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Abstract
In ecology, the concept of predation describes interdependent patterns of having one

species (called the predator) killing and consuming another (the prey). Specifying

the so-called functional response of prey populations to predation is an important

matter of debate which is typically addressed by means of continuous time models.

Empirical regression or autoregression models applied to discrete predator-prey

population data promise feasible steady state approximations of often complicated

dynamic patterns of population growth and interaction. Ewing et al. (Ecol Econ

60:605–612, 2007) argue in favour of the informational content of so-called vector

autoregressive models for the dynamic analysis of predator-prey systems. In this

work we reconsider their analysis of dynamic interaction of two freshwater

organisms, and design a structural model that allows to approximate the functional

response in causal form. Results from an unrestricted structural model are in line

with core axiomatic assumptions of predator-prey models. Conditional on popula-

tion growth lagged up to three periods (i.e., 36 h), the semi-daily population growth

of the prey Paramecium aurelia diminishes, on average, by 1.2 percentage points in

response to an increase of the population growth of the predator Didinium nasutum
by one percentage point.
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1 Introduction

In the ecological and biological literature so-called predator-prey (PP) models have

become an established framework to describe patterns of predation, i.e., the killing

and consumption of one species (the prey) by another (the predator). The

instantaneous rate of prey consumption per predator—the so-called functional

response—is both an essential feature of PP interaction and an important dimension

for structuring a broad variety of continuous time PP models (see Jost and Ellner

2000, for an overview).1 The debate on the functional response (see Jost and Ellner

2000, for a comprehensive discussion) largely fluctuates around the functional

specification and subsequent estimation of the so-called predation function in

continuous time. A few studies have provided empirical assessments of PP models

in discrete time.2 Unlike continuous patterns of PP interaction, discrete time models

can capture multiperiod dynamics in form of regressive or autoregressive patterns

without explicit reference to an underlying theoretical model. Adding to this merit,

it is worth to note that empirical sampling might take place at low frequencies such

that important intergenerational dynamics could be subject to (implicit or

unspecified) aggregation. In this context, Ewing et al. (2007) (henceforth, ERE07)

are among the first to argue convincingly in favour of the informational content of

vector autoregressive (VAR) models for the dynamic analysis in PP systems.3 To

materialize their claim, ERE07 provide an in-depth analysis of the semi-daily

population data from the classic ciliate experiments of Veilleux (1979) in their

digitalized form of Jost and Ellner (2000). In this work, we reconsider the analysis

of ERE07. Apart from replication exercises, we complement their analysis with the

quantification of instantaneous responses among prey and predator population

growth rates in either direction.

ERE07 can be considered as the first scholars who illustrate dynamic model

implications by means of impulse response analysis (or so-called innovation

accounting). In particular, they adopt the generalized impulse response functions

(generalized IRFs, GIRFs) of Pesaran and Shin (1998). Since GIRFs lack a strictly

structural (or causal) interpretation (see, e.g. Kim 2013), however, ERE07 remain

ultimately silent about a steady state assessment of the functional response. For

example, GIRFs displayed in Fig. 2 of ERE07 suffer from the counter intuitive

interpretation that positive surprises to the prey population invoke a significant

deterioration of predator population growth. The structural model approach that we

undertake in this work largely benefits from recent contributions to structural VAR

(SVAR) analysis (see Kilian and Lütkepohl 2017, for an up to date textbook

1 Noticing that loss-win interactions of competition, coordination and/or predation are at the heart of

these models, it is not surprising that PP specifications have also been considered for purposes beyond

ecosystem analysis. For instance, in economics PP linkages have been picked up amongst others (i) by

Capello and Faggian (2002) for modelling urban growth patterns in Italy, (ii) by Mehlum et al. (2003) to

develop a general equilibrium model of industrialisation and (iii) in Crookes and Blignaut (2016) to

describe vertical production structures in global steel and vehicle production.
2 Along with many further references, Ewing et al. (2007) provide a stylized sketch of the history of PP

models and their empirical assessments in discrete time.
3 See also Beisner et al. (2003) for an example VAR model augmented with exogenous information.
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treatment of identification in SVARs). Specifically, we trace the stochastic

variations in the PP system back to unique (i.e., identified) non-Gaussian

independent components (Lancaster 1954; Comon 1994). The model implied

impact effects of the independent components on population growth rates accord

with the axiomatic assumptions of the so-called Kolmogorov model as the

theoretical and intuitive foundation of many representatives of PP models

(Freedman 1980). Conditional on the process history, by implication, an increase

of the predator population by one percentage point reduces prey population growth

by about 1.2 percentage points, on average.

The remainder of this work is organized as follows: The next Section sketches

the data, highlights the (structural) identification problem and puts the independent

component analysis (ICA) adopted in this work into the perspective of alternative

approaches to identification in SVARs. The main empirical results are provided and

discussed in Sect. 3. Section 4 concludes. The Appendix provides an explicit

representation of the dependence coefficient of Bakirov et al. (2006) which we

employ for the detection of independent components.

2 A structural model for predator-prey interaction

This Section develops the structural model of interest. On the one hand, we

highlight stylized characteristics of the population growth rates under scrutiny and

point to the structural VAR as a means to translate correlation estimates into causal

linkages. On the other hand, we review briefly alternative approaches (theory- vs.

data-based) to model identification, and argue in favour of ICA for the subsequent

analysis.

