in the top left plot (n ¼ 20) the p-values for N3 are not available due to
low quantile specification for this test statistic. For transparency, we added the legend only to the top left
plot
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level 5% as well as 1%. From the results one can see that test power comparison

presented in Fig. 3 for representative set of sample sizes

(n ¼ 20; 50; 100; 500; 1000; 2000) consistently propagates to other sample sizes

and the payoff between test power and sample size is optimal for QCV based tests.

In particular, N2 test statistic outperforms all other benchmark tests.

To sum up, our analysis shows that QCV-based test statistics outperform

benchmark frameworks. The supreme performance of the introduced statistics N1,

N2, and N3 in reference to other benchmark framework could be traced back to two

main reasons. First, most benchmark methods are based on the generic whole

distribution fit rather than local fit in the non-central part of the distribution –

introduction of QCV based statistics allowed more efficient local densitty

discrimination. Second, our test statistic are tailored to measure fat-tail behaviour

which is very efficient when assessing the value of a. In fact, the value of N1, N2, or

N3 could be used as a measure of tail fatness; see Jelito and Pitera (2020), where

tail-fatness analysis in reference to similar test statistic in the Gaussian context is

performed.

For completeness, in Appendix Fig. 14, we present a simplified R source code

that could be used to compute N1 statistic and estimate (two-sided) test power for

true a0 ¼ 1:5 and alternative a1 ¼ 1:7 for sample size n ¼ 50 at 5% significance

level. One can easily modify the R code to get results for other QCV statistics and

parameters sets.

5.2.2 Generic test power check

In Sect. 5.2.1, we have shown that N1 statistic given in (19) has a decent test power

and is outperforming all competing benchmark frameworks for multiple sample

sizes and one exemplary choice of (true) a ¼ 1:5. In this section, we fix sample size

to n ¼ 500 and perform a more comprehensive power study focusing on all three

N1, N2, and N3 statistics, given in (19)–(21). Using Monte Carlo method, for each

Fig. 5 Comparison of test powers for SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against SaSð1:7; 1; 0Þ
distribution (H1 hypothesis) for various sample sizes n. The following tests are taken under consideration:
the two-sided N1, N2 and N3 tests proposed in this paper, Kolmogorov-Smirnov (KS) two-samples test,
Kuiper test, Watson test, Cramer-von Mises (CvM) test and Anderson-Darling (AD) test. Results for
confidence levels 1 and 5% are presented. For all sample sizes, the QCV based tests outperform
benchmark frameworks; note that for small sample sizes (n\50) the values for N3 are not available due
to low quantile specification for this test statistic. For transparency, we added the legend only to left plot

123

404 M. Pitera et al.



a 2 ð0; 2� on the 0.025 span-grid, we simulated m ¼ 10 000 samples; each

simulation is a random sample from SaSða; 1; 0Þ distribution of size n. Next, we

calculate m values of N1, N2, and N3, for each a 2 ð0; 2�, and use this to get Monte

Carlo densities of all test statistics. Using the obtained densities, we calculate two-

sided test powers. Note that due to a simplistic nature of conditional variance

estimators, this simulation is very easy to implement and fast to compute.3 In this

part, we decided to consider the whole range of the a parameter in order to see the

effectiveness of the proposoed testing approach. Using the results, for a chosen 5%
significance level, we were able to approximate test power of N1, N2, and N3 for all

null and alternative a shape (simple) hypothesis. The results (for two-sided tests) are

presented in Fig. 6.

From Fig. 6 we see that apart from a close to 2, the power of test statistic N1

seems to be the best among all considered statistics. On average, for sample size

n ¼ 500, if the difference between the true a0 and alternative a1 is higher than 0.2

then N1 test power is very close to 1 (for 5% significance level). Good performance

of N1 could be traced back to heaviness of the tails. The smaller the a, the harder it

is to estimate the extreme 0:5% quantile which is needed for N2 and N3. This

impacts the standard error of the conditional variance estimator, reducing it’s test

power. Also, note that estimation of small 3:5% probability set in N3 makes this

statistic test power smaller than N2. On the other hand, for a close to 2, the situation

is entirely different. First, note that N2 outperforms N1 for a� 1:5; see also Fig. 3.

While N2 seems to be an adequate overall choice when the true a is in the range

[1.5, 2], the closer to 2 we are, the better is the performance of N3. In fact, for a very

close to 2 it looks like N3 is outperforming N2. We decided to investigate this in

details in Sect. 5.2.3.

Also, note that from Figs. 6 and 2 one can deduce that test statistics N1, N2, and

N3 could be used for more generic testing. Namely, since the true values of test

Fig. 6 N1, N2, and N3 test power level plot (two-sided); n ¼ 500; a 2 ð0; 2�. Apart from a close to 2,
statistic N1 seems like the best choice. This is due to the fact that 0:005% quantile trimming introduced in
N2 and N3 is to extreme. Nevertheless, for a ¼ 2 the tails became more stable, which results in better
performance of N2 and N3. Note that relatively small sample size impacts performance of N3 due to non-
robust estimation of conditional variance on small 3.5% probability set

3 In fact, all the computations took around 15 minutes on 13’’ MacBook Air (2017) with 8 GB RAM and

1.8 GHz Dual-Core Intel i5 processor.
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statistic are monotone wrt. a, given null hypothesis H0 of the form a ¼ a0, we can

consider an alternative hypothesis H1 of the form a\a0 rather that a ¼ a1.

