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Abstract
Taxonomies can serve as a valuable tool to capture dimensions and characteristics 
of data analytics solutions in a structured manner and thus create transparency about 
different design options of the technical solution space. However, previous taxo-
nomic approaches often remain at a purely descriptive level without leveraging mor-
phological structures to investigate the mechanisms between different combinatorial 
options given in data analytics pipelines. To this end, we propose a taxonomic evalu-
ation approach to evaluate and construct the technical core of analytical informa-
tion systems more systematically. Specifically, we present a rough guidance model 
consisting of four steps, which we subsequently instantiate with two application 
scenarios from the fields of industrial maintenance and predictive business process 
monitoring. In this way, we demonstrate how taxonomic frameworks can guide the 
creation of structured evaluation studies to consider the construction and assessment 
of data analytics pipelines in a multi-perspective and holistic manner. Our approach 
is sufficiently generic to be applied to various domains, scenarios, and decision sup-
port tasks.

Keywords  Data analytics · Taxonomy development · Evaluation framework · 
Ablation and substitution studies · Predictive maintenance · Predictive business 
process monitoring

1  Introduction

Over the past decades, analytical information systems (IS) have become an indis-
pensable anchor for many organizations and our daily life. They support medical 
staff in diagnosing hard-to-find diseases (McKinney et al. 2020), prevent failures 
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and breakdowns in manufacturing environments (Kraus and Feuerriegel 2019), 
monitor business processes for proactive resource allocation (Heinrich et  al. 
2021), and recommend products and services based on customer preferences (Li 
et al. 2020)—just to name a few examples.

The technical core of analytical information systems consists of data-driven 
method pipelines. They specify, for example, (i) which datasets are selected, pro-
cessed, and analyzed, (ii) which data preparation steps are performed, and (iii) 
which data-driven methods from the fields of statistics and machine learning 
(ML) are used to build analytical models for data-driven decision support (Jani-
esch et  al. 2021; Michalczyk and Scheu 2020). However, the construction and 
evaluation of such pipelines is a challenging endeavor as there are often multi-
ple options to choose from. This may involve the choice of data types and data 
attributes depending on the domain peculiarities or the choice and specification 
of different data pre-processing techniques. Likewise, the field is characterized 
by continuous algorithmic innovations from computer science and engineering 
disciplines, which constantly produce new analytical models and methods, such 
as deep neural networks, for which a variety of network architectures have been 
proposed (Janiesch et  al. 2021; Leijnen and Veen 2020; Manyika et  al. 2011). 
When facing a multitude of design options, it is crucial to understand their impact 
on the overall pipeline and to identify interaction effects when combining differ-
ent pipeline components in order to develop and deploy effective information sys-
tems. Besides, there is often no “one-fits-all” approach that proves to be the best 
solution across different circumstances (Flath and Stein 2018). Instead, it requires 
a profound evaluation to determine a promising pipeline with its specific compo-
nents for each distinct situation.

In practice, however, the construction and evaluation of data-driven method 
pipelines are often performed in several trial-and-error cycles (Janardhanan 
2020). Although it is nowadays a widely accepted standard to follow structured 
procedure models such as CRISP-DM to divide the pipeline development into 
structured sub-components (Mariscal et  al. 2010; Michalczyk and Scheu 2020), 
this still does not allow for a transparent representation of the different design 
options and their impact on the pipeline. At the same time, it is becoming increas-
ingly common in the field of ML to conduct so-called ablation and substitution 
studies. They are performed to systematically examine the effect of individual 
building blocks in ML-based pipelines (Cohen and Howe 1988; Sheikholeslami 
et  al. 2021). Nevertheless, their scope is often restricted to the examination of 
limited model-centric parameters (e.g., architectural components of neural net-
works), without considering broader contextual aspects (e.g., domain specifics 
and data properties). Furthermore, running experiments with multiple different 
pipelines based on various ML models and methods is costly as it requires large 
computing times and resources, especially in data-intensive domains. Therefore, 
a well-defined setting is crucial to systematically investigate the effects of dif-
ferent design options along the overall pipeline in a sustainable manner without 
wasting resources in redundant experiments. Another challenge is that relevant 
knowledge for the pipeline construction is often spread over multiple involved 
stakeholders, such as domain experts, data engineers, and modeling specialists 
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(Hesenius et al. 2019; Zschech et al. 2020). As a result, there is a high risk that 
pipeline components and specifications are chosen based on individual experi-
ence and the subjective background of the respective pipeline developer.

As a remedy, we propose a systematic evaluation approach for data-driven 
method pipelines to construct and evaluate the technical core of analytical 
information systems more comprehensively and systematically. The goal of our 
approach is to establish structured frameworks which can capture different design 
options along data-driven pipelines and guide the preparation and execution of 
well-structured evaluation studies based on different framework configurations. 
With this approach, we adopt the general ideas of data analytics procedure mod-
els as well as ablation and substitution studies, which we combine on a more 
holistic level. This can provide orientation to researchers and practitioners alike 
by organizing a broad solution space in a systematic and transparent way. More 
specifically, our proposed approach aims at supporting data analytics teams con-
sisting of data science scholars as well as ML engineers and pipeline developers. 
The former group of data science scholars is primarily supported by providing 
guidance for structured framework developments to organize the solution space. 
The latter group of ML engineers and pipeline developers can use the derived 
framework elements to perform systematic evaluation studies based on different 
framework configurations to obtain prescriptive insights for promising pipeline 
specifications.

As a methodical basis, our research draws on the pivotal instrument of tax-
onomic frameworks, which are currently gaining momentum in the IS commu-
nity (Szopinski et  al. 2019). In general, taxonomies serve as a viable approach 
for organizing knowledge in a structured manner so that researchers and prac-
titioners can study the relationship among concepts to analyze and understand 
complex domains (Gregor 2006). In this context, there have also been several 
research efforts in data analytics that use taxonomies to systematize components, 
methods, and applications of analytical information systems in various domains 
and contexts (e.g., Krieger and Drews 2018; Wambsganss et  al. 2021; Wanner 
et  al. 2022). However, previous approaches mostly remain at a purely descrip-
tive level and do not leverage taxonomic structures to investigate the mechanisms 
between different combinatorial options given in data-driven analytical pipelines. 
In other words, they do not use different configurations of the taxonomy elements 
to investigate their impact on the overall pipeline performance using quantitative 
evaluation metrics to derive prescriptive insights about promising pipeline con-
figurations. This is where we contribute to the field by addressing the following 
research question:

RQ  How can we create and apply taxonomic evaluation frameworks that guide the 
preparation and execution of systematic evaluation studies for data-driven method 
pipelines based on different pipeline configurations?

To address this question, we integrate the approach of taxonomy development 
(Nickerson et al. 2013) into a broader methodical framework so that it can be used 
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for the systematic evaluation of data analytics pipelines. For this purpose, we pro-
pose a rough sequence of four guiding steps, which we subsequently instantiate 
for demonstration purposes to showcase our approach’s overall feasibility. More 
specifically, we use two application scenarios. The first one covers a scenario in 
the realm of industrial maintenance and the second one stems from the field of 
business process monitoring.

The remaining paper is organized as follows. In Sect. 2, we introduce the neces-
sary foundations and refer to related work. In Sect.  3, we reflect on our research 
approach and describe the process of how our method proposal was assembled. Sub-
sequently, we outline our proposal in Sect. 4, followed by a thorough demonstration 
based on the mentioned application scenarios in Sect. 5. We then proceed to discuss 
the results in terms of the achieved contribution and limitations in Sect. 6. Finally, 
we conclude our paper and provide an outlook for future work in Sect. 7.

2 � Foundations and related work

In this section, we describe the necessary foundations for our method proposal. 
Thus, we first provide a brief understanding of systematic procedure models in 
the field of data analytics and introduce the idea behind ablation and substitution 
studies. Subsequently, we refer to previous work on taxonomy developments in IS 
research and data analytics.