2.1 The data and conditional correlations

The population data analysed in ERE07 have been determined in mixed ciliate

experiments of B. Veilleux with two freshwater organisms, the prey Paramecium
aurelia and the predator Didinium nasutum (Veilleux 1979). Specifically, with

initial densities of 45 (Paramecium) and 15 (Didinium) individuals per milliliter

(ml) ciliates were cultured in Petri dishes containing six ml of culture medium

maintained at 27�C. To achieve sustained patterns of PP interaction, B. Veilleux

elaborated on diverse scenarios combining controlled amounts of a bacterial nutrient

for feeding the prey species (Cerophyl) with additions of Methyl Cellulose which

governed thickness of the medium and thereby the movements of the ciliates. Non-

destructive population counts of individuals per ml were made at the semi-daily

frequency that accounts for intergenerational dynamics, since the number of fissions

per day is larger than two for both species. While the fission rates might depend on

the actual laboratory experiment (see Figures 2 and 3 of Veilleux 1979) further

complexity of intergenerational dynamics arises from the fact that fission rates of

the predator (Didinium) are by about 30% larger than those of the prey

(Paramecium). To achieve sufficient accuracy of the population counts each quote

is the average of eight independent countings. For intermediate choices of nutrition
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available to the prey species (i.e., cerophyl concentration) the experiments resulted

in stable population patterns that are likely to reflect ‘inherent properties of the

system and not an artifact due to the experimental method’ (Veilleux 1979, p.

796).4

As in ERE07 the population growth rates of interest are defined as

nt ¼
Nt � Nt�1

Nt�1

and pt ¼
Pt � Pt�1

Pt�1

; ð1Þ

where Nt and Pt are individuals per ml of Paramecium (the prey) and Didinium (the

predator), respectively. The observation index t indicates measurement intervals of

12 h. The total number of observations (Nt;Pt) is 52. Hence, the number of available

growth rates (nt; pt) is 51. ERE07 provide ADF statistics in favour of stationarity of

both growth rates.

The graphical display of the growth rates in Fig. 1 shows two markedly outlying

observations which might reflect the initialisation of the experimental design.

Therefore, this work complements the analysis of full sample data in ERE07 (51

observations) with a robustness analysis for a subsample that excludes the first two

recorded growth rates (49 observations). Table 1 documents mean growth rates and

standard deviation (sd) statistics for the two samples. Moreover, Table 2 documents

some conditional correlations obtained from ad-hoc regression models. Stylized

bivariate regressions as well as richer dynamic structures obtain a common effect

direction for both alternative choices of the dependent variable (nt or pt).
Nevertheless, the documented regression outcomes allow for an interesting insight

into conditional correlations among both growth rates nt and pt. While the stylized

bivariate regression with full sample information is characterized by positive

coefficient estimates, these conditional correlations turn negative after conditioning

on the set fnt�i; pt�i; i ¼ 1; 2; 3g as additional explanatory variables. Apparently,

the model estimation by means of stylized bivariate regressions suffers from omitted

dynamics. Put differently, dynamic effects appear as an important building block for

the understanding of the PP system at hand. Corroborating established features of

linear projections, however, the (dynamic) regression models are apparently not

suitable to discover causal relationships by means of conditioning nt on pt (or pt on

nt). It is likely that with semi-daily sampling the populations of the species (and,

hence, population growth rates) are subject to joint endogeneity. As a result, using

contemporaneous population or growth rate data as explanatory variables will

induce correlation with regression residuals and, hence, estimation bias. Bias free

estimation approaches would deserve instrumental information or the a-priori

knowledge of the causal structure. Both preconditions hardly apply in the present

context of the analysis of PP interaction among freshwater organisms.

4 See Table 1 of Veilleux (1979) for a summary of (un)stable dynamic behaviours within Methyl
Cellulose cultures. Based on simulated data from a continuous time model of PP interaction Jost and

Ellner (2000) provide further support to consider the data as drawn from stable states of a PP model. The

population counts are available from the web, http://cbi-toulouse.fr/images/upload/prslbdatasets.txt. As

ERE07 we analyse the last series provided (‘cerophyl concentration, CC = 0.5’ ; digitalized from

Figure 14c of Veilleux (1979)).

123

66 H. Herwartz



Seeing that cross equation linkages hide causal structures in ad-hoc (dynamic)

regressions, the subsequent steps do not only take account of dynamic profiles but

also aim at a regression design composed of unrelated equations. For this purpose

we first develop the VAR model of ERE07 further towards a structural

representation tracing model residuals back to orthogonal (and identified) shocks.

Subsequently, the isolation of these shocks provides a view at PP linkages in a form

of unrelated equations.

2.2 The VAR model and its structural form

Let the vector yt collect the growth rates defined in (1) as yt ¼ ðnt; ptÞ0 such that

quotes on prey (predator) population growth are ordered first (second) in yt. To

analyse competitive struggle in a PP model, the bivariate VAR model of order q
(VAR(q)) reads as

yt ¼mþ A1yt�1 þ A2yt�2 þ . . .þ Aqyt�q þ et; t ¼ 1; 2; . . .; T ð2Þ

(see Lütkepohl 2007, for a textbook treatment of VARs). Taking account of

unconditional effects m is a vector of intercepts, and et is an uninformative model

residual with mean zero and covariance R, i.e., et �ð0;RÞ. The model parameters

(Ai; i ¼ 1; . . .; p; and R) and residuals (et) in (2) can be consistently estimated by

means of OLS estimation. Conditioning on predetermined variables, however, the

Table 1 Descriptive statistics: mean and standard deviations (sd) of prey and predator population growth

rates in the full sample (51 observations) and the reduced sample (49 observations)

Full sample Reduced sample

nt pt nt pt

mean 0.1358 0.0995 0.0646 0.0503

sd 0.5559 0.4171 0.3028 0.2782

For the full sample these descriptive statistics are identical to those documented in Table 1 of ERE07

Fig. 1 Analysed semi-daily
population growth rates of the
predator Didinium nasutum and
the prey Paramecium aurelia.
The x-axis indicates the days of
the experiment. The dashed
horizontal line indicates the
beginning of the reduced sample
(RS)
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model in (2) does not provide an explicit representation of the contemporaneous

linkages that operate among the two species.

To address structural or contemporaneous relations, it has become a widespread

strategy to regard the residuals in et as the outcome of a linear and non-singular

weighting scheme that applies to latent and orthogonal shocks collected in a vector

nt. Rewriting the model residuals accordingly as et ¼ Dnt obtains the SVAR

counterpart of (2),

yt ¼mþ A1yt�1 þ A2yt�2 þ . . .þ Aqyt�q þ Dnt: ð3Þ

Without loss of generality, the orthogonal shocks in nt are often assumed to have

(marginal) variances of unity, i.e., Cov ½nt� ¼ I with I denoting the identity matrix.

