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Abstract

Modelling of critical illness survival data, being primary developed in the context of,
e.g. health insurance contracts, also plays an important role in the currently analysed
problems related to secondary insurance market. The aim of this contribution is two-
fold. In the first part we describe how to construct a multiple state model for critical
illness insurances, which takes into account that a probability of death for a dread
disease sufferer depends on the duration of the disease and the survival probabilities
are related to the disease stage. Then, in the second part, we focus on modelling of
the probabilistic structure of the analysed model for a particular case of dread disease.
Based on the actual data for the Lower Silesian Voivodship in Poland, we estimate
the transition probabilities for the derived model in case of the risk of lung cancer.
For this purpose we use the methodology developed for the construction of multi-
state life tables, such as binomial, Poisson and ordinal logistic regression models. The
obtained results can be directly used to build the multiple increment—decrement tables,
which are useful to valuation not only critical illness insurances and life insurances
with accelerated death benefits option but also to viatical settlement contracts and
health-related expenses.
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1 Introduction

Modelling of critical illness survival data being primary developed in the context of,
e.g. health insurance contracts, also plays an important role in the currently anal-
ysed problems related to viatical market and life insurances with an accelerated death
benefits option.

Critical illness insurances (CII) called also dread disease insurances (DDI) are
typical examples of limited-coverage health insurance products. They provide the
policyholder with a benefit in case of dread disease, which are included in a set of
illnesses specified by the policy conditions such as heart attack, cancer or stroke (see
Dash and Grimshaw 1993; Haberman and Pitacco 1999; Pitacco 1994, 2014). Such
insurance policies can be shaped in several different ways for instance depending on
the specific insurance market. The basic benefit is a lump sum benefit, which is paid
on diagnosis of a specified condition, rather than on disablement. The other type of
benefit consists of a set of fixed-amount benefits (annuity payments). It is worth noting
that CII policy does not meet any specific needs and doesn’t protect the policyholder
against such financial loss as of earnings, reimbursement of medical or other expenses
incurred. The insured can use the obtained benefits for any purpose.

Nowadays, due to the growth of the secondary market, increase of interest in prod-
ucts providing an acceleration benefit in a situation related to terminal illness has been
observed. An insured person who has a life insurance would like to use it when he
has financial problems connected with health. In such situation, the easiest way of
receiving financial compensation from life insurance is to withdraw from the insur-
ance contract. Then the insurer is obliged to pay the surrender value. The insured can
also sell his/her policy on the secondary market for an amount that is greater than
the surrender value (and less than the death benefit). Then the viatical company takes
over the payment of the insurance premiums, and in case of death of the insured, it
gets the death benefits. Such agreements, called viatical settlements (see e.g. Bhuyan
2009; Gatzert 2010; Neeraj 2003), are offered to people who have developed a termi-
nal disease. The other possibility for the insured to receive prior financial gratification
is to buy a life insurance with an ADBs option that allows the insured to obtain the
death benefit when he is still alive. Sometimes insurance companies allow the insured
to re-buy the option of an accelerated payment of death benefits after the diagnosis of
the disease. This flexibility is stimulated by the strongly growing viatical market for
life insurance.

A statistical model for survival analysis is equivalent to a two-state Markov process
with one direct transition from a transient alive state to an absorbing death state. This
model is insufficient in framework of study and analysing the detailed life history data
which occur frequently in practice, as for example in CIL. In the literature, depending
on the analysed problem, there have been observed two basic approaches of designing
a suitable model. On the one hand, the alive state can be split into two or more transient
states which, in applications, typically correspond to occurrences of various medical
complications, like for example in case of an acute myocardial infarction (Hougaard
and Madsen 1985) or insulin-dependent diabetes (Andersen 1988). On the other hand,
the death state can be split into two or more absorbing states, which in applications
typically correspond to analysing causes of death and the competing risks survival
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analysis. The basic model for CII (e.g. Haberman and Pitacco 1999; Pitacco 1994,
2014) combines both approaches, but does not include the specific terms of contracts
offered by insurers and is not suitable for costing viatical products and life insurances
with ADBs option, in particular in case of lung cancer disease.

The aim of this contribution is two-fold. In the first part we present a general multiple
state model for critical illness insurances, which takes into account that a probability
of death for a dread disease sufferer may depend on the duration of the disease and
the payment of benefits associated with a severe disease are related to a diagnosis and
the disease stage. Due to the nature of the analyzed products, we propose to split the
death state in a different way than in the basic model for CII.

In order to cost insurance and viatical contract, the probabilistic structure is neces-
sary. Then, in the second part, we focus on the modelling of the probabilistic structure
of the proposed multiple state model for products associated with the risk of lung
cancer which is one of the most frequently studied cancers (i.e. Diaconu et al. 2016).
For determining the transition matrix related to the discrete-time Markov model, we
use the methodology developed for the construction of multi-state life tables. The
numerical results are based on the actual data for the Lower Silesian Voivodship in
Poland. Thus we derive the transition matrix for the proposed model, which can be
used to cost CII contracts, life insurances with ADBs option and viatical settlements.

The paper is organized as follows. In Sect. 2, after a brief description of the classical
multiple state model for the CII, we propose a more general multiple state model for
such insurances. In Sect. 3 we apply introduced in Sect. 2 a general multiple state
model to the insurance against the risk of lung cancer, which is an example of the CII.
Then we focus on a study of the description of the probabilistic structure of this model.
Based on the actual data for the Lower Silesian Voivodship in Poland, we estimate
transition probabilities for CII associated with the lung cancer in Sect. 4. In Sect. 5
we point out obtained results to possible applications in practice.

