
ORIGINAL ARTICLE

A pluggable service platform architecture
for e-commerce

Fabian Aulkemeier1 • Mohammad Anggasta Paramartha1 •

Maria-Eugenia Iacob1 • Jos van Hillegersberg1

Received: 17 January 2015 / Revised: 31 August 2015 /Accepted: 4 September 2015 /

Published online: 25 September 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In the beginning of the e-commerce era, retailers mostly adopted ver-

tically integrated solutions to control the entire e-commerce value chain. However,

they began to realize that to achieve agility, a better approach would be to focus on

certain core capabilities and then create a partner ecosystem around them. From a

technical point of view, this means it is advised to have a lightweight platform

architecture with small core e-commerce functionality which can be extended by

additional services from third party providers. In a typical e-commerce ecosystem

with diverse information systems of network partners, integration and interoper-

ability become critical factors to enable seamless coordination among the partners.

Furthermore an increasing adoption of cloud computing technology could be

observed resulting in more challenging integration scenarios involving cloud ser-

vices. Thus, an e-commerce platform is required that suites the advanced needs for

flexible and agile service integration. Therefore, this paper aims to present a ref-

erence architecture of a novel pluggable service platform for e-commerce. We

investigate on currently available online shop platform solutions and integration

platforms in the market. Based on the findings and motivated by literature on

service-oriented design, we develop an architecture of a service-based pluggable

platform for online retailers. This design is then instantiated by means of a prototype

& Fabian Aulkemeier

f.m.aulkemeier@utwente.nl

Mohammad Anggasta Paramartha

mohammadanggastaparamartha@alumnus.utwente.nl

Maria-Eugenia Iacob

m.e.iacob@utwente.nl

Jos van Hillegersberg

j.vanhillegersberg@utwente.nl

1 Centre for Telematics and Information Technology, University of Twente, Enschede,

The Netherlands

123

Inf Syst E-Bus Manage (2016) 14:469–489

DOI 10.1007/s10257-015-0291-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-015-0291-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-015-0291-6&domain=pdf

for an e-commerce returns handling scenario to demonstrate the feasibility of our

architecture design.

Keywords E-commerce platform � SOA � Cloud integration � Reference
architecture � Pluggability

1 Introduction

In the beginning of the e-commerce era, retailers mostly adopted vertically

integrated solutions to control the entire e-commerce value chain. However, they

began to realize that to achieve agility, a better approach would be to focus on

certain core capabilities and then create a partner ecosystem around them.

According to (Chu et al. 2007) vertical collaborative platforms based on web service

technologies are the next breakthrough in e-commerce systems. Thus, retailers

should aim for a modular and flexible architecture, with small core e-commerce

functionality, which can be extended by additional services from third party

providers. Furthermore, looking at the current e-commerce landscape, an increasing

adoption of cloud computing technology can be observed, supporting the distributed

and modular service concept.

However, for the modular approach to function, the increasing number of

services have to stay manageable. Current IT services are mostly based on packaged

applications and require significant resources to make them ready for the business

needs of the user (O’Leary 2000). The required efforts during each phase of

adopting an IT service has been reflected in the concept of pluggability. More

precisely, pluggability is a software quality characteristic consisting of a number of

quality aspects to measure the resources required throughout all phases of service

adoption (Aulkemeier et al. 2015). The lack of current e-commerce architectures to

support pluggable services is a potential obstacle for more flexible and scalable

collaboration in e-commerce. Thus, it is important to gain insights into the

capabilities of the state of the art in e-commerce platforms to support pluggable

services, in order to pave the way for a pluggable service platform architecture.

Accordingly, the research goal of this paper was to assess the capability of state

of the art services in e-commerce and integration platforms to support a pluggable

service architecture. Following a design science research methodology (Peffers

et al. 2007) the research was carried out in four steps:

1. Defining the objects and benefits of a service based e-commerce architecture

and analyze the state of the art to identify its current building blocks (Sect. 2).

2. Design and development of an architectural reference model reflecting the state

of the art (Sect. 3)

3. Demonstration of the architecture through implementation of a prototype, based

on the architectural model (Sect. 4)

4. Evaluation of the prototype with regards to the criteria for pluggability (Sect. 5)

470 F. M. Aulkemeier et al.

123

Thus, the contributions of the presented work can be summarized as follows:

First of all, the state of the art study provides an overview about the current practice

in e-commerce. Furthermore, the presented architecture can be considered as a

reference model of a service based pluggable platform architecture for e-commerce.

More precisely, we present the initial version of the model as well as a number of

enhancements resulting from prototype evaluation. Finally, the prototype is a

product of the design research and thus accommodating design knowledge as

pointed out by (Cross 2006). The evaluation of the prototype delivers insights into

the pluggability of state of the art services for e-commerce.

2 Service based platform architectures

The goal of the reference architecture proposed in this paper is to complement the

existing e-commerce reference models in order to reflect recent developments in

service based architectures. By taking the state of the art in e-commerce platforms

as a starting point we were able to assess the current practice and point out

shortcomings. In the following we discuss the objectives and benefits of the service

based approach and outline the state of the art in e-commerce platforms.

2.1 Objectives and benefits

Existing reference models in the domain of e-commerce and retailing are generally

business layer models (Frank and Lange 2004; Becker and Schutte 2007). They

describe the entirety of functions and processes of the business model. Systems that

are built based on these reference models tend to encompass all the primary business

activities, often resulting in monolithic solutions. As mentioned earlier companies

increasingly focus on single activities within the value chain. Providing end-to-end

systems in the highly disaggregated business environment, with individual

organizations that only cover parts of the value chain, leads to inefficient use of

IT resources. Furthermore, monolithic systems are not built for collaboration with

external systems, making the exchange of individual IT functionality and external

business partners cumbersome.