The residual covariance R from (2) and the weighting parameters in D (see (3)) are

related such that

R ¼ Cov ½et� ¼ Cov ½Dnt� ¼ E½Dntn0tD0� ¼ DD0:

Highlighting the core identification problem, it is easy to see that the space of

potential covariance factors D ¼ fDjDD0 ¼ Rg is infinite. For instance, a para-

metrized space of covariance decompositions obtains from R ¼ DhD
0
h ¼ GRhR

0
hG

0,
where G is a lower triangular Cholesky factor (R ¼ GG0) and

Table 2 Conditional correlations

Dep Full sample Reduced sample

nt pt nt pt

Const 0:054

ð0:844Þ
0:029

ð1:274Þ
0:036

ð0:762Þ
�0:001

ð�0:024Þ
0:068

ð1:526Þ
0:038

ð1:734Þ
0:054

ð1:310Þ
�0:004

ð�0:135Þ
nt – – 0:465

ð5:531Þ
�0:604

ð�3:440Þ
– – �0:052

ð�0:391Þ
�0:622

ð�3:177Þ
pt 0:826

ð5:531Þ
�0:378

ð�3:440Þ
– – �0:062

ð�0:391Þ
�0:338

ð�3:177Þ
–

– –

nt�1 – 0:541

ð4:716Þ
– 0:669

ð4:562Þ
– 0:613

ð5:243Þ
– 0:738

ð4:337Þ
nt�2 – 0:436

ð6:300Þ
– 0:356

ð3:245Þ
– 0:158

ð1:227Þ
– 0:228

ð1:306Þ
nt�3 – 0:133

ð2:239Þ
– 0:104

ð1:341Þ
– 0:208

ð1:914Þ
– 0:255

ð1:715Þ
pt�1 – �0:627

ð�5:817Þ
– �0:228

ð�1:257Þ
– �0:505

ð�4:549Þ
– �0:229

ð�1:248Þ
pt�2 – �0:512

ð�5:432Þ
– �0:273

ð�1:805Þ
– �0:620

ð�5:885Þ
– �0:370

ð�1:965Þ
pt�3 – 0:288

ð3:591Þ
– 0:158

ð1:386Þ
– 0:221

ð2:427Þ
– 0:213

ð1:663Þ

The table documents results from overall eight common time series and regression models (t-ratios in

parentheses). The row labelled ‘dep’ encounters the dependent variable of each regression model.

Explanatory variables are encountered in the leftmost column, and include historic observations of both

variables up to lag order three (see ERE07 for the selection of the dynamic order)
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Rh ¼
cosðhÞ � sinðhÞ
sinðhÞ cosðhÞ

� �
; 0� h� p;

is a rotation matrix with rotation angle h. Accordingly, the covariance decompo-

sition space could be defined as D ¼ fDhjDh ¼ GRh; 0� h� pg, and implied

orthogonalized residuals are nðhÞt ¼ D�1
h et.

2.3 Identification

The identification problem in structural VAR analysis consists of the selection of

one specific D matrix from D. Since all members of D align with the model outlines

in (2) and (3), it is immediate that the identification problem in structural VARs

cannot be solved without further external assumptions. In the case of a conditional

Gaussian model, for instance, all rotations of nt (or equivalently of D) are

informationally equivalent. Identifying external information might stem from two

sources, (i) theoretical considerations about the variables in yt (i.e., about PP

responses to the elements in nt), or (ii) from stylized features of the distributions of

et or nt.
We next encounter four alternative identification schemes in a stylized manner.

For a detailed and up-to-date textbook treatment of identification in SVARs we refer

the reader to Kilian and Lütkepohl (2017). Throughout we consider the case of

bivariate SVARs. Extending the arguments to higher model dimensions is

straightforward. Subsequently, we briefly discuss particular merits of theory- vs.

data-based identification, and argue for ICA as a means to identify the PP SVAR

model. Finally, we provide a short outline of the extraction of independent

components.

2.3.1 Identification schemes

1. Recursive systems: The estimate of the covariance R comprises three single

(co)variances. To identify the four structural parameters in D, Sims (1980) has

suggested to impose a (lower) triangular structure on this matrix. With such a

restriction, the unrestricted parameters in D can be quantified straightforwardly.

However, this identification scheme comes with the imposition of a hierarchical

structure of the model. By implication, the structural properties depend on the

ordering of the variables in yt.
2. Identification by means of sign restrictions: As formalized in (3) typical

elements of D quantify the impact effects of a unit shock nit ¼ 1; i ¼ 1; 2; on

the observables in the system. While this effect is unknown in its exact metric

form, it is often the case that theoretical considerations imply specific effect

directions. In the econometric literature Faust (1998), Canova and De Nicolo

(2002) and Uhlig (2005) have pioneered and advocated the identification of

SVARs by means of such consensual effect directions. In the framework of PP

models a theory guided shock labelling could benefit from theoretical
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knowledge of how the organisms under scrutiny react to surprising changes of

living conditions (i.e., shocks). For instance, in real life scenarios such shocks

might materialize in the form of the invasion of new species or changing

environmental conditions. In this context it is worth observing that many

modern representatives of PP models are based upon the Kolmogorov model - a

minimal set of two differential equations coupled with axiomatic assumptions

(Freedman 1980). Population changes as implied by the Kolmogorov model are

dN

dt
¼ gðN;PÞN and

dP

dt
¼ hðN;PÞP;