2 An actuarial model for critical illness insurance

Multiple state modelling is a stochastic tool for describing different kind of demo-
graphic problems such as: projection elderly disability (Gaag et al. 2005), analysing
process of return and reentry migration (Vega and Brazil 2015) and labour-migration
dynamics (Bijwaard 2014) or unemployment dynamics (De¢bicka and Mazurek 2001).
But the most commonly applied multistate model in biostatistics is the active-illness-
death model (e.g. Bijwaard 2014; Haberman and Pitacco 1999; Pitacco 2014; Putter
et al. 2007).

Following Haberman and Pitacco (1999) with a given insurance contract we assign
amultiple state model. That s, at any time the insured risk is in one of a finite number of
states labelled by 1, 2, ..., N or simply by letters. Let S be the state space. Each state
corresponds to an event which determines the cash flows (premiums and benefits).
Additionally, by 7 we denote the set of direct transitions between states of the state
space. Thus 7 is a subset of the set of pairs (i, j),i.e., 7 C{(i, j)|i # j;i,j € S}
Note that the pair (S, 7) is called a multiple state model, and describes all possible
insured risk events as far as their evolution is concerned (usually up to the end of
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Fig.1 A general multiple state model for CII with benefits

insurance). In this paper we consider an insurance contract issued at time O (defined
as the time of issue of the insurance contract) and according to a plan terminating at
a later time n (n is the term of policy). Moreover, let x be the age at the policy issue.

The most basic multiple state model for CII, analysed in Dash and Grimshaw (1993),
has the following form

(8. 7)=(a,i,d}, {(a,i), (a,d), (i, d)},

where a means that the insured is active or healthy, i indicates that the insured person is
ill and suffers from a dread disease and d is related to the death of the insured. A more
advanced model was investigated in Haberman and Pitacco (1999), Pitacco (1994),
Pitacco (2014), where instead of a single state d, it distinguishes between death being
due to dread disease d(D) and other causes d(O)

(8. 7)=(a,i,d(D),d(O)},{(a,1), (a,d(0)), (a,d(D))(i, d(0)), (i,d(D))}.
ey

A multiple state model for such a critical illness cover is presented in Fig. 1a. Next
to the arcs, benefits related to the transition between states are marked, where ¢ is a
given lump sum (death benefit), ¢ is an additional lump sum (disease benefit) and
A is the so called acceleration parameter (0 < A < 1). The amount cA + ][M:o}c“d
is payable after the dread disease diagnosis, while the remaining amount c(1 — 1) is
payable after death, if the two random events occur within the policy term n.

Note that the multiple state model (1) covers all forms of critical illness insurances,
namely

— if A = 0, then the model describes a rider benefit as an additional benefit,
— if 0 < A < 1, then the model describes a rider benefit as an acceleration of part of
the basic life cover,
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— if A = 1, then the model describes a stand-alone cover.

If & = 1, the statei is absorbing, because the whole insurance cover ceases immediately
after dread disease diagnosis and the payment of the sum assured (in this model direct
transitions (i, d(0)) and (i, d(D)) are not present). [f 0 < A < 1, state isirreversible.

The amount of benefits is determined in the insurance contract (at the time the
contract is concluded). Costing of any insurance products is always connected with
the probability structure of the model. In case of dread disease cover, data such as
incidence rates of dread disease is required. A frequent problem is that the needed data
is not available or only in a limited form. Therefore, one has to make assumptions,
which have impact on the actuarial values such as premiums and reserves. For the CII
designed in Fig. 1a, the outline of possible assumptions and methods for calculating
premiums rates for a critical illness cover is presented in Dash and Grimshaw (1993).
One of the objectives is to assume that the probability of death of a sick person does
not depend on the duration of the disease. Moreover, the dread disease insurances
are products, which are very sensitive to the development of medicine. Not all dread
diseases are as mortal as some years ago and yet this type of insurances are of long-term
type. Thus insurers introduce very strict conditions for the right to receive the benefit
associated with a severe disease. Beside a diagnosis, the disease stage is important.
This implies that the model presented in Fig. 1a is insufficient.

In this paper we propose a multiple state model for critical illness insurance, which
takes into account that the probability of death for a dread disease sufferer may depend
on the duration of the disease and the payment of benefits associated with a severe
disease depend on a diagnosis and the disease stage.

It is important to know that critical illness benefits are paid on the diagnosis, it
means to insured person who is permanently (terminally) ill. Therefore, in order to
accommodate such a condition in the model of CII, state i has to be divided into two
states:

iP the insured person is ill. In this stage the remission of the disease is still possible,

although return to health state is impossible.
the insured person is terminally ill. In this stage the remission of the disease is
very unlikely.

l'DD

After such a division a multiple state model for CII covers has a form presented in
Fig. 1b where

d(O, D) the death of the insured person who is ill or due to other cases.
d(DD) the death of the insured person who is terminally ill.

Note that in the model presented in Fig. 1b we describe death states in a different
way than in Fig. la. The main reason is that in described CII, values of benefits are
connected with the insured’s health situation just before his death, not with the cause
of death.

Moreover, the direct transition (a, d(D D)) is omitted. In particular, this means
that all dread disease deaths of the terminally ill insured are represented by the state
d(DD). It is a situation analogous to the one given in Fig. 1a where deaths due to
dread disease are represented by the pair of transitions (a, i) and (i, d(D)), the direct
transition (a, d(D)) is not possible.
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Note that the term ferminally ill in the context of health care refers to a person
who is suffering from a serious illness and whose life is not expected to go beyond 24
months at the maximum. In practice the period of permanently illness is different for
each disease. For example the HIV+ patients with more than approximately 4,5 years
of life expectancy are treated as patients in relatively good health.