5.2.3 Generic test power check for symmetric a-stable distribution with aalpha close
to 2

In this section we decided to repeat the exercise from Sect. 5.2.2 assuming that

a 2 ½1:8; 2:0� and n ¼ 2000. In other words, we want to check the performance of

our testing framework when one wants to investigate near-Gaussian tails for

relatively large sample. In fact, a similar case will be considered in the real data

analysis presented Sect. 8. To get better accuracy, we increased Monte Carlo strong

sample size to m ¼ 50 000 and grid density to 0.01. To sum up, for each

a 2 f1:80; 1:81; . . .; 1:99; 2:00g, we simulated strong Monte Carlo sample of size

m ¼ 50 000, where each simulation is a random sample from SaSða; 1; 0Þ
distribution of size n. Next, as in Section 5.2.2, using the obtained test statistic

densities we calculate two-sided test powers for N1, N2, and N3. The results of the

simulations for significance level 5% are presented in Fig. 7.

First, we note that in the considered region of a parameter, the performance of N1

test is not satisfactory. On the other hand, the performance of N2 and N3 tests is

comparable – the higher the a the better is the performance of N3 test in comparison

to N2 test. This is consistent with the results presented in Sect. 5.2.2. Note that

increased sample size ðn ¼ 2000Þ resulted in narrowed test power bounds. Now, if

the difference between the true a0 and alternative a1 is higher than approximately

0.1 then N3 test power is very close to 1 (for 5% significance level); for n ¼ 500 this

was equal to 0.2. To illustrate this, let us present a table with one-sided and two-

sided test powers for N2 and N3 tests for (true) parameter a ¼ 1:90. For

completeness, apart from significance level 5%, we also present test powers for

significance level 1%; see Table 2.

Fig. 7 N1, N2, and N3 tests power level plots (two-sided); n ¼ 2000; a 2 ½1:8; 2�. Overall, the results for
N2 and N3 tests are comparable, but the closer to a ¼ 2 we get, the better the performance of N3 tests.
Note that the outcomes for N1 test are not satisfactory, i.e. while N1 is best to test the overall a-stable fit, it
might not discriminate near-Gaussian distributions as well as N2 or N3
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6 Statistical tests for generic a-stable distribution based on quantile
conditional variance estimators

While in this paper our focus is set on goodness-of-fit testing of the symmetric a-

stable distribution, one could easily expand the framework presented in Sect. 5 to

allow more generic tests. For completeness, in this section we provide a short

comment on possible extensions of our testing framework that includes analysis of

the skewness parameter b 2 ½�1; 1�. Please recall that scale c[ 0 and location

l 2 R goodness-of-fit adequacy testing is typically performed using more standard

methods and most a-stable goodness-of-fit tests are invariant to affine transforma-

tions, see e.g. Matsui and Takemura (2008).

First, from Fig. 1 we see that QCV could be used to efficiently measure a-

stable distribution skewness. Indeed, the central exhibit of Fig. 1 shows the dynamics

of (theoretical) QCV strongly depends on the underlying choice of skewness

parameter b so one should be able to develop symmetry-oriented statistical test.

Second, we note that test statistics N1, N2, and N3 introduced in Sect. 5.1 are

tailored to symmetrically measure tail-heaviness impact that is encoded in

parameter a and one would expect them to be generally invariant to the choice of

the skewness parameter b. This could be traced back to specific constraints imposed

on quantile split parameters and weights parameters in (18). Namely, we assumed

that a4 ¼ 1 � a1, a3 ¼ 1 � a2, d1 ¼ d3, and d1d2\0 which resulted in test statistic

that (symmetrically) measures the impact of tail-set QCVs on central-set QCV. This

observation is illustrated in the left exhibit of Fig. 8, where two-sided tests power

level plot for N1 test statistic for exemplary set of null hypothesis parameters

a0 ¼ 1:5 and b0 ¼ 0 is confronted with various alternative hypotheses for a1 2
½1:0; 2:0� and b1 2 ½�1; 1�. As expected, the power of the test is almost invariant to

the choice of the skewness parameter.

For brevity, we now focus on test statisticN1 and show how it can be modified to allow

better skewness impact measurement. We follow the setting similar to the one introduced

in Sect. 5.2.1. Namely, we fix sample size n ¼ 500, confidence level 5%, and assess test

power of modified statistics in a same manner that was done in Fig. 6 but taking into

account the impact of b. Two possible natural modifications of N1 are given by

Fig. 8 N1, Na
1 , and Nb

1 tests power level plots (two-sided) for a0 ¼ 1:5 and b0 ¼ 0; n ¼ 500; a1 2 ½1; 2�;
b1 2 ½�1; 1�. Overall, we note that test statistic N1 is almost invariant to the choice of b, while test

statistics Na
1 and Nb

1 could be used for skewness identification
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Na
1 :¼

ffiffiffi
n

p
� r̂

2
xð5%; 25%Þ � r̂2

xð75%; 95%Þ
r̂2
xð5%; 95%Þ

and Nb
1 :¼

ffiffiffi
n

p
� 2:00 � r̂2

xð5%; 25%Þ � 1:01 � r̂2
xð25%; 75%Þ

r̂2
xð5%; 95%Þ

:

In both cases, we simply change the input weights d1; d2; d3 2 R; see (18). In the

first case, weights change results in a statistic Na
1 that measures the QCV difference

between left and right tail. Theoretically, the more symmetric the distribution, the

closer to zero the values of Na
1 . In the second case, we modified N1 in such a way

that only the relation between left tail and central set QCVs is taken into account.