and the axiomatic assumptions concern the so-called predation function g

(og
oP\0) and, moreover, oh

oN [ 0. Approximating the continuous time model in

discrete time with dt ¼ 1 obtains ntþ1 � gðNt;PtÞ and ptþ1 � hðNt;PtÞ. Hence,

a positive shock which primarily impacts on preys implies ntþ1 [ 0 (direct

effect) and ptþ1 [ 0 (indirect effect channelled through h). Moreover, shocks

which are directly beneficial to growth rates of the predator population are

likely to impact adversely on the living conditions of the preys (indirect effect

channelled through g).5 Casting these considerations in the framework of the

discrete time SVAR model obtains the following effect directions for typical

elements of D, denoted dij: dii [ 0; i ¼ 1; 2, d12\0 and d21 [ 0. Hence, a

theory supported sign pattern for the structural matrix D is

Dtheo ¼
þ �
þ þ

� �
: ð4Þ

Providing a clear and unique effect pattern, the sign restrictions in Dtheo qualify

for theory based model identification. Practically, a set of models identified by

means of sign restrictions

eD ¼ fD ¼ GRhjdii [ 0; i ¼ 1; 2; d21 [ 0; d12\0g

obtains from random sampling of rotation angles h; 0� h� p, and storing all

implied covariance decompositions that align with the sign pattern provided in

(4). Once an analyst has sampled a sufficient number of admitted structural

matrices, the set of identified models eD might be described by common

statistical measures (e.g., mean, standard deviation, quantiles).

3. Identification through heteroskedasticity: The identification through

heteroskedasticity as pioneered by Rigobon (2003) and developed further by,

amongst others, Lanne and Lütkepohl (2008) and Bacchiocchi and Fanelli

(2015) exploits information on observable heteroskedasticity in the residuals et.
Assume that an analyst has access to two distinct covariance estimates, denoted

Rð1Þ and Rð2Þ, that she obtains from disjoint subsamples of the data. In the

5 Being formalized in continuous time, however, the effects of such shocks are in general conditional on

the state of the system, i.e., on actual population figures. As such, the axiomatic assumptions of the

Kolmogorov model are seen here to apply ‘on average’ to the steady state of PP interaction. Conditions

for the stability of PP systems in discrete time depend on the functional forms of g(N, P) and h(N, P) (see

Huang et al. 2008, for an example case).
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bivariate case this yields six single (co)variance estimates to solve the

identification problem. The two covariances allow for a reparameterization as

Rð1Þ ¼ DD0 and Rð2Þ ¼ DWD0, where W is a diagonal matrix. Hence, the six

estimated (co)variances can be mapped in a one-to-one manner to the six

unknown parameters in D and W, thereby identifying D. It is evident, however,

that unique identification by means of heteroskedasticity requires that the

parameters in W must be different. In other words, the switch from the first to

the second covariance regime must not affect the variances of the shocks

proportionally.

4. Identification by means of independent components: Early results on the

properties of linear combinations of (non)Gaussian random variables have

motivated to obtain structural shocks as independent components. While

Lancaster (1954) has stated that rotation invariance is unique to independent

Gaussian random variables, results of Comon (1994) imply that the weighting

scheme et ¼ Dnt allows a unique recovery of the independent shocks in nt from

et if and only if at most one element of nt exhibits a Gaussian distribution.

Taking advantage of these results, amongst others, Moneta et al. (2013),

Gouriéroux et al. (2017) and Lanne et al. (2017) have developed identification

schemes for SVARs which differ with respect to the space of admitted D
matrices or the distributional assumptions made for the structural shocks in nt.
Non-parametric approaches to ICA have been suggested or applied, for

instance, by Matteson and Tsay (2017) and Herwartz (2019). Following their

lines of reasoning an estimator of D could be obtained from solving the

minimization problem

bD ¼ argminD2Df Joint dependence of elements in nt, with nt ¼ D�1etg
ð5Þ

by means of a general non-parametric test of the null hypothesis of joint

independence.

2.3.2 A comparative discussion of identification schemes

To support the choice for a particular identification scheme in empirical practice it is

helpful to first contrast theory- vs. data based identification. While theory-based

identification ensures that obtained structural shocks have meaningful impact

properties, such schemes are also prone to intermingling model assumptions and

conclusions (Uhlig 2005). In contrast, data-based identification typically provides

sufficient external information such that otherwise overidentifying restrictions could

be subjected to testing. At the downside, however, structural shocks obtained from

these identification schemes do not necessarily allow for a sound theoretical

interpretation. In this work we opt for a data-based approach to identification, and

investigate subsequently if the retrieved shocks allow for a theory-conform

interpretation in the spirit of the theoretical sign pattern of Dtheo in (4). For this

purpose it is important to notice that an identified matrix D is unique only up to

column signs and the column ordering. With di denoting the i-th column of D it
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holds that R ¼ DD0 ¼
P2

i¼1 did
0
i. Hence, the matrices ½d1; d2�, ½�d1; d2� or ½�d2; d1�

are all in line with the covariance restriction R ¼ DD0.
The application of data-based identification schemes deserves either that the

VAR residuals are subject to informative covariance changes or non-Gaussian.

While we obtain some evidence in favour of downward shifting variances of VAR

residuals (see also Fig. 1), the null hypothesis of proportional variance changes

cannot be rejected with 5% significance. In contrast, the evidence against normally

distributed VAR residuals is very strong such that we choose ICA for identification.

The following paragraph is explicit on the independence statistic used to select D
from D.