Let mg be an maximum future lifetime of s-years-old terminaly ill person. We
assume that m; = m for each s-years-old terminally ill person. Moreover, it is reason-
able to assume that the probability of death for a dread disease sufferer depends on the
duration of the disease. To consider the influence of illness duration on the mortality
probabilities, we split state iPD into m states i PP (h=1,2,...,m), where jDD)
means that the insured is terminally sick between 2 — 1 and & year (compere Amsler
1968; Gregorius 1993; Haberman and Pitacco 1999; Janssen and Manca 2006, 2007).
Note that state i °P(") is a reflex state (that is strictly transitional and after one unit of
time, the insured risk leaves this state). Finally, we arrive at a general multiple state
model for critical illness insurances, which is presented in Fig. Ic.

3 Lung cancer as an example of dread disease
3.1 Multiple state model

After cardiovascular diseases, malignant tumors pose the second cause of death in
developed countries. In particular, lung cancer belongs to the group of tumors charac-
terized by the highest morbidity and mortality rates. It is the most frequent in population
of men and the second frequent in population of women after breast cancer. Addition-
ally, lung cancer is so-called tumour with unfavourable prognosis. For example in
Poland, by analysing epidemiological data it can be concluded that only about 16%
of women and 11% of men outlive five years after the diagnosis (Wojciechowska and
Didkowska 2014). Because of the high prevalence and mortality rates, the relatively
short survival time after the diagnosis, lung cancer is a perfect example of the deadly
disease, which should be covered by critical illness insurances.

Epidemiological data confirms the existence of significant differences between
the incidence of lung cancer in men and women populations. The morbidity rate is
several times higher in men population. In many European countries, in the second
part of the eighties of the twentieth century, the tendency of stabilizing the inci-
dence rate is observed among men. A different situation occurs in case of women.
The number of cancer cases continues to grow, which is undoubtedly caused by
cultural changes, such as an increase in the number of smokers among women in
the post-war generation. Due to the growing number of smokers among women, we
should expect a further increase in the number of cancer cases in the population of
women.

The incidence rate depends also on age (e.g. Arbeev et al. 2005a,b; Ukraintseva
and Yashin 2003). Lung cancer occurs very rarely among patients up to forty years of
age. The incidence begins to increase after the age of fifty. The peak incidence occurs
at the sixth and seventh decades of life. By analysing geographical data, a significant
diversity of incidence and mortality rates is observed in different regions of Europe.
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In Poland, the morbidity and mortality vary significantly among particular provinces
(voivodships). Thus, age, sex and region of residence should be taken into account in
the analysis of the etiology of lung cancer.

The length of life of a person suffering from lung cancer depends on his condition
and in particular on whether or not he has distant metastases. Our research (based
on the data set of individual hospitalizations from the Lower Silesia Department of
the National Health Fund (unpublished)) shows that when the distant metastases are
diagnosed, the maximum duration of sick’s life does not exceed 4 years (i.e. m = 4).
Besides, during these four years, the probability of survival one year is different for
each of this four years. That is why in case of CII for lung cancer, the model (presented
in Fig. 1c with the state space after numeration) has six states associated with health
situation of the insured person which mean that the insured:

1 is alive and not sick with malignant lung tumour (a),

2 is diagnosed of lung cancer without metastasis to lymph nodes, brain, bones or

so-called distant metastases (i ?),

is suffering from cancer for a year after diagnosis of distant metastases (i

4 is suffering from cancer for the second year after diagnosis of distant metastases
(iDD(z)),

5 is suffering from cancer for a third year after diagnosis of distant metastases
(iPP®)),

6 is suffering from cancer for a fourth after diagnosis of distant metastases (i

DD(1))

w

DD@)).

Other states are associated with the death of the insured person who, before his death:

7 was healthy or is diagnosed of lung cancer without metastasis (d(O, D)),
8 had a lung cancer with distant metastases (d(D D)).

3.2 Probabilistic structure of the model

We focus on a discrete-time model, where insurance payments are made at the ends
of time intervals (years). Let X (x, r) denote the state of an individual (the policy) at

timet(t € T={0,1,2,...,n}), where x is an age ar entry. Hence the evolution of
the insured risk is given by a discrete-time stochastic process {X (x, t); t € T}, with
values in the finite set S = {1, 2, ..., 8}. The individual’s presence in a given state or

movements between states may have some financial impact like payments of premiums
or benefits. Practically it means, that lump sum benefits are paid immediately before
the end of the year if the process {X (x, t); t € T} changes the state at that year and
with this changes paying such benefit is connected. Premiums are paid immediately
after the beginning of the year. In order to valuate the insurance contract during n-years
insurance period, the knowledge of probabilities of realizing particular cash flows is
necessary.

To describe the probabilistic structure of {X(x,r)}, for any moment k €
{0,1,2,...,n}, we introduce vector

T
Pk = (P[f](k), Py (), Py k), ...,P[S"](k)> e R®,
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where Pg."](k) = P(X(x,k) = j). Note that P1(0) = P(0) € R is a vector of
the initial distribution (usually it is assumed that state 1 is an initial state, that is
P(0)=(1,0,0,0,0,0,0,0)7 for each x).

Under the assumption that {X (x, ¢)} is a nonhomogeneous Markov chain, to get
the sequence of matrices {P[x] (k)}zzo, it is enough to know P (0) and the sequence of

matrices 011(0), 01(1), 01(2), ..., 0™l (n—1), where Q¥ (k) = (q};‘] (k))

and ql!;](k) =P(X(x,k+1) = j|X(x, k) =1i) is a transition probability.
A transition matrix of {X (x, 7)} for CII model given in Fig. 1c with m = 4 (for
lung cancer disease) has the following form

8
i,j=1

gk ¢Sk 9w 0 0 0 ¢flw o

0 ¢k e o 0 0 ¢k o
0o 0 0 4w o 0o 0o K
0 (k) = 0 0 0 0 ¢fwk 0 0 gk
0 0 0 0 0 ¢ o gBm

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

@)
In the next section we provide formulas for qi[;] (k).