Statistic Nb
1 should be able to detect changes in both a and b among some fixed

QCV induced level-set. The test power results are presented in Fig. 8.

From the plot one could deduce that the distribution of Na
1 and Nb

1 does depend on

parameter b and those statistic could be used for skewness indentification. In

particular, note that Na
1 seems to correctly capture the actual skewness effect that is

partly encoded in b. Note that the bigger the value of a, the smaller the impact of b
on the actual distribution skewness which results in widening power level sets. In

particular, for a ¼ 2, the distribution reduces to (symmetric) Gaussian and the

choice of b does not matter.

Of course, one could easily improve the obtained results by considering different

test statistics that are focused on symmetry measurement. For instance, one could

remove the central QCV in (18) by setting a2 ¼ a3 ¼ 0:5 and d2 ¼ 0, or consider

maximum of Nb
1 and it analogue that takes into account right tail. Nevertheless, we

want to emphasize that the main focus on this article is on the symmetric case and

tail-heaviness assessment framework. The detailed derivation of efficient b-

sensitive statistic is out of scope of this article. That saying, we refer to Sect. 7

where the overall distribution fit using QCV framework is studied. In particular, it is

shown how possible b parameter misspecification could impact the structure of

sample QCVs; see e.g. Fig. 9 for details.

7 General a-stable distribution goodness-of-fit visual test using
quantile conditional variance estimators

In this section we introduce a generic (visual) fit test based on quantile conditional

variance that uses the results of Theorem 2. It should be noted that the procedure

introduced in this section could also be embedded into more formal statistical

language, e.g. by introducing a multiple (composite) testing framework. This

section complements the results from Sects. 5 and 6.

Let us assume we have an i.i.d. sample from the same distribution as X, say

x ¼ ðx1; . . .; xnÞ, n 2 N, and we want to check whether this sample comes from a

specific Sða; c; b; lÞ distribution. Furthermore, let us assume that we are not

interested in the location parameter fit; note there are standard methods to assess this

based e.g. on trimmed mean analysis, see Wilcox (2017); Ferguson (1978, 2001).
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Due to Theorem 2 combined with Proposition 4 we know that X� Sða; c;b; ~lÞ, for

some ~l 2 R, if and only if for any 0\a\b\1 we get

r̂2
Xða; bÞ�!

P
r2
Zða; bÞ; n ! 1; ð22Þ

where Z � Sða; c; b; 0Þ. Thus, to assess the adequacy of the distribution fit, we can

check Property (22) for representative set of quantile intervals ðai; biÞ, where i 2
f1; 2; . . .; Ig and I 2 N.

The rational choice is to use non-overlapping quantile intervals with (a.s)

interconnected union, i.e set bi ¼ aiþ1, for i 2 f1; 2; . . .; I � 1g. For simplicity, we

might also assume that all intervals are of equal length, i.e. there exist �[ 0 such

that bi � ai ¼ �, for i 2 f1; 2; . . .; Ig. Also, we can normalise (22) by considering a

set of convergence conditions ½r̂2
Xðai; biÞ = r2

Zðai; biÞ � 1� ! 0, n ! 1. To control

error of the fit, given a set of pre-defined parameters ða; c; bÞ and n 2 N, one could

consider a series of statistics

R̂i ¼
ffiffiffi
n

p r̂2
Xðai; biÞ

r2
Zðai; biÞ

� 1

� �
; i ¼ 1; 2. . .; I; ð23Þ

where Z� Sða; c; b; 0Þ; note that the (null-hypothesis) confidence intervals, for any

fixed n 2 N, could be easily computed numerically using e.g. Monte Carlo simu-

lations. If we are not interested in the scale c[ 0 parameter fit, we can further

normalise R̂i by multiplying inner variance ratio e.g. by r2
Zða1; bIÞ = r̂2

Xða1; bIÞ; we

will refer to such statistic as normalised R̂i. Of course, the choice of the number of

intervals I 2 N and exterior points 0\a1 and bI\1 should depend on the sample

size so that the resulting QCV estimators are relatively dense and robust.

To illustrate how the sanity check based on test statistics (23) might look like, let

us present a simple example.