2.3.3 Independent component analysis

Solving the minimization problem in (5) requires a statistical quantification of joint

dependence. To detect unique independent components we follow the approach of

Herwartz (2019) and employ the dependence coefficient introduced by Bakirov

et al. (2006). The dependence coefficient, denoted C, provides a
ffiffiffiffi
T

p
consistent

estimator of the population distance of the joint characteristic function of two

random variables (in our case n1t and n2t) and the product of both marginal

characteristic functions (see the Appendix for an explicit exposition). Similar to

absolute estimates of linear correlations, C is bounded between zero and unity which

indicate the limiting scenarios of independence and complete dependence,

respectively. For testing the null hypotheses of independence, TC2 is a bounded

random variable. Since critical values of TC2 are difficult to obtain analytically,

Bakirov et al. (2006) suggest a permutation bootstrap approach for the assessment

of significance of the test statistic.6 To determine independent components

practically, one might either minimize C or maximize the p-value of TC2. In light

of simulation results of Herwartz (2019) we opt for the latter and determine the

structural matrix bD ¼ GRĥ such that

ĥ ¼ argmaxh p-value ðTC2
hÞ;

where Ch is determined from the sample fnðhÞt ¼ D�1
h etgTt¼1.7 Practically, the esti-

mates ĥ obtain from a grid search over alternative rotation angles

h ¼ jp
2
=50; j ¼ 1; 2; 3; . . .; 50. Extending the grid to p

2
\h� p results in an infor-

mationally equivalent second solution for Dh with exchanged column positions.

6 For all computational purposes that involve C we use the R package ‘energy’ (Rizzo and Székely

2017). Bootstrap p-values for TC2 are based on R ¼ 249 permutations. It turns out that subjecting a given

sample to independence testing obtains some variation in the implied p-values for a given statistic TC2.

To assess the significance (and p-values) of TC2 robustly, all respective resampling exercises build upon

average p-values from 49 alternative initializations of the permutation bootstrap. Results obtained from

using just one initialization for the permutation bootstrap are qualitatively identical, however.
7 Solving an estimation problem by maximizing the p-value of a suitable test statistic (i.e., minimizing

the evidence against the null hypothesis) has become prominent as so-called Hodges-Lehmann estimation

(Hodges and Lehmann 1963).
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2.4 Marginal effects

The model in (3) is structural in the sense that observable regression residuals are

traced back to orthogonal shocks. As such the model is not explicit on the implied

causal relations between the jointly endogenous variables in yt ¼ ðnt; ptÞ0.
Multiplying (3) from the left with D�1 obtains a structural model with unrelated

residuals and a parametric representation of the conditional linkages among the

elements in yt,

D�1yt ¼ D�1mþ A	
1yt�1 þ A	

2yt�2 þ � � � þ A	
qyt�q þ nt; ð6Þ

where A	
i ¼ D�1Ai; i ¼ 1; 2; . . .; q. Let Xt�1 denote an information set that com-

prises the process information up to time t � 1. Moreover, let dðijÞ denote a typical

element of D�1. Conditional on Xt�1, the elements in D�1 describe the marginal

causal effects. Since

D�1yt ¼ D�1
nt

pt

� �
¼ dð11Þ dð12Þ

dð21Þ dð22Þ

 !
nt

pt

� �
;

we obtain after normalization from (6)

E½ntjpt [ Xt�1� ¼
�dð12Þ

dð11Þ pt þ xðnÞ
t�1 and E½ptjnt [ Xt�1� ¼

�dð21Þ

dð22Þ nt þ xðpÞ
t�1; ð7Þ

where xðnÞ
t�1 and xðpÞ

t�1 are observable conditional on the VAR parameters and Xt�1. It

is worth noticing that by virtue of their definition in (7) the marginal effects

�dð21Þ=dð22Þ obey a similar interpretation in discrete time as the predation function

g(N, P) in the continuous time Kolmogorov model.

2.5 Impulse response functions

Owing to the rich and complex dynamic parametrization of VAR models, IRFs have

become a common practice to illustrate model implied dynamics. To formally

derive IRFs as in Chapter 2 of Lütkepohl (2007) the VAR in (2) can be represented

in so-called moving average form as

yt ¼A�1ðLÞmþ A�1ðLÞet
¼lþ ðW0 þW1LþW2L

2 þW3L
3 þ � � �Þet;

ð8Þ

where L is the backshift operator such that Lyt ¼ yt�1 and l ¼ A�1ðLÞm. The moving

average parameter matrices Wi; i ¼ 0; 1; 2; 3; . . ., can be obtained recursively from

nonlinear transformations of the autoregressive parameter matrices Ai; i ¼ 1; . . .; q.

Specifically,

W0 ¼ I2; W1 ¼ W0A1;W2 ¼ W1A1 þW0A2; . . .

and
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Wi ¼
Xi
j¼1

Wi�jAj; Aj ¼ 0 for j[ q:

The moving average representation is of core importance for purposes of impulse

response analysis. For instance, the typical elements of the matrices

Hh ¼ WhD; ð9Þ

characterize the effect of isolated unit shocks in njt on yi;tþh, the i-th time series

variables at horizon h. Obviously, impulse response schemes are specific to the

selection of the structural matrix D.

To avoid strong identifying assumptions on the covariance decomposition, the

innovation accounting analysis in ERE07 does not rely on impulse responses to

orthogonalized shocks. Rather ERE07 make use of the so-called GIRFs of Pesaran

and Shin (1998). Formally, GIRFs read as

Nh ¼ WhRei=rii; ð10Þ

where ei is a zero vector with a unit element in its i-th position, and rii is the square

root of the i-th diagonal element of the residual covariance R. The qualification of

the profiles in (10) as ‘generalized’ IRFs comes from the fact that these statistics

are invariant to the ordering of the variables in the system. As argued in Kim (2013),

however, GIRFs could be interpreted as an aggregation of impulse responses from

VARs with distinct variable orderings. By implication, GIRFs lack effect consis-

tency under the typical case of a non-diagonal residual covariance R.

3 Structural analysis of predator-prey interaction

In this Section we first highlight that the VAR model of ERE07 is characterized by

significant deviations from conditional normality and, hence, that independence

scores might be used for characterizing ad-hoc identification schemes in terms of

independence of orthogonalized shocks. Subsequently, we pursue the detection of

independent components and provide an interpretation of the identified shocks.

Furthermore, the Section includes a comparative description of the GIRFs of ERE07

and identified IRFs. Finally, we employ the identified model to assess the

contemporaneous causal linkages among the growth patterns of the two species.