2.1 � Construction and evaluation of data analytics pipelines

Procedure models generally organize tasks or activities of construction and imple-
mentation processes into structured, logically arranged steps in which correspond-
ing methods and techniques are applied. In the realm of analytical information sys-
tems, several such procedure models have been developed to provide instructions for 
all relevant phases specific to the construction of data analytics pipelines (Mariscal 
et al. 2010). Prominent examples are the CRISP-DM methodology (cross-industry 
standard process for data mining) (Wirth and Hipp 2000) and the KDD (knowl-
edge discovery in databases) process model (Fayyad et al. 1996). They offer generic 
guidance across different domains and basically consist of the following steps: (i) 
domain understanding (i.e., gathering task and domain characteristics), (ii) data 
understanding (i.e., gathering data-related context characteristics), (iii) data prepa-
ration (i.e., applying methods to bring data assets into a suitable form), (iv) mod-
eling (i.e., applying analytical methods/models), and (v) evaluation (i.e., assessing 
the quality of the overall pipeline with suitable metrics). Due to their domain inde-
pendence, such procedure models can be applied as structural guidance in a wide 
variety of contexts. At the same time, however, they can be criticized for being too 
generic. Hence, they do not provide sufficient guidance which design options need 
to be considered when constructing analytical information systems for specific deci-
sion support tasks.
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Ablation and substitution studies are another useful aid for the construction and 
evaluation of data analytics pipelines, especially when working with ML models. 
Their goal is to examine the contribution and effects of individual building blocks 
on the performance of complex systems by removing or replacing these building 
blocks (Cohen and Howe 1988). This examination usually involves model-cen-
tric components, such as architectural layers or neurons of deep neural networks, 
as well as data-centric components in the form of dataset features that a model is 
being trained on. Beyond that, however, basically any design choice or module of a 
pipeline can be considered as an ablatable or substitutable component (Meyes et al. 
2019; Sheikholeslami et al. 2021). Even though conducting ablation and substitution 
studies seems to be an intuitive and simple practice to identify and assess critical 
design choices in data analytics pipelines, it is still not part of standard practices and 
has only recently begun to attract increasing interest in research and industry (Sheik-
holeslami et al. 2021).

2.2 � Taxonomy development in information systems research and data analytics

Taxonomies play an essential role in IS research. They provide a structure to organ-
ize knowledge of a specific field, help to understand and analyze complex domains, 
and enable researchers to study the relationship among concepts (Nickerson et  al. 
2013). For this reason, a growing number of IS researchers are dedicated to the 
development of taxonomies in different sub-disciplines (see Oberländer et  al. 
2019 and Szopinski et al. 2019 for an overview).

Similarly, there is a growing interest in the subfield of data analytics to organ-
ize the technological and organizational facets of analytical information systems, 
methods, and applications into structured sub-components. For example, Wanner 
et  al. (2022) developed a taxonomy based on a corpus of 904 data analytics arti-
cles to structure dimensions and characteristics of smart manufacturing applications. 
Subsequently, they used the resulting framework elements to identify and describe 
different archetypes using a cluster analysis. A similar approach was pursued by 
Matschak et al. (2022) for the field of ML-based fraud detection systems. Based on 
54 publications, the authors derived a taxonomic scheme with salient design charac-
teristics, which were subsequently used to identify archetypal design patterns using 
a cluster analysis. By contrast, Krieger and Drews (2018) proposed a taxonomic 
framework for classifying big data analytics applications in auditing. They examined 
twelve use cases to devise the taxonomy development and subsequently applied the 
results to describe two exemplary cases. A comparable approach was taken by Hein-
rich et  al. (2019). They investigated deep learning approaches for object counting 
and derived a corresponding taxonomy based on 99 object counting publications, 
which was subsequently discussed by using exemplary cases. Further examples of 
data analytics taxonomies can be found in natural language processing (Wambs-
ganss et  al. 2021), adversarial machine learning (Heinrich et  al. 2020), 3D object 
detection (Fernandes et  al. 2021; Friederich and Zschech 2020), business process 
monitoring (Rama-Maneiro et  al. 2021; Wolf et  al. 2021), and many other areas. 
Nevertheless, most of the existing approaches develop taxonomic frameworks only 
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for descriptive systematization and classification purposes. As a result, they often do 
not use the full potential of taxonomic framework structures, such as for exploring 
relationships between different combinatorial options given in data-driven analytical 
pipelines. Put differently, they do not use different configurations of the taxonomy 
elements to assess and compare their impact on the overall pipeline performance to 
derive insights about promising pipeline configurations. This is where we contribute 
to the field by proposing a novel methodical approach.

From a development perspective, there are different procedures applicable for 
taxonomy development (Oberländer et  al. 2019). Most recent contributions in the 
IS and data analytics community are often based on the method proposed by Nick-
erson et  al. (2013) as it provides systematic guidance for the overall development 
process (Szopinski et  al. 2019). Their method basically consists of the following 
three phases: (i) determining a meta-characteristic, (ii) specifying ending conditions, 
and (iii) identifying dimensions and characteristics towards the taxonomy creation. 
The actual step of identifying dimensions and characteristics can then be carried 
out either with an empirical-to-conceptual or a conceptual-to-empirical path. It is 
recommended to combine both paths to integrate different perspectives (Nickerson 
et al. 2013). Moreover, for collecting relevant taxonomy objects, researchers in the 
realm of data analytics often combine the taxonomy development with systematic 
literature search processes (e.g., vom Brocke et al. 2009; Webster and Watson 2002) 
to draw on the broad body of existing knowledge archived in various academic data-
bases and other source systems (e.g., Heinrich et  al. 2019; Matschak et  al. 2022; 
Nadj and Schieder 2017; Wambsganss et al. 2021; Wanner et al. 2022). An overview 
of different data analytics taxonomies, along with their scope, their development 
approaches, and their application purposes is provided in Online Appendix I.

3 � Research approach

Our method proposal is the result of a cumulative, multi-stage research project in 
which the findings of individual stages were critically reflected in separate publica-
tions and finally led to the composition of the overall approach. Table 1 provides 
an overview of the individual stages and summarizes (i) the related publication 
projects, (ii) the pursued objectives, (iii) the scope of the projects, (iv) the applied 
methodical approaches, (v) the roughly estimated efforts, (vi) the produced results, 
(vii) a synthesized set of key observations during development and evaluation 
activities, and (viii) the implications for the new method proposal. In the following, 
we reflect on the some of the key aspects of each stage and describe the reason-
ing behind the composition of our method proposal in a compact manner. A more 
detailed description of the individual stages can be found in Online Appendix II and 
in the respective publications.

Initially, the project started with the objective to develop a framework that 
can capture dimensions and characteristics of data analytics applications in the 
particular field of industrial maintenance (stage 1, Zschech 2018). As the field 
is characterized by many different design options when constructing analytical 
solutions (e.g., different analysis tasks, varying data types, multi-faceted analysis 
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methods), the aim was to organize the solution space in a structured manner so 
that involved stakeholders like domain experts and developers can quickly grasp 
salient domain characteristics and design properties.

To carry out the research, we used a taxonomy development approach inspired 
by the procedure model of Nickerson et al. (2013) and chose to define a tripar-
tite meta-characteristic covering analysis objectives, data characteristics, and 
analysis methods to distinguish between output, input, and throughput dimen-
sions of data analytics solutions (Tsai et  al. 2014). By reflecting on the devel-
opment process, we could see that small adjustments of the original procedure 
model were necessary for our purpose. Nickerson et al. (2013) postulate the fun-
damental requirement that dimensions should not be redundant and that charac-
teristics should be mutually exclusive. However, due to hierarchical and combina-
torial relationships in data analytics solutions, we realized that both criteria led to 
an inflated set of characteristics within individual dimensions. As a remedy, we 
considered to allow non-exclusive characteristics and the creation of sub-dimen-
sions to guarantee transparency and parsimony within the resulting taxonomic 
framework.

For the identification of taxonomy objects, a literature-based approach was cho-
sen by conducting a systematic literature search (vom Brocke et  al. 2009) in sev-
eral digital libraries from the fields of computer science, engineering, and IS. The 
combination of a systematic literature search and a taxonomy development approach 
for data analytics solutions turned out to be a useful way to retrieve and organize a 
multi-faceted solution space which is typically spread across a large number of aca-
demic publications.

In addition, the taxonomy development was carried out in cooperation with 
a medium-sized IT service provider offering data analytics solutions for various 
industrial branches, such as semiconductor industry, automotive, and plant engineer-
ing. The involvement of expert knowledge from industry ensured the practical rel-
evance of the research endeavor. Furthermore, it contributed to the iterative refine-
ment of the taxonomy and enabled a reflection of the results in terms of an external 
evaluation. As such, it could be revealed that the developed taxonomy was perceived 
as a useful systematization framework and a viable communication tool for bringing 
together different actors (e.g., domain experts and data analysts) to collectively dis-
cuss a multidisciplinary problem space.

Additionally, it was also possible to obtain valuable feedback from the industry 
partner for the further development of the framework results. Instead of only distin-
guishing between the three meta-characteristics of analysis objectives, data charac-
teristics, and analysis methods, they suggested to apply a broader view by consider-
ing all relevant steps of commonly applied data analytics procedure models such 
as CRIS-DM (cf. Sect. 2.1). In this way, the industry partner saw an opportunity to 
enrich overly generic procedure models with more domain specificity by using the 
framework elements to capture and organize different design options along each step 
of such procedure models. In order to meet this demand and enable a more com-
prehensive pipeline assessment, we obtained the necessity of extending our initial 
framework structure by covering additional dimensions related to data preparation 
and evaluation aspects.
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The idea of this structural extension was subsequently examined in a second sub-
project to evaluate its feasibility (stage 2a,  Zschech et al. 2019). However, to cap-
ture meaningful dimensions and characteristics that could be applied at a compara-
ble level, a much more specific focus had to be set than in the first run. Especially 
the additional dimension of data preparation would have resulted in too much vari-
ability in the solution space if the scope had been kept too general, thereby impair-
ing the comprehensibility and parsimony of the taxonomic framework. Thus, instead 
of a broad domain consideration (e.g., industrial maintenance), a narrower focus on 
a specific decision support task (e.g., prediction of machine failures) had to be cho-
sen. Additionally, it turned out to be beneficial to further refine the scope of the 
taxonomic framework by concentrating on a certain type of setting (e.g., choice of 
maintenance scenario) or a certain type of prediction methods (e.g., deep neural net-
works) to set a suitable focus. For testing purposes, we chose a frequently cited pre-
dictive maintenance scenario based on degrading turbofan engines and run through 
another process of taxonomy development. This second run was guided by the main 
steps of the CRISP-DM procedure model for the extraction of suitable framework 
elements. All other practices that proved to be effective in the first run were retained. 
Further details on the exact execution are given in Sect. 5, as the case also serves as 
one of demonstration examples in this article.