3.3 Multiple increment-decrement tables

Transition probabilities can be determined using a multiple increment—decrement table
(or multiple state life table). The number of functions of such a table is closely linked
to multiple state model (S, 7)) (cf. Debicka 2012; Bowers et al. 1986; Haberman
1983a,b; Jordan 1982; Mattsson 1997). The simplest multiple increment—decrement
table, which refers to an x year old person is a life table {/[x]+«}k>0, Where [y«
is a number of those alive at the beginning of time interval [x + k,x + k + 1).
Then dix+k = l[x}+k — l[x]+k+1 1S the number of deaths during the time interval
[x +k, x +k+1). In general, one can assign for a multiple state model (S, 7') and an
x year old person the multiple increment—decrement table, which consists of functions
described for each transient state i € S:

lfx] Tk denotes the number of lives in state i at age x + k,

df){]+k the number of lives at age x + k, which during period [x + k, x + k + 1) left
the state i and transit to state j.

The following recurrence relation holds

i gl ij Ji
Hoseet = s = D dppe T D e &)
jiieT JGeT
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where ) i )eT dé{] Tk is a number _Qf lives, which left the state { in time interval
(x+hkx+k+1and > oot d[]lek is a number of lives, which entered state i

in time interval (x + &k, x + k + 1].
The multiple increment—decrement table

1 2 3 4 5 6 12 13 17 23 27
Hl[ka, il fensie Wi i ke distke e e dixee

d[x +k° d [x]+k> d[x]+k’ d[x +k> d [x]+k> d[x]+k }k>0 “
refers to an x year old person for (S, 7)) given in Fig Ic for lung cancer disease (i.e.
with m = 4). Since qm(k) 1, then d68 = =/ This is why d[6xs]+k can be
omitted in (4).

The following relations holds between elements of O I¥] (k) and functions of multiple
increment—decrement table for (S, 7):

[x]+k*

— if i is absorbing, then

[x] 1 for j=i
g5 o) = {0 for 2 5)

— if i is transient, then

; ij
Bkt =22 yeT Uk

: for j =i
y N
qu k) = —dilek for (i, j) e T ©)
Z[X]+k
0 for (i, j) ¢ 7T

Where the numerators in (6) result directly from the recursive relation (3) and state
properties. The denominators are the number of lives in state i at the beginning of k-th
year of the insurance period.

The preparation of multiple increment—decrement tables for each age x is cumber-
some and not always needed. In further analysis we suppose that the distribution of
{X (x, 1)} can be expressed by the distribution of process {X (0, s)} with regard to a
0 year old person. This assumption is known as the hypothesis of aggregation (HA),
which can be equivalently formulated in several ways. Observe that, according to the
model presented in Fig. 1c for m = 4, the alive state has been split into six transient
states (i.e. states 1, 2, ... 6) and the death state has been split into two absorbing states
corresponding to health situation of the insured just before his death (i.e. states 7 and
8). Then, HA for the considered model is equivalent to the condition

/\ P(X(x,k)=j)=PXO,x+k)=7| XO,x)e{1,2,3,...,6}) (7
jell,2,..6)

for x and k that P(X (x, k) = j) > 0.
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Based on (7), it can be shown that

=PX(O,x+k) =j | XO,x+k-1) =1
= ti?](x + k)

n—1

so we obtain {Q[x](k)}z;é = {0 + Yo
In order to simplify the notation, let {X (s)} := {X (0, s)} and for given x we have
0 (k) := 0(x + k) with

gij(k) =P(X(x+k+1)=j| X(x+k)=i).

Probabilities g;;(s), s > 0 can be calculated in the same way as in (5) and (6) but
using the multiple increment—decrement table

{lsl,lf,lf,l;‘,lf,lf,dslz,ds”,dS”,d33,d37,d34,dfg,d;‘5,d;‘8,df6,df8} - ®
5>
Unfortunately, an appropriate set of data allowing to create the multiple increment—
decrement table (8) is not always available. If so, estimation of Q(k) is needed. In
Sect. 4 we focus on this problem in case of lung cancer disease.

4 Estimation of transition probabilities
4.1 Data

Due to the influence of the residence place on morbidity and mortality rates of lung
cancer an analysis based on data from Lower Silesia separately for men and women
populations was performed. In order to estimate the transition probabilities three
databases have been used.

First, in the analysis of future life time, the life tables for 2008, separately for
population of men and women were used (www.stat.gov.pl/en/topics/population/life-
expectancy/).

Secondly, the information about the morbidity and mortality rates is obtained on the
basis of the National Cancer Registry for the Lower Silesia Region (Wojciechowska
and Didkowska 2014). The register is created on the basis of individual declarations
of tumors by hospitals. Note that, in the year 2008, the percentage of the declarations
submitted in Lower Silesia region exceeds 95% and belongs to the best registries in
Poland. Therefore, this database is reliable.

In the analysis, the data set of individual hospitalization from the Lower Silesia
Department of the National Health Fund was used (unpublished). The number of
patients with lung cancer was identified using the disease code (C33 and C34 according
to the system of codes from ICD-10). Patients were identified using the coded numbers
of the Universal Electronic System for Registration of the Population (Social Security).
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Data for the period from 2006 to 2011 was included in the analysis. The year 2008, as
one of the middle periods, has been established as the reference year. The choice of
the middle period allows to consider the histories of hospitalization of these patients
in the time horizon from 2006 to 2011.

Populations of men and women are examined separately, due to a different structure
of the morbidity and mortality associated with lung cancer. A data set concerning
histories of hospitalization because of malignant lung cancer in 2008 in 62 hospitals
was used. In the entire Lower Silesia Voivodeship, 2246 men (at age 20-94) and 945
women (at age 23-93) were hospitalized.