3.1 Non-Gaussianity and recursive model structures

ERE07 argue in favour of a VAR model with q ¼ 3, as it minimizes the BIC and

obtains serially uncorrelated estimates of et. After fitting a VAR(3) model to the

bivariate vector of population growth rates, the residual covariance matrices

estimated from the full and reduced sample read, respectively, as
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bRðFSÞ ¼
1:952 �1:178

�1:178 3:116

� �
=100 and bRðRSÞ ¼

1:664 �1:035

�1:035 3:064

� �
=100:

ð11Þ

While the removal of initial outlying observations reduces markedly the residual

variances of both variables, the residual correlations are significantly negative,

namely -0.477 and -0.458 for the full and the reduced sample, respectively. To

uncover the causal relationships behind these empirical correlations by means of

unique independent components, it is essential that the data are non-Gaussian.

Table 3 provides outcomes from normality tests applied to VAR residuals. Both the

Shapiro-Wilk (SW) and the Jarque-Bera (JB) test statistics for the null hypothesis of

normally distributed marginal residuals provide strong evidence against the

normality assumption. JB summary statistics indicate non-Gaussianity also for the

joint distribution.

Given significant deviations from the Gaussian model, it is tempting to order

alternative ad-hoc orthogonalization schemes with respect to their potential to align

with notions of independent (rather than merely orthogonal) shocks. Cholesky

factors of the residual covariance depend on the ordering of the variables in yt (see

the discussion in Section 2.3.1). Alternatively, for a given variable ordering one

might distinguish a lower (denoted Dl) and an upper triangular Cholesky factor

(Du). The left hand side and middle panels of Table 4 document estimated

alternative covariance decomposition factors. In terms of joint independence the

orthogonalized shocks implied by alternative hierarchical model structures allow a

clear distinction. Considering residuals e1t (prey growth) to originate in isolation

through orthogonalized shocks (as implied by Dl) is in line with the null hypothesis

of independence at conventional significance levels. While one could argue that

accepting a null hypothesis as such does not provide a strong inferential result, it is

worth to highlight that the data have no possibility to object against an

Table 3 Normality tests for VAR residuals (eit; i ¼ 1; 2)

Full sample (FS) Reduced sample (RS)

ê1t (prey) ê2t (predator) ê1t (prey) ê2t (predator)

stat p-value stat p-value stat p-value stat p-value

SW 0.923 0.380 0.972 29.8 0.907 0.105 0.953 5.511

JB 20.93 2.86E-03 2.115 34.74 20.58 3.40E-03 4.921 8.539

stat p-value stat p-value

Skew 5.993 4.997 8.760 1.253

Kurt 15.75 0.038 12.54 0.189

JB 21.74 0.023 21.30 0.028

The table displays results from Shapiro-Wilk (SW) and Jarque-Bera (JB) tests. The latter also include

diagnostics for the joint distribution and a separation for testing skewness and excess kurtosis separately.

p-values are multiplied with 100
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orthogonalization of a model with prey residual growth ordered first. Unlike this

hierarchical specification, assuming residuals e2t (predator growth) to originate in

isolation through orthogonalized shocks (as implied by Du) obtains a rejection of the

independence hypothesis with 5% (10%) significance for the full (reduced) sample.

In sum, statistical identification is an informative means to establish diagnostic

evidence in favour of the actual variable ordering yt ¼ ðnt; ptÞ0 over the alternative

yt ¼ ðpt; ntÞ0.8

3.2 Identified independent components

The right hand side panel of Table 4 documents structural parameters estimates bD
joint with bootstrap-based t-ratios.9 For both samples the detection of shocks with

minimum dependence results in solutions which are close to the orthogonalized

shocks obtained from the Cholesky covariance factor. The maximization of model

implied p-values obtains estimates of about 60%. While one should be careful in

interpreting supremum p-values from multiple testing in the usual way, it seems that

the shocks implied by bD show some weaker dependence in comparison with the

shocks retrieved after imposing a hierarchical model structure (Dl). However, this

improvement is marginal and might lack significance.

The estimator bD provides evidence for two well identified shocks, since the sign

patterns of estimated effect directions are distinct. While the first shock invokes

opposite impacts on the two population growth rates, the second shock exerts a

positive impact effect on both the growth rate of the predator and the growth rate of

the prey population. Supporting the restriction implied by the Cholesky factor Dl,

however, the upper right element in bD lacks positiveness with conventional

significance.

The estimates in bD are the solution of a statistical optimization problem. As

resulting from a purely data-driven approach, however, it is not clear if the implied

structural shocks fn̂t ¼ bD�1etgTt¼1 conform with any theoretical interpretation. In

data-based SVAR identification the issue of shock labelling has become an

important step of the analysis. In the form provided in Table 4 both structural

8 See also the simulation results in Herwartz (2019) on the informational content of the independence

coefficient C to rank causal hierarchies implied by alternative variable orderings.

9 For inferential assessments of estimates in bD (and (G)IRFs) we use a fixed-design wild bootstrap

scheme in the spirit of Gonçalves and Kilian (2004). At each bootstrap replication pseudo samples are

composed of

y	t ¼ m̂þ Â1yt�1 þ Â2yt�2 þ � � � þ Âpyt�p þ e	t ; e
	
t ¼ êtwt; t ¼ 1; 2; . . .;T : ð12Þ

In (12) m̂ and Âj; j ¼ 1; . . .; q, are OLS parameter estimates retrieved from the data. Independently of the

data, the scalar random variable wt exhibits a Rademacher distribution

( Prob ½w ¼ 1� ¼ Prob ½w ¼ �1� ¼ 0:5). The inferential analysis relies on 999 bootstrap replications.

Brüggemann et al. (2016) have shown that wild bootstrap variants fail to mimic the joint distribution of

estimators of slope (m; Ai; i ¼ 1; 2; . . .; q) and (co)variance parameters (R ¼ DD0) asymptotically. In finite

samples, however, a consistent moving block bootstrap and the wild bootstrap likely obtain qualitatively

identical results (Brüggemann et al. 2016).
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matrices Dl and bD point to the prominent role of the first shock (i.e., isolated shocks

entering the model through prey growth rate residuals). As implied by the

documented sign pattern, this shock improves prey growth and diminishes growth

rates of the predator population. In a ‘material’ sense, such theoretical properties of

‘positive’ shocks might lack intuition. Therefore, we reorganize the columns and

sign patterns of bD to establish features of the shocks that align with Dtheo in (4).