By reflecting on the second development process, it was found that the resulting 
framework was indeed able to position and compare different components/configu-
rations of data-driven method pipelines in a structured manner. At the same time, it 
was found that such a fine-grained, taxonomic consideration of pipeline components 
was rarely used within the examined literature corpus to conduct systematic abla-
tion and substitution studies. Instead, most authors or developers only consider their 
pipeline as a whole and evaluate the overall approach against a single metric. Thus, 
it could be observed that it generally lacks a broader distinction between different 
design options along the analytical pipeline to measure the impact of certain build-
ing blocks, such as specific data preparation or modeling steps.

A similar observation could be made in another parallel project (stage 2b, Hein-
rich et al. 2021). The goal of this project was to examine and compare different deep 
neural networks for prediction tasks in the field of business process monitoring. 
During the reflection of manifold design options and the reconstruction of various 
networks from related work, it could be confirmed that most authors only evaluate 
their solution as a whole based on a single prediction score—without taking into 
account a more nuanced view, such as testing their network’s effectiveness for differ-
ent domain conditions and data properties.

Based on these observations, the idea emerged that taxonomic frameworks might 
not only be used for descriptive systematization purposes to capture design options 
of data analytics solutions. Instead, the morphological structures of the taxonomy 
could be leveraged in conjunction with quantitative evaluation metrics to investi-
gate the mechanisms between different combinatorial options given in data analytics 
pipelines, taking the idea of ablation and substitution studies to a more holistic level. 
On this basis, evaluation studies can be defined and performed more comprehen-
sively and systematically in order (i) to assess the suitability of alternative design 
options for different contexts, and (ii) to verify the adequacy of combining different 
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pipeline components. The implementation of this idea was subsequently tested with 
the predictive maintenance case mentioned above (Zschech 2020) and resulted in 
the composition of the corresponding method proposal for this article.

4 � Proposal of a systematic evaluation approach for data‑driven 
method pipelines

Based on the reflection in the previous section, it was possible to derive a novel 
approach for the systematic assessment of data-driven method pipelines based on 
taxonomic evaluation frameworks. Our proposal’s general procedure consists of four 
rough guiding steps, summarized in Fig. 1 (upper part). In the following, we intro-
duce each step with a brief description. Subsequently, we instantiate our method 
proposal with two exemplary application scenarios for a more detailed illustration of 
the individual steps (cf. Fig. 1 lower part).

In the first step, the domain and the decision support task need to be specified. 
The task must be sufficiently well delimited, and it needs to allow for support from 
data-driven methods that can be evaluated using quantitative evaluation metrics. 
This may include diagnostic, predictive, or even prescriptive decision support tasks 
(Stefani and Zschech 2018) in which the task performance can be directly measured. 
For instance, exemplary tasks in sales could be predicting customer churn (Chou 
et al. 2021) or allocating sales representatives (Bischhoffshausen et al. 2015), while 
in manufacturing typical applications could be visual quality inspection (Yang et al. 
2020) or predictive/prescriptive performance modeling (Brodsky et al. 2015). Fur-
thermore, the option could be considered to refine the overall taxonomic evaluation 
study’s scope to focus on specific settings or circumstances, which will be demon-
strated in both application scenarios in Sect. 5.

In the second step, the existing knowledge base needs to be screened for the col-
lection of analytical solutions based on data-driven methods that address the speci-
fied decision support task. In this way, an overview can be obtained of the alterna-
tive design options for building data analytics pipelines for the specified decision 
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support task

3) Decompose solutions 
into taxonomic framework 

components using the 
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(Ramasso and Saxena 2014)
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literature search
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(Rama-Maneiro et al. 2020; Kratsch 
et al. 2020; Heinrich et al. 2021)
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process monitoring focusing 
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(Rama-Maneiro et al. 2021)
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(e.g., Neu et al. 2021; Wolf et al. 
2021; Weinzierl et al. 2020)

Reconstruction of empirical 
results considering 52 

evaluation combinations
(Heinrich et al. 2021)

Fig. 1   Method proposal for the development of taxonomic evaluation frameworks
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support task. To realize this step, it is advisable to draw on established research 
methods for conducting systematic literature searches (e.g., vom Brocke et al. 2009; 
Webster and Watson 2002).

In the third step, the identified solutions need to be decomposed into modular 
components to obtain the taxonomic structure of the evaluation framework. For this 
step, it is advisable to adopt the guidelines proposed by Nickerson et  al. (2013). 
However, as a crucial extension, the extraction of dimensions and characteristics is 
supposed to follow the general structure of data analytics procedure models, which 
are basically organized into the previously mentioned steps of (i) domain under-
standing, (ii) data understanding, (iii) data preparation, (iv) modeling, and (v) eval-
uation (Mariscal et  al. 2010). Furthermore, due to hierarchical and combinatorial 
relationships between different pipeline components, we propose to consider non-
exclusive characteristics and the creation of sub-dimensions to guarantee transpar-
ency and parsimony within the taxonomic framework.

In the fourth step, the taxonomic evaluation framework is used to define and con-
duct quantitative evaluation studies by reconstructing the identified solution com-
ponents in different combinations. In this way, the extracted framework elements 
serve as evaluation options that are iteratively modified under ceteris paribus condi-
tions. This follows the general idea of ablation and substitution studies, in which the 
effects of individual pipeline components are examined by systematically remov-
ing and replacing these components. Thus, by using a pipes-and-filters architecture 
(Buschmann 1996), all conceivable combinations of data preparation and modeling 
methods can be studied based on different data properties concerning their impact 
on multiple evaluation criteria. However, instead of using the entire evaluation 
framework, the option could be considered to refine the scope of the study design to 
focus on specific aspects. Such options are also chosen in both demonstration cases 
by focusing on a subset of combinations to keep the complexity of the demonstra-
tion examples manageable.

5 � Demonstration of the proposed approach

To demonstrate our proposed approach, we apply it to two different application sce-
narios, which were also part of the investigations in our multi-stage research pro-
ject (cf. Sect. 3, Table 1). The first scenario covers the predictive maintenance case 
focusing on a turbofan degradation setting as a frequently discussed scenario within 
the industrial maintenance community. Here, the proposed steps are carried out in a 
detailed manner to illustrate their implementation exemplarily. The second scenario 
is located in the field of business process monitoring with a particular focus on the 
task of next event prediction. In this example, we do not perform all four steps our-
selves from scratch but draw in some parts on the results of existing work. In other 
words, we reuse taxonomic structures from existing systematization frameworks 
and rely on the computational results from an existing evaluation study. In doing 
so, we aim to show that the approach we propose can also be used to reconstruct 
existing evaluation results from a taxonomic and thus more systematic and holistic 
perspective.
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Both scenarios, i.e., industrial maintenance and business process monitoring, 
cover central issues that receive a lot of attention in research and practice alike. In 
addition, they are representative examples of data-intensive applications in which (i) 
high-dimensional data collections (i.e., condition monitoring data vs. event log data) 
are used for central decision support tasks and (ii) for which the analytical solution 
space is characterized by a broad variety of design options along the development 
of data-driven method pipelines. Thus, in both scenarios it is beneficial to consider 
the construction and evaluation of the analytical solution space in a systematic and 
structured manner by applying our proposed taxonomic evaluation approach in order 
to derive prescriptive insights about promising pipeline specifications.

5.1 � Application in industrial maintenance

Industrial maintenance plays a crucial role in manufacturing as it helps produc-
tion sites to guarantee high reliability, human safety, and low environmental risks. 
For this purpose, modern production environments increasingly focus on proactive 
maintenance strategies like predictive maintenance (PdM) based on data-driven 
prognostic solutions to efficiently use given resources and avoid redundant expendi-
tures (Bousdekis et al. 2018). In this course, the systematic construction and evalu-
ation of data analytics pipelines embedded in corresponding maintenance informa-
tion systems are of utmost importance.

•	 Step 1: Specification of decision support task and refinement of scope.