Since we do not know the exact date of death, we have only knowledge about a
cessation of traditional treatment and the transfer of a patient to a hospice, the survival
time is determined with an accuracy of a year.

4.2 Active
This section concerns probabilities associated with state 1 of the CII model i.e. prob-

abilities of the first row of the matrix (2)
Due to (6), under HA, we obtain

1 12 13 17
Lk — (dx+k Tt dx+k)

qi1(k) =

1 )
lx+k
d12 d13 17
qrak) = 2 giat) = 2 gip(k) = 2
x+k lx+k lx+k

Note that the probability of developing lung cancer without detected metastases can
be decomposed as follows

da k) = Ay +diy / L) i y Lk ©)
Lt Lt A +dily A +diy

The expression (d;ik + d;ik) /lx+k (called the morbidity rate) denotes the ratio of
the number of people who fell ill to the whole population. It is calculated on the basis
of the crude cancer incidence rate using data from Wojciechowska and Didkowska
(2014).
(1)
Let ;Y(t) = % denote the crude cancer incidence rate for ¢-th year as the number

100,
of cases of illness ls(t)

five-year age groups. Because ;s(t) has significant variability, therefore we used the
average of the crude cancer incidence rates

per 100,000 of the studied population at age s, calculated in

2010

_
=52 " (10)

t=2006
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It can easily be seen that the proportion of people without lung cancer and the whole
population is close to one, which allows an assumption that

% ~ 1 (11)
Note that
1206 + g3 (k) = d;ﬁkl—i'd)}ik _ d +didy Ly (12)
Lk Lotk li+k
Putting (10) and (11) into (12) we obtain
q12(k) + q13(k) = S (13)

The estimation of (dgrk) / (d)ﬁ et diik) required to separate a cohort of patients
who, in 2008, had lung cancer diagnosed. Patients are divided into two groups.
Patient with metastases during the first diagnosis belong to the first group. The
second group consists of patient without metastases during the first diagnosis. Let
Bs denote the percentage of s year old patients who fell ill in 2008 with the first
diagnosis showing the existence of distant metastases is calculated in five-year age
groups.

Then the probability (9) takes the following form [based on (13) and definition of

Bs]
q12(k) = ek /1 — B/ Cxrke = ek (1 — Brpio)- (14)

By the same argument

q13(k) = Lok - Btk (15)
To estimate the probability of death of a healthy person for the reason other than
lung cancer, the crude cancer mortality rate @y should be defined as a number of

deaths d per 100,000 of the studied population at age s (calculated in five-year age
groups) and can be expressed as follows

dy —al
w, = Sl—s (16)
S

Hence by (11) and (16) we arrive at

dj 1l
q17(s) = l_ — Wy /(l_) ={s — Ws. o))
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Following the same procedure as for ;S(’), let

2010

1
- t
ws=§ E ws() (18)
t=2006
0]
where ws(t) = lo?fw is the crude rates for ¢-th year obtained on basis of data from

Wojciechowska and Didkowska (2014). We finally obtain the following formula

q17(k) = gx 1k — Dxtks (19)

where gy+k = dy4k/lx+k is the probability of dying during the time interval [x +
k, x + k + 1) calculated on the base of a life table.

Noting that the sum of the transition probabilities from a given state is equal to one,
then using (14), (15) and (19) we obtain

g1 (k) =1 — (Gxtk — Trk) — Cxtke (20)

In the second part of this section, we present methods for estimation of ¢, B, and
w, for s = 20, 21, ...100.

The average crude rates of morbidity and mortality from lung cancer estimated on
the basis of raw indicators from the years 2006-2010 are shown in Table 1 (Appendix
A). The rates were estimated on the basis of reports from the National Cancer Registry
(Wojciechowska and Didkowska 2014).

In order to estimate the percentage of people who fell ill in 2008 and were diagnosed
with metastatic disease, a cohort of patients with lung cancer who, during 2008, fell
ill with lung cancer has been separated. In that year, 1353 men and 605 women were
diagnosed with lung cancer in the region of Lower Silesia. Patients received one of the
two diagnoses. The first option was a recognition of metastases to lymph nodes in the
chest and so called distant metastases. The analysis included an additional period of
four weeks after making the first diagnosis. This period, treated as the additional time
which is required to obtain the results of diagnostic tests, is taken into account in the
model. If, during this period, the existence of metastasis was confirmed, the patient
was classified to the same group as patients who received a diagnosis of metastatic
disease during the first visit. From a formal point of view, the patient moved at once
from the first state to the third.

The diagnosis stating only the tumour incidence in the lungs but without metastasis
was identified as the second possible type of diagnosis. In the considered model it
is assumed that a patient with a diagnosis of the absence of metastasis goes into the
second state.

Due to the fact that the incidence and mortality rates of lung cancer from the
National Cancer Registry are presented in five-year age groups, the percentage of
people diagnosed with metastases was also estimated in such groups. The patients
in the age group of 20 to 40 years pose an exception. In this age group lung cancer
occurs extremely rarely, therefore a twenty-year age limit was used for the estimation.
On the basis of data set from Lower Silesia Department of the National Health Fund
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Fig. 2 Transition probabilities from state 1 to state 2 or 3

(unpublished), the percentage of patients with diagnosable metastases during the first
visit is shown in Table 2 (Appendix A).

In Fig. 2 we present probabilities (14) and (15) with respect to age and sex
of an insured person. Looking at the graphs, a significant difference in incidence
between men and women can be observed. Men succumb to lung cancer several
times more often than women. A different regularity is also noticeable. In the older
age groups diagnosis without metastases is often posed. For women it is around
60 year of age, for men around 70. In the youngest groups, lung cancer is diag-
nosed with metastases. In interpreting the results, it should be remembered that
the disease is considered from the point of view of a calendar year, rather than
the annual individual patient’s medical history. Thus, a history of an insured per-
son who enters the oncological health care system in January (at the beginning of
a year) looks quite different from that of a patient who was diagnosed in Decem-
ber (at the end of a year). For this reason, the percentage of people diagnosed with
metastases may appear to be lower than it might seem from the epidemiological
data. The chosen method of analysis enables to take into account the fact that an
insured person could potentially fall ill throughout the year since the inception of the
insurance contract. In the event that this happens at the beginning of this year, the
chance of occurrence of metastases is higher than when it happens at the end of the
year.