The main objective of a service based, modular architecture is therefore to

support the construction of systems that go beyond what current, monolithic systems

achieve with regards to flexibility in IT and business service adoption. It enables

companies to integrate innovative IT services faster and also helps them to connect

with business partners with less efforts. The so called quick connect capability

(QCC) has been proposed by a number of authors (van Heck and Vervest 2007;

Koppius and van de Laak 2009) and describes the capability of network partners to

setup business collaboration with less efforts in less time. The authors claim that the

decomposition of the system and modularity are required to achieve versatility.

Heck et al. suggest that digital platforms improve the interaction and the QCC. The

platform based approach differentiates between the stable component in a system

and the other, evolving components which evolve around it (Baldwin and Woodard

2009). A major goal in constructing the platform based architecture can therefore be

A pluggable service platform architecture for e-commerce 471

123

expressed as identifying the stable components of the system, to maximize

pluggability of the remaining components.

The expected benefits of the increased pluggability through the service platform

can be summarized as the ability of the platform user to source external and

innovative IT services as well as to collaborate with external business partners more

easily.

2.2 State of the art

To analyze the state of the art in pluggable service platforms for e-commerce we

started by investigating the available products and cloud services in the market.

Based on our findings we extended the market research by looking at cloud

integration platforms, which complement the functional components with the

aspects of connectivity. Even vendors which are in favor of a lightweight, pluggable

e-commerce platform differentiate between core business functionality and

connectivity components (e.g. spreecommerce).

Similar with other enterprise application systems the e-commerce platform

solution landscape has evolved from custom-made components to pre-packaged

solutions. Pre-packaged e-commerce solutions provide the e-commerce specific

functionality such as shopping cart, product catalogue management, marketing

tools, and payment (Humeau and Jung 2013). By implementing a pre-packaged

solution, it becomes easier for business owners to set up and launch their online

store, resulting in a faster time to market. Despite the ease and functionality that

e-commerce solutions offer, some challenges remain, that ought to be solved by

specialized pieces of functionality.

In a preceding study, a systematic literature review was carried out, investigating

on processes and architectures for online retailing. The results were validated with

the online retail practice in the Netherlands (Aulkemeier et al. 2016). According to

the findings, the online retail process is comparable to existing reference processes

in retailing. Furthermore, the IT landscape of online retailers is characterized by five

major components, namely procurement, sales, service, logistic, and finance. In

practice, most of these components are not covered by the e-commerce system, so

that additional components such as an ERP system and a warehouse management

system (WMS) are in use.

We conclude that the state of the art e-commerce platform are modular to some

extent. However the granularity of the services is limited to a small number large

application systems that cover an extensive set of functionality. Furthermore the

interoperability of the functional components relies on middleware components

which are supposed to increase the pluggability.

The most widely adopted solution by the e-commerce platforms under study for

solving the enterprise integration issue is to rely on hard-wired web service based

integration. In this approach, each external service is connected to each online shop

platform through the so-called ‘‘connectors’’ or ‘‘adaptors’’. If a connector is not

available, some platforms also provide toolkits for users or service providers to

develop their own application connectors. While this approach seems to work just

fine, it will produce an inefficient point-to-point integration topology in the end.

472 F. M. Aulkemeier et al.

123

When the number of systems to integrate increases, the entire integration schema

will become highly complex, with a negative impact on scalability.

Besides, in near future it is expected that cloud computing will gain more

popularity with companies and organizations migrating their existing local systems

to the cloud. Because of this situation, new integration scenarios emerge that

involve both on-premise and cloud based applications. It might become cumber-

some to integrate systems of different nature like SaaS systems and legacy systems.

Connections between SaaS applications are also challenging due to diversity of data

models and lack of standardization (Potočnik and Juric 2012). The increasing

adoption of cloud computing brings novel ways to solve integration challenges.

Traditional middleware and integration platforms could obtain benefits from cloud

computing technology by leveraging themselves as cloud-based integration

platform (Kleeberg and Holger 2014). Commonly referred to as Integration

Platform as a Service (iPaaS), a term coined by (Pezzini 2011). A recent study by

Gartner evaluated and compared iPaaS providers (Pezzini et al. 2014). Another

research by (Ried 2014) assesses 14 vendors providing hybrid integration solutions,

which in their description, comprise of four integration scenarios: on-premise

integration, cloud-based integration, iPaaS and API Management.

2.3 Common platform services

According to the earlier mentioned objectives, we extracted the common features

that iPaaS vendors typically offer in their platform. They incorporate API

Management capabilities into their platform in addition to SOA Governance to

deliver a complete solution to take care of both SOA and REST web services. We

regard both SOA Governance and API Management as essential components to

enable pluggability of services. SOA Governance and API Management basically

share the same underlying architectural design principle, which is service oriented

design. Both aim to govern and manage the service lifecycle including design,

implementation, publication, operation, maintenance and retirement of services and

APIs (Malinverno et al. 2013). SOA governance technologies, however, have been

around for several years and almost reached maturity. SOA governance covers a

wide range of functions including but not limited to policy enforcement, security,

service contract, compliance, service level agreement (SLA), lifecycle management,

service registry and repository (Schepers et al. 2008). On the other hand, although

API Management comprises of similar building blocks as SOA Governance, it

involves some distinct capabilities (Maler and Hammond 2013). It can be said that

the fundamental difference of API and SOA lies in their orientation of service

consumption. In general terms, SOA is geared towards service consumption within

an organization while APIs, due to their openness, can be used both internally and

externally. As a consequence, some additional components, such as enterprise

gateway, security, developer portal, and service billing need to be incorporated in

API Management.

