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Abstract
Two-piece location-scale models are used for modeling data presenting departures
from symmetry. In this paper, we propose an objective Bayesian methodology for
the tail parameter of two particular distributions of the above family: the skewed
exponential power distribution and the skewed generalised logistic distribution. We
apply the proposed objective approach to time series models and linear regression
models where the error terms follow the distributions object of study. The performance
of the proposed approach is illustrated through simulation experiments and real data
analysis. The methodology yields improvements in density forecasts, as shown by the
analysis we carry out on the electricity prices in Nordpool markets.

Keywords Bayesian inference · Loss-based prior · Objective Bayes · Electricity
prices

1 Introduction

Two-piece location-scale models have been mainly used for modeling data exhibiting
departures from symmetry.Moreover, some specific two-piece location-scale distribu-
tions have been employed in finance to represent the errors in GARCH-type models,
see Zhu and Zinde-Walsh (2009), Zhu and Galbraith (2011). Different mechanisms
have been presented to obtain skewed distributions by modifying symmetric distri-
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butions (Azzalini 1985; Fernandez and Steel 1998; Mudholkar and Hutson 2000).
Recently, the objective Bayesian literature focused on this class of models. Firstly,
Rubio and Steel (2014) derived the Jeffreys rule prior and the independence Jeffreys
priors for different families of skewed distributions. They show that Jeffreys priors for
some distributions, such as the skewed Student-t , lead to improper posterior distribu-
tions. Conversely, reference priors have shown to be more suitable for the above class
of distributions, see Tu et al. (2016).

In this work, we introduce a novel objective prior for some distributions of the class
of two-piece location-scale models, such as the skewed exponential power distribu-
tion (SEPD) and the skewed generalized logistic distribution (SGLD). Recently, SEPD
has been introduced in regression and stochastic volatility models by Naranjo et al.
(2015) and Kobayashi (2016). Moreover, SEPD has been used as working likelihood
in the quantile regression analysis by Bernardi et al. (2018) and for Bayesian Condi-
tional Autoregressive RiskMeasures by Bernardi et al. (2019). Following Leisen et al.
(2017), we introduce a Bayesian approach obtained by applying the loss-based prior
discussed in Villa and Walker (2015). In particular, we derive the loss-based prior for
the parameter that controls heaviness of the tails of the distribution.

In the literature, the asymmetric Laplace distribution (ALD) or the asymmetric
Student-t distribution (AST) have gained importance in a wide range of disciplines,
such as economics (Zhao et al. 2007; Leisen et al. 2017), financial analysis (Zhu and
Galbraith 2010;Kozubowski and Podgorski 2001;Harvey andLange 2016) andmicro-
biology (Rubio and Steel 2011). However, the application of the SEPD and SGLD to
represent the errors of time series and regressionmodels, has received limited attention
in the context of objective Bayesian analysis. The aim of this paper is to contribute to
the above research area by introducing an information theoretical approach to address
inference on the tail parameter of the two skewed distributions.

As currently there is a growing interest in electricity prices [see Weron (2014)
and Nowotarski and Weron (2018) for a review], we will contribute to the analysis
of monthly electricity prices in the Nordpool market, in particular for Denmark and
Finland through an autoregressive model with errors distributed as a SEPD. Com-
pared to the standard frequentist autoregressive approach, which is the benchmark in
the literature (see Conejo et al. (2005), Misiorek et al. (2006) and Maciejowska and
Weron (2015)), we can show that our methodology improves the density forecasting.
In addition, we consider a linear regression model where the residuals are SGLD with
a loss-based prior on the tail parameter. We illustrate the above model by studying the
Small Cell Cancer data set in Ying et al. (1995) and in Rubio and Yu (2017).

The structure of this document is as follows. In Sect. 2we introduce the general two-
piece location-scale distribution and discuss special distributions further developed in
the paper, such as the SEPD and the SGLD. Section 3 focuses on the derivation of the
objective priors for the parameters of themodels here considered. In Sect. 4 we analyse
the frequentist properties of the proposed prior using data simulated from regression
models and time series models. Section 5 deals with real data, in particular we model
electricity prices and a cancer dataset. Final discussion points and conclusions are
presented in Sect. 6.
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2 Two-piece location-scale models

As described inRubio and Steel (2014), in the simple univariate location-scalemodel it
is possible to induce skewness by the use of different scales on both sides of the model
and using three different scalar parameters. Firstly, we introduce a general definition
of two-piece location-scale models and then we describe different distributions of this
family. The general two-piece location-scale density has the following form:

g(y|μ, σ1, σ2, α) = 1

σ1
f

(
y − μ

2ασ1

)
1(−∞,μ)(y) + 1

σ2
f

(
y − μ

2(1 − α)σ2

)
1(μ,∞)(y),

(1)
where f is an absolutely continuous distribution onR,μ ∈ R is the location parameter,
σ1 ∈ R

+ and σ2 ∈ R
+ are the separate scale parameters and α ∈ (0, 1) is the

skewness parameter. In this paper, we follow Rubio and Steel (2014) and assume
f to be symmetric with a single mode at zero, which means that μ is the mode
of the density in (1). Hereafter, we assume σ1 = σ2 = σ and we focus on three
particular two-piece location-scale models: the skewed Student-t distribution (SST),
the skewed exponential power distribution (SEPD) and the skewed generalized logistic
distribution (SGLD). These distributions depend on an additional parameter p which
controls the behaviour of the tails. The SST is defined as follows.