Based on Polish Life Tables 2008 (www.stat.gov.pl/en/topics/population/life-
expectancy/), the probabilities (19) and (20) with respect to age and sex of a per-
son are presented in Fig. 3.
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Fig.3 Transition probabilities from state 1 to state 7, and the probability of remaining in state 1

4.3 Lung cancer without metastasis

Evaluating of transition probabilities for patients who were diagnosed with cancer
without metastases [i.e. probabilities of the second row of the matrix (2)] is the next
step of the analysis. Estimating of probabilities is associated with the analysis of the
history of hospitalization of patients with lung cancer who, during the first admission
in 2008, had no metastasis. Patients were hospitalized for the first time in 2006, 2007 or
2008. There is aneed to define the cohort of patients, who were ill in 2006 and 2007 and
at the beginning of 2008 did not have metastases as well as patients, who fell ill in 2008
without metastases as the first diagnosis. The percentage of patient who, during this
year metastases were diagnosed, is calculated. The transition probability g3 (k) can be
estimated using oy, wWhich is the proportion of patients suffering from lung cancer
in 2008, who got metastases during the year and it is estimate based on Lower Silesia
Department of the National Health Fund (unpublished). In further considerations, we
accept that g»7(k) = g.4x. It is connected with the fact, that a sick person, who has
not metastases, has a higher risk of death than a healthy person, so we also take into
account the possibility of dying for one of many reasons, including lung cancer. Taking
into account the above considerations, we obtain g2 (k) = 1 — x4k — Ox+k-

Patients who, during 2008, suffered from lung cancer and in the initial diagnosis
in 2008 they did not have metastases, pose the studied cohort at this stage. 1098 men
and 533 women belonged to the analyzed cohorts.

In case of the second state, the examination of history of the disease from the per-
spective of an insurance company makes the chance of an insured person to remain
without metastasis apparently higher than it results from the epidemiological data.
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While comparing the empirical percentages of diagnosed metastases calculated for
particular years of age in a given year in populations of men and women, some dif-
ferences can be spotted for both populations. In women population, the percentage
of diagnosis with metastasis is highest in the age group of 45 years, then it gradu-
ally decreases. In male population it grows, reaching a peak in the age group about
of 60 years, then subsides gradually. It should be noted that, in age groups with
the highest lung cancer incidence rates (from 50 to 70 years), the probability of
diagnosis of metastasis for a patient with determined lung cancer is higher in men
population.

The chance of getting a diagnosis of metastatic is modelled using a Bernoulli
distributed random variable. The parameter o is defined as the success probability
and is estimated using the logistic regression model. In this model, an indepen-
dent variable is an age of a patient. In both populations, patients below 45 years
of age occur very rarely. For this group of patients the probability of diagnosis
with metastases is calculated using the nearest neighbor method. This means that
the probability is constant in this group and equals the probability of diagnosis for
a 45 years-old person. In female population, logistic regression model parameters
were estimated for patients over 45 years of age. In the population of men, patients
above 45 years of age are divided into two groups, the first form 45 to 59 years
of age, and the second above 59 years of age. In these two groups, the probabil-
ities of diagnosis with metastases are estimated using separate logistic regression
models. A specified age group division ensures the best fitting of the model to the
data.

The division of men population into two groups (to 59 years old and above 59 years
old) has enabled obtaining the best fitted model. In case of women population any
division is not necessary. A possible explanation for this phenomenon could be related
to health behaviour which has influence on the probability of metastases detection.
Completely different health behaviour is observed in male and female population in
Poland. Women often use medical services regardless of their age. The situation is
quite different for men. The men at working age are reluctant to use medical services,
preventive examinations and avoid visits to doctors. Changes in health behaviour occur
in pre-retirement age. Men above 59 years old are more often begin to use medical
services, including preventive examinations. This phenomenon is very visible in the
analysis of treatments cost in Poland. The average treatment cost for a man above 60-
years old is rapidly growing and it is much higher than the average treatment cost for
a woman at the same age. In case of younger groups of patients, the average treatment
cost is higher for woman.

Parameter estimators of models for male and female populations are presented
in Table 3 (Appendix B). The goodness of fit of model is evaluated on the basis
of Wald’s test results, Lemesow Hosmer test and values of deviation. Selection of
model was based on information criterion AIC. The results are presented in Table 4
(Appendix B).

Transition probabilities associated with state 2 are presented in Fig. 4. All the
needed probabilities g, 4+ were taken from Polish Life Tables 2008 (www.stat.gov.pl/
en/topics/population/life-expectancy/).

@ Springer


www.stat.gov.pl/en/topics/population/life-expectancy/
www.stat.gov.pl/en/topics/population/life-expectancy/

Modelling of lung cancer survival data for critical... 739

0,9

0,8

07

0,6

— . g5, (s) women

g3 (s) women

05 gz (s) women
04 — g5,(s) men
g5 (s) men
03 gy (s) men
0,2
0,1
0
20 30 40 50 60 70 80 90 100

Fig.4 Probabilities connected with state 2

4.4 Lung cancer with metastasis

After receiving the diagnosis of metastasis, a patient is considered to be terminally ill.
This section concerns probabilities associated with this situation i.e. probabilities of
rows from third to sixth of the matrix (2).