We grouped the services offered by those platforms in two categories. Meta-

services on the one hand facilitate the access and use of provided services. Process

services on the other hand offer additional features to enable process execution

A pluggable service platform architecture for e-commerce 473

123

across the integrated services. The service framework meta-services are presented in

Table 1 and process framework services are presented in Table 2.

3 A reference architecture for e-commerce service platforms

As mentioned in the previous sections, a popular way to source functionality in

modern enterprise architectures are outsourced cloud applications, offered by third

party service providers. Retailers that want to add or replace such services have to

be able to integrate them into their current system landscape. The idea behind the

Table 1 Service framework meta-services

Service framework meta-

service

Features

Developer portal In the developer portal, companies should provide relevant and

comprehensive aspects of their APIs such as API documentation, policy,

terms and agreement, testing environment (sandbox or real), or API

versioning

Enterprise gateway Management of the interaction between the API and external API

consumers

Policy enforcement and

management

Management of both, design time and runtime policies of services. Design

time policies are concerned with aspects such as design guidelines or

security mechanism while run time policies are concerned with

operational environment and requirements that have to be met by the

service at runtime

Security The difference between security in SOA Governance and API Management

is that in SOA Governance, the organization administers internal and

known users while API Management handles external and unknown

users. API Security manages additional aspects like authorization and

authentication, API Key management, as well as Identity and Credential

Management

Service analytic and

reporting

Exploration of insightful traffic analytics and reports of API activities with

respect to developers account, application, or services as well as

observation of the overall API usage and trends

Service level agreement Management of service levels as stated in SLA contract, service evaluation

as well as fees for consuming the service and fines in case of contract

violation

Service lifecycle

management

Managing the design, development and delivery of individual services in a

SOA. The tasks include change management procedure, service

registration and even deciding on service granularity

Service metering and

billing

Monitor and measure service usage as the basis for billing and calculation

for the service consumers. Also the service performance can be

monitored regularly

Service registry and

repository

The catalogue of services and management of their publication. Definition

of taxonomies of the published services allowing consumers to find

suitable services to their needs. While the Service Registry only contains

service references, the Service Repository is the actual holder of

documentation, policies and metadata about the versioning of the service

474 F. M. Aulkemeier et al.

123

pluggable platform architectures is to give users the possibility to integrate

e-commerce services into the existing environment with a minimal effort in terms of

sourcing and implementation. The platform should allow supply-chain partners to

share their services, execute inter-organizational processes and work on resources

collaboratively, eventually resulting in a an open and agile e-commerce business

network. Such inter-organizational integration platforms have some distinct

requirements compared to systems internally deployed and used within one

organization or only available to a closed business consortium (van Hillegersberg

et al. 2012), especially if the platform aims to act as a one stop shop to source IT

services. In this section we are going to present a reference architecture for a

pluggable service platform, which incorporates the findings on state of the art

e-commerce and cloud integration platforms from the previous section.

3.1 Framework

According to (Baldwin and Currie 2000) a platform can be considered as ‘‘a set of

stable components that supports variety and evolveability in a system by

constraining the linkages among the other components’’. In our case the components

are e-commerce services that together with the platform compose a working

information system for e-commerce businesses. The goal of such a platform is to

improve the pluggability of the services to support variety and evolvability of the

used services and the overall system.

The service platform has three stakeholders, namely the service provider, the

platform provider and the service consumer which is the company running an

e-commerce business. To illustrate our architecture the ArchiMate modelling

language is used (Lankhorst et al. 2009). It provides concepts on business,

application and technology layer to model enterprise architectures. As we are

dealing with an inter-organizational architecture we choose to model the three

business actors as high level concept to structure the model. All further concepts are

assigned to either of these actors. We focus on the application layer components that

Table 2 Process framework services

Process framework service Features

Development and lifecycle

management platform services

Manages service integration process flows throughout their

lifecycle including modeling, development, configuration,

testing and deployment

Integration platform services Consists of aspects that ensure seamless integration flow both at

design time (service orchestration) and runtime (process

execution). These aspects include but are not limited to:

Message transformation and routing, an Integrated

Development Environment (IDE), adapters, flow

management, protocol conversion, service virtualization, and

security federation

Monitoring, management, and

administration platform services

Takes care of deployment and administration of integration

flows, monitor their execution and manage their behavior.

Covers several aspects such as technical and business activity

monitoring, logging and tracking. as well error resolution

A pluggable service platform architecture for e-commerce 475

123

support the e-commerce process at hand. Figure 1 illustrates the view of the

architecture including a meta-model of the relevant concepts in the top right. The

details of each actor are discussed in the following.

3.2 E-commerce company

The e-commerce company is the actor selling goods partially or exclusively over the

online channel. On the business layer the online retail process consists of pre-trade,

trade and post trade activities (Liu and Hwang 2004). Internally the actor

implements eight different business functions which have been identified by

different authors in (Gunasekaran et al. 2002; Burt and Sparks 2003; Becker and

Schutte 2007; Frank and Lange 2007) and have been consolidated in (Aulkemeier

et al. 2016). The same study presents six application layer components implemented

by most online retailers. Depending on the business model of the e-commerce

company, different legacy components will be implemented on the application

layer. A retailer coming from an offline channel business with a number of brick and

mortar stores will have an ERP system to manage its operations. In that case

components will be bundled into the ERP system. When introducing an online

channel the retailer will add an online shop component to the landscape that allows

customers to browse and order goods online. The order fulfillment and other back

office activities will be carried out by the ERP system. Thus the e-commerce

platform in this case consists of a lightweight online shop and the ERP system. A

pure online retailer on the other hand might implement a more comprehensive

e-commerce platform as discussed in Sect. 2.2. Those platforms not only provide a

online shop but also a rich set of back office functionality. Depending on the

complexity and size of the business an ERP component might not be present at all.

All these application components can be either operated on-premise or as SaaS

solutions provided in form of web applications by a service provider.

Fig. 1 ArchiMate model of the pluggable service platform

476 F. M. Aulkemeier et al.

123

The presented architecture for the retailer actor can be considered as the current

state of the art and does not introduce any new concepts in itself. In that sense it is a

starting point for the use of a pluggable service platform. The architecture should

allow for a gradual transition from the current, monolithic landscape to a cloud

service based architecture. It should be possible to add services to that landscape

and successively shift new and existing functionality from internal systems to the

cloud.

3.3 Service provider

The service provider can either issue pure IT services or be a supply chain partner

that provides business services (B2B e-commerce). Both service types have to be

integrated on information system level for seamless process execution.

The actual service provided can contain either additional components that

internal systems or business functions do not cover, or functions that should be

outsourced for strategic reasons. The actual services as well as their granularity are

too diverse to provide a comprehensive list. Effectually, it should be possible to

integrate any kind of service through the pluggable architecture. However, a more

important aspect is to obtain a comprehensive picture of potential service interfaces

the platform needs to support. Four different services interfaces have been

identified.

• Message based integration can be realized through modern web services or web

APIs that communicate over HTTP and can be consumed with state of the art

integration tools and techniques. This kind of interface is suitable for standalone

services such as payment services, address verifications, customer or credit

enquiries but also to access or populate resources of SaaS applications and social

media services in a programmable manner.

• Another interface type is based on more specialized protocols that can be

considered as an older technique to integrate services. Despite their higher

complexity and technical dependencies, those protocols are still widely used to

integrate legacy systems or communication services such as mail and chat but

will not be implemented by modern SaaS applications.

• Web applications are generally used as user interfaces in SaaS or social media

services as well as in analytical services and reporting in form of dashboards.

• On the backend analytical services will be integrated through an interface type

that allows exchange of large amounts of data. Message based integration would

produce too much overhead and is therefore not suitable for such scenarios

which involves large to big data sets. Instead the integration will rather be based

on data extraction, transfer and loading (ETL) or through database links.

3.4 Platform provider

The pluggable service platform acts as an intermediary between the retailer and the

service provider. The goal of the platform is twofold: it should allow retailers to

A pluggable service platform architecture for e-commerce 477

123

source IT services and to collaborate with supply chain partners. It provides a

service framework that allows provisioning and consumption of services and a

process framework to implement service based process flows. Both, the meta-

services of the service framework, and the services of the process framework are

based on the findings in Sect. 2.3.

4 A service platform based return registration process

Based on the propositions in the previous sections we demonstrate the implemen-

tation of a service based process by realization of a prototype for a specific

e-commerce case. The goal of the prototypical implementation was to assess the

state of the art in e-commerce services and integration platforms. The prototype

development gave insights into the feasibility of a process, based on a loose set of

e-commerce relevant services and integration platforms. In a subsequent step the

level of pluggability of the services in the resulting system was determined.

4.1 Business case and solution design

As the existing reference models for retail do not cover return handling processes, it

can be assumed that retail ERP systems based on such models are not designed to

handle return shipments efficiently. This might cause problems for multi-channel

retailers that are facing high volumes of returns especially in the fashion sector

(Banjo 2013). In the following we first describe a business case which covers a part

of the overall return handling process. We then discuss the services used to

implement the process and present the architecture of the solution.

In the scenario an end customer should be able to register a return online.

Through a web page integrated into or referenced by the online shop, the user can

select his order and retrieve information on the items contained in that order. The

customer chooses the items and amount he wishes to return, specify the reason for

the return and optionally add comments. The return request is transferred to the

retailer who then authorizes the return of the material (RMA). Afterwards the return

is planned by registering the expected goods and assignment of the appropriate

return center. Finally the shipper is contacted by e-mail to inform him about the

approval providing the link to a return label for print and possible drop of points

based on the customer address. With that information the end customer can prepare

the goods for shipment and bring it to the drop-off point.

Four application components are required in the scenario, each provided by

individual service providers. Those include a SaaS solution, that allows customers

to register their return shipments, (such as provided by 12return.nl), a generic

standalone web service from a logistic service provider (LSP) that allows to register

and pay shipments and to obtain the required documents (such as intraship.de).

Furthermore a workflow task list that allows back office staff to approve and reject

requests and finally an e-mail service provider (ESP) that delivers high volume

customer communication services (such as tripolis.com) are used in the process

(Table 3).

478 F. M. Aulkemeier et al.

123

Figure 2 shows the overall architecture of the solution. The pluggable platform

executes the collaborative flows that make use of the various services to provide the

business functions with the required functionality. The model shows that each and

every service relies on the collaborative data resources required to fulfill the service.

The return registration SaaS solution requires information about the orders made by

the customer in the past. The same applies for the LSP and the ESP that require

information on the customer. Having these resources in the platform allows adding

and exchanging services to the overall process in a more flexible way.

4.2 Prototype

The services in our example are implemented using diverse technologies, are

distributed among different environments, and use various protocols to

Table 3 Services used in the business case

Service Description

Return

registration

A web application that handles return shipments. It allows end customers to request a

return of goods through the web interface. The user has the possibility to look up

recent orders and select individual goods for return

Parcel

registration

The parcel delivery registration service allows to register parcel shipments, print

parcel badges and schedule parcel pick up. In the case study scenario it is used to

issue parcel label to the end customer

Task list A task list application assigns a lists of tasks to each user which they have to act upon.

This can be approvals, responses or other action items. Those task list are often

integrated into workflow systems and have advances features such as task

forwarding, task escalation or holiday calendar integration. In this case the task list

is used to assign approval notifications for the requested returns

E-mail

transmission

The e-mail service is used to send outgoing e-mails to the customer including the

approval and parcel label for the return shipment

Fig. 2 Architecture of the returns registration process

A pluggable service platform architecture for e-commerce 479

123

communicate with other systems. In the following we give an overview over the

different services and platforms that have been used for prototype construction.

For parcel delivery registration many carriers offer their own web services to

register shipments and generate parcel labels. Among those, DHL seems to be

among the leaders when it comes to easy adoption of their web services, offering a

developer portal and well documented services. However the interface to register

parcels seems very large with 225 required data field and another 173 optional data

fields exposing a lot of internals of the system which the user has to comprehend

before getting the service to work. Other services such as shipcloud.io or

postmaster.io evolve and facilitate the integration of various logistic service

providers. Their REST APIs only have 16 data fields to achieve the same shipment

label generation. The time to integrate and exchange parcel services could be

reduced from 2 days to half an hour by using the interfaces of these broker services.

Also switching between different carriers during runtime by requesting quotes and

selecting the cheapest offer is becoming easier as the brokers cover a wide range of

parcel services through the same interface.

The web application frontend for return registration is a custom made lightweight

single page application (SPA) realized with common web application technologies,

namely HTML, JS and CSS. Figure 3 shows the browser fronted of the application.

It allows the user to enter his order number and to choose the returns from the

contained items. He can further specify the return reason and type of processing. All

resources including orders, customers and metadata is retrieved from the cloud

database service running on a remote backend.

Fig. 3 Return registration app frontend

480 F. M. Aulkemeier et al.

123

As e-mail service the prototype uses Gmail which has an SMTP interface like

any common e-mail server. In the domain of marketing communication, more

specialized B2B e-mail service providers exist, such as mailchimp.com or

tripolis.com which offer business specific services like e-mail templates, analytics,

and different integration endpoints. However, these advanced features were not

relevant for the business case and we did not find the pluggability changing

significantly by using a different interface.

The prototype uses the Questetra BPM Suite for the task list as it is one of the few

BPM suites we found, that is cloud based during development and run time and

offers an API to integrate with other services. The screenshot in Fig. 4 shows the

task list of a user, listing the assigned tasks that are awaiting action, including the

pending returns waiting for approval.

The key component in the solution is the integration platform containing a

service framework to plug the different services together and a process framework

to execute the business processes. According to (Pezzini et al. 2014) three of those

services stand out in the market with regards to their completeness. For the

prototype we choose the Mulesoft CloudHub platform as it is was the most

accessible in terms of documentation and subscription, which is one criteria for

pluggability (cf. ‘ease of service provisioning’ in Sect. 5.1). Figure 5 shows how

messages are routed and transformed between endpoints using the example of parcel

label generation response and outgoing e-mail.

Fig. 4 Task list application with pending approvals

Fig. 5 Service composition using the example of the integration of parcel and e-mail services

A pluggable service platform architecture for e-commerce 481

123

During prototype development we had to introduce another component that

contains data about order, customer and product information in a cloud database.

Those resources have to be available throughout the different services used in the

process. In a real world scenario these information will be scattered across order

management, customer relationship and product catalog systems or, in case of a

more sophisticated architecture, be stored in appropriate master data management

(MDM) systems. The cloud integration platform could access the database through

the build in adapters. However we decided to introduce a layer of business logic

build into the component which exposes the data through a REST interface. For the

database and business logic we choose the cloud application platform heroku and

the lightweight web application framework flask, however the same could be

achieved with any other platform and web framework on the market.

5 Validation

While the prototyped process at hand offers limited complexity compared to a real

world scenario and cannot be considered as a reference solution for practitioners,

the goal is to test the feasibility of implementing solutions based on a set of distinct

IT services using the reference architecture and state of the art cloud based

integration platforms. Furthermore the main purpose of the prototype is to evaluate

the pluggability of the resulting solution. In this section we are going to validate the

practicability and utility of the architecture based on the prototypal implementation

as well as the support of available cloud integration platforms towards the goal of a

pluggable system.

5.1 Pluggability

The concept of pluggability can be considered as a quality characteristic of

information systems, equivalent to reliability, efficiency, or maintainability,

specified in software quality standards such as the ISO/IEC 9126. We deduced

the software characteristic of pluggability from the lack of the traditional models to

reflect the external quality criteria of IT services (Aulkemeier et al. 2015). It was

formally defined as ‘a quality characteristic that describes the external criteria of a

service which facilitate its adoption in a specific context’. Its criteria are guided by

the life cycle of service adoption. The life cycle consists of six phases, namely

provisioning, deployment, adoption, integration, operation, and exchange of the

service. The criteria are described in Table 4. Based on the six criteria an instrument

was proposed that allows to assess the pluggability of a service. Appendix 1

contains the predefined levels for each criteria which is used in this study. The

criteria have been evaluated in cooperation with practitioners in the field of IT

service integration. The application of the predefined levels to assess the prototype

presented in this paper is also a means to further validate the instrument.

482 F. M. Aulkemeier et al.

123

5.2 Observations

In order to measure the pluggability of the five services the instrument was applied

individually by the developer of the prototype, two scholars and two practitioners

from a Dutch iPaaS provider. The prototype was presented to the participants as

well as evaluated against the predefined levels for pluggability in Appendix 1. The

graph in Fig. 6 shows the average score for each pluggability criteria and for each of

the five services as well as the average overall pluggability of each service.

The service with the lowest overall pluggability is the return registration

frontend. It is a custom-built service which is hosted on-premise. The cloud

Table 4 Criteria for pluggability

Criteria Description

Ease of service

provisioning (EOP)

The goal of service provisioning is to discover potential services, compare

the various available services, to assess individual services with regards to

the business needs, and to enter into a contract with the service provider.

The service provider can facilitate these task by listing the service in

various service marketplaces, disclose all the relevant information

publicly including the terms of use, pricing, service levels, and

documentation. Furthermore, the access to demo environments and self-

service subscription can further facilitate the assessment and comparison

of services

Ease of service

deployment (EOD)

Individual services should be easy to install, learn and test. By default cloud

based services do not require technical testing and installation and thus,

have an inherent advantage over traditional software components with

regards to deployment. In any case the service should support learning and

functional testing through high quality and accessible documentation

Ease of service adaptation

(EOA)

The service should be easy to adapt to the functional needs of the consumer.

This includes the ability to configure and customize the service.

Customizations have a higher level of technical complexity as additional

or deviating logic has to be implemented. Configuration in contrast

leverages existing logic through setup. A pluggable service maximizes

configurability while reducing the need for customizations

Ease of service

integration (EOI)

Services should be able to communicate and share data mutually in order

fulfill the overall business process. The construction of dedicated

interfaces between services is labor intensive and should be supported by

the service provider, for example through adapters or service platforms.

Services should be able to share and exchange resources without other

service quality criteria being affected, especially EOD, EOA and EOE

Ease of service operation

(EOO)

Service operation encompasses the long-term tasks to enable the continuous

use of a service, namely maintenance, monitoring and customer support.

Service providers can facilitate service operation by providing service

level agreements for availability, bug fixing and change requests, as well

as a suitable infrastructure such as call centres, a bug tracking systems,

and support portals. In order to provide a single point of contact across

services, a joint service infrastructure can further improve the EOO

Ease of service exchange

(EOE)

Loose coupling is a fundamental principle of service-oriented architectures

and requires services to act as independent units of computing. The benefit

is to facilitate the exchange of individual services. However, loose

coupling of services requires dedicated service orchestration which affects

the EOI

A pluggable service platform architecture for e-commerce 483

123

database is a custom-built solution but deployed on a PaaS environment which

seems to be beneficial for the overall pluggability. In the mid-level of the overall

pluggability is the tasklist solution which is a PaaS that follows a model driven

approach to process implementation. Its non-coding approach seems to be beneficial

for the overall pluggability. Finally the e-mail transmission and parcel registration

can be considered as SaaS solutions and exhibit the highest level of pluggability.

The EOD is high for the parcel delivery service and the e-mail service as those

services are installed and maintained entirely by the service providers. The EOD is

low in contrast for the return registration frontend and the cloud database as the

deployment and management is carried out by the retailer. The workflow solution is

operated by the service provider but the actual processes running on the platform

have to be developed, tested and monitored by the service user.

For the workflow task list application the EOA is high because the used BPM

service provides a model driven approach to implement business logic. The user has

very high flexibility to adopt the service to his needs without having to customize

the system. The same applies for the e-mail service which is flexible to the extent

that the content of the e-mail is concerned. The return registration frontend and the

cloud database are adaptable but need technical expertise to implement customiza-

tions. The parcel registration service also has a low level for EOA because it

delivers specialized services which are not adaptable.

Fig. 6 Average score per pluggability criteria and average overall pluggability

484 F. M. Aulkemeier et al.

123

All four services of the prototype which are based on cloud platforms have a high

EOP. This indicated that cloud service providers in general are doing a good job in

documenting and providing potential user with resources to assess their services.

The low EOP for the custom developed return registration service however is

difficult to explain. We think that the concept of provisioning might not be

applicable to custom developments as the task of a fit gap analysis does not have to

be carried out in that case. The provisioning is then happening on the technical level

which might explain the low EOP.

The EOO is low for the return registration fronted because it requires monitoring

of the application and the underlying infrastructure as well as support and

maintenance of the application. The use of PaaS for the cloud database and

workflow increases the EOO as basic infrastructure is handled by the service

provider. However application maintenance and support is still in responsibility of

the service user. The other two services have a high EOO as the entire service

operation is outsourced.

The parcel delivery and e-mail service have a high EOE both for distinct reasons.

The protocol used by the e-mail service provider is highly standardized and used by

any other service provider. Therefore the migration to another services has minimal

impact. The exchange of the parcel delivery service with another service can be

achieved easily too. We have carried out this exercise by changing the postmaster.io

service with shipcloud.io which is only a matter of changing a couple of fields and

the service endpoint. The return registration frontend can be exchanged without

impact on any other service in the architecture. However it is relying on other

services such as the cloud database to retrieve order and customer information.

Introducing another service for this purpose require it to be adopted to the interface

of these services or the service bus respectively. Exchanging the cloud database or

the workflow system however impacts the entire architecture which also leads to a

low EOE.

The EOI is the criteria with the lowest average score across all services. The

return registration service, the task list application, as well as the cloud database

have a very low EOI due to the complexity of their interfaces. Each of the services

requires throughout design, build and maintenance of custom interfaces to connect

to the other services. While the parcel delivery and e-mail service require the same,

their interfaces are rather simplistic so that the EOI is a bit higher.

5.3 Improvements on the state of the art cloud integration platforms

In the previous section we have investigated to what extend the services and the

architecture of the prototype adhere to the criteria of pluggability. We discovered

that the ease of integration is the criteria that the current services and integration

platforms lack of. We see the reason for this shortcoming in the complexity of the

task of developing and maintaining the interfaces between the various software

services.

Service implementers can easily gain a good understanding of the reference

processes, data models and use cases required to implement a certain application

component. It allows them to deliver services that can be used in a wide variety of

A pluggable service platform architecture for e-commerce 485

123

organizations. However, service providers have no insights into the environments in

which the services eventually operate, which may be the explanation of the lack in

delivering the appropriate integration artifacts. Furthermore those system land-

scapes vary across the different potential service users which poses another obstacle

to delivering those artefacts.

To address this issue we propose to adjust the architecture of the current

integration platforms to facilitate the task of delivering pre-integrated services. As

with cloud based software services that release the user from struggling with the

underlying technology a suitable integration platform allows the users to reduce

their workload in service integration from customization to configuration.

(Baldwin and Woodard 2009) describe the goal of a platform to provide ‘a set of

stable components that supports variety and evolvability in a system by constraining

the linkages among the other components’. In an application landscape with

evolving functionality the most obvious stable component is the data used

throughout the system. This data is the same throughout the different types

(integration can be seen as the task of transferring data from one system to another)

and different generations (migration can be seen as the task of transferring data from

one system generation to its successor) of services. However this aspect is ignored

by all of the investigated integration platforms.

As a result to the lack of current platforms and the indicated integration

challenges we claim that the business data should be part of the platform rather than

Fig. 7 Evolution of the pluggable service platform model (cf. Fig. 1)

486 F. M. Aulkemeier et al.

123

the individual services. The integration platform becomes a domain specific artefact,

including a canonical data model (Hohpe and Woolf 2003) and the required services

to help service providers to ship pre-integrated services. In Fig. 7 we show and

extended version of the state of the art model and add the collaborative data

management component to the platform provider. By introducing this concept we

shift the component that is most critical for the integration of systems from the

service to the platform. This component handles the canonical data that is used, and

provides an interface to these resources. In the context of this study individual

e-commerce services evolve around the platform. They can operate by default on

the data service and thus, allow their users to skip the integration efforts.

Furthermore it is possible for the processes to access the canonical data through the

same interface, which allows to integrate legacy services that are not participating in

the use of the data service.

6 Conclusion and future research

In this paper we have shown how the IT service industry currently approaches the

issue of plugging software services into existing environments. The presented

reference model was implemented based on a simplified real world scenario. Using

the pluggability assessment model we found the ease of integration one of the main

challenges service users face today. The proposed assessment model for plugga-

bility can be considered as an ad-hoc version of a quality model for software

services, which we will be subject to future research.

Furthermore, we propose an extended reference model that can improve the ease of

integration and is in line with the platform concept. The extension consist of a

canonical data management component containing the data that has to be shared

among the various services. However, the introduction of such a component will have

consequences with regards to the handling of the shared data. At this point various

scenarios are possible how existing and new services deal with the centralized data

repository. While new services can interact directly with the data services, the link

leads to a strong dependency between service and platform. Furthermore the

availability of platform compatible e-commerce services will be limited unless the

platform is gaining strong support from service providers. Furthermore the adoption

of the platform requires integration of existing services and thus a strong commitment

and initial investment from the e-commerce company.

The construction of the collaborative data management component itself should

be subject to further research. First, the canonical data model can be further

specified based on the various existing reference models in the field. Furthermore

the data access level has to be defined to allow the various partners to work

collaboratively and assure protection of sensitive information at the same time.

The goal of future research is to design these components that will undergo

prototypical implementation and evaluation. Finally other shortcomings of the state

of the art integration platforms such as ease of deployment and ease of operation

have to be addressed in the extended reference model.

A pluggable service platform architecture for e-commerce 487

123

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix 1: Predefined levels for pluggability criteria

Low Medium High

EOP Detailed information on the

service is only available

through individual contact

with the service provider

Documentation and

information about the

service can be requested

and is made available

according to a transparent

process

All required information

including documentation,

pricing and demos are

openly available

EOD Technical expertise such as

development or scripting is

needed to make the service

operable

The deployment does not

require any technical

expertise but complex setup

and configuration

The service can be used

straight away through

subscription

EOA The service can hardly be

adapted for use cases that

have not been specified by

the service provider

The service can be adapted to

any use case scenario but

needs technical expertise to

do so

The service can be adapted to

any possible use case

through configuration or

setup

EOI The integration of the service

into the landscape requires

coding or scripting

The integration of the service

into the landscape requires

configuration or setup

The service is automatically

integrated into the

landscape and requires no

further action after

deployment

EOO Monitoring, maintenance, and

customer service have to be

carried out by the service

user

Monitoring, maintenance, and

customer service are partly

handled by the service

provider

Monitoring. maintenance, and

customer service are

entirely handled by the

service provider

EOE Exchanging the service

impacts other services and

requires development or

scripting

Exchanging the service

impacts other services but

can be handled through

reconfiguration or setup

Exchanging the service does

not impact any other service

References

Aulkemeier F, Iacob M-E, van Hillegersberg J (2015) Pluggable SaaS integration: quality characteristics

for cloud based application services. In: Enterprise Systems Conference (ES), Basel

Aulkemeier F, Schramm M, Iacob M-E, van Hillegersberg J (2016) A service-oriented e-commerce

reference architecture. J Theor Appl Electron Commer Res 11:1–20

Baldwin LP, Currie WL (2000) Key issues in electronic commerce in today’s global information

infrastructure. Cogn Technol Work 2:27–34. doi:10.1007/s101110050004

Baldwin CY, Woodard CJ (2009) The architecture of platforms: a unified view. In: Gawer A (ed)

Platforms, markets and innovation. Edward Elgar, UK, pp 19–44

Banjo S (2013) Rampant returns plague e-retailers. Wall Str J

488 F. M. Aulkemeier et al.

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s101110050004

Becker J, Schutte R (2007) A reference model for retail enterprises. In: Fettke P, Loos P (eds) Reference

modeling for business systems analysis. IGI Global, pp 182–205

Burt S, Sparks L (2003) E-commerce and the retail process: a review. J Retail Consum Serv 10:275–286.

doi:10.1016/S0969-6989(02)00062-0

Chu S-C, Leung LC, Hui YV, Cheung W (2007) Evolution of e-commerce Web sites: a conceptual

framework and a longitudinal study. Inf Manage 44:154–164. doi:10.1016/j.im.2006.11.003

Cross N (2006) Designerly ways of knowing. Springer, London, pp 95–103

Frank U, Lange C (2004) ECOMOD—reference business processes and strategies for e-commerce.

Research Group Enterprise Modelling, University Duisburg-Essen

Frank U, Lange C (2007) E-MEMO: a method to support the development of customized electronic

commerce systems. Inf Syst E-Bus Manag 5:93–116. doi:10.1007/s10257-006-0034-9

Gunasekaran A, Marri HB, McGaughey RE, Nebhwani MD (2002) E-commerce and its impact on

operations management. Int J Prod Econ 75:185–197. doi:10.1016/S0925-5273(01)00191-8

Hohpe G, Woolf B (2003) Enterprise integration patterns: designing, building, and deploying messaging

solutions. Addison-Wesley Longman Publishing Co, Boston, pp 355–360

Humeau P, Jung M (2013) Benchmark of e-commerce solutions. NBS System. https://www.nbs-system.

co.uk/blog-2/benchmark-of-e-commerce-solutions.html. Accessed 13 Sept 2015

Kleeberg M, Holger K (2014) Information systems integration in the cloud: scenarios, challenges and

technology trends. In: Brunetti G, Feld T, Heuser L et al (eds) Future business software. Springer,

Cham

Koppius OR, van de Laak AJ (2009) The quick-connect capability and its antecedents. In: Vervest PHM,

van Liere DW, Zheng (eds) The network experience. Springer, Berlin, Heidelberg, pp 267–284

Lankhorst MM, Proper HA, Jonkers H (2009) The architecture of the ArchiMate language. In: Halpin T,

Krogstie J, Nurcan S et al (eds) Enterprise, business-process and information systems modeling.

Springer, Berlin, pp 367–380

Liu D-R, Hwang T-F (2004) An agent-based approach to flexible commerce in intermediary–centric

electronic markets. J Netw Comput Appl 27:33–48. doi:10.1016/S1084-8045(03)00039-0

Maler E, Hammond JS (2013) API management platforms, Q1 2013. In: The forrester wave. Forrester

research. https://www.forrester.com/fulltext/fulltext/-/E-RES81441. Accessed 13 Sept 2015

Malinverno P, Plummer DC, Van Huizen G (2013) Gartner magic quadrant for application services

governance. Gartner Inc. https://www.gartner.com/doc/2571325. Accessed 13 Sept 2015

O’Leary DE (2000) Enterprise resource planning systems: systems, life cycle, electronic commerce, and

risk. Cambridge University Press, Cambridge

Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A design science research methodology

for information systems research. J Manag Inf Syst 24:45–77. doi:10.2753/MIS0742-1222240302

Pezzini M (2011) Integration PaaS: enabling the global integrated enterprise. Paper presented at the

Gartner Application Architecture, Development & Integration Summit, Las Vegas, 29 Nov–1 Dec

2011

Pezzini M, Natis YV, Malinverno P et al (2014) Magic quadrant for enterprise integration platform as a

service. Gartner Inc. https://www.gartner.com/doc/2657018/. Accessed 13 Sept 2015

Potočnik M, Juric MB (2012) Integration of SaaS using IPaaS. In: Proceedings of the 1st international

conference on cloud assisted services. Bled

Ried S (2014) Hybrid integration, Q1 2014. In: The forrester wave. Forrester research. https://www.

forrester.com/fulltext/fulltext/-/E-res111881. Accessed 13 Sept 2015

Schepers TGJ, Iacob ME, Van Eck PAT (2008) A lifecycle approach to SOA governance. ACM Press,

New York, p 105

van Heck E, Vervest P (2007) Smart business networks: how the network wins. Commun ACM 50:28–37

van Hillegersberg J, Moonen H, Dalmolen S (2012) Coordination as a service to enable agile business

networks. In: Kotlarsky J, Oshri I, Willcocks LP (eds) The dynamics of global sourcing.

Perspectives and practices. Springer, Berlin, pp 164–174

A pluggable service platform architecture for e-commerce 489

123

http://dx.doi.org/10.1016/S0969-6989(02)00062-0
http://dx.doi.org/10.1016/j.im.2006.11.003
http://dx.doi.org/10.1007/s10257-006-0034-9
http://dx.doi.org/10.1016/S0925-5273(01)00191-8
https://www.nbs-system.co.uk/blog-2/benchmark-of-e-commerce-solutions.html
https://www.nbs-system.co.uk/blog-2/benchmark-of-e-commerce-solutions.html
http://dx.doi.org/10.1016/S1084-8045(03)00039-0
https://www.forrester.com/fulltext/fulltext/-/E-RES81441
https://www.gartner.com/doc/2571325
http://dx.doi.org/10.2753/MIS0742-1222240302
https://www.gartner.com/doc/2657018/
https://www.forrester.com/fulltext/fulltext/-/E-res111881
https://www.forrester.com/fulltext/fulltext/-/E-res111881

	A pluggable service platform architecture for e-commerce
	Abstract
	Introduction
	Service based platform architectures
	Objectives and benefits
	State of the art
	Common platform services

	A reference architecture for e-commerce service platforms
	Framework
	E-commerce company
	Service provider
	Platform provider

	A service platform based return registration process
	Business case and solution design
	Prototype

	Validation
	Pluggability
	Observations
	Improvements on the state of the art cloud integration platforms

	Conclusion and future research
	Open Access
	Appendix 1: Predefined levels for pluggability criteria
	References