Fig. 9 The plot illustrates how one can use sample conditional variance ratios R̂i given in (23) to check

the overall parameter fit for a-stable distribution. In each plot, R̂i for exemplary sample from
X� Sð1:85; 1; 0; 0Þ of size n ¼ 2000 is confronted with the ratios corresponding to other
a�stable distributions. In the left plot, we tested the fit for a ¼ 2, which resulted in tail conditional
variance misalignment. In the middle plot, we introduced skewness by setting b ¼ 0:7, which made the

outcome non-symmetric. In the right plot, we set c ¼ 0:9 which results in up-lifted values of R̂i. The

dashed lines correspond to extreme (point-wise) quantiles of R̂i, i ¼ 1; 2; . . .; 22, under the correct model
specification; they were obtained using 10 000 Monte Carlo run
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Example 5 Let us consider a 4.5% quantile grid with 0.005% cut-offs, i.e. we set

I ¼ 22 with quantile intervals

ai :¼ 0:005 þ 0:045 � ði� 1Þ and bi :¼ 0:005 þ 0:045 � i; for i ¼ 1; 2; . . .I;

note that bI ¼ 1 � a1 ¼ 0:995. Assume that we have an i.i.d. sample x ¼
ðx1; . . .; x2000Þ from the same distribution as the random variable X, where

X� Sð1:85; 1; 0; 0Þ:

For n ¼ 2000, each conditional variance r̂2
Xðai; biÞ is estimated using b0:045nc ¼ 90

observations from x; 10 smallest and 10 biggest values of x are excluded due to

trimming. Let us check whether the sample x comes from three other a-stable dis-

tributions given via random variables

X1 � Sð2; 1; 0; 0Þ; X2 � Sð1:85; 1; 0:7; 0Þ; X3 � Sð1:85; 0:9; 0; 0Þ:

To do so, we construct test statistics R̂
1

i , R̂
2

i , and R̂
3

i , for i ¼ 1; 2; . . .; 22, which

correspond to the distributions of X1;X2, and X3, respectively. In the first case, the

distribution has fatter tails, which should make R̂
1

i positive for tail conditional

variances. In the second case, the non-symmetric nature of the distribution should

result in non-symmetric behaviour of R̂
2

i . In the latter case, the statistics R̂
3

i should

be positive (and not centred around 0) due to smaller scale parameter value.

To verify this, we simulate 10 000 strong Monte Carlo samples from the distri-

butions corresponding to X1, X2 and X3, where each simulation is of size n ¼ 2000.

Next, we use simulated values to get MC densities of R̂
1

i , R̂
2

i , and R̂
3

i , for

i ¼ 1; 2; . . .; 22, under the correct model specification. Finally, we compare value of

R̂i, coming from X sample, with 1% and 5% confidence bounds obtained using the

Monte Carlo analysis. The results of the exercise are illustrated in Fig. 9.

8 Statistics of plasma turbulence in fusion device

In this section we illustrate how to use statistical framework based on QCV statistics

for goodness-of-fit testing of real data. We take datasets examined in Burnecki et al.

(2015), see also Burnecki et al. (2012). Specifically, we investigate the data

obtained in experiments on the controlled thermonuclear fusion device ‘‘Kharkov

Institute of Physics and Technology’’, Kharkov, Ukraine. Stellarators and similar

devices, like e.g., tokamaks and compact toroids are used to study the properties of

magnetically confined thermonuclear plasmas. They serve as smaller prototypes of

the International Thermonuclear Experimental Reactor (ITER), the most expensive

scientific endeavor in history aimed to demonstrate the scientific and technological

feasibility of fusion energy for peaceful use.4

4 See http://www.iter.org for details.
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It is a well-known fact that the magnetically confined plasma produced in such

devices is always in a highly non-equilibrium state. This phenomenon called plasma

turbulence is characterized by an anomalously high levels of fluctuations of the

electric field and particle density and plays a decisive role in the generation of

anomalous particle and heat fluxes from plasma confinement region, see Krashenin-

nikov et al. (2020). This circumstance constitute one of the main obstacles on the way

of the magnetic confinement implementation, and this is the reason why the statistical

properties of plasma turbulence are intensively investigated. In particular, during such

studies a remarkable phenomenon called L-H transition have been observed in many

fusion devices. Namely, a sudden transition from the low confinement mode (L mode)

to a high confinement mode (H mode) is accompanied by suppression of turbulence

and a rapid drop of turbulent transport at the edge of thermonuclear device, see

Connor and Wilson (2000) and Wagner (2007). The implementation of the H-mode

regime, which is chosen as the operating mode for the future ITER device requires

detailed investigation of the physics of such transition. We here focus on statistical

properties of turbulent plasma fluctuations before and after L-H transition

phenomenon in stellarator-torsatron URAGAN-3M.

We examine four datasets which are denoted as Dataset 1, Dataset 2, Dataset 3, and

Dataset 4. They are obtained by the use of high resolution measurements of the

electric potential (floating potential) fluctuations with the help of movable Langmuir

probe arrays. The detailed description of the experimental set-up and measurement

procedure can be found in Beletskii et al. (2009). In a nutshell, Dataset 1 and Dataset

2 describe the floating potential fluctuations (in volts) in turbulent plasma, registered

by Langmuir probe for torus radial position r = 9.5 cm. While Dataset 1 is related to

the fluctuations before the transition point, Dataset 2 describe the fluctuation after the

transition. Dataset 3 and Dataset 4 describe the potential fluctuations for torus radial

position r = 9.6 cm. As before, Datasets 3 is related to prior-transition fluctuations

while Dataset 4 is linked to posterior-transition fluctuations. The considered datasets

contain 2000 normalized observations each and are presented in Fig. 10.