Note that all state i = 3, 4, 5, 6 are reflex states, then g;; (k) = 0 and we get

qig(k) =1 = qiiy1(k). 21

A person with diagnosed metastases lives no longer than four years, so geg(k) = 1.

In particular, the estimation of ¢34 (k) (and g3g(k)) is equivalent to modelling of the
survival time of patients, who had metastatic disease before 2008, who were diagnosed
with metastatic during their first visit in 2008 or they got metastases during 2008.

Due to the low incidence rate of lung cancer with metastatic among young people
between 20 and 39 years old, the probabilities associated with the states from 3 to 6
were estimated using the nearest neighbor method. Hence this probabilities are equal
to probabilities calculated for 40-year old persons.

Based on analysis of the mortality of the cohort members atage s = 40, 41, ..., 100,
we estimate transition probabilities (21) for i = 3,4, 5. Let us introduce a variable
T, which denotes the number of years that the s-years-old patient from the ana-
lyzed cohort survived. On the basis of empirical data Lower Silesia Department of
the National Health Fund (unpublished) we assume that 7§ takes values from O to 3.
If T; = 0, which means that a patient died during the first year (counting from the
first hospitalization with diagnosed metastases during 2008). If 7 = 1, it means that
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a patient died during the second year et cetera. A patient survives for maximum four
years.

On the basis of the probability distribution of variable 7§, the transition probabilities
connected with state 3 are calculated as ¢3g(s) = P (T; = 0) and

q34() =P (T =) +P (T, =2) + P(T; =3).

On the basis of conditional probabilities, we estimate for i = 4, 5, 6 the transition
probabilities to state 8 in the following way

P(T,=i—3)
L= Y0P (T =)

qi3(s) =P Ty =i =3|T; > i —4) =

Finally we obtain for male population (see Appendix C):

0.768485 for s € [20, 40]

_ , 22
9380) =1 89706 (s) for s > 40 @2)

0.380912 for s € [20, 40]

28() = 010204r(s) | o
Wﬂ):'):(s) for s > 40
0.953154 for s € [20, 40]

qs8(s) = exp(3.20885+0.0446985) ©) , on

Texp(3.2088510.0446985) —r(s
T4+exp( 20885;(03446983) for 5§ > 40

_exp(0.044698s)
where 7(s) = 5000846085 -

Note that according to (21), the survival probabilities connected with the third to
sixth states are defined by the probabilities of death.

In case of female population, the Poisson regression with identity link function is
used to model the probability of survival (see Appendix C). The probabilities of death
qig (k) (for i = 3,4, 5) are calculated similarly to those for men and we obtain

s = {2y S
0.841937 for s € [20, 40]

q48(s) = wl(i)ei;?(_—wuzs(jz) for s > 40 ) (26)
0.891591 for s € [20, 40]

T | R fors 40 0

where w(s) = —0.005435s + 0.552179.

In Fig. 5 we present probabilities of death for terminally ill men (Fig. 5a) and
women (Fig. 5b) with respect to age.

The statistical analyzes presented in Sect. 4 and Appendixes are carried out by
means of Statistica 10.
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Fig.5 Probabilities of death for terminally ill persons

5 Conclusions

The multiple state model presented in Sect. 2 is suitable not only for modelling the
critical illness insurance contracts but also for other health insurances. It can also
be adapted to insurance contracts against the loss of income due to disability or the
loss of health (income protection). The introduced model allows for combining CII
with life insurance. In such a combination disease benefits are usually provided as an
acceleration benefit to a life insurance.

The results of Sect. 4 can be directly used to build the multiple increment—decrement
tables for (proposed in Sect. 3) the multiple state model connected with lung cancer
in the following form (Dgbicka and Zmyslona 2016)

{q1105), q12(5), q13(5), q22(5), q23(5), q34(5), qa5(5), q56(5) }5>0 -

Such tables are useful for the valuation of insurance contracts (premiums and reserves)
or outflows from Health Found consisting of health-related expenses.

Death probabilities (22)—(24) and (25)—(27) concerning the population of those
suffering from lung cancer with metastasis (e.g. states 3, 4, 5, 6, 8) are needed to
calculate the value of viatical settlement payments (Dgbicka and Heilpern 2017).
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Appendix A

See Tables 1 and 2.

Table 1 Crude average mortality and morbidity rates (based on data from the years 2006 to 2010) per
100,000 inhabitants of Lower Silesia

Age (s) Zs for men w, for men Zs for women w for women
20-25 0.00000368 0.00000180 0.00000500 0.00000050
25-30 0.00000628 0.00000180 0.00000250 0.00000110
30-35 0.00001542 0.00000654 0.00001638 0.00000708
35-40 0.00004006 0.00002646 0.00002814 0.00001744
40-45 0.00013030 0.00010948 0.00008798 0.00007262
45-50 0.00037192 0.00035406 0.00020522 0.00016596
50-55 0.00102374 0.00090890 0.00045766 0.00039284
55-60 0.00182494 0.00170202 0.00088310 0.00071290
60-65 0.00302086 0.00297606 0.00109398 0.00097314
65-70 0.00430094 0.00432944 0.00112206 0.00107720
70-75 0.00528114 0.00584450 0.00114504 0.00119580
75-80 0.00565362 0.00671536 0.00118616 0.00129806
80-85 0.00458130 0.00604818 0.00107820 0.00132638
Above 85 0.00369674 0.00477544 0.00112764 0.00136514
Tal:?le 2 T}'le percentage of Age (5) Bs for men Bs for women
patients with metastases
diagnosed during the first visitor 5 4 0.23077 0.28571
within a 4-week period
40-45 0.31818 0.50000
45-50 0.54412 0.41463
50-55 0.54922 0.51282
55-60 0.45963 0.53988
60-65 0.50166 0.45113
65-70 0.49359 0.40000
70-75 0.48246 0.25472
75-80 0.36777 0.36111
80-85 0.34177 0.28125
Above 85 0.33333 0.33333