Specifically, we reverse the column ordering and subsequently multiply the

elements of the second column with minus unity. This obtains the structural matrix

estimates in labelled form

bDðFSÞ ¼

0:267

ð1:06Þ
�1:371

ð�18:7Þ
1:361

ð6:19Þ
1:124

ð4:77Þ

0
BBB@

1
CCCA=10 and bDðRSÞ ¼

0:206

ð0:82Þ
�1:274

ð�21:7Þ
1:408

ð7:00Þ
1:040

ð3:66Þ

0
BBB@

1
CCCA=10;

ð13Þ

for the full sample and the reduced sample, respectively.

When it comes to describe actual shocks behind the empirical growth rates

analysed in this work, the controlled conditions of the experiments described in

Veilleux (1979) leave little room to assign a theoretical interpretation to the labelled

structural shocks. For instance, the experiments control the amount of food that was

available to the prey species (i.e., the cerophyl concentration). However, potential

‘shocks’ which improve the living conditions of the prey species could occur in the

forms of (i) favourable stochastic fluctuations of the nutrient (or its quality) around

the controlled mean level, or (ii) an advantageous spatial distribution of the nutrient

which minimizes search time/cost to the prey population. Improving growth rates of

the Paramecium (prey) population, such shocks also improve the ingestion

conditions for Didinium (predator). Therefore such shocks can be seen to invoke

impact responses as described in the first columns of the structural matrices in (13)

for the identified n1t. For arguing in favour of potential positive shocks to the

predator population it is worth noticing that the predator Didinium is unable to

detect its prey Paramecium visually or in a chemotactic manner. Hence, it cannot

actively move towards its prey, and it necessitates a random direct contact to induce

the capture and ingestion mechanism. Therefore particular states of species

distribution that are favourable for predator growth include the absence of predator

clustering or the presence of prey clustering. Establishing favourable conditions for

predator growth, such ‘shocks’ are most likely detrimental for prey growth, and

point to the impact effects in the second columns of the structural matrices in (13)

and the properties of the identified n2t.

3.3 Impulse response analysis

We next describe the implications of the VAR model for the dynamic and

contemporaneous interplay of the two species. For this purpose we discuss a

replication of the GIRF estimates of ERE07 which is displayed in Fig. 2. As a
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complement to these results, we discuss effects implied by the identified SVAR in

the form of IRFs to orthogonalised and independent shocks shown in Fig. 3.

3.3.1 Generalized impulse response functions reconsidered

While point estimates shown in Fig. 2 fully accord with the GIRFs of ERE07, the

displayed confidence intervals with 95% coverage differ slightly in terms of

shape.10 The displayed functional forms indicate the stationarity of the system of

Fig. 2 Generalized impulse response functions (GIRFs, see (10)) of Paramecium (prey, ntþh) and
Didinium (predator) population growth rates (ptþh) to unit shocks. The time index t operates at the semi-
daily frequency. Point estimates are equivalent to those shown in Figure 2 of ERE07. Inferential
assessments rely on a fixed-design wild bootstrap scheme in the spirit of Gonçalves and Kilian (2004) (see
footnote 9 for details). Dashed curves indicate point-wise 95% bootstrap confidence bands (i.e., the 2.5%
and 97.5% quantiles of the bootstrap distribution). Displayed GIRFs are for the full sample (FS). Results
for the reduced sample (RS) are almost identical

10 Targeting at a nominal coverage of 95%, ERE07 use symmetric confidence intervals of �2 standard

error estimates. In this study, we use quantiles of the bootstrap distribution to bound confidence intervals

with given coverage.

123

Modelling interaction patterns in a predator-prey... 79



population growth rates as the effects of initial impulses die out over an horizon of

approximately seven days. As highlighted in ERE07, features of both persistence

and cyclicality characterize the dynamic system. Seemingly, prey growth rates are

in the lead of predator growth rates.

Positive impulses in the growth rates of the predator or prey population invoke

markedly negative impact effects in the growth rates of the other population. This

outcome is a direct consequence of the negative contemporaneous correlation

characterizing the residual covariances documented in (11). Hence, the GIRFs lack

a strictly structural interpretation. In the present case this lack shows up in an

important theoretical model deficiency. While it is most intuitive to see that positive

shocks to the predator population growth are - on impact - detrimental for the

growth rate of the prey population, the reverse transmission channel lacks such an

intuition. In fact, the model implication that positive shocks to prey population

growth exert a negative impact on the growth rate of the predator population

Fig. 3 Impulse responses of Paramecium (prey) and Didinium (predator) population growth rates to
identified orthogonal and independent unit shocks (see (9)). For further notes see Fig. 2
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contradicts basic assumptions of a stylized Kolmogorov PP model. This result is

supportive for the critical perspective on GIRFs provided by Kim (2013).

3.3.2 Identified impulse responses to structural shocks

Continuing the structural analysis we discuss the dynamic response patterns of prey

and predator population growth rates to stylized (orthogonalised and independent)

unit shocks. With regard to the first shock the upper left panel of Fig. 3 indicates

that its positive impact on prey growth turns significantly negative within the first 24

hours. Then, cyclical effects imply a return to positive rates of population growth

which lack 10% significance. The response of the prey population to this shock

leads the response of the predator population growth. The latter achieves its

minimum value after 48 hours and the maximum of recovery also follows the

maximum prey recovery with a delay of 24 hours.

The second shock displayed in the right hand side panels of Fig. 3 impacts

positively on predator growth and shows a markedly diminishing effect on prey

growth. Due to the deterioration of the availability of nutrition, the initially positive

response of predator growth turns negative within 24 hours to allow an almost

significant recovery of the prey population followed again by positive dynamic

responses of predator population growth.