Before we present our analysis, let us comment on the results from Burnecki

et al. (2015). The authors introduced a visual test that pointed out to differences

between prior transition point and posterior transition point data. Namely, while the

(two-sample) Kolmogorov-Smirnov test did not reject the hypothesis stating that the

distributions of Datasets 1 and Dataset 2, or Dataset 3 and Dataset 4, respectively, is

the same, the introduced visual framework indicated slight regime change between

the considered datasets. The authors demonstrated that the distribution correspond-

ing to Dataset 1 is the a-stable with a\2, Dataset 2 and Dataset 3 can be modeled

by the Gaussian distribution, while Dataset 4 belongs to the domain of attraction of

the Gaussian law however it is non-Gaussian.

The results obtained with QCV framework in general confirm the analysis from

Burnecki et al. (2015). However, the results obtain here are more rigorous and are

statistically significant since they are not based just on the visual inspection of the

considered statistic. Since the sample size is relatively big (n ¼ 2000) and we are

interested in a values close to 2 we took into consideration only test statistics N2 and

N3, i.e. we excluded N1 from the analysis; see Sect. 5.2 for discussion. Moreover,

rather than performing a single statistical test oriented at verification of the non-
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normality hypothesis (e.g. by setting H1 to a\1:98), we decided to present testing

results for a wide range of parameters for both statistics. This is done to provide a

more complete picture and for better illustration.

First, we calculated the values of N2 and N3 for all empirical datasets and

confronted it with various theoretical N2 and N3 quantiles obtained for a-

stable distributions. The 1% and 5% quantiles were constructed based on 50 000

Monte Carlo strong simulation for samples (of length 2000) coming from

SaSða; 1; 0Þ, where a 2 ½1:8; 2:0� values are restricted to the 0.01 dense grid. The

results are illustrated in Fig. 11.

From left panel of Fig. 11 we see that N2 statistic rejects Gaussian distribution

hypothesis for Dataset 1 at 1% significance level. Also, since N2 test statistics for

Dataset 2, Dataset 3, and Dataset 4 fall into the constructed confidence intervals for

a ¼ 2, one cannot reject normality for those samples. On the other hand, for N3, the

hypothesis of the Gaussian distribution for Dataset 1 and Dataset 4 is rejected on 1%
significance level (see the right panel of Fig. 11). For Dataset 1, the values of N2 and

N3 statistics fall into the constructed confidence intervals for a 2 ½1:85; 1:93� which

suggests that SaSða; 1; 0Þ distribution on this parameter range might be a

Fig. 10 Plasma data for torus radial position r ¼ 9:5 cm (Dataset 1 and Dataset 2) and r ¼ 9:6 cm
(Dataset 3 and Dataset 4). The Dataset 1 and Dataset 3 describe the fluctuations before the L-H transition
point. The Dataset 2 and Dataset 4 represent the fluctuation of the plasma after the L-H transition point

Fig. 11 The plots present tail quantiles for N2 (left) and N3 (right) test statistics for a 2 ½1:8; 2� and
sample size n ¼ 2000. For each a, using Monte Carlo simulations we approximated test statistics median,
1% tail quantiles, and 5% tail quantiles; note that those could be linked to one-sided test significance
levels. Horizontal lines indicate values of N2 (left) and N3 (right) for empirical datasets. Normality
(a ¼ 2) for Dataset 1 is rejected by both statistics, but only N2 rejects normality for Dataset 4. For both
datasets, the intersection of 1% upper quantiles and vertical lines indicate how heavy (in terms of a) might
be the tail of the sample distribution
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suitable modelling choice. For Dataset 4, taking into account N3 statistic values, we

conclude that the desired a stability index range is in [1.85, 1.97].

For completeness, we also present p-values for goodness-of fit tests based on N2

and N3 statistics for H0 hypotheses of SaSða; 1; 0Þ distribution for selected a
parameters and for all datasets; see Table 3. The p-values presented in Table 3 are

calculated based on the 50 000 Monte Carlo simulations. More precisely, for each a
we simulate 50 000 times a sample of length 2000 from SaSða; 1; 0Þ distribution in

order to calculate 50 000 sample test statistics N2 and N3. Next, using obtained

results, we construct a Monte Carlo distribution of N2 and N3 and confront it with N2

and N3 statistics for the given dataset, say NX
2 and NX

3 . Finally, denoting by q̂Xi the

value of the Monte Carlo CDF for the test statistic Ni (i ¼ 2; 3) at point NX
i , the

corresponding p-value is calculated as the minimum of q̂Xi and 1 � q̂Xi . This

correspond to the minimum of left-sided and right-sided statistical test p-values for

N2 and N3 test statistics.

As in Fig. 11, the results from Table 3 clearly indicate that based on the N2 and

N3 statistics, the hypothesis of Gaussian distribution for Dataset 1 and Dataset 4

should be rejected. Moreover, the corresponding (acceptable) SaSða; 1; 0Þ distribu-

tion for Dataset 1 and Dataset 4 should have the stability index in the range a 2
½1:84; 1:93� and a 2 ½1:88; 1:96�, respectively; this is consistent with results deduced

from Fig. 11. For Datasets 2, we observe highest p-values for a ¼ 2 (in case of N2)

and a ¼ 1:98 (in case of N3) which may suggest the Gaussian (or very close to

Gaussian) distribution. For Dataset 3, the highest p-values are observed for a ¼ 1:98

for both considered statistics. This may also suggests the a-stable distribution with

stability index very close to Gaussian.