Definition 2.1 (Skewed Student-tdistribution) Assume μ ∈ R the location parameter,
σ > 0 the scale parameter, α ∈ (0, 1) the skewness parameter and p > 0 the tail
parameter. We define the skewed Student-t distribution as

fSST(y|α, p, μ, σ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K (p)

σ

[
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]− p+1
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, y ≤ μ,

K (p)

σ

[
1 + 1

p
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2(1 − α)σ

)2
]− p+1

2

, y > μ,

(2)

where

K (p) = �[(p + 1)/2]√
π p �(p/2)

is a function depending on the tail parameter p.

For a more detailed description of the properties of the SST distribution, see Fer-
nandez and Steel (1998) and Zhu and Galbraith (2010). The SST has some special
cases: if α = 1/2, it is the usual Student-t with p degrees of freedom; if p = 1, is the
skewed Cauchy, while for p → ∞, it converges to the skewed normal distribution.
Leisen et al. (2017) have proposed a loss-based prior for the tail parameter p of the
SST distribution. Therefore, hereafter wewill give limited attention to this distribution
and we will focus on the remaining two distributions.

The first distribution of interest in our analysis accommodates heavy tails as well
as skewness and is defined as follows.
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Definition 2.2 (Skewed exponential power distribution) Let us define μ ∈ R, the
location parameter, σ > 0, the scale parameter, α ∈ (0, 1) the skewness parameter
and p > 0 the tail parameter. The skewed exponential power distribution has the form

fSEPD(y|α, p, μ, σ ) =
⎧⎨
⎩

K (p)
σ

exp
{
− 1

p

∣∣ y−μ
2ασ

∣∣p}, y ≤ μ,

K (p)
σ

exp
{
− 1

p

∣∣∣ y−μ
2(1−α)σ

∣∣∣p}, y > μ,
(3)

with normalizing constant

K (p) = 1

2p1/p�
(
1 + 1

p

) .

The SEPD has been studied in Fernandez and Steel (1998), Komunjer (2007) and
Zhu andZinde-Walsh (2009). In detail, for p = 1 the SEPDbecomes a skewedLaplace
distribution, and for p = 2 is a skewed normal distribution. For values of p → ∞,
we have that the SEPD reduces to an uniform distribution.

The second distribution we will study, is built on a Beta transformation of the
logistic distribution [as described in Jones (2004)]:

f (x) = p[S(x)]s(x), (4)

where p(·) is the probability density function of a Beta distribution with parameters
(p, p) and S(x) and s(x) are, respectively, the cumulative distribution function and
the probability density function of the logistic distribution

s(x) = exp
{− x−μ

σ

}
σ
(
1 + exp

{− x−μ
σ

})2 , x ∈ R∗.

Note that, f (x) in (4) is also known as the logistic distribution of the III type. Its
skewed version is defined as follows.

Definition 2.3 (Skewed generalized logistic distribution) Assume μ ∈ R, the location
parameter, σ > 0, the scale parameter, α ∈ (0, 1) the skewness parameter and p > 0
the tail parameter. We define the skewed generalized logistic distribution as

fSGLD(y|α, p, μ, σ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
σ B(p,p)
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exp
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1
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− y−μ
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})p

(
1+exp

{
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2(1−α)σ

})2p , y > μ,

(5)

where B(p, p) is the beta function.
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3 The objective prior distribution

Through Bayes theorem, we obtain the posterior, given data x = (x1, . . . , xn), by
combining the likelihood function and the prior. That is

π(α, p, μ, σ |x) ∝ L(x|α, p, μ, σ )π(α, p, μ, σ ), (6)

where L(x|α, p, μ, σ ) = ∏n
i=1 f (xi |α, p, μ, σ ) is the likelihood function, and

π(α, p, μ, σ ) is the prior distributions for all the parameters of the two-piece
location-scale. Assuming some degree of independence of prior knowledge about
the parameters, the prior distribution can be factorized as

π(α, p, μ, σ ) ∝ π(p|α,μ, σ )π(μ, σ )π(α). (7)

In the next section we will show that for the models under consideration, the prior on
the parameter p does not depend on α,μ and σ . As such, we can write π(p|α,μ, σ ) =
π(p).

3.1 Loss-based prior for p

The main focus of this paper is to make inference on the parameter p. Without loss
of generality, p is considered discrete taking values in N. This is motivated by the
fact that seldom the amount of information about p in the data is sufficient to discern
between distributions that differ in p less than one. For instance, this is a well known
fact for the Student-t distribution.

Villa and Walker (2015) introduced a method for specifying an objective prior for
discrete parameters. Consider the general two-piece location scale distribution

f α,μ,σ
p (y) =

{
1
σ
f p
( y−μ
2ασ

)
, y ≤ μ,

1
σ
f p
(

y−μ
2(1−α)σ

)
, y > μ,

(8)

which corresponds to the SEPD if f p is the exponential power distribution and to the
SGLD if f p coincides with the distribution displayed in Eq. (4).