3.4 Marginal effects

As argued in Sect. 3.4 the structural model and - in particular - its reformulation in

(6) allows to recover the contemporaneous effect of growth rates in either species on

the remaining one conditional on the history of the process. Structural model

estimates of inverse (and normalized) bD�1 matrices are

D�1
ðFSÞ ¼

1 1:220

�5:095 1

� �
and D�1

ðRSÞ ¼
1 1:225

�6:838 1

� �

for the full sample and the reduced sample respectively. The estimated structural

model implies the contemporaneous relationships between prey and predator pop-

ulation as documented in Table 5. In the steady state an increase of the predator

population growth by one percentage point invokes a reduction of the prey

Table 5 Contemporaneous causal effects implied by the identified model after its reorganization (see (6))

Full sample Reduced sample

pt ! nt nt ! pt pt ! nt nt ! pt

�1:220

ð�1:481; �1:064Þ
5:095

ð2:384; 8:175Þ
�1:225

ð�1:391; �1:018Þ
6:838

ð2:502; 9:135Þ

Bootstrap interquartile ranges of parameter estimates in parentheses. The causal patterns of interest are

indicated with ‘! ’ . Causal effect estimates pt ! nt (nt ! pt) obtain from inverted structural estimates

after normalization as �dð12Þ=dð11Þ (�dð21Þ=dð22Þ), where dðijÞ is the ij-element of D�1
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population growth by about 1.2 percentage points. Bootstrapping the structural

model obtains an interquartile range of this relation which is between 1.06 and 1.48

(1.02 and 1.39) percentage points for the full (reduced) sample. Regarding the

reversed directional impact, an increase in prey growth by one percentage point

increases, on average, predator growth by 5.1% (6.8%) percentage points for the full

(reduced) sample. Although these estimates are representative for the steady state, it

is worth noticing that in directional terms both contemporaneous causal effects are

in line with the axiomatic assumptions of the Kolmogorov model.

4 Conclusions

In the ecological literature predator-prey (PP) models have become a successful

approach to understand species’ interactions. Ewing et al. (2007) have argued

convincingly in favour of the informational content of vector autoregressive models

for the dynamic analysis in PP systems conditional on samples drawn (with low

frequency) at discrete time. In this paper we complement their analysis of a

prominent laboratory time series of population counts of two freshwater organisms

(Veilleux 1979). Generalised impulse response patterns (Pesaran and Shin 1998)

displayed in the benchmark study of Ewing et al. (2007) are not fully in line with

the axiomatic foundations of PP models as stated in the Kolmogorov model

(Freedman 1980). This caveat can be traced back to the fact that generalised impulse

response functions lack a strictly structural interpretation.

We take advantage of recent contributions to the literature on identification in

structural VAR models to provide insights into both the dynamic and the

contemporaneous interplay of the two freshwater organisms. In specific, our

analysis builds upon the uniqueness of independent shocks which exhibit a non-

Gaussian distribution (Lancaster 1954; Comon 1994). Independent components give

rise to a structural model which is well identified and in line with the basic

axiomatic foundations of PP models. The statistical approach to identification

allows to test the otherwise just identifying assumption of a hierarchical model

structure. If the hierarchical model develops from regarding surprises to prey growth

as rescaled structural shocks, the model is in line with an assumption of independent

shocks. Estimating the structural parameters unrestrictedly provides further support

for the hierarchical structure. With regard to the functional response in PP models

our steady state approximation implies that conditional on a history of three half

days, the prey population growth ‘instantaneously’ shrinks by about 1.2 percentage

points in response to an increase of the predator population by one percentage point.

Adopting statistical identification schemes to the laboratory data of Veilleux

(1979) shows the potential of structural perspectives on PP models of competition,

coordination and predation. As a matter of fact, the laboratory design of data

generation limits the material interpretation of the identified shocks. An interesting

avenue for future research is the adaptation of structural VARs to real life data in

ecology and other disciplines (e.g., the prominent linkage among ‘snowshoe hare’

and ‘Canada lynx’ Stenseth et al. 1997). In such a context interesting ecological

issues could be addressed by means of SVARs that are identified in a statistical and/
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or theory based manner. For instance, the effects of controlled releases of the

predator species into the wild could be assessed by means of structural impulse

responses. Similarly, to understand the possible effects of weakened protection rules

for preys (and, hence, more hunting) structural impulse responses promise valuable

information.

Appendix: The dependence coefficient

Let nst ¼ ðn1s; n2tÞ0; t ¼ 1; 2; . . .; T denote a sample of bivariate tuples consisting of

two random variables n1t and n2t. Then, the dependence coefficient of Bakirov et al.

(2006) is

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w5 � w1 � w2

w3 þ w4 � w2

s
; ð14Þ

where

w1 ¼ 1

T2

XT
s¼1

XT
t¼1

jjnss � nttjj; w2 ¼ 1

T4

XT
s¼1

XT
t¼1

XT
p¼1

XT
q¼1

jjnst � npqjj;

w3 ¼ 1

T2

XT
s¼1

XT
t¼1

jn1s � n1tj; w4 ¼ 1

T2

XT
s¼1

XT
t¼1

jn2s � n2tj and w5 ¼ 1

T3

XT
p¼1

XT
s¼1

XT
t¼1

jjnpp � nstjj;

and j � j and jj � jj are the Euclidean norms in R and R2, respectively. It is worth

noticing that in the empirical application pursued here, estimated quantities n̂t enter

C and not directly observed random variables. However, from the
ffiffiffiffi
T

p
consistency of

estimated VAR residuals êt it is easy to show that observation specific estimation

errors of n̂t vanish on average when determining the sample moments

wi; i ¼ 1; 2; . . .; 5. Unlike rank-based dependence diagnostics (as, e.g., Hoeffding’s

D) the dependence coefficient C is informationally efficient, since it relies on the

original random variables in nt in their metric form.
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