To sum up, our analysis shows that the hypothesis of the Gaussian distribution for

Dataset 2 and Dataset 3 cannot be rejected while Dataset 1 and Dataset 4 can be

modeled by the distribution from the domain of attraction of the a-stable law with a
parameter close to 2. Also, note that the analysis of the results based only on one of

the statistics (i.e. N2) does not give the whole picture of the distribution related to

the data. The results presented in Table 3 confirm that N3 is the best choice when

performing analysis of the near-Gaussian data for relatively big sample sizes; this is

consistent with remarks made in Sect. 5.1 when each statistic purpose was outlined.

Next, for better illustration and to have more clear picture about the sample

distribution properties, we decided to follow the approach introduced in Sect. 7.

This should check the overall symmetric a-stable distribution parameter fit for the

analyzed datasets. Taking into account the p-values presented in Table 3, we

decided to perform a (visual) check of the following a parameter fits: (1) a ¼ 1:93

for Dataset 1; (2) a ¼ 2:0 for Dataset 2; (3) a ¼ 2:0 for Dataset 3; (4) a ¼ 1:96 for

Dataset 4. We followed the approach introduced in Example 5 using the normalised

version of R̂i statistics; see Sect. 7 for details. The equivalents of plots presented in

Fig. 9 for empirical datasets and the chosen specifications are presented in Fig. 12.

The results point out to further sample properties. We see that (tail) Gaussian

distribution hypothesis for Dataset 2 and Dataset 3 cannot be rejected. In fact, in

both cases, the values of the normalized R̂i statistics fall into the constructed

confidence intervals for SaSð2; 1; 0Þ distribution for almost any conditional variance
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subset. Next, for Dataset 1, we observe that the extreme left tail QCV is breaching

the quantile threshold which might suggest that the true left tail is higher than the

left tail of SaSð1:93; 1; 0Þ. On the other hand, for Dataset 4, we observe breach in the

right tail QCV combined with a slight increasing trend in QCVs. This phenomena

may suggest the non-symmetric behavior of the analyzed vector of observations and

to the conclusion that the H0 hypothesis should be rejected.

Let us finish this section with the comment on practical consequences of such

statistical analysis of plasma fluctuations. At first, we note that non-Gaussian heavy-

tailed distributions for low frequency plasma turbulence have also been observed in

a number of toroidal plasma confinement systems such as T-10 tokamak, L-2M, TJ

Fig. 12 The plots illustrates the overall fit for all empirical datasets given a specific choice of SaSða; 1; 0Þ
distribution; the reference a levels are presented in the titles of the plots. The dashed lines correspond to

extreme (point-wise) quantiles of R̂i, i ¼ 1; 2; . . .; 22, under the correct model specification; they were
obtained using a 10 000 Monte Carlo run. One could see that the hypothesis of Gaussian distribution can
not be rejected for Dataset 2 and Dataset 3 at the significance level 1% as well as 5%. The results for
Dataset 1 and Dataset 4 indicate the the H0 hypothesis of tested distribution should be rejected. The
realised values of Ri statistics exceed the constructed confidence bound for low (in case of Dataset 1) and
high conditional variance subsets (in case of Dataset 4)
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II, and LHD stellarators as well as in astrophysical plasmas, see Korolev and

Skvortsova (2006), Dendy and Chapman (2006), and Watkins et al. (2009). The

fluctuations with a-stable behavior have been reported in experiments on stellarators

URAGAN-3M, Heliotron J, and on the tokamak ADITYA, see Gonchar et al.

(2003), Mizuuchi et al. (2005), and Jha et al. (2003), respectively. This phe-

nomenon is called ‘‘Lévy turbulence’’, and here we confirm its existence in the

stellarator URAGAN-3M. Moreover, we conclude that not only the turbulence

level, but the very statistics of the turbulence changes at the L-H transition. Such

observation brings the necessity to build adequate theoretical models of the plasma

turbulence before and after the L-H transition. We hope that the change of statistics

observed in the data taken from URAGAN-3M will inspire plasma experimental

groups to check if the change of statistics is also observed in other fusion devices

where L-H transition has been detected.

9 Conclusions

In this paper, we introduced a novel generic goodness-of-fit testing approach based

on the quantile conditional variance (QCV) statistics which builds upon recent

results obtained in Jaworski and Pitera (2020) and Jelito and Pitera (2020). We

studied probabilistic properties of sample QCV statistics for a-stable distributed

random variables and shown that the QCV analysis could be used to efficiently

characterise a-stable distribution. Our Monte-Carlo based analysis indicates that the

proposed goodness-of-fit test statistics outperforms many benchmark goodness-of-

fit tests that are typically used in reference to a-stable distributions. Although our

focus was on the symmetric case, the simulation study indicates that the proposed

test statistics might be in fact almost invariant to skewness specification encoded in

b parameter, see Fig. 8. In other words, same methodology can be applied to test a
parameter fit also for the asymmetric a-stable distributions.