The main goal of anticipatory maintenance approaches is to predict faults and 
failures before they occur and determine the remaining useful life (RUL) of techni-
cal assets by identifying relationships between extensive monitoring data and criti-
cal events (Bousdekis et al. 2018). Therefore, we concentrate on the decision sup-
port task of RUL prediction for our demonstration.

Furthermore, we refine the overall scope to keep the study’s complexity man-
ageable. To this end, we looked into different technical settings that are commonly 
discussed within the PdM community, such as milling machines, bearings, turbo-
fan engines, or battery charging cycles (Eker et al. 2012; Lei et al. 2018). For our 
study, we chose a turbofan degradation scenario. More specifically, we used NASA’s 
commercial modular aero-propulsion system simulation (CMAPSS) that provides a 
realistic scenario with several publicly available datasets that can be used for devel-
opment and evaluation purposes. In this scenario, the NASA Ames Research Center 
replicated the behavior of turbofan engines under a variety of operating conditions 
and a continuous degradation due to varying fault injection parameters. The result-
ing four datasets with varying degrees of complexity (i.e., FD001-FD004) consist 
of multivariate time series containing parameters and condition monitoring meas-
urements of operating cycles from different turbofan engines (Saxena et al. 2008). 
Due to the realistic properties, hundreds of researchers from various disciplines 
have already used the scenario, bringing forth a wide variety of prognostic solution 
approaches (Ramasso and Saxena 2014).
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•	 Step 2 Collection of existing solutions.

To examine the existing knowledge base and identify the large number of stud-
ies developing prognostic solutions based on NASA’s turbofan degradation scenario, 
we followed the guidelines proposed by vom Brocke et al. (2009) for conducting and 
documenting a systematic literature search1. More specifically, we applied a data-
base search using the following libraries: AIS Electronic Library, EBSCOhost, IEEE 
Xplore, ScienceDirect, and SpringerLink. As search terms, we used the keywords 
‘NASA turbofan degradation’ and several synonyms (e.g., ‘C-MAPSS’), leading 
to 128 unique items. Additionally, we performed a forward search based on the 
C-MAPSS introduction provided by Saxena et al. (2008) (+ 52 items), searched the 
websites of the PHM Society and the NASA Prognostics Center of Excellence (+ 40 
items), and performed a backward search based on a review conducted by Ramasso 
and Saxena (2014) (+ 7 items). Thus, it was possible to obtain 227 unique hits (day 
of search: 2018-09-24), which had to be further reduced by appropriate filter crite-
ria. For this purpose, we defined four inclusion criteria, which we applied in sequen-
tial order. More specifically, we ensured that the studies (i) were written in English 
(-1 item, 226 items remaining), (ii) were based on one of the datasets (-68 items, 
158 items remaining), (iii) dealt with a prognostic approach (-30 items, 128 items 
remaining), (iv) applied a data-driven (-4 items, 124 items remaining), and (v) pro-
posed a previously unknown solution (-18 items, 106 items remaining). The result-
ing subset of 106 studies was then used for the subsequent step of the taxonomy 
development (cf. Online Appendix IV). A list of full references for each study can 
be found in Online Appendix V.

•	 Step 3 Decomposition into taxonomic framework components.

In the next step, the vast corpus of studies proposing prognostic solutions was 
used to develop the structure of the taxonomic evaluation framework. Following 
the guidelines proposed by Nickerson et al. (2013), the development process was 
structured into several steps and iterations, as briefly outlined in Sect.  2.2. The 
meta-characteristic—as the central root element—was defined as distinct compo-
nents of a data-driven method pipeline. Concerning the ending conditions, Nick-
erson et  al. (2013) define certain subjective criteria that must be fulfilled, e.g., 
that a taxonomy is sufficiently robust to contain enough dimensions and charac-
teristics to separate between the objects of interest, while it is sufficiently con-
cise to not exceed the cognitive load of the taxonomy user. Moreover, the method 
requires the specification of objective ending conditions, e.g., that every charac-
teristic within its dimension is unique and not repeated. At this point, we adopted 
the following four criteria for our approach to determine the end of the iterative 

1  Please note that we explicitly refer to the guidelines of phase 3 (i.e., literature search) of the proposed 
framework by vom Brocke et al. (2009). The authors also provide further advice on the systematic prepa-
ration of the literature search as well as on the analysis and synthesis of identified literature, which is 
beyond the scope of this paper.
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development process: (i) all objects have been examined, (ii) at least one object 
can be assigned for each characteristic across all dimensions, (iii) no new dimen-
sions or characteristics were added in the last iteration, and (iv) no dimensions or 
characteristics were modified in the last iteration.

After specifying these criteria, the actual step of extracting dimensions and 
characteristics was carried out. At this stage, the procedure proposed by Nick-
erson et al. (2013) was refined as specified in Sect. 4 by additionally taking into 
account the general structure of the CRISP-DM procedure model (Wirth and 
Hipp 2000) to distinguish between distinct components of data-driven method 
pipelines. Moreover, we allowed non-exclusive characteristics and the creation of 
sub-dimensions. As recommended by Nickerson et al. (2013), the extraction pro-
cess covered both empirical as well as conceptual knowledge. Empirical knowl-
edge was directly obtained when analyzing each individual pipeline in the corpus 
and extracting elemental parts of prognostic solutions. Conceptual knowledge, 
on the other hand, was derived from existing survey papers and systematizations 
that were identified during the literature search above (e.g., Ramasso and Saxena 
2014; Saxena et  al. 2008). In total, we went through eight iterations to identify 
suitable framework elements of a taxonomic evaluation framework.

In a first iteration, we looked into salient properties related to the domain and 
data understanding of the decision scenario. By examining the characteristics of 
the different datasets used for the prognostic solutions in our literature corpus, 
we could identify different levels of complexity. More specifically, we identified 
one sub-dimension to distinguish between a varying number of fault modes and 
another sub-dimension to distinguish between a varying number of operational 
conditions, both of which can be seen as crucial influencing factors for the per-
formance of prognostic solutions (Ramasso and Saxena 2014). In the next four 
iterations, we identified a broad range of data preparation methods. They could 
be organized into the four sub-dimensions of normalization, noise reduction, 
dimensionality reduction, and feature selection. In the sixth iteration, we consid-
ered all design choices for the modeling step. Here, we could distinguish between 
the following three fundamental groups of prognostic modeling approaches 
(Ramasso and Saxena 2014): (i) direct RUL-mapping (in which a functional map-
ping between the multidimensional feature space and the RUL is developed), (ii) 
indirect RUL-mapping (in which two functional mappings via a health index are 
established), and (iii) similarity-based matching (in which a library of trajec-
tories with known failure times is created that are subsequently used for curve 
matching). In a seventh iteration, we extracted a series of performance metrics 
for prognostic model assessment which could be organized into accuracy-based, 
precision-based, and prognostics-specific metrics (Saxena et  al. 2008). Finally, 
in a last iteration, all solutions were screened again and since no more modifica-
tions occurred, all ending conditions were met to complete the taxonomy devel-
opment process. The results of the taxonomy development are summarized in 
Table 2. For a more comprehensive description of the framework’s elements and 
further details on the overall process of the taxonomy development, please refer 
to Zschech et al. (2019). Furthermore, a list of all 106 examined studies with their 
respective components can be found in Online Appendix IV.
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•	 Step 4 Framework application and quantitative evaluation studies.

After the extraction of the taxonomic framework, the derived elements can be 
used to create a systematic study design for different evaluation purposes. Thus, 
the derived elements can be considered as design options when implementing 
data-driven prognostic solutions in similar settings. More specifically, the first two 
dimensions (i.e., domain and data understanding) specify the decision scenario’s 
context in which data analytics pipelines are constructed and tested. That is, it can 
be distinguished between different levels of complexity in terms of existing fault 
modes and operational conditions. The last dimension (i.e., evaluation) covers mul-
tiple evaluation options for measuring the pipeline’s overall performance. In other 
words, different types of evaluation metrics are offered for a quantitative assessment. 
The remaining dimensions in between specify the configuration of the data prepa-
ration and modeling pipeline. Hence, there are several design choices conceivable 
with different effects on the pipeline’s performance, depending on the domain/data 
properties and the combination of multiple pipeline components.

For our demonstration, we focus only on a subset of framework elements to keep 
the scope and complexity of the evaluation study manageable. So instead of using the 
entire framework by considering all conceivable design options from each dimension 
in Table 2, we only choose an exemplary selection, which we considered promising for 
our demonstration purposes. Our selection is highlighted with colored cells in Table 2. 

Table 2   Taxonomic evaluation framework for PdM focusing on NASA’s turbofan scenario
CRISP-DM Dimension Characteristics

Domain and data 
understanding

Fault modes Single fault mode Multiple fault modes

Operational 
conditions

Single condition Multiple conditions

Data preparation

Normalization Standardization Rescaling

Noise reduction Moving average Exponential smoothing Polynomial smoothing

Feature selection Manual selection Filter Wrapper

Dimensionality 
reduction

Hierarchical Non-hierarchical

Modeling
Prognostic
approach

Direct RUL-mapping
Indirect RUL-mapping 

via health index
Similarity-based matching

Evaluation Performance metric Accuracy-based Precision-based Prognostic-specific

Fa
ul

t m
od

es

Operational
conditions

Normalization
Noise 

reduction
Feature 
selection

Dimensionality 
reduction

Prognostic 
approach

Performance 
metric

Rescaling

Polynomial 
smoothing

Direct RUL

Similarity

No selection

Filter

No reduction AccuracySingle Multi

Si
ng

le
M

ul
ti

RMSELSTM

CNN

Similarity1

Similarity2

Min-max

LOWESS
Monotonicity

Prognosability
Trendability

FD001

FD003

FD002

FD004

No reduction

Framework dimension Selected characteristic Implemented approachNotation:

Fig. 2   Exemplary study design derived from the taxonomic PdM evaluation framework
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The selected elements are implemented with concrete approaches that are described 
in the following paragraphs. Furthermore, please note that some dimensions can also 
be skipped in the given scenario, which is possible for all four data preparation dimen-
sions. Thus, it can be evaluated how the performance of the pipeline is affected by 
removing those ablatable components. Fig. 2 summarizes our exemplary study design 
with the selected design choices to conduct a systematic evaluation study.

In our exemplary evaluation study, we consider different complexity levels of 
the turbofan degradation scenario. That is, we evaluate the performance of different 
pipelines for four different scenarios, which result from the combined consideration 
of varying fault modes and operational conditions. The four scenarios are also rep-
resented by the inherent properties of the four frequently applied C-MAPSS datasets 
(cf. Fig. 2). In other words, we consider one scenario with a single fault mode and 
a single operational condition (i.e., FD001), a second scenario with a single fault 
mode and multiple operational conditions (i.e., FD002), a third scenario with mul-
tiple fault modes and a single operational condition (i.e., FD003), and a fourth sce-
nario with multiple fault modes and multiple operational conditions (i.e., FD004).

Concerning the construction of the data preparation pipeline, a normalization 
step is realized by using a rescaling approach through a min-max transformation 
(Tao et  al. 2016). Subsequently, in a first variant, noise reduction is implemented 
via locally weighted scatterplot smoothing (LOWESS) as a concrete approach for 
polynomial smoothing (Khelif et  al. 2017). In a second variant, the step of noise 
reduction is skipped to examine its specific impact on the overall performance. A 
similar approach is carried out for the step of feature selection. In a first path, all 
input features are used without any selection procedure. In a second path, a filter 
method is applied based on a weighted combination of the metrics “monotonicity”, 
“prognosability”, and “trendability” (Coble 2010). The next step of dimensionality 
reduction is skipped without any implementation (cf. Fig. 2).

For the prognostic modeling step, the two categories of direct RUL-mapping and 
similarity-based matching are chosen. The direct RUL-mapping is realized with two 
different kinds of deep neural networks, which are commonly applied for this type 
of RUL modeling. More specifically, a long short-term memory (LSTM) network 
(Zheng et al. 2017) and a convolutional neural network (CNN) (Babu et al. 2016) 
are implemented. The similarity-based approach is also realized through two imple-
mentations. While both share the same procedure for constructing the library of tra-
jectories (Khelif et  al. 2017), they differ in the applied approach for curve fitting 
and the type of similarity score (Malhotra et al. 2016; Wang et al. 2017). Finally, for 
performance evaluation, the root mean square error (RMSE) is used as a standard 
accuracy-based metric to assess the quality of the RUL estimation task (Lim et al. 
2016).

The implementation2 of the individual approaches described above is organ-
ized in modules using the programming language Python. The general structure 
of the taxonomic evaluation framework allows modules from different framework 

2  For the technical realization of the described methods and models, we mostly used the settings recom-
mended by the respective developers/authors or applied default configurations. Further details on each 
implemented approach, such as the choice of hyperparameters, can be found in Online Appendix III: 
Implementation Details.
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dimensions to be stacked in sequential processing steps using a pipes & filters archi-
tecture (Buschmann 1996). In this way, modular pipelines can be constructed in 
which the output of one module represents the input of the subsequent one. For this 
purpose, a dictionary is created to check the combinability of different modules with 
each other. In the present example of the turbofan degradation scenario, the devel-
oped framework allows the combination of all dimensions without any restrictions 
to obtain a fully populated evaluation matrix. However, it is also conceivable that 
some cells of the matrix remain unoccupied in the case of limited combinability. 
To automatically generate the evaluation results, conditional statements are used to 
execute those modules that correspond to a particular combination, while all pre-
defined combinations are executed using loop constructs.

For demonstration purposes, the resulting evaluation matrix is illustrated in 
Table 3. The framework dimensions and the implemented approaches cover row and 
column elements, while the cells of the matrix reflect the results of the chosen evalu-
ation metric (i.e., RMSE values). The evaluation matrix is organized into four quad-
rants for better readability according to the four C-MAPSS datasets FD001–FD004. 
They cover the scenario’s different complexity levels (cf. grid-like scheme in Fig. 2). 
Alternative configurations of the data preparation pipeline are reflected by columns 
(i.e., noise reduction and feature selection), whereas alternative prognostic models 
are organized in rows (i.e., deep neural networks and  similarity-based models). A 
color scheme, adjusted for each quadrant, highlights the differences in performance. 
The lower the RMSE values, the stronger the color intensity, indicating that an indi-
vidual pipeline performs better than another.

Based on the quantitative results of the evaluation matrix in Table 3, it is possi-
ble to draw several conclusions about the mechanisms behind different combinato-
rial options given in data analytics pipelines. Thus, on the one hand, it is possible 
to assess the suitability of alternative data-driven methods in different settings. For 
example, it can be observed that direct prognostic models based on deep neural net-
works (i.e., LSTM and CNN) tend to perform slightly better than similarity-based 
approaches in settings with single operational conditions, especially when multiple 

Table 3   Evaluation results for the selected elements of the PdM evaluation framework
(the stronger the color intensity, the lower the prediction error measured by RMSE)

Metric: RMSE

Single operational condition Multiple operational conditions

No noise reduction Polynom. smoothing No noise reduction Polynom. smoothing
No feat. 
selection

Filter
No feat. 
selection

Filter
No feat. 
selection

Filter
No feat. 
selection

Filter

Single 
fault 
mode

LSTM 15.19 16.02 13.85 15.40 32.15 32.40 30.68 31.68
CNN 15.23 17.77 14.86 17.31 30.67 30.64 30.67 30.58

Similarity1 18.37 19.21 19.85 19.95 29.55 29.84 28.77 28.56
Similarity2 14.42 16.31 16.03 18.37 23.88 24.44 24.32 24.38

Multiple 
fault 

modes

LSTM 18.84 18.59 17.81 32.47 34.56 38.41 33.59 39.52
CNN 18.20 22.83 15.83 25.32 31.79 32.49 32.36 32.72

Similarity1 28.57 27.89 29.90 30.22 32.55 33.41 33.42 33.93
Similarity2 20.31 22.25 22.52 22.74 27.24 27.36 27.18 27.94
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fault modes are present. By contrast, similarity-based models tend to perform better 
than direct approaches in scenarios with multiple operational conditions. This obser-
vation is particularly true for the second similarity-based model (Similarity2), which 
generally shows low prediction errors across all settings.

On the other hand, it is also possible to assess the adequacy of combining differ-
ent method components. For example, it can be noted that neural networks without 
explicit feature selection, in most cases, achieve much better results compared to 
their variants with feature selection using the filter approach. This observation con-
firms the assumption that deep neural networks are generally capable of automati-
cally extracting relevant features without the need for additional feature engineering 
(Janiesch et al. 2021). Similarly, it can be noted that polynomial smoothing, except 
in the case of FD002 (i.e., single fault, multiple operational conditions), generally 
reduces the performance of similarity-based approaches. One explanation could be 
that noise reduction removes essential information from the signals that would have 
been relevant for matching similar curve segments. Therefore, such method combi-
nations should be avoided in comparable settings.

Overall, the few analysis examples illustrate which useful insights can be gained 
by applying such a taxonomic evaluation framework. For demonstration purposes, 
the scope has been kept deliberately small, so even more dimensions, characteris-
tics, and concrete implementations are conceivable to expand the scope and conduct 
more in-depth analyses. In the next section, we demonstrate how our approach can 
also be applied to existing frameworks and evaluation studies to gain insights from a 
different angle.

5.2 � Application in business process monitoring

Business process management is generally concerned with the identification, dis-
covery, analysis, improvement, implementation, monitoring, and controlling of busi-
ness processes (Dumas et al. 2018). The specific subfield of process monitoring has 
gained increasing importance in recent years. It leverages data-driven approaches 
to analyze business processes at runtime and predict their future behavior, perfor-
mance, and outcome. This helps companies identify problems and risks before they 
occur and derive recommendations for managing and controlling processes at an 
early stage (Kratsch et al. 2020).

•	 Step 1 Specification of decision support task and refinement of scope.

Predictive process monitoring (PPM) supports various decision support tasks, 
such as forecasting remaining cycle times, detecting business rule violations, 
anticipating process outcomes, or predicting next events and sequences in running 
instances. For our demonstration example, we concentrate on the task of next event 
prediction as it is one of the most frequently researched tasks within the PPM com-
munity (Evermann et al. 2017; Heinrich et al. 2021).
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Furthermore, we refine the scope of the taxonomic evaluation and concentrate on 
a specific set of prediction methods. It can be observed that early PPM approaches 
chiefly focused on methods that required explicit process representations in terms 
of previously known process models (Marquez-Chamorro et al. 2018). By contrast, 
recent work steadily moves towards deep neural networks due to their capability of 
automated representation learning and their superior prediction results. Thus, we 
exemplify our approach with this type of prediction method.

•	 Step 2 Collection of existing solutions.

Instead of collecting individual solutions ourselves for this demonstration exam-
ple, we screened the existing knowledge base for survey articles and papers that 
empirically compare deep neural networks for PPM applications. More specifically, 
we used Google Scholar and applied the keywords “predictive (business) process 
monitoring” and “deep learning” in combination with the keywords “review” OR 
“survey” (date of search: April 2021). After screening the first 50 search results, 
we could identify several survey papers that summarize the field with a specific 
focus on deep neural networks (e.g., Harane and Rathi 2020; Neu et al. 2021; Rama-
Maneiro et al. 2021; Stierle et al. 2021; Wolf et al. 2021). Likewise, we could iden-
tify several quantitative evaluation studies in which various deep neural networks 
are examined and compared in computational experiments (e.g., Kratsch et al. 2020; 
Rama-Maneiro et al. 2021; Weinzierl et al. 2020). Among these studies, there are 
also parts in which the authors do not only describe and compare existing deep neu-
ral networks but also extract characteristic pipeline components and classify them 
using systematization frameworks. This prior knowledge could be used to build a 
taxonomic evaluation framework in the next step.

•	 Step 3 Decomposition into taxonomic framework components.

The most comprehensive survey of deep neural network approaches for PPM is 
provided by Rama-Maneiro et al. (2021). The authors systematically structure exist-
ing solutions into different pipeline components. More specifically, they systematize 
the following aspects: (i) input data, (ii) prediction task, (iii) type of neural network, 
(iv) sequence encoding, (v) event encoding, and (vi) performance metrics. These 
aspects, together with their distinct options as identified by the authors, can be trans-
lated directly into framework elements of a corresponding taxonomic evaluation 
framework (cf. Table 4). For an in-depth description of each dimension and charac-
teristic, please refer to the full article by Rama-Maneiro et al. (2021).

By using the taxonomic elements from Rama-Maneiro et al. (2021), the evalu-
ation framework covers central aspects for the related dimensions of domain 
understanding, data preparation, modeling, and evaluation. Nevertheless, it 
neglects variational factors concerning the dimension of data understanding 
which was not directly discussed by Rama-Maneiro et  al. (2021). For this pur-
pose, we can extend the framework by the considerations of Kratsch et al. (2020) 
and Heinrich et  al. (2021), who looked into crucial process data properties of 
real-life event logs with a substantial impact on the overall quality of prediction 
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pipelines. As a result, the taxonomic evaluation framework in Table 4 addition-
ally covers three central data characteristics of process variation (i.e., variant-
to-instance ratio), event repetitiveness (i.e., event-to-activity ratio), and sparsity 
(i.e., activity-to-instance ratio). For further details on all three characteristics, 
please refer to the full articles.

•	 Step 4 Framework application and quantitative evaluation studies.

After establishing the framework structure, it can be used to guide the preparation 
and execution of a systematic study design for different evaluation purposes, similar 
to the example of the previous demonstration. However, as described above, instead 
of reconstructing different deep neural network pipelines from scratch, we draw on 
the empirical results of an already existing evaluation study and reframe the results 
with the aid of the derived taxonomy structure. More specifically, we draw on the 
empirical results from Heinrich et  al. (2021), in which a key-value-predict (KVP) 
network and a gated convolutional neural network (GCNN) are introduced as two 
novel deep neural network for the task of next event prediction. Within the study, the 
novel networks are compared to two baseline networks, i.e., an LSTM network and 
stacked autoencoders (SAE). The evaluation of all four networks is based on eleven 
real-life benchmark datasets with varying properties, for which multiple evaluation 
metrics are used to assess the predictive performance. For our demonstration, we 
extract the empirical results of selected pipelines and map their characteristics to our 
taxonomic evaluation framework. In the following paragraphs, we describe how the 
selected evaluation pipelines can be classified using our derived framework structure 
(cf. colored cells in Table 4). Moreover, we outline how the empirical results can 
be considered from a more holistic and systematic perspective through the lens of 
the taxonomic framework. Figure 3 provides an overview of the reconstructed study 
design based on the selected evaluation pipelines from Heinrich et al. (2021).

In accordance with the decision support task specified in step 1, the given evalua-
tion study focuses on the task of predicting the next event in running instances. This 

Table 4   Taxonomic evaluation framework for PPM focusing on deep neural networks
CRISP-DM Dimension Characteristics

Domain 
understanding

Prediction task Activity-related Time-related Outcome-related Attribute-related

Data 
understanding

Process variation Low Medium High

Event repetitiveness Low Medium High

Sparsity Low Medium High

Data preparation

Choice of 
input data

Activities Time features Attributes
Linear temporal 

logic
Process model

Sequence encoding Continuous Prefix padded N-grams Single event
Timed state 

sample

Event encoding Embedding One-hot encoding Frequency-based

Modeling
Type of 
neural network

Feedforward
neural network

Autoencoder
Recurrent neural 

network
Convolutional neural 

network

Evaluation Performance metric Classification-based Regression-based String-based
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constitutes a typical activity-related prediction task. From the perspective of the data 
properties, the eleven datasets used within the study cover a broad spectrum of event 
log characteristics and complexity levels. Through the combined consideration of 
the three properties process variation, event repetitiveness, and sparsity, different 
complexity levels can be expressed to describe the nature of the prediction scenario. 
For example, the applied event log BPI’11 is characterized by a high process vari-
ation (0.85), a high event repetitiveness (3.97), and a high sparsity (0.55), which 
constitutes a highly complex prediction scenario. In contrast, the event log BPI’12 A 
shows a low process variation (0.01), a low event repetitiveness (1.00), and a low 
sparsity (0.001), which constitutes a rather simple prediction scenario.

For our exemplary reconstruction of the evaluation results, we focus in the fol-
lowing on the combined consideration of only two crucial data properties, which are 
represented by a sufficient number of datasets. This step serves to ensure an illustra-
tive presentation of the reconstructed results on a two-dimensional grid for our dem-
onstration purposes. More specifically, we look into prediction scenarios with a low 
(0.01–0.04), medium (0.19–0.34), and high (0.85–0.99) level of process variation in 
combination with a low (1.00–1.66) and high (2.25–3.97) level of event repetitive-
ness. Thus, based on these specified properties, we reconstruct the empirical results 
from the following eight datasets: BPI’11 (van Dongen 2011), BPI’12 all, BPI’12 A, 
BPI’12 O, BPI’12 W (van Dongen 2012), BPI’13 P, BPI’13 I (Steeman 2014), and 
EnvLog (Buijs 2014). The grid-like scheme in Fig. 3 illustrates which combinations 
of data properties are covered by the individual datasets. Beyond that, we neglect 
an additional consideration of the sparsity property due to a lack of sufficient data 
combinations. Implicitly, however, the property still has an effect on the prediction 
performance, as we will see later in the reconstructed evaluation results.

Concerning the construction of the data preparation pipeline, only two differ-
ent options for the choice of input data were originally considered by Heinrich 
et al. (2021). On the one hand, next events were predicted solely based on pre-
vious activities without any further features (i.e., event prefixes). On the other 
hand, activities were enriched with additional event attributes (i.e., organizational 
resource information) to evaluate their combined impact on the prediction per-
formance. Considering the choice of sequence and event encoding, a continuous 
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encoding was applied using event tokens that are fed into a single embedding 
layer of the corresponding network architecture. One exception is the architec-
ture of the SAE network. This specific approach uses a sequence encoding based 
on n-grams and feature hashing. Due to these mixed pipeline configurations, it 
is hardly possible to identify the contribution of a single design choice to the 
pipeline’s overall performance (e.g., type of event/sequence encoding vs. type of 
network).

Considering the type of neural networks, the KVP and LSTM networks are repre-
sentatives of recurrent network architectures; the GCNN is a convolutional network, 
and the SAE is a combination of stacked autoencoders and a feedforward neural net-
work. For the quantitative assessment, eleven different classification metrics were 
considered in the original evaluation study. However, for simplicity, we concentrate 
on a single metric using the F1-score as a commonly applied performance metric. 
For further details on the specific implementation of each approach, please refer to 
the original study.

In analogy to the first demonstration example, we can now relate the components 
of the reconstructed study design in relation to each other to set up a systematic 
evaluation matrix (Table  5). That is, the domain and data properties specify the 
decision scenario’s context for which the different pipelines are reconstructed and 
evaluated. This time, it can be distinguished between different levels of complex-
ity in terms of process variation and event repetitiveness. As a result, the evalua-
tion matrix is divided into six areas covering different combinations of both process 
properties. The chosen evaluation metric (i.e., F1-score) offers a quantitative assess-
ment of the prediction performance for each pipeline. Again, we use a color scheme 
to highlight the differences in performance. The higher the value of the F1-score, 
the stronger the color intensity, indicating that an individual pipeline performs better 
than another. Alternative configurations of the data preparation pipeline are reflected 
by columns (i.e., choice of input data), whereas alternative types of neural networks 
are organized in rows (i.e., SAE, LSTM, KVP, GCNN).

Table 5   Evaluation results for selected elements of the PPM evaluation framework (the stronger the 
color intensity, the better the prediction performance measured by F1-score)

Metric: F1-score
Low event repetitiveness High event repetitiveness

Example 1 Example 2 Example 1 Example 2
No attr. With attr. No attr. With attr. No attr. With attr. No attr. With attr.

Low 
process

variation

SAE 0.602 0.764 0.732 0.821 – – – –
LSTM 0.848 0.808 0.833 0.819 – – – –
KVP 0.853 0.822 0.847 0.820 – – – –

GCNN 0.880 0.882 0.857 0.882 – – – –

Medium 
process

variation

SAE 0.684 – 0.428 0.458 0.795 – 0.463 0.477
LSTM 0.867 – 0.699 0.629 0.715 – 0.734 0.742
KVP 0.876 – 0.702 0.603 0.723 – 0.706 0.741

GCNN 0.844 – 0.631 0.683 0.710 – 0.613 0.677

High 
process 

variation

SAE 0.579 0.581 – – 0.380 – – –
LSTM 0.683 0.649 – – 0.665 – – –
KVP 0.787 0.599 – – 0.702 – – –

GCNN 0.595 0.601 – – 0.528 – – –
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Since the original study did not follow a strictly systematic study design—and 
some of the combinations simply cannot be filled (e.g., due to missing data attrib-
utes)—there are several empty cells in the evaluation matrix. By contrast, some 
combinations of process properties are represented by two datasets, as reflected by 
distinct columns (i.e., Examples 1 and 2).

Even though the evaluation matrix is not entirely filled, several multi-perspective 
insights can be derived from the taxonomic evaluation approach. For example, it can 
be observed that the increase in complexity of both process properties (i.e., process 
variation and event repetitiveness) indeed has an impact on the prediction quality. 
Thus, we see a general tendency of decreasing performance with increasing repeti-
tiveness and increasing process variation across all models. The lowest performance 
can be obtained for all models on the combination of high repetitiveness and high 
variation. Here, the KVP network performs best and shows its strengths compared 
to other models because the advanced attention mechanisms help to capture relevant 
patterns in complex process structures. The GCNN, on the other hand, has difficul-
ties with more complex settings, which is particularly expressed when process vari-
ation is high. In contrast, the GCNN shows the best results on both sample datasets 
with low event repetitiveness and low process variation, proving its suitability for 
less complex process environments. The LSTM model generally shows solid predic-
tion results across all circumstances without any remarkable performance leaps or 
drops in a particular combination.

Furthermore, it is noticeable that the SAE exhibits by far the lowest prediction 
qualities. As noted within the original evaluation study, this might be due to some 
implementation issues when reconstructing the original network architecture. Inter-
estingly, however, the SAE dominates all other architectures on a single dataset; that 
is, BPI12w with medium variation and high repetitiveness (F1-score: 0.795). In con-
trast to similar datasets showing this complexity level (e.g., BPI 13 I), this specific 
event log is also characterized by an exceptionally low level of sparsity—a property 
that is not reflected by the current evaluation matrix. Thus, the specific combination 
indicates a promising context for the application of the SAE, which should be inves-
tigated more thoroughly in future evaluation studies.

Considering the performance differences between prediction pipelines with and 
without additional attributes, we can also observe several tendencies. In the case of 
the GCNN and the SAE, the data augmentation leads to higher prediction perfor-
mance. These architectures seem to be better suited to deal with additional infor-
mation. By contrast, the two recurrent networks (i.e., KVP and LSTM) reveal an 
opposite effect. Here, the additional attributes impair the prediction qualities since 
both networks have difficulties in processing the increased number of unique event 
tokens, resulting in overfitting. However, the latter effect is only true in contexts 
with low event repetitiveness. A statement about the opposite case (i.e., high repeti-
tiveness) would require more empirical results as it is currently only reflected by a 
single dataset.

Overall, the exemplary results show that the taxonomic evaluation approach 
allows deriving various multi-perspective insights—similarly to those retrieved in 
the previous demonstration example. Of course, this consideration may not replace 
the original study with all its in-depth examinations. Nevertheless, it provides a 



218	 P. Zschech 

1 3

structured procedure to systematically identify and present relevant relationships, 
patterns, and trends while uncovering conspicuous outliers that require further 
investigations.

6 � Discussion

This section discusses the merits and limitations of the proposed approach and out-
lines implications for further research and practical applications.

Given a multitude of alternative design options when building analytical informa-
tion systems, taxonomies offer a viable approach to organize the solution space of 
data-driven method pipelines in a structured manner. The resulting framework ele-
ments (i.e., dimensions and corresponding characteristics) can then guide the crea-
tion and execution of structured evaluation studies to consider the construction and 
assessment of data analytics pipelines more comprehensively and systematically. 
We illustrated the benefits of this approach by proposing a generic guidance model 
and instantiating the approach with two demonstration examples from data-intensive 
application domains.

Although state-of-the-art prediction models in the form of advanced deep neural 
networks were used in both exemplary instantiations, there was no single approach 
that showed dominating performance values across all situations in any of the two 
examples. This result underlines the need for a structured evaluation approach that 
considers different design options from a more holistic and multi-perspective view. 
Thus, with the presented method, fine-grained evaluation studies could be per-
formed (or reconstructed) in order (i) to assess the suitability of alternative design 
options for different contexts, and (ii) to verify the adequacy of combining specific 
pipeline components.

Our proposed approach is the result of a cumulative research project. As such, it 
integrates key concepts and ideas from several adjacent areas of research and prac-
tice, and combines them into a new method proposal. Conversely, our approach 
thereby also makes several contributions to those areas from which it was assem-
bled, including (i) data analytics procedure models, (ii) ablation and substitution 
studies, and (iii) taxonomy developments.

Let us start with data analytics procedure models. As outlined before, such pro-
cedure models are generally considered helpful as they provide structural guidance 
for the systematic development of data analytics pipelines. At the same time, they 
have been criticized for being too generic as they do not capture relevant character-
istics of specific solution spaces. In response, there have been some recent efforts to 
offer procedure models that are more tailored towards domain-specific particulari-
ties (e.g., Huber et al. 2019). However, even such models may not adequately cap-
ture crucial design options for specific decision support tasks. At this point, we see 
a valuable contribution of our approach in enriching generic procedure models with 
more domain specificity by using the framework elements to capture and organize 
different design options of the solution space for each step of the procedure model. 
By additionally incorporating the quantitative results of systematic evaluation stud-
ies, such enrichments may not only be limited to purely descriptive systematization 
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purposes. Instead, we generally see an opportunity that the morphological structures 
of the taxonomic frameworks can be used to derive prescriptive design knowledge 
(Kundisch et al. 2021; Möller et al. 2021) to inform the construction of future ana-
lytical information systems.

Likewise, our approach provides a contribution to the field of ablation and sub-
stitution studies. The general idea of such studies originally stems from the field of 
ML, where certain types of models (e.g., deep neural networks) are composed of 
multi-layered components for which the impact on the overall performance is inves-
tigated. Therefore, current practices are often very model-centric and focus mainly 
on architectural aspects. In contrast, little attention is paid to the contextual condi-
tions under which new methods and models are either more or less appropriate (e.g., 
Heinrich et  al. 2021; Kratsch et  al. 2020). Against this background, our approach 
provides new incentives to consider contextual circumstances more holistically 
in terms of domain-specific circumstances and data properties that might have an 
impact on the suitability of data analytics pipelines. Put differently, we could say 
that current practices in conducting ablation and substitution studies tend to follow a 
bottom-up strategy, focusing mainly on small-scale model and method components, 
while our approach rather propagates a top-down strategy, investigating effects from 
a broader contextual solution space. Moreover, since there are hardly any guid-
ance models or standardized procedures available in this area (Sheikholeslami et al. 
2021), our approach is one of the first of its kind.

From a taxonomy development perspective, our proposal can be seen as a con-
textualized development approach for the area of data analytics and data-driven 
method pipelines. While our approach largely follows the guidance model by Nick-
erson et al. (2013) for the central step of constructing a taxonomic framework, it also 
required some crucial modifications and extensions for our specific application area. 
This includes, for example, an orientation along the structure of data analytics pro-
cedure models for the extraction of relevant framework dimensions, or the admis-
sion of non-exclusive characteristics. As such, we follow the example of other modi-
fied taxonomy development methods (e.g., Notheisen et  al. 2019) which required 
an application-specific adjustment. In this respect, we see great potential that our 
contextualized approach can be reused or even further developed by other research-
ers and practitioners for similar application areas.

Moreover, with our approach we offer one of the few examples, especially in 
the realm of data analytics, where the goal of taxonomy development goes beyond 
purely descriptive systematization purposes. As outlined above, this is achieved dur-
ing the taxonomy’s usage phase by drawing conclusions about the combinations of 
different framework elements in conjunction with quantitative evaluation metrics. 
This  allows to derive prescriptive insights about promising pipeline configura-
tions for different contexts. Although some researchers already combine taxonomy 
developments with subsequent cluster analyses to identify archetypal groups (e.g., 
Matschak et al. 2022; Wanner et al. 2022), to the best of our knowledge, there is no 
other competing approach yet that leverages morphological structures of data analyt-
ics taxonomies to guide the preparation and execution of systematic evaluation/abla-
tion studies. Thus, our approach can also be seen as a valuable direction for a new 
and contextualized taxonomy purpose, which has not yet been discussed as such by 
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other taxonomy developers and/or users within the IS discipline (Schoormann et al. 
2022).

On top of that, the two different demonstration examples in the previous section 
have shown that our proposed approach is not limited to a specific data analytics 
scenario. Instead, our method allows a high degree of flexibility with respect to dif-
ferent application domains, decision support tasks, problem classes, and particular 
settings. Nevertheless, some limitations were applied in both demonstration exam-
ples to keep the complexity manageable. In the first example, the focus was set on 
a specific technical scenario (i.e., turbofan engines) while the methodical basis was 
considered broadly. In the second example, on the other hand, a narrower focus was 
placed on a specific type of method (i.e., deep neural networks), but the field of 
application was kept flexible. Beyond these examples, the complexity may increase 
remarkably if the scope is chosen too broadly. This could possibly result in too many 
domain- and method-specific dimensions and characteristics, from which the com-
binability of components - but also the comparability of corresponding data analyt-
ics pipelines  - may suffer. However, we have not explicitly considered such con-
straints so far, which will be the subject of future work.

Furthermore, as a side product, we were able to derive two valuable taxonomies 
that can be considered as reusable artifacts to research and practice. Thus, both taxo-
nomic frameworks can be recycled to guide the creation of new study designs for 
further evaluation aspects. Similarly, they can be leveraged to systematize and dif-
ferentiate future work that is concerned with the development of novel data analyt-
ics pipelines. In this course, we were also able to show that our proposed approach 
is not only suitable to guide the creation of new evaluation studies but can also be 
helpful for reconstructing already existing ones. As illustrated in our second demon-
stration example, interesting anomalous spots (e.g., performance leap of SAE) could 
be detected that require further investigations. As already mentioned, this cannot 
replace in-depth considerations but could provide new complementary insights.

As with any research, our work is not free of limitations. Currently, our approach 
offers a rough orientation on how to obtain a taxonomic evaluation framework via a 
top-down strategy. That is, in the first step, the overarching decision support task is 
defined and then the supporting pipeline is divided into individual components along 
the structure of data analytics procedure models. One level further below, however, 
it is hardly possible to make any further concrete recommendations as to which level 
of abstraction should be chosen for deriving suitable framework elements. As exem-
plified in our two demonstration examples, it is generally advisable to distinguish 
between rough types of models and methods (e.g., different architectural topologies 
of neural networks, different types of feature encodings, rough types of data prepara-
tion steps, etc.) to assess their performance and general suitability. For each chosen 
type, however, representative implementations must be selected for their technical 
realization. These implementations, in turn, have several design options in the sense 
of configurations that need to be specified. That is, on an extreme end, it is even pos-
sible that every single hyperparameter of a data analytics pipeline could constitute a 
taxonomic dimension on its own (e.g., choice of activation functions in neural net-
works). However, this would increase the framework’s complexity drastically while 
limiting our approach’s benefits of providing transparency. Against this background, 
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it is necessary to choose an appropriate level of abstraction and decide in advance 
which pipeline components and properties are likely to have a crucial impact on the 
corresponding evaluation metrics, without risking that the scope is chosen too broad 
or too narrow. Admittedly, this requires a certain level of data science expertise and 
sufficient experience in developing data analytics pipelines, which needs to be taken 
into account when setting up the team for the application of our proposed method.

Another limitation arises from the amount of time and effort required to carry out 
all four steps of our proposed approach. In our second demonstration example, it was 
possible to draw on existing systematization frameworks to create the taxonomic 
evaluation framework. In such a case, the critical foundation for conducting system-
atic evaluation studies is already given. If, on the other hand, one starts without pre-
liminary work and carries out all the proposed steps from scratch—as shown in the 
first demonstration example—this involves a considerable amount of time and effort. 
More specifically, as outlined in Table 1, the total effort required for the first dem-
onstration example was about 475 hours, including 85 hours for knowledge retrieval 
and systematic literature search to cover the analytical solution space, 160  hours 
for taxonomic framework development, 170  hours for technical implementation 
and pipeline development, and 60 hours computing time for model training. Thus, 
especially the initial steps of knowledge retrieval and literature search as well as 
the subsequent step of the taxonomy development can be very time-consuming. For 
practitioners who need to develop data analytics pipelines in companies under time 
pressure with limited resources, the effort and benefit of this approach may not be in 
a justifiable ratio. Against this background, we see the main responsibility for car-
rying out these steps primarily with researchers in the respective decision support 
domains. Once appropriate evaluation frameworks have been developed and initial 
quantitative evaluation results are available, practitioners can recycle them for their 
own purposes and enrich them with further results from additional evaluation stud-
ies. At this point, we pursue the vision that our approach can be leveraged to create 
reference cards or reference tables that provide reusable insights into which pipeline 
constellations work well or poorly under certain conditions. In the long run, this 
would have the advantage that computational experiments for similar contexts and 
decision support tasks would not have to be executed repeatedly from scratch, but 
the results could be reused in a sustainable manner to avoid redundant experiments, 
especially in the case of computationally intensive ML models such as deep neural 
networks (cf. Table 1, stage 2b).

A last limitation concerns the evaluation of our approach. Since the proposed 
method was developed incrementally by reflecting on the findings of multiple sub-
projects and individual publications, it has already gone through several phases of 
internal and external evaluation (i.e., together with project members, the industrial 
collaboration partner, reviewers of peer-review processes). This ensured practical 
relevance and methodical stringency. Furthermore, in this article, we have shown the 
feasibility and usefulness of our approach with two exemplary demonstration cases. 
Nevertheless, there is still a lack of an application-oriented evaluation of our pro-
posal by applying it under real conditions with different user groups and assessing 
its usefulness in an external environment. In this context, it is particularly important 
to assess the effort required in relation to the benefits achieved, which requires a 
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carefully defined study design over a longer period of time, taking into account sev-
eral assessment criteria, such as the duration of development and evaluation activi-
ties, the human and IT resources required, the value of intellectual findings as well 
as the transferability and scalability of results to other contexts. To this end, a larger 
longitudinal study is planned as a next step, in which our proposal is applied under 
real circumstances together with a mixed team of researchers and practitioners to 
support the construction and evaluation of data analytics pipelines for various deci-
sion support tasks.

7 � Concluding remarks

In this paper, we proposed a taxonomic evaluation approach for data analytics pipe-
lines to evaluate and construct the technical core of analytical information systems 
more comprehensively and systematically. To this end, we presented a rough guid-
ance model consisting of four subsequent steps. Our approach adopts the general 
ideas of data analytics procedure models as well as ablation and substitution stud-
ies. As a methodical basis, we draw on a well-established taxonomy development 
method by Nickerson et al. (2013), which we contextualized for our specific applica-
tion purpose. By instantiating our proposal in two exemplary application scenarios 
from the fields of industrial maintenance and business process monitoring, we dem-
onstrated the suitability and usefulness of conducting systematic evaluation studies 
with the help of taxonomic frameworks. With our approach, we generally see an 
opportunity on how to leverage descriptive morphological taxonomies to derive pre-
scriptive design knowledge (Kundisch et al. 2021; Möller et al. 2021) for the devel-
opment of more domain- and context-specific analytical information systems in the 
realm of data-driven decision-making. In future steps, it is planned to apply our pro-
posed approach to further application scenarios covering other domains and deci-
sion supports tasks to verify the transferability of the results. The findings will be 
used to improve the initial method proposal and provide a stronger formalization for 
better applicability.
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