Appendix B

See Tables 3 and 4.
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Table 3 Parameter estimators
Parameter Estimator SE p value
In female population (above 45 years of age)
Age (in years) —0.024468 0.001822 0.00000
In male population (from 45 to 59 years of age)
Constant —6.27958 2231157 0.004885
Age (in years) 0.09215 0.040526 0.023000
In male population (from above 59 years of age)
Constant 3.447079 1.173173 0.003301
Age (in years) —0.074952 0.017151 0.000012
Table 4 The goodness of fit of models
Results of Hosmer Lemesow test Test statistics p value
For female population (above 45 years of age)
7.4058 0.3878
Statistic of goodness of fit Degree of freedom Statistics Stat/df
Deviation 520 476.550 0.916443
AIC 478.550
Result of Wald’s test Test statistics p value
For male population (from 45 to 59 years of age)
Constant 7.921377 0.004885
Age (in years) 5.168502 0.023000
Statistic of goodness of fit Degree of freedom Statistics Stat/df
Deviation 329 346.231 1.052374
AIC 350.231
Results of Hosmer Lemesow test Test statistics p value
4.7341 0.4491
Result of Wald’s test Test statistics p value
For male population (above 59 years of age)
Constant 8.63333 0.003301
Age (in years) 19.09870 0.000012
Statistic of goodness of fit Degree of freedom Statistics Stat/df
Deviation 747 611.179 0.818178
AIC 615.179
Results of Hosmer Lemesow test Test statistics p value
7.2045 0.3023
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Appendix C

Male population consists of 845 patients. The empirical distribution of the number of
survived years is presented in Table 5.

In male population, variable 7 is modelled using logistic regression for ordered
categorical variable. The estimators of parameters are presented in Table 6 point A.
The significance of regression coefficients was verified on the basis of Wald test results
(p value< 0.01). The results of test are shown in Table 6 point B. The goodness of
fit model was verified on the basis of Akaike criterion (AIC), deviation and value of
chi-square statistic, which are shown in Table 6 point C.

The age of a patient occurred a significant factor which has an influence on survival.
Average influence of age is expressed by the slope of age. Additionally, we observed
that age of a patient determines significantly the probability of survival for two and
three years. This fact is reflected by a significant estimator of constant 3. On the basis
of the model, the following probabilities can be estimated:

exp (3.208851 + 0.044698s)

P(T, <2) = (28)
1 4+ exp (3.208851 + 0.044698s)
T?bl,e > ‘The empirical Number of Number of Empirical
distribution of number of . . ST
. survived years patients distribution
survived years for men
0 732 0.8662722
1 84 0.0994083
2 27 0.0319527
3 2 0.0023668
Table 6 Modelling 75 for men
Parameter Estimator p value
A. Parameter estimators
Constant3 3.208851 0.001690
Age (in years) 0.044698 0.000168
Parameter Wald statistic p value
B. The results of Wald test
Constant 96.27373 0.000000
Age 14.15864 0.000168
Degree of freedoom Value of statistic Stat/df
C. The statistics goodness of fit
Deviation 2531 793.688 0.313587
Chi-square statistic 2531 2193.335 0.866588

AIC 801.688
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Table 7 The empirical

o X . Number of Number of Empirical
distribution of number of . . s
. survived years patients distribution
survived years for women
0 268 0.8271605
1 43 0.1327160
2 12 0.0370370
3 1 0.0030865
and
exp (0.044698s)
P(T, <1) (29)

~ 1+ exp (0.0446985)

where s denotes the age of a patient. Taking into account that survival is equal to
maximum 3, we obtain P (7y, =3) = 1 — P (T; < 2). On the basis of (28) and (29),
we calculate P (75 = 2). Due to the fact that age affected the survival for one and two
years on average quite similarly, probabilities P (7; = 0) and P (7; = 1)are calculated
as weighted probabilities of (29) in the following way

PT=0)=w-P(Ts<1), P(Gi=1)=w -P(Ty = 1). (30)
The weights wo = 0.897059 and w; = 1 — wp = 0.102941 denote the percentage of
patients, who do not survive one year and the percentage of those that survived one
year, respectively in the group of all patients who died within one and two years. They
are estimated for the whole cohort without dividing into age groups. This is because
the estimated probability P (7 < 1) takes into account the average effect of age on
survival in the entire cohort.

In female population, 324 patients belong to the cohort, which is analyzed in the
third state. The empirical distribution of the number of survived years is presented in
Table 7.

In case of female population, the Poisson regression with identity link function is
used to model the probability of survival. The estimators of parameters are presented
in Table 8 point A. The significance of regression coefficients was verified on the basis
of Wald test results (p value< 0.01), compare Table § point B. Then the goodness
of fit of model was verified on the basis of Akaike criterion (AIC) and deviation and
value of chi-square statistic, which are shown in Table 8 point C.

The age of a patient turned out to be a significant factor influencing survival chances.
The probability of surviving k years is calculated using the following formula

3k
P(Ts =k = o exp (=) €19

where A = E (Ty) = —0.005435s + 0.552179 and k = 0, 1, 2. The probability that a
patient survives over two years is expressed by P (T; =3) =1 — Z%:o P(T; =k).
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Table 8 Modelling 7§ for women

Parameter Estimator p value

A. Parameter estimators

Constant 0.552179 0.000606
Age (in years) —0.005435 0.025888
Parameter Wald statistic p value

B. The results of Wald test

Constant 10.01119 0.001556
Age 422647 0.039798
Degree of freedoom Value of statistic Stat/df

C. The statistics goodness of fit

Deviation 322 246.934 0.766875
Chi-square statistic 322 378.150 1.174379
AIC 370.912
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