We want to emphasize, that our paper is the first one that applies quantile

conditional variance statistical approach to a-stable distributed samples. The

presented results indicate that the proposed methodology can be considered as the

universal one when a-stable distribution testing is considered. In fact, we believe

that the approach based on quantile conditional moments might be used to

effectively solve the challenge stated in Nolan (2020), where it was said that: ‘‘In

general, it appears to be challenging to find an omnibus test for stability’’.

Finally, we have demonstrated how to utilize our framework in the analysis of

real-data from plasma physics and showed that our approach efficiently discriminate

between light- and heavy-tailed distributions. This proves that the presented

methodology can be also useful in practical problems which require using efficient

methods for specific data analysis.

Appendix A Tests power comparison for significance level 1%

See Fig. 13.
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Appendix B Numerical comparison of the tests’ powers
for significance level 5%

In Tables 4, 5, 6,7, 8 we present the powers of the tests considered in Sect. 5.2.1. In

each case the the H0 hypothesis is that the random sample comes from SaSð1:5; 1; 0Þ
distribution. The H1 hypothesis is that vector of observations constitutes the random

sample from SaSða1; 1; 0Þ distribution for a1 2 f1:1; 1:2; � � � ; 2:0g. The number of

Fig. 13 Power of the tests based on the QCV statistics (N1;N2;N3) with comparison to other benchmark
goodness-of-fit tests for different sample lengths and for he significance level equal to 1%. Results are
consistent with those obtained for significance level 5%; see Fig. 3 caption for more details. For
transparency, we added the legend only to the top left plot

Table 4 Comparison of the powers of the tests for SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against

SaSða1; 1; 0Þ distribution for (H1 hypothesis)

a1 N1 test N2 test N3 test KS test Kuiper test Watson test CvM test AD test

1.1 0.1523 0.1090 NA 0.0441 0.0531 0.0473 0.0499 0.1150

1.2 0.1157 0.0848 NA 0.0495 0.0499 0.0482 0.0459 0.0931

1.3 0.0830 0.0628 NA 0.0554 0.0546 0.0544 0.0541 0.0717

1.4 0.0618 0.0564 NA 0.0504 0.0526 0.0509 0.0505 0.0597

1.5 0.0493 0.0517 NA 0.0504 0.0505 0.0506 0.0511 0.0480

1.6 0.0460 0.0542 NA 0.0502 0.0481 0.0493 0.0485 0.0471

1.7 0.0493 0.0626 NA 0.0507 0.0498 0.0493 0.0507 0.0400

1.8 0.0574 0.0862 NA 0.0526 0.0507 0.0494 0.0499 0.0409

1.9 0.0622 0.1097 NA 0.0504 0.0462 0.0488 0.0455 0.0405

2.0 0.0794 0.1492 NA 0.0486 0.0459 0.0426 0.0410 0.0381

The sample length n ¼ 20. The following tests are taken under consideration: the two-sided N1, N2 and

N3 tests proposed in this paper, Kolmogorov-Smirnov (KS) two-samples test, Kuiper test, Watson test,

Cramer-von Mises (CvM) test and Anderson-Darling (AD) test. The results are presented for 5% sig-

nificance level; best results are marked in bold
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Table 5 Comparison of the powers of the tests for SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against

SaSða1; 1; 0Þ distribution for (H1 hypothesis)

a1 N1 test N2 test N3 test KS test Kuiper test Watson test CvM test AD test

1.1 0.3214 0.1238 0.0987 0.0425 0.0664 0.0458 0.0561 0.1603

1.2 0.1997 0.0908 0.0785 0.0411 0.0556 0.0456 0.048 0.0985

1.3 0.1153 0.0628 0.0584 0.0449 0.0523 0.0485 0.0492 0.0735

1.4 0.0539 0.0569 0.0287 0.0522 0.0504 0.0495 0.0534 0.0569

1.5 0.0495 0.0536 0.0502 0.0493 0.0499 0.0491 0.0509 0.0482

1.6 0.0563 0.0757 0.0584 0.0470 0.0516 0.0464 0.0483 0.0430

1.7 0.0780 0.1187 0.0697 0.0474 0.0533 0.0461 0.0494 0.0391

1.8 0.1144 0.2112 0.1016 0.0441 0.0517 0.0411 0.0469 0.0421

1.9 0.1587 0.3626 0.1579 0.0460 0.0499 0.0396 0.0433 0.0446

2.0 0.2129 0.5633 0.2413 0.0422 0.0550 0.0350 0.0437 0.0428

The sample length n ¼ 50. The following tests are taken under consideration: the two-sided N1, N2 and

N3 tests proposed in this paper, Kolmogorov-Smirnov (KS) two-samples test, Kuiper test, Watson test,

Cramer-von Mises (CvM) test and Anderson-Darling (AD) test. The results are presented for 5% sig-

nificance level; best results are marked in bold

Table 6 Comparison of the powers of the tests for SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against