The density function f α,μ,σ
p (y) is characterised by the unknown discrete parameter

p. The idea is to assign aworth to each parameter value by objectively measuring what
is lost if the value is removed, and it is the true one. The loss is evaluated by applying the
well known result in Berk (1966) stating that, if a model is misspecified, the posterior
distribution asymptotically accumulates on the model which is the nearest to the true
one, in termsof theKullback–Leibler divergence.Therefore, theworthof theparameter

value p is represented by the Kullback–Leibler divergence DKL

(
f α,μ,σ
p ‖ f α,μ,σ

p′
)
,

where p′ �= p is the parameter value that minimizes the divergence. To link the worth
of a parameter value to the priormass, Villa andWalker (2015) use the self-information
loss function. This particular type of loss function measures the loss in information
contained in a probability statement (Merhav and Feder 1998). As we now have, for
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each value of p, the loss in information measured in two different ways, we simply
equate them obtaining the loss-based prior:

π(p) ∝ exp

{
min
p′ �=p

DKL

(
f α,μ,σ
p ‖ f α,μ,σ

p′
)}

− 1, (9)

where

DKL

(
f α,μ,σ
p ‖ f α,μ,σ

p′
)

=
∫

f α,μ,σ
p (y) log

{
f α,μ,σ
p (y)

f α,μ,σ

p′ (y)

}
dy

is the Kullback–Leibler divergence.
FollowingLeisen et al. (2017),we introduce a theorem (which proof is in “Appendix

A”) to study the form of the Kullback–Leibler divergence and consequently of the loss-
based prior for the tail parameter p.

Theorem 3.1 Let f α,μ,σ
p be the density function displayed in Eq. (8) which could be

either the SEPD or the SGLD. Then,

DKL

(
f α,μ,σ
p ‖ f α,μ,σ

p′
)

= DKL

(
f α=0.5,μ=0,σ=1
p ‖ f α=0.5,μ=0,σ=1

p′
)

for every p ≥ 1.

In other words, Theorem 3.1 shows that the loss-based prior distribution for the tail
parameter p does not depend from the skewness parameter α, the location μ and the
scale σ . Hence, the prior can be written as π(p|α,μ, σ ) = π(p).

The following theorem derives the closed form of the Kullback–Leibler divergence
for the SEPD. Its proofs, which can be found in “Appendix A”, leveraged on the result
in Theorem 3.1.

Theorem 3.2 Let f α,μ,σ
p be the SEPD, with skewness parameter α ∈ (0, 1), location

parameter μ ∈ R, scale parameter σ ∈ R+ and tail parameter p ∈ {1, 2, . . . } as
described in Eq. (3). Then, the Kullback–Leibler divergence between two SEPDs that
differ in the tail parameter only is:

DKL

(
f α,μ,σ
p ‖ f α,μ,σ

p′
)

= log K (p) − log K (p′) − p−1 + p
p′
p

p′
�
(
p′+1
p

)

�
(
1
p

) .

By applying the result of Theorem 3.2 into Eq. (9), we can then derive the loss-
based prior for the SEPD. From Table 5 we see that the minimum Kullback–Leibler
divergence is attained for p′ = p + 1 when p ≤ 3 and for p′ = p − 1 for p > 3. As
such, the prior on p is:
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π(p) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎡
⎢⎢⎣log K (p) − log K (p + 1) − p−1 + p

p+1
p

p + 1

�

(
p + 2

p

)

�

(
1

p

)
⎤
⎥⎥⎦ − 1, for p ≤ 3,

exp

⎡
⎢⎢⎣log K (p) − log K (p − 1) − p−1 + p

p−1
p

p − 1

1

�

(
1

p

)
⎤
⎥⎥⎦ − 1, for p > 3.

We have numerically verified that the above prior for p is proper for p =
{1, 2, 3, . . . ,∞}, therefore yielding a proper posterior.

To derive the loss-based prior for the parameter p of the SGLD, we consider the
following Theorem 3.3 (which proof is in the “Appendix A”), giving the expression
of the Kullback–Leibler divergence between two SGLDs.

Theorem 3.3 Let f α,μ,σ
p be the SGLD with skewness parameter α ∈ (0, 1), location

parameter μ ∈ R, scale parameter σ ∈ R+ and tail parameter p ∈ {1, 2, . . . },
respectively as described in Eq. (5). Then, the Kullback–Leibler divergence between
two SGLDs that differ in the tail parameter only is:

DKL

(
f α,μ,σ
p ‖ f α,μ,σ

p′
)

= log

[
B(p′, p′)
B(p, p)

]
+ 2(p − p′)[ψ(p) − ψ(2p)], (10)

where ψ(p) is the digamma function.

From Table 6 we see that the Kullback–Leibler divergence between two SGLD is
minimised for p′ = p + 1, and thus the loss-based prior is as follows:

π(p) ∝ p

2(2p + 1)
exp {2 [ψ(2p) − ψ(p)]} − 1, (11)

which is proper, as we have numerically verified.

3.2 Non-informative prior for the parameters˛,� and�.

In line with the minimally informative focus of the paper, we have selected objective
priors for the other parameters of the considered distributions. That is, we have con-
sidered Jeffreys priors for α, μ and σ . As mentioned at the beginning of Sect. 3, we
assume that the prior information on the true value of the parameters is independent.
As such, we can consider, not only π(α) on its own, but we can also factorise the
prior of the location and the scale parameters; that is π(μ, σ) = π(μ)π(σ). The Jef-
freys prior for μ and σ is then proportional to 1/σ , which is obtained by considering
the Jeffreys prior for a location parameter, π(μ) ∝ 1, and the Jeffreys prior for a
scale parameter, π(σ) ∝ 1/σ . Both these priors are extensively discussed in Jeffreys
(1961). It is worthwhile to note that the above considerations recover the well-known
reference prior for the pair (μ, σ ) (Berger et al. 2009).
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Finally, the Jeffreys prior for the skewness parameter α has been introduced in
Rubio and Steel (2014), and it shows to be a Beta distribution with both parameters
equal to 1/2. That is π(α) ∼ Be(1/2, 1/2).

4 Simulation studies

It is important to analyse the performances of objective priors by studying the fre-
quentist properties of the posterior distributions they yield to. As such, the aim of
this section is to present simulation studies concerning the objective priors for p, as
defined in Sect. 3, for the considered two-piece location-scale models discussed in
this work. In particular, we study time series where the residual error terms follow a
SEPD and regression models with error terms that follow a SGLD.

4.1 SEPD simulation study

In this simulation exercise, we study an autoregressive (AR) model, where we assume
the lag order equal to 1. Therefore, the AR model has the following form:

yt = φ1yt−1 + εt , t = 1, . . . , T , (12)

where we assume that the residual errors εt follow a SEPD(α, p, μ, σ ) with p =
1, . . . , 20, α ∈ {0.3, 0.5, 0.8}, μ = 0 and σ = 1. The parameter φ1 is set equal
to 0.5. Finally, we consider sample sizes of T = 100 and T = 250. The analysis
has been carried by assuming the loss-based prior on p as defined in Sect. 3.1. The
prior for the remaining three parameters of the SEPD, has been fixed as explained in
Sect. 3.2. For the parameter φ1, we assume a Zellner prior (Zellner 1986) with g = T ,
that is N (0, T (

∑T−1
i=1 y2i )

−1). For each of the above scenarios, we have generated
250 random samples, as described in the “Appendix C”, and computed the frequentist
coverage of the 95% posterior credible interval for p, and the relative square root of
the mean squared error

√
MSE(p)/p. The coverage measures the frequency of which

the true parameter value for p is included in the 95% credible interval of the posterior
distribution of the parameter. Ideally, this value should be close to 0.95. The MSE
allows to have a measure of the accuracy of the estimate, intended as the posterior
mean for p.

As the yielded posterior distribution for the parameters is not analytically tractable,
it is necessary to adopt Markov Chain Monte Carlo (MCMC) methods. In particular,
we have implemented a Metropolis within Gibbs sampler. For each of the above 250
samples, we have run 20,000 iterations of the MCMC algorithm and discarded the
first 5000 iterations as burn-in period. The results of the frequentist analysis of the
posterior of p are plotted in Fig. 1. Examining the coverage, we note that the samples
with T = 100 have a frequency closer to the nominal value (i.e. 95%) compared to
the samples with T = 250; this is more obvious for relatively large values of p. The
MSE behaves in line with other frequentist studies for tail parameters (such as for the
Student-t and the skewed Student-t), with a smaller index value for larger sample size
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Fig. 1 Frequentist coverage of the 95% posterior credible interval for p (left) and square root of relative
mean squared error of the estimator of p (right) for the SEPD. The simulations are for α = 0.2 (blue
continuous line), α = 0.5 (red dashed line) and α = 0.8 (black dotted line), and for T = 100 (top),
T = 250 (bottom)

(as expected). Finally, we note that the effect of α on the frequentist performances is
negligible.

To have a feeling of the complete inferential procedure,we showhowall the parame-
ters of a model are estimated. In particular, we consider an autoregressive model with
one lag, φ1 = −0.5. The error terms are assumed to have an SEPD with σ = 1,
α = 0.23 and p = 9. We have drawn a sample of size T = 300 from the model and
implemented the MCMC procedure described above. In Fig. 2 we show the poste-
rior chain and histogram for parameters α, φ1, p and σ . The corresponding posterior
mean, median and 95%HPD credible set are reported in Table 1. We note that the true
parameter values are well contained in the corresponding posterior credible interval.

4.2 SGLD simulation study

To study the performance of the loss-based prior for the tail parameter p of the SGLD,
as anticipated, we consider a linear regression model where the error terms have the
above distribution. That is,

yi = β0 + β1xi + εi , i = 1, . . . , n, (13)
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Fig. 2 Sample chains (left panels) and histograms of the posterior distributions (right panels) of the param-
eters for the simulated data from the SEPD with α = 0.23, φ1 = −0.5, p = 9, σ = 1 and T = 300
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Table 1 Summary statistics of
the posterior distributions for the
parameters of the simulated data
from an SEPD with α = 0.23,
φ1 = −0.5, p = 9, σ = 1 and
T = 300

Parameter Mean Median 95% HPD

α 0.2325 0.2310 (0.2144, 0.2542)

φ1 − 0.4672 −0.4684 (−0.5180, −0.4091)

p 9.5238 9 (5, 17)

σ 1.0231 1.0214 (0.9033,1.1533)

where, for the purpose of this simulation, we have set β0 = 1.5, β1 = −1 and
εi ∼ SGLD(α, p, μ, σ ). We select 250 random samples from the above model (13)
for each scenario determined by p = 1, . . . , 20, α = {0.3, 0.5, 0.8} and n = 30, 100.
The scale parameter σ has been fixed to 1. The simulation study has been performed
by considering a loss-based prior on p, the Jeffreys prior for the skewness parameter,
π(α) ∼ Be(1/2, 1/2), and for the scale parameter, π(σ) ∝ 1/σ (as discussed in
Sect. 3.2). For β0 and β1 we have used the Zellner g-prior (Zellner 1986) with g = n,
which is a bivariate normal with zero means and covariance matrix 
 = n(X ′X)−1,
where X = (1, x1i ).

For this model as well the posterior distribution is analytically intractable. There-
fore, we have implemented an MCMC procedure (Metropolis within Gibbs samples)
with 10,000 iterations and a burn-in period of 5000 iterations. The frequentist analysis
of the posterior for p is shown in Fig. 3. The coverage of the posterior 95% credible
interval appears to be very similar whether we consider the different values of the
skewness parameter α or the sample size. For what it concerns the MSE, we note
some differences when the sample size is 30, although these are most certainly due
to the relatively small amount of information about p contained in the sample. This
difference vanishes for n = 100. Similarly to the study of the SEPD model, we report
the complete inferential procedure for a single sample drawn from the model in (13),
where we have set β0 = −2.5, β1 = 3, α = 0.23, p = 9 and σ = 1. We run an
MCMC procedure with 30.000 iterations and a burn-in period of 5.000 iterations. The
posterior chains and histograms are plotted in Fig. 4, with the corresponding poste-
rior statistics reported in Table 2. We note that the posterior means and medians give
an excellent point representation of the true parameter values, and that the posterior
credible intervals contain the above true values giving a high level accuracy of the
estimates.

5 Real data analysis

In this section, we present two different examples with publicly available data to
illustrate how the loss-based prior for the tail parameter p performs. In the first example
we analyse the Nordpool Electricity prices by means of an autoregressive model with
error terms distributed as a skewed exponential power, while in the second example we
apply a linear regression model with error terms distributed as a skewed generalised
logistic to Small Cell Cancer data.
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Fig. 3 Frequentist coverage of the 95% credible intervals for p (left) and square root of relative mean
squared error of the estimator of p (right) for the SGLD. The simulations are for α = 0.2 (blue continuous
line), α = 0.5 (red dashed line) and α = 0.8 (black dotted line), and for n = 30 (top), n = 100 (bottom)

5.1 Nordpool electricity prices data

We use monthly prices (in level) to estimate models for electricity traded (Bottazzi
and Secchi 2011; Trindade et al. 2010) in Nordpool countries: in particular, Finland
and Denmark. The prices, which have been obtained directly from the corresponding
power exchanges, are plotted in Fig. 5. Note that, for Denmark, we have averaged the
two hourly zonal prices from Nordpool. The data is considered as the growth rate,
meaning that we model the standardised first differences. Finally, of the T = 180
observation points, we use the first ten years as estimation sample and the last five
years as forecast evaluation period.

The data is modelled with a univariate autoregressive model with one lag, where
the error terms are SEPD. The results of the analysis are based on one-step-ahead
forecasting process with a rolling window approach of 10 years for both the countries,
and we have a forecast evaluation period of 60 observations (from January 2013 to
December 2017). Following the results in Sect. 4, we run the estimation procedure
through Gibbs sampling with a burn-in of 5.000 iterations and for the forecasting
procedure we use the remaining 15.000 iterations.
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Table 2 Summary statistics of
the posterior distributions for the
parameters of the simulated data
from an SGLD with α = 0.13,
β0 = −2.5, β1 = 3, p = 9 and
n = 300

Parameter Mean Median 95% HPD

α 0.1363 0.136 (0.1155,0.1615)

β0 − 2.5396 −2.54 (−2.5775, −2.4964)

β1 3.0048 3.0041 (2.9639, 3.0494)

p 8.9295 9 (8, 10)
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Fig. 5 Monthly electricity prices (in level) for Finland (left panel) and Denmark (right panel) from January
2003 to December 2017

We assess the goodness of our forecasts using different point and density metrics.
For point forecasts, we use the root mean square errors (RMSEs) for the monthly
prices as follows:

RMSE =
√√√√ 1

T − R

T−1∑
t=R

(
ŷt+1|t − yt+1|t

)2
, (14)

where T is the number of observations, R is the length of the rolling window and
ŷt+1|t are the price forecasts.

To evaluate density forecasts, we use both the average log predictive score and
the average continuous ranked probability score (CRPS). The log predictive score is
computed as follows [see Geweke and Amisano (2010)]

st (yt+1) = log ( f (yt+1|It ),

where f (yt+1|It ) is the predictive density for yt+1 constructed using information up
to time t . In addition, following Gneiting and Raftery (2007) and Gneiting and Ranjan
(2011), we also compute the continuous ranked probability score, which has some
advantages with respect to the log-score. In fact, it is less sensitive to outliers. It can
be computed as follows:
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Table 3 Point (RMSE) and density forecast (average log predictive score and average CRPS) for Finland
and Denmark

Forecast OLS Bayesian Normal SEPD error

Finland RMSE 0.749 1.003 1.022

log-score −1.334 0.090 0.106

CRPS 0.491 0.899 0.891

Denmark RMSE 0.541 1.001 1.021

log-score −1.143 0.013 0.165

CRPS 0.355 0.990 0.918

The first column (OLS) refers to the benchmark model and shows the values of the RMSE, average log
predictive score and average CRPS. The second (Bayesian Normal) and third (SEPD error) columns refer
to the RMSE ratios, score differences and CRPS ratios with respect to the benchmark model (OLS)

CRPSt (yt+1) =
∫ ∞

−∞
(F(z) − I{yt+1 ≤ z})2 dz

= E f |Yt+1 − yt+1| − 0.5E f |Yt+1 − Y ′
t+1|, (15)

where F denotes the cumulative distribution function associated with the predictive
density f , I{yt+1 ≤ z} denotes an indicator function taking value 1 if yt+1 ≤ z and
0 otherwise, and Yt+1 and Y ′

t+1 are independent random draws from the posterior
predictive density.

In Table 3, we report the RMSEs, average log-scores and average CRPS for the
benchmark model, which is referred as the AR model with frequentist estimation.
We compare the results from the Ordinary Least Squares (OLS) benchmark with
the results obtained from the Bayesian AR with Normal error and our model based
on SEPD errors. We also report the ratios of each model RMSE (average CRPS)
to the baseline AR model, such that entries less than 1 indicate that the given model
yields forecasts more accurate than those from the baseline. For the log-score, positive
differences in score indicate that the given model outperforms the baseline.

For both Finland and Denmark the point forecast appears to be worse than the
benchmark. This is more obvious for the AR model with SEPD errors, although the
values are not far from one. There is a noticeable improvement, in using SEPD errors,
when we focus on density forecast. In fact, considering the log-score, we have a
improvement in considering SEPD (instead of normal) errors from 0.090 to 0.106 for
Finland, and a more obvious improvement from 0.013 to 0.165 for Denmark.

5.2 Small cell cancer data

In this second example we illustrate the loss-based prior for the tail parameter p when
we employ a linear regression model with SGLD errors. The data has been obtained
fromYing et al. (1995), where a lung cancer studywith two different types of treatment
has been performed. In particular, the study contained n = 121 survival times (in log-
days) of patients with small cell lung cancer (SCLC) to whom were administrated
two different therapies. A treatment consisted of a combination of etoposide (E) and
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Fig. 6 Posterior histograms for the parameters of the regression model with SGLD errors for the SCLC
study

cisplatin (P) in any order. The patient were split into two treatment groups: treatment A
(62 patients), where the therapy consisted in administering P followed by E; treatment
B (59 patients), where the therapy consisted in administering E followed by P. We
regress the survival time on the following two covariates: the entry age (in years) and
a dummy variable identifying the type of treatment (A or B).

The estimation of the parameters of the regression model has been done through
Monte Carlo methods, as described in Sect. 4, with 50,000 iterations and a burn-in
period of 10,000 iterations. Figure 6 shows the histograms of the posterior distributions
for the parameters, while in Table 4 we have the corresponding posterior statistics.
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Table 4 SCLC Lung Cancer data: Posterior mean, posterior median and 95% HPD credible set of the
posterior for the regression model parameters

Parameter Mean Median 95% HPD Rubio & Yu

Intercept 6.8438 6.9059 (5.6692, 7.4672) 6.690

Entry age −0.0105 −0.0117 (−0.0216, 0.0079) −0.009

Treatment −0.3637 −0.3611 (−0.7161, −0.0552) −0.446

α 0.3837 0.3814 (0.2717, 0.5116) −0.395 (γ )

p 4.5349 3 (1, 14) NA

σ 0.8630 0.7771 (0.3649, 1.7209) 0.650

The last column to the right reports the posterior means from Rubio and Yu (2017), where the skewness
parameter is represented by γ ∈ (−1, 1) expressing positive skewness for values smaller than 0

The estimated intercept of the regression model, represented by the posterior
median, is similar to the result in Rubio and Yu (2017), that is 6.69. Similar con-
siderations can be drawn for the coefficient of the entry age, which is very small and
with a credible interval containing the zero; this last result supports the conclusion
that the effect of the entry age on the survival time is negligible. However, the treat-
ment appear to have a significant (negative) effect on the survival time, both under
the estimated model and the results in Rubio and Yu (2017). For the scale parameter
σ , we again see agreement between the SEPD regression and the results of the above
authors, although our credible interval is larger. It is not possible to perform a direct
comparison of the estimated asymmetry, but in both case the value shows a clear pos-
itive skewness. Finally, our inferential procedure suggests that the data exhibit heavy
tails, as indicated by the posterior median of p = 3.

6 Discussion

We have illustrated an objective Bayesian approach in the estimation of the tail param-
eter in two particular distributions: the skewed exponential power distribution (SEPD)
and the skewed generalised logistic distribution (SGLD). This represents a new appli-
cation of the well-known loss-based prior (Villa andWalker 2015), where information
theoretical considerations are used to derive minimally informative prior distributions.
The SEPD and the SGLD are part of the wider family of two-piece location-scale dis-
tribution and allow to entangle skewness and tail fatness in one single probability
distribution. Therefore, they represent an appealing modeling solution in scenarios
where such behaviours are exhibited by the data, such as in financial applications and
survival analysis.

We illustrate the properties of the loss-based prior for the tail parameter of the above
distributions by performing a thorough simulation study and analysis two real data
sets. Furthermore, we show how the SEPD and SGLD can be used tomodel error terms
in complex modeling situations, such as the error terms of autoregressive process for
time series and error terms for linear regression models.

We conclude the paper with the indication of some future research lines. Our
approach can be extended to volatility models in order to model the tail behaviour
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of the returns in electricity markets. Furthermore, a combination of our loss-based
approach with quantile regression could be a possible extension.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Proofs

Proof of Theorem 3.1 Note that,
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Focusing on the first term, we have that:
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where the last equality follows from (8). By performing the change of variable x =
y−μ
2ασ

, we get
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{
f p(x)
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For themodels under consideration, i.e. the SEPDand the SGLD, f p = f α=0.5,μ=0,σ=1
p

and f p′ = f α=0.5,μ=0,σ=1
p′ . Therefore,
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Similarly,
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Therefore, by using the above identity, we can conclude the proof:
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Proof of Theorem 3.2 Using the probability density function displayed in Eq. (3), we
have that:
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From 3.478.1 of Gradshteyn and Ryzhik (2007),
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In conclusion, following Theorem 3.1, the Kullback–Leibler divergence has the form
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Proof of Theorem 3.3 Using the probability density function displayed in Eq. (5), we
have that:

DKL

(
f α=0.5,μ=0,σ=1
p || f α=0.5,μ=0,σ=1

p′
)

=
∫ ∞

−∞
e−px

B(p, p)(1 + e−x )2p
log

[
B(p′, p′)
B(p, p)

e−px/(1 + e−x )2p

e−p′x/(1 + e−x )2p
′

]
dx

=
∫ 1

0

1

B(p, p)
t p−1(1 − t)p−1 log

[
B(p′, p′)
B(p, p)

t p(1 − t)p

t p′
(1 − t)p′

]
dt,

where t = S(x), dt = s(x)dx and S(x) and s(x) are the cumulative distribution and
the probability distribution function of the logistic distribution, respectively. Hence,
we can extend the Kullback–Leibler divergence as
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In conclusion, from 4.253.1 of Gradshteyn and Ryzhik (2007)

∫ 1

0
t p−1(1 − t)p−1 log (t)dt = B(p, p) [ψ(p) − ψ(2p)] ,

whereψ(p) is the digamma function, the Kullback–Leibler divergence represented in
Eq. (A.2) has the following form
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B Comparison of the Kullback–Leibler Divergence for different distri-
butions

123



330 F. Leisen et al.

Ta
bl
e
5

C
om

pa
ri
so
n
of

th
e
K
ul
lb
ac
k–

L
ei
bl
er

di
ve
rg
en
ce
s
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p−

1

) an
d
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p+

1

) fo
r
p

=
2,

..
.,
30

fo
r
th
e
SE

PD

p
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p−

1

)
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p+

1

)
p

D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p−

1

)
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p+

1

)

2
7.
20

93
×1

0−
02

5.
91

44
×1

0−
02

17
6.
14

38
×1

0−
04

6.
34

13
×1

0−
04

3
2.
76

75
×1

0−
02

2.
64

62
×1

0−
02

18
5.
38

75
×1

0−
04

5.
55

78
×1

0−
04

4
1.
47

52
×1

0−
02

1.
47

59
×1

0−
02

19
4.
75

58
×1

0−
04

4.
90

36
×1

0−
04

5
9.
13

21
×1

0−
03

9.
30

19
×1

0−
03

20
4.
22

33
×1

0−
04

4.
35

23
×1

0−
04

6
6.
17

32
×1

0−
03

6.
34

02
×1

0−
03

21
3.
77

07
×1

0−
04

3.
88

40
×1

0−
04

7
4.
42

62
×1

0−
03

4.
56

46
×1

0−
03

22
3.
38

33
×1

0−
04

3.
48

33
×1

0−
04

8
3.
31

17
×1

0−
03

3.
42

23
×1

0−
03

23
3.
04

94
×1

0−
04

3.
13

81
×1

0−
04

9
2.
55

94
×1

0−
03

2.
64

74
×1

0−
03

24
2.
75

99
×1

0−
04

2.
83

88
×1

0−
04

10
2.
02

92
×1

0−
03

2.
09

97
×1

0−
03

25
2.
50

74
×1

0−
04

2.
57

80
×1

0−
04

11
1.
64

26
×1

0−
03

1.
69

96
×1

0−
03

26
2.
28

61
×1

0−
04

2.
34

94
×1

0−
04

12
1.
35

27
×1

0−
03

1.
39

94
×1

0−
03

27
2.
09

11
×1

0−
04

2.
14

81
×1

0−
04

13
1.
13

02
×1

0−
03

1.
16

88
×1

0−
03

28
1.
91

86
×1

0−
04

1.
97

01
×1

0−
04

14
9.
56

16
×1

0−
04

9.
88

38
×1

0−
04

29
1.
76

53
×1

0−
04

1.
81

20
×1

0−
04

15
8.
17

65
×1

0−
04

8.
44

80
×1

0−
04

30
1.
62

85
×1

0−
04

1.
67

10
×1

0−
04

16
7.
05

82
×1

0−
04

7.
28

89
×1

0−
04

30
1.
62

85
×1

0−
04

1.
67

10
×1

0−
04

12
0

5.
31

55
×1

0−
06

5.
38

00
×1

0−
06

60
3.
02

72
×1

0−
05

3.
08

29
×1

0−
05

15
0

3.
00

55
×1

0−
06

3.
03

70
×1

0−
06

90
1.
10

10
×1

0−
05

1.
11

69
×1

0−
05

18
0

1.
88

01
×1

0−
06

1.
89

75
×1

0−
06

123



Loss-based approach to two-piece location-scale distributions... 331

Ta
bl
e
6

C
om

pa
ri
so
n
of

th
e
K
ul
lb
ac
k–

L
ei
bl
er

di
ve
rg
en
ce
s
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p−

1

) an
d
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p+

1

) fo
r
p

=
2,

..
.,
30

fo
r
th
e
SG

L
D

p
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p−

1

)
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p+

1

)
p

D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p−

1

)
D
K
L

( fα
,μ

,σ
p

||f
α
,μ

,σ
p+

1

)

2
0.
12

51
0.
05

72
17

9.
27

55
×1

0−
04

8.
56

57
×1

0−
04

3
0.
04

28
0.
02

62
18

8.
24

11
×1

0−
04

7.
64

46
×1

0−
04

4
0.
02

14
0.
01

50
19

7.
37

04
×1

0−
04

6.
86

44
×1

0−
04

5
0.
01

28
0.
00

97
20

6.
63

08
×1

0−
04

6.
19

79
×1

0−
04

6
0.
00

85
0.
00

68
21

5.
99

72
×1

0−
04

5.
62

39
×1

0−
04

7
0.
00

61
0.
00

50
22

5.
45

03
×1

0−
04

5.
12

61
×1

0−
04

8
0.
00

45
0.
00

38
23

4.
97

49
×1

0−
04

4.
69

16
×1

0−
04

9
0.
00

35
0.
00

30
24

4.
55

91
×1

0−
04

4.
31

01
×1

0−
04

10
0.
00

28
0.
00

25
25

4.
19

33
×1

0−
04

3.
97

33
×1

0−
04

11
0.
00

23
0.
00

20
26

3.
86

98
×1

0−
04

3.
67

45
×1

0−
04

12
0.
00

19
0.
00

17
27

3.
58

24
×1

0−
04

3.
40

82
×1

0−
04

13
0.
00

16
0.
00

15
28

3.
32

58
×1

0−
04

3.
16

98
×1

0−
04

14
0.
00

14
0.
00

13
29

3.
09

59
×1

0−
04

2.
95

56
×1

0−
04

15
0.
00

12
0.
00

11
30

2.
88

90
×1

0−
04

2.
76

23
×1

0−
04

16
0.
00

11
0.
00

10

30
2.
88

90
×1

0−
04

2.
76

23
×1

0−
04

12
0

1.
75

31
×1

0−
05

1.
73

37
×1

0−
05

60
7.
08

14
×1

0−
05

6.
92

52
×1

0−
05

15
0

1.
11

98
×1

0−
05

1.
10

99
×1

0−
05

90
3.
12

68
×1

0−
05

3.
08

07
×1

0−
05

18
0

7.
76

63
×1

0−
06

7.
70

89
×1

0−
06

123



332 F. Leisen et al.

C Generate samples with the SEPD and the SGLD

As described by Komunjer (2007) and Zhu and Zinde-Walsh (2009), the SEPD could
be simulated by using the standard skewed exponential power distribution. They high-
lighted the following procedure:

• Generate U ∼ U (0, 1), W1 ∼ Ga(1/p, 1) and W2 ∼ Ga(1/p, 1).
• Compute the following transformed variable,

Z = αW 1/p
1

[
sign(U − α) − 1

2K (p)�(1 + 1/p)

]
+(1−α)W 1/p

2

[
sign(U − α) + 1

2K (p)�(1 + 1/p)

]
, (C.1)

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if x = 0.

The above procedure generates an observation from the SEPD with μ = 0, σ = 1.
We can obtain a SEPD with different μ and σ by simply multiplying Z by the scale
parameter and adding the location parameter.
Simulating from the SGLD follows a similar procedure. In particular,

• Generate U ∼ U (0, 1), W1 and W2 from the distribution displayed in (4).
• Compute the following transformed variable,

Z = α|W1|
[
sign(U − α) − 1

] + (1 − α)|W2|
[
sign(U − α) + 1

]
, (C.2)

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if x = 0.

The above procedure generates an observation from the SGLD with μ = 0, σ = 1.
We can obtain a SGLD with different μ and σ by simply multiplying Z by the scale
parameter and adding the location parameter.
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