SaSða1; 1; 0Þ distribution for (H1 hypothesis)

a1 N1 test N2 test N3 test KS test Kuiper test Watson test CvM test AD test

1.1 0.6478 0.1306 0.0969 0.0377 0.1050 0.0407 0.0798 0.2519

1.2 0.4057 0.0915 0.0741 0.0395 0.0638 0.0429 0.0547 0.1367

1.3 0.2122 0.0599 0.0547 0.0424 0.0514 0.0423 0.0488 0.0885

1.4 0.0880 0.0446 0.0465 0.0445 0.0473 0.0475 0.0447 0.0622

1.5 0.0494 0.0515 0.0485 0.0490 0.0471 0.0467 0.0475 0.0527

1.6 0.0637 0.0938 0.0656 0.0504 0.0525 0.0516 0.0516 0.0473

1.7 0.1093 0.1929 0.1030 0.0450 0.0473 0.0434 0.0431 0.0482

1.8 0.1767 0.3938 0.2011 0.0424 0.0532 0.0369 0.0465 0.0498

1.9 0.2560 0.6684 0.3864 0.0364 0.0542 0.0328 0.0426 0.0541

2.0 0.3245 0.9778 0.7769 0.0279 0.0656 0.0285 0.0448 0.0603

The sample length n ¼ 100. The following tests are taken under consideration: the two-sided N1, N2 and

N3 tests proposed in this paper, Kolmogorov-Smirnov (KS) two-samples test,Kuiper test, Watson test,

Cramer-von Mises (CvM) test and Anderson-Darling (AD) test. The results are presented for 5% sig-

nificance level; best results are marked in bold
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Table 7 Comparison of the powers of the tests for SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against

SaSða1; 1; 0Þ distribution for (H1 hypothesis)

a1 N1 test N2 test N3 test KS test Kuiper test Watson test CvM test AD test

1.1 1.0000 1.0000 0.8267 0.6112 0.9965 0.3342 0.9779 0.9998

1.2 0.9996 0.9852 0.5935 0.1435 0.8013 0.0944 0.6132 0.9392

1.3 0.9454 0.7572 0.2986 0.0373 0.2550 0.0456 0.1635 0.4265

1.4 0.4124 0.2567 0.1139 0.0361 0.0622 0.0373 0.0549 0.0968

1.5 0.0476 0.0518 0.0493 0.0482 0.0504 0.0499 0.0522 0.0505

1.6 0.2909 0.4033 0.1842 0.0380 0.0547 0.0384 0.0458 0.0659

1.7 0.7530 0.9359 0.5959 0.0271 0.1311 0.0323 0.0894 0.1738

1.8 0.9590 0.9995 0.9536 0.0303 0.4217 0.0424 0.2267 0.5373

1.9 0.9955 1.0000 0.9997 0.0452 0.9076 0.0659 0.5449 0.949

2.0 0.9997 1.0000 1.0000 0.1218 0.9999 0.1065 0.8732 0.9999

The sample length n ¼ 1000. The following tests are taken under consideration: the two-sided N1, N2 and

N3 tests proposed in this paper, Kolmogorov-Smirnov (KS) two-samples test, Kuiper test, Watson test,

Cramer-von Mises (CvM) test and Anderson-Darling (AD) test. The results are presented for 5% sig-

nificance level; best results are marked in bold

Table 8 Comparison of the powers of the tests for SaSð1:5; 1; 0Þ distribution (H0 hypothesis) against

SaSða1; 1; 0Þ distribution for (H1 hypothesis)

a1 N1 test N2 test N3 test KS test Kuiper test Watson test CvM test AD test

1.1 1.0000 1.0000 0.9935 0.9963 1.0000 0.9410 1.0000 1.0000

1.2 1.0000 1.0000 0.9227 0.6445 0.9983 0.3320 0.9826 1.0000

1.3 0.9988 0.9848 0.6228 0.0859 0.6778 0.0727 0.4666 0.8488

1.4 0.6737 0.5249 0.2162 0.0344 0.0984 0.0368 0.0733 0.1659

1.5 0.0519 0.0515 0.0511 0.0542 0.0515 0.0503 0.0508 0.0525

1.6 0.5238 0.6726 0.3003 0.0306 0.0745 0.0316 0.0562 0.1003

1.7 0.9666 0.9991 0.8794 0.0295 0.4142 0.0412 0.2258 0.5350

1.8 1.0000 1.0000 0.9991 0.0918 0.9726 0.0858 0.7234 0.9925

1.9 1.0000 1.0000 1.0000 0.5566 1.0000 0.1998 0.9932 1.0000

2.0 1.0000 1.0000 1.0000 0.9934 1.0000 0.5078 1.0000 1.0000

The sample length n ¼ 2000. The following tests are taken under consideration: the two-sided N1, N2 and

N3 tests proposed in this paper, Kolmogorov-Smirnov (KS) two-samples test, Kuiper test, Watson test,

Cramer-von Mises (CvM) test and Anderson-Darling (AD) test. The results are presented for 5% sig-

nificance level; best results are marked in bold
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Monte Carlo simulations used to calculate the values of the test statistics under H0

hypothesis is 100 000 while the number of Monte Carlo simulations used to

calculate the powers of the tests is 10 000. The significance level is assumed to be

5%. In each case we highlight the best result.

Appendix C Source code

See Fig. 14.
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Fig. 14 A simplified R source code, that can be used to compute N1. For completeness, we also show
how to compute exemplary (two-sided) test power for true a0 ¼ 1:5 and alternative a1 ¼ 1:7 for sample
of size n ¼ 50 at 5% significance level. The calculations take 6 seconds on 13’’ MacBook Air (2017) with
8 GB RAM and 1.8 GHz Dual-Core Intel i5 